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Received: July 1, 2021 / Accepted: April 24, 2022

Abstract Although many present day studies gather data of a diverse nature (numeric quantities, binary indicators
or ordered categories) on the same units repeatedly over time, there only exist limited number of approaches in
the literature to analyse so-called mixed-type longitudinal data. We present a statistical model capable of joint
modelling several mixed-type outcomes, which also accounts for possible dependencies among the investigated
outcomes. A thresholding approach to link binary or ordinal variables to their latent numeric counterparts allows
us to jointly model all, including latent, numeric outcomes using a multivariate version of the linear mixed-effects
model. We avoid the independence assumption over outcomes by relaxing the variance matrix of random effects
to a completely general positive definite matrix. Moreover, we follow model-based clustering methodology to
create a mixture of such models to model heterogeneity in the temporal evolution of the considered outcomes. The
estimation of such an hierarchical model is approached by Bayesian principles with the use of Markov chain Monte
Carlo methods. After a successful simulation study with the aim to examine the ability to consistently estimate the
true parameter values and thus discover the different patterns, the EU-SILC dataset consisting of Czech households
that were followed for four years in a time span from 2005 – 2016 was analysed. The households were classified
into groups with a similar evolution of several closely related indicators of monetary poverty based on estimated
classification probabilities.

Keywords Multivariate longitudinal data · Mixed type outcome · Model based clustering · Classification ·
EU-SILC

1 Introduction

In different types of studies, data are nowadays routinely gathered repeatedly over time on the same units leading to
longitudinal or panel data. In addition, multiple outcomes, both numeric and categorical, i.e., of a mixed type, are
recorded at each measurement occasion leading to multivariate mixed type longitudinal data. An example of such
a dataset, which also motivates our research, is The European Union Statistics on Income and Living Conditions
database (EU-SILC, https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-
on-income-and-living-conditions). This is an instrument with the goal to collect timely and comparable
cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living con-
ditions in the European Union, Iceland, Norway and Switzerland. The reference population includes all private
households of the respective countries and variables, which are collected annually via questionnaires, and refer
both to households and to individuals from the household. In this paper, we focus on household specific data from
the Czech Republic (period 2005 – 2016) where each household was followed annually for a period of 4 years. In
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total, n = 20323 households will be analysed. The aim of the research is to find typical patterns of the temporal
evolution of several indicators related to poverty and material deprivation. The relevant outcome variables are not
only numeric (e.g., income) but also binary (e.g., ability to pay for a one week holiday), or ordinal (e.g., level
of the financial burden of housing). Figure 1 illustrates such a combination of longitudinal outcomes used later
(Section 6.1) in the analysis. From a data analytic point of view, it is our aim to develop a clustering approach
suitable for longitudinal data of a mixed type which allows for the above-mentioned types of outcome variables.

To formalize the task, we are assuming that data are composed of n independently behaving units (e.g., house-
holds) and for the ith unit (i = 1, . . . ,n), in total R outcome variables Y r

i, j (r = 1, . . . ,R, j = 1, . . . ,ni) are gathered
at each of the ni measurement occasions that take place at times ti,1, . . . , ti,ni . In addition, each outcome variable
Y r

i, j might be either numeric, binary or ordinal. Finally, each observation might be supplemented by a vector vvvr
i, j

of additional covariates that may explain the outcome variability. In summary, the ith unit is represented by data
Di =

{
Y r

i, j, vvvr
i, j, ti, j : r = 1, . . . ,R, j = 1, . . . ,ni

}
, i = 1, . . . ,n and the task is to use this information to classify each

unit into one of K > 1 groups with a priori unknown structure.
Due to the complexity of a data structure and that possibly different numbers ni of measurement occasions

appear in data for different units, classical distance-based clustering methods such as hierarchical clustering or
the K-means method and their many extensions (see, e.g., Hastie et al, 2009, Chapters 13 and 14) could hardly
be used. On the other hand, methods that further develop ideas of model based clustering (MBC, Banfield and
Raftery, 1993; Fraley and Raftery, 2002) and that exploit mixtures of suitable statistical models proved to be useful
in similar situations. Frühwirth-Schnatter (2006, Chapter 7) or more recently Grün (2019) provide a review of the
Markov chain Monte Carlo (MCMC) methods for MBC. A classical model to analyse continuous longitudinal
outcomes is the linear mixed model (LMM, Laird and Ware, 1982) and hence not surprisingly, several MBC
procedures based on mixtures of LMM’s appeared in the literature. The work by Verbeke and Lesaffre (1996),
where growth curves are classified, provides one of the first methods of this type even though not explicitly called
MBC at that time. More recently, an application of similar ideas to clustering of gene-expression data is covered by
Celeux et al (2005). Subsequently, De la Cruz-Mesı́a et al (2008) base their MBC procedure for longitudinal data
on a non-linear mixed model. The situation of more than one (R > 1) outcome being available for the clustering,
nevertheless, all of them still continuous, is considered by Villarroel et al (2009).

The MBC methods developed for functional data and (continuous) stochastic processes could also be employed
if we continue to deal with continuous and, moreover, univariate (R = 1) longitudinal data (e.g. James and Sugar,
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Fig. 1: EU-SILC data (Czech Republic). Observed longitudinal household profiles of three outcomes: Total dispos-
able income (left, numeric, log-scale); Affordability of a one week holiday (centre, binary) and Financial burden
of housing cost (right, ordinal). The shaded bars depict the proportions of the categorical outcome levels in each
year.
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2003; Ma et al, 2006; Liu and Yang, 2009; McNicholas and Murphy, 2010). Frühwirth-Schnatter (2011) provides
a comprehensive overview. A possibility to develop the MBC for non-continuous longitudinal data is to replace
LMM by a generalized linear mixed model (GLMM) in the underlying mixture of models. See, e.g., Molenberghs
and Verbeke (2005, Chapter 14) who also provide an example of such a clustering procedure in their Section 23.3.
Nevertheless, it is still only possible to use a single (R = 1) longitudinal outcome.

On the other hand, only little previous work appears to be available in the literature in cases where units are
to be classified based on multivariate (R > 1) and possibly non-continuous longitudinal data. If all outcomes are
of the same type (e.g., all binary), a method based again on a mixture of mixed models is offered by the
package lcmm (Proust-Lima et al, 2017). Nevertheless, for the MBC based on multivariate (R > 1) mixed type
longitudinal data, the only two approaches we are aware of and that to some extent allow for classification, are
those implemented in the packages flexmix (Grün and Leisch, 2008) and mixAK (Komárek and Komárková,
2013, 2014). Nevertheless, both of the two approaches lack some important aspects. First, Grün and Leisch (2008)
assume independence of different longitudinal outcomes measured at one occasion. This may not only be unreal-
istic but also prevents the analyst from exploiting information provided by the dependence structure among the R
outcomes in the clustering procedure. Even though a certain form of dependence is considered by Komárek and
Komárková (2013, 2014), only binary or count non-continuous outcomes are considered, which does not allow
for use with typical questionnaire data such as the EU-SILC database where many outcome variables are of an
ordinal nature.

One of the reasons why there is not much available to perform clustering based on multivariate mixed type
longitudinal data is perhaps the fact that even statistical models needed to develop the MBC procedure that would
allow for datasets of a considered structure are relatively scarce in literature. This is especially if we seek models
that realistically account for possible dependencies between different outcome variables gathered at one occasion.
Fieuws and Verbeke (2004) covered in detail a bivariate case of longitudinal data and in this manuscript, we also
follow their suggestion to use a multivariate mixed model while specifying a general covariance matrix for the
joint distribution of all involved random effects. Later, Fieuws and Verbeke (2006) extended this approach to more
than two outcomes by pairwise fitting and construction of pseudo-likelihood to avoid computational problems
with a covariance matrix of a higher dimension. Nevertheless, MBC was not employed in any of those solutions.
Recently, Bruckers et al (2016) invented a clustering algorithm that updates the pseudo-log-likelihood of the
pairwise approach and reclassifies individuals until no change is made. This solution, however, lacks inclusion of
the binary and ordinal outcomes that we aim to provide in this article.

The remainder of the paper is organized as follows. In Section 2, we first outline the approach capable of a joint
modelling of mixed-type (numeric, binary and ordinal) longitudinal data. Second, in Section 3, we incorporate the
developed model within the clustering procedure that allows usage of data with a structure analogous to that in
Figure 1 and the classification of study units into groups with apriori unknown structure. Yet, Section 3 only pro-
vides a theoretical clustering concept, which assumes full knowledge of unknown parameters. The transition into
a practically applicable procedure is provided in Section 4, which outlines details of a Bayesian approach towards
this goal. Further, Section 5 evaluates clustering as well as the estimation capabilities of our approach on a simu-
lation study. In Section 6, we apply our method to the EU-SILC database in order to discover clusters of different
evolution patterns and for classifying each household. Finally, Section 7 summarizes the proposed methodology
and discusses further possibilities on how to improve it in reaction to our findings from the applications.

2 Joint modelling of mixed-type longitudinal data

At each measurement occasion, R outcomes (numeric, ordinal or binary) are observed on each study unit. Let
R = {1, . . . , R} = RNum ∪ROB, ROB = ROrd ∪RBin, denote the index set of observed outcomes that con-
sists of indices of numeric outcomes (RNum), ordinal outcomes (ROrd) and binary outcomes (RBin). Let YYY r

i =(
Y r

i,1, . . . ,Y
r
i,ni

)>
be the vector of values of outcome r∈R of subject i= 1, . . . ,n observed at times ttt i =(ti,1, . . . , ti,ni)

together with additional covariates vvvr
i,1, . . . ,vvv

r
i,ni

. Further, let C r
i =

{
ttt i,vvvr

i,1, . . . ,vvv
r
i,ni

}
denote both the measurement

times and the covariate values for the outcome r of the ith subject. Finally, let

Yi = (YYY r
i ,r ∈R) , Ci = {C r

i ,r ∈R} (1)

denote all information (outcomes and covariate values) available for the ith subject, which is assumed to be inde-
pendent of other subjects. YYY r and C r stand for information (outcome and covariate values) regarding one chosen
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outcome r ∈R from all subjects, while Y and C stand for all gathered information (all outcomes and covariate
values) from all subjects.

The joint model for data (1) is built hierarchically. It exploits the linear mixed model (LMM) for each lon-
gitudinal outcome (each r ∈ R). In the case of binary or ordinal outcomes, the LMM is assumed only latently.
Dependencies between different outcomes gathered on a single study unit are captured by considering a vector of
shared random effects. In particular, the model is built as follows.

2.1 Numeric longitudinal outcomes

For each numeric outcome r ∈RNum we directly assume the linear mixed model:

YYY r
i | bbbr

i ; C r
i ∼ Nni

(
ηηη

r
i , τ
−1
r Ini

)
, (2)

where ηηηr
i =Xr

i βββ
r +Zr

i bbb
r
i is the linear predictor consisting of fixed and random effects parts, τr > 0 is the precision

(inverse variance) of model errors , βββ
r ∈ RdFr are fixed effects and bbbr

i ∈ RdRr are random effects belonging to

subject i. Further, Xr
i =
(

xxxr
i,1, . . . ,xxx

r
i,ni

)>
and Zr

i =
(

zzzr
i,1, . . . ,zzz

r
i,ni

)>
are matrices of regressors being derived from

the explanatory variables information C r
i . For identifiability purposes, matrices Xr

i and Zr
i are assumed not to share

the same columns, i.e. the created regressor falls exclusively either into the fixed effects part or into the random
effects part of the model.

2.2 Ordinal and binary longitudinal outcomes

The rth binary or ordinal outcome r ∈ROB is assumed to attain values 0, . . . ,Lr−1 which are linked to a linear
mixed model through the thresholding concept (see, e.g., Albert and Chib, 1993):

Y r
i, j = l ⇐⇒ γ

r
l < Y ?,r

i, j ≤ γ
r
l+1, (3)

where −∞ = γr
0 < γr

1 < · · · < γr
Lr = ∞ are (unknown) thresholds categorizing a latent (unobserved) numeric vari-

ables Y ?,r
i, j . Let γγγr =

(
γr

1, . . . ,γ
r
Lr−1

)
be the vector of thresholds. For identifiability purposes, we will fix one of the

thresholds, e.g., the first one γr
1 while estimating the model. That is, in the case of a binary outcome, all threshold

parameters are fixed.
Analogously to the case of numeric outcomes, latent numeric variables Y ?,r

i, j are assumed to follow the linear
mixed model

YYY ?,r
i

∣∣ bbbr
i ; C r

i ∼ Nni (ηηη
r
i , Ini) (4)

with analogous notation to that in (2). Nevertheless, this time, the precision parameter τr of model errors is fixed
and equal to one for identifiability purposes.

2.3 Joint model

Let YN
i =

(
YYY r

i ,r ∈RNum
)

denote a vector of all numeric outcomes of subject i. Further, let Y?,OB
i =

(
YYY ?,r

i ,r ∈ROB
)

be a vector of latent numeric variables behind all ordinal and binary outcomes. The subvectors of Y?
i :=

(
YN

i , Y
?,OB
i

)
are assumed to follow linear mixed models (2) and (4) with a set of fixed effects βββ =

{
βββ

r,r ∈R
}

and an overall
vector of random effects bbbi = {bbbr

i ,r ∈R}, thus, forming a multivariate linear mixed model (MV LME).
In the following, let bbbNi =

{
bbbr

i ,r ∈RNum
}

and bbbOB
i =

{
bbbr

i ,r ∈ROB
}

be random effects related to mod-
els for numeric and ordinal/binary longitudinal outcomes, respectively. The overall random effects vector bbbi ≡(

bbbNi , bbbOB
i

)
is now assumed to follow a multivariate normal distribution with a general covariance matrix, i.e., it

is assumed

bbbi =

(
bbbNi

bbbOB
i

)
iid∼ NdR

(
µµµ =

(
µµµN

µµµOB

)
, ΣΣΣ =

(
ΣΣΣ

N
ΣΣΣ

NOB

ΣΣΣ
OBN

ΣΣΣ
OB

))
, (5)

where dR = dR
N+dR

OB = ∑r∈R dR
r is the total dimension of bbbi, µµµ ∈ RdR is the (unknown) mean value of the ran-

dom effects and ΣΣΣ > 0 is the unknown random effects covariance matrix. This matrix is left to be completely
general, which captures possible dependencies between different longitudinal outcomes. Figure 2 demonstrates
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how the value of a correlation coefficient ρ between random intercepts of simulated numeric and binary longitudi-
nal outcomes affects the marginal dependencies. As expected, positive correlation increases the odds with numeric
outcome and vice versa for the negative correlation, while zero correlation yields no marginal relationship between
the two outcomes.

Throughout the manuscript, the notation p(· | ·) will stand for a conditional probability distribution function.
Next to the fixed effects βββ , mean vector µµµ and covariance matrix ΣΣΣ , the unknown parameters of the model are
τττ :=

(
τr,r ∈RNum

)
, precisions of the error terms of the LMM’s for numeric outcomes and γγγ =

{
γγγr,r ∈ROrd

}
,

thresholds for ordinal outcomes.
The outlined model implies the following likelihood based on the observed data:

p(Yi|βββ ,µµµ,ΣΣΣ ,τττ,γγγ; Ci) =
∫ ∫

p
(
YN

i ,YOB
i ,Y?,OB

i ,bbbi

∣∣∣βββ ,µµµ,ΣΣΣ ,τττ,γγγ; Ci

)
dbbbi dY?,OB

i =

=
∫ ∫

p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
︸ ︷︷ ︸

thresholding (3)

· p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi, βββ ,τττ; Ci

)
︸ ︷︷ ︸

MV LME (2),(4)

· p(bbbi|µµµ,ΣΣΣ)︸ ︷︷ ︸
(5)

dbbbi dY?,OB
i . (6)

The probability density functions which are integrated in (6) are of the form

p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
= ∏

r∈ROB

ni

∏
j=1

[
Lr−1

∑
l=0

1{l}
(
yr

i, j
)
1(γr

l , γr
l+1]

(
y?,OB

i

)]
,

p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi, βββ ,τττ; Ci

)
= ∏

r∈RNum

ni

∏
j=1

ϕ
(
yr

i, j;η
r
i, j,τ

−1
r
)
· ∏

r∈ROB

ni

∏
j=1

ϕ

(
y?,ri, j ;η

r
i, j,1

)
,

p(bbbi|µµµ,ΣΣΣ) = ϕ (bbbi; µµµ,ΣΣΣ) ,

(7)

where ϕ (·;mmm,SSS) is probability density function of multivariate normal distribution with mean mmm and variance
matrix SSS.

3 Model-based clustering framework

Classification of the subjects into one of K latent subgroups with apriori unknown structure will be based on the
model-based clustering procedure developed above the model introduced in Section 2 in which all parameters of
the underlying linear mixed models might be group-specific. As it is usual in this context, let Ui ∈

{
1, . . . , K

}
denote an unobservable group-allocation indicator for subject i (i = 1, . . . ,n). We assume that the model for i-th
subject if it belongs to the k-th group (given Ui = k, k = 1, . . . ,K) is described by the probability density function
p
(
Yi
∣∣βββ (k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ; Ci

)
of the form (6), where

{
βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k)

}
is a set of (possibly) group-specific
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Fig. 2: Ratios of binary outcome values across different factorized values of the numeric outcome of the simulated
longitudinal dataset for n = 10000 subjects each of ni = 4 observations connected through random intercepts with
correlation ρ ∈ {−0.7,0,0.7}.
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model parameters. That is, the assumed conditional probability distribution function of the i-th subject outcomes
given the group allocation is

p
(
Yi

∣∣∣Ui = k, βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ; Ci

)
(6)
=

=
∫ ∫

p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi, βββ
(k),τττ(k); Ci

)
· p
(

bbbi

∣∣∣µµµ(k),ΣΣΣ (k)
)

dbbbi dY?,OB
i . (8)

Note that by setting different LMM model parameters to be group-specific, we allow for different expressions
of heterogeneity in the population. If, for example, we set parameters βββ to be group-specific, we assume that
differences among the K latent groups can be described in terms of the effect of the fixed effects covariates Xi.
On the other hand, group-specific parameter ΣΣΣ would lead to different associations among random effects that
would subsequently change the marginal relationships among the outcomes. In general, not all of the LMM model
parameters must be group-specific; nevertheless, for clarity, we suppress this in notation. In the following, symbols
βββ , µµµ , ΣΣΣ and τττ will represent sets of all corresponding parameters

{
βββ
(k),k = 1, . . . ,K

}
,
{

µµµ(k),k = 1, . . . ,K
}

,{
ΣΣΣ

(k),k = 1, . . . ,K
}

and
{

τττ(k),k = 1, . . . ,K
}

, respectively.

Let wk = P
(
Ui = k

∣∣www) ∈ (0, 1), k = 1, . . . ,K, ∑
K
k=1 wk = 1, be the (unknown) probabilities of pertinence to

each of the K groups, www :=
(
w1, . . . , wK

)
. Would we know all the model parameters θθθ :=

{
www, βββ , µµµ, ΣΣΣ , τττ, γγγ

}
,

Bayes rule provides an expression of conditional (given the observed data) probabilities for subject i belonging to
each of the groups:

ui,k(θθθ) := P [Ui = k |Yi, θθθ ; Ci ] =
wk p

(
Yi

∣∣∣Ui = k, βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ; Ci

)
K
∑

k′=1
wk′ p

(
Yi

∣∣∣Ui = k′, βββ
(k′),µµµ(k′),ΣΣΣ (k′),τττ(k

′),γγγ; Ci

) . (9)

In a majority of the MBC methodologies, the authors consider the maximum-likelihood estimation (MLE)
of the unknown parameters, especially, its restricted version (REML) in the case of linear mixed models. The

clustering is then based on estimated subject specific group probabilities ûML
i,k = ui,k

(
θ̂θθ
ML)

where θ̂θθ
ML

denotes the
MLE (or REML). In our situation, this likelihood takes the form of:

L(θθθ) =
n

∏
i=1

{
K

∑
k=1

wk p
(
Yi

∣∣∣Ui = k, βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ; Ci

)}
.

This is traditionally solved by using the EM algorithm (Dempster et al, 1977) to face the problem of latent alloca-
tions leading to the mixture type likelihood. Nevertheless, two other levels of latent variables (random effects bbbi

and latent numeric variables Y?,OB
i ) are present in our model leading to two additional levels of integration when

evaluating the likelihood, see expression (6). This makes the likelihood hardly tractable and we switch to very
popular Bayesian framework and the related MCMC methodology, which allows to fully exploit a hierarchical
structure of our model. Regardless of the model complexity, these methods elegantly avoid necessary integra-
tions in a unified way. Moreover, carefully chosen prior distribution of the unknown parameters regularizes the
likelihood to elegantly avoid maximization difficulties caused by subject-specific effects. The clustering itself is
then based on the posterior distribution of the individual group probabilities (9) and not only on a single point
estimate. The Bayesian approach to MBC has been successfully used by Frühwirth-Schnatter (2011) and later by
Frühwirth-Schnatter et al (2012, 2018) to cluster discrete panel data and by Komárek and Komárková (2013) to
cluster longitudinal biomedical markers from pbc of a different type.

4 Bayesian inference

For Bayesian inference, we exploit the ideas of Bayesian data augmentation (BDA, Tanner and Wong, 1987) while
considering all latent quantities, i.e., component allocations UUU :=

{
Ui, i = 1, . . . ,n

}
, LMM random effect vectors

bbb :=
{

bbbi, i= 1, . . . ,n
}

and latent variables Y?,OB :=
{
Y?,OB

i , i= 1, . . . ,n
}

as additional model parameters included
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in the posterior distribution. With the model specified in Sections 2 and 3, the joint distribution of observed as well
as latent data and model parameters for the Bayesian model is given by the following decomposition

p
(
YN,YOB, Y?,OB,UUU , bbb, θθθ ; C

)
=

[ n

∏
i=1

p
(
YN

i , YOB
i , Y?,OB

i ,Ui, bbbi
∣∣ θθθ ; Ci

)]
p(θθθ)

=

[ n

∏
i=1

p
(
YN

i , YOB
i , Y?,OB

i

∣∣ bbbi,Ui, θθθ ; Ci
)

p
(
bbbi
∣∣Ui, θθθ

)
p
(
Ui
∣∣θθθ)] p(θθθ)

=

[ n

∏
i=1

p
(
YOB

i
∣∣Y?,OB

i , γγγ
)

p
(
YN

i , Y
?,OB
i

∣∣bbbi, βββ
(Ui), τττ

(Ui); Ci
)

p
(
bbbi
∣∣µµµ(Ui),ΣΣΣ (Ui)

)
wUi

]
p(θθθ), (10)

where factors in (10) follow from (7) and p(θθθ) is the prior distribution of the primary model parameters. By sym-
bols YN and YOB we understand the collection of corresponding outcomes of the same type across all individuals,
i.e. YN =

{
YN

i , i = 1, . . . ,n
}

and YOB =
{
YOB

i , i = 1, . . . ,n
}

. Later, we also use symbol Y for all outcomes avail-
able, that is Y= YN∪YOB.

4.1 Prior distribution and MCMC sampling scheme

We consider that the rather standard prior distributions of primary model parameters θθθ used in a context of hier-
archical models are similar to ours. In particular, we assume that the prior distribution is decomposed as

p(θθθ) = p(www) p(γγγ) p
(
βββ |τττ

)
p(τττ) p(µµµ) p(ΣΣΣ)

with the following choices for the elements of the factorization.
A classically considered Dirichlet prior is assumed for the vector of group weights www =

(
w1, . . . , wK

)
, i.e.,

p(www) ∝

K

∏
k=1

wαk−1
k ,

where ααα = (α1, . . . ,αK) is a set of positive hyperparameters (all being equal to 1 in our applications in Sections 5
and 6).

Considering the thresholding parameters γγγr, r ∈ROrd, we first address the identifiability issue. Corresponding
parametric space Ω r is limited to a set of all vectors of ordered values with fixed first threshold γr

1. An improper
uniform distribution on Ω r is assumed for each set of thresholds γγγr, r ∈ROrd. That is,

p(γγγ) = ∏
r∈ROrd

p(γγγr) ∝ ∏
r∈ROrd

1Ω r (γγγr) .

All fixed effects parameters βββ
r,(k) =

(
β

r,(k)
1 , . . . , β

r,(k)
dFr

)
, r ∈R, k = 1, . . . ,K, are assumed to be apriori inde-

pendent and following a conjugate normal distributions, i.e.,

p
(
βββ |τττ

)
=

K

∏
k=1

∏
r∈RNum

dFr

∏
j=1

ϕ

(
β

r,(k)
j ;β

r
0, j,
(
τ
(k)
r
)−1 dr

j, j

)
·

K

∏
k=1

∏
r∈ROB

dFr

∏
j=1

ϕ

(
β

r,(k)
j ;β

r
0, j, dr

j, j

)
,

where β r
0, j and dr

j, j are fixed hyperparameters (being equal to zero and ten, respectively, in our applications). The
precision parameters are given independent gamma priors, i.e.,

p
(
τττ
)
=

K

∏
k=1

∏
r∈R

p
(
τ
(k)
r
)
,

where each p
(
τ
(k)
r
)

corresponds to the gamma distribution Γ (a1, a2). Also for the random effect means, a set of
independent, and for simplicity, only semi-conjugate normal priors are assumed, i.e.,

p(µµµ) ≡ p
(
µµµ
∣∣τττR) =

K

∏
k=1

dR

∏
j=1

p
(
µ
(k)
j

∣∣τ(k)R, j

)
=

K

∏
k=1

dR

∏
j=1

ϕ

(
µ
(k)
j ; µ

(k)
0, j ,
(
τ
(k)
R, j

)−1
)
,
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where µ
(k)
0, j are fixed hyperparameters (being equal to zero in our applications). Finally, parameters τττR =

{
τττ
(k)
R ,k =

1, . . . ,K
}

, τττ
(k)
R =

(
τ
(k)
R,1, . . . , τ

(k)
R,dR

)
are random hyperparameters being assigned independent gamma priors Γ (a3, a4)

in another level of hierarchy to allow for weakly informative prior distribution. For calculations in Sections 5 and 6,
a1 = a3 = 1 and a2 = a4 = 1 in the Gamma hyperpriors.

Covariance matrices ΣΣΣ
(k) of random effects bbbi are required to be completely general positive definite matrices,

therefore, we suppose inverse covariance matrix ΣΣΣ
−(k) :=

(
ΣΣΣ

(k))−1 to follow Wishart distribution to preserve
conjugacy. Again, to achieve a weakly informative prior, we introduce a new hyperparameter, scale matrix Q(k),
while keeping the number of degrees of freedom ν0 ≥ dR fixed. Inverse Q−(k) of auxiliary scale matrix Q(k) is
also assumed to follow Wishart distribution, this time with fixed diagonal scale matrix DQ and number of degrees
of freedom ν1. In our applications, we use ν0 = ν1 = dR+1 and DQ = 100 · IdR .

The related posterior distribution p
(
θθθ , Y?,OB,UUU , bbb

∣∣YN, YOB; C
)

and its characteristics are estimated using
the MCMC methodology (Brooks et al, 2011). In particular, we adopted the classical Gibbs sampling scheme. Due
to the (semi)-conjugate choices of prior distributions, all required full-conditioned distributions belong to some of
the well-known distributional families and hence are straightforwardly sampled from them. See the Appendix for
more details.

Finally, we point out that the posterior distribution is invariant towards the permutation of cluster labels. This
may constitute a problem for classification. To avoid this label switching problem, we consider the post-sampling
procedure of Stephens (2000) that considers all K! permutations of labels for each iteration and ensures that the
latent clusters 1, . . . ,K have a fixed meaning during the whole sampling procedure. Only after label-switching has
been addressed do we proceed with inference sensitive to the change of cluster labels, such as the estimation of
classification probabilities.

4.2 Classification probabilities

Primarily, we perform classification using the posterior means

Ûi,k =
∫

θθθ

ui,k(θθθ) · p
(
θθθ
∣∣YN, YOB; C

)
dθθθ , i = 1, . . . ,n, k = 1, . . . ,K (11)

of allocation probabilities ui,k(θθθ) defined in (9). With the MCMC based inference, we already have a sample
(relabelled after label-switching check) from the posterior distribution p

(
θθθ
∣∣YN, YOB; C

)
available and hence the

values of (11) can be approximated by sample means of the respective values of ui,k(θθθ) over the MCMC sample.
Nevertheless, to evaluate the expression of ui,k(θθθ) we need to calculate the probability density function (8), which
involves non-trivial integrals with respect to the distribution of auxiliary latent variables: (i) the random effects bbbi

and (ii) the latent numeric outcomes Y?,OB
i . In the rest of this section, we explain how to evaluate integrals in (8),

that is, the integrals in

p
(
Yi

∣∣∣Ui = k, βββ
(k),µµµ(k),ΣΣΣ (k),τττ(k),γγγ; Ci

)
=

=
∫

p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
·
[∫

p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi, βββ
(k),τττ(k); Ci

)
· p
(
bbbi
∣∣µµµ(k),ΣΣΣ (k))dbbbi

]
︸ ︷︷ ︸

p
(
YN

i ,Y
?,OB
i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
dY?,OB

i . (12)

4.2.1 Integration with respect to random effects bi

Let us first integrate the random effects bbbi out of (12) to obtain the marginal distribution of numeric variables. In
this case, we will avoid integration by realizing that under the normality assumption of both numeric outcomes
and random effects, the unconditioned distribution of the outcomes is also normal. Vector of all numeric and
latent numeric outcomes YYY i (YN

i combined with Y?,OB
i ) of length d = ni|R| given a vector of all random effects

bbbi follows by our LME assumption multivariate normal distribution:

YYY i

∣∣∣bbbi, βββ
(k),τττ(k),µµµ(k),ΣΣΣ (k); Ci ∼ Nd

(
Xiβββ

(k)+Zibbbi, T
(k)
i

)
,

where Xi and Zi are block diagonal matrices composed of model matrices of fixed effects Xr
i and of random

effects Zr
i , respectively. The covariance matrix T(k)

i is diagonal due to independence assumption and contains the
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corresponding parameters of the residual variability, that is,
(
τ
(k)
r
)−1 for r ∈ RNum and 1 otherwise. Using the

normality of random effects, i.e., bbbi |µµµ(k),ΣΣΣ (k) ∼NdR

(
µµµ(k), ΣΣΣ

(k)
)

, and well known formulas for the moments, we
obtain the marginal mean and the covariance matrix:

E
[
YYY i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

]
= E

(
E
[
YYY i
∣∣bbbi, . . .

])
= Xiβββ

(k)+Ziµµµ
(k),

var
[
YYY i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

]
= E

(
var
[
YYY i
∣∣bbbi, . . .

])
+var

(
E
[
YYY i
∣∣bbbi, . . .

])
= T(k)

i +Z>i ΣΣΣ
(k)Zi =: V(k)

i ,

which results in
YYY i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci ∼ Nd

(
Xiβββ

(k)+Ziµµµ
(k), V(k)

i

)
. (13)

This distribution has a general covariance structure, which also shows how our model captures dependencies
among the longitudinal outcomes.

4.2.2 Integration with respect to latent numeric outcomes Y?,OB
i

It remains to perform the following integration:∫
p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
dY?,OB

i ,

which is, in fact, an integration of a multivariate normal density within the bounds given by the thresholds γγγ and
the observed ordinal and binary outcomes. First, we separate marginal distribution of numeric outcomes YN

i since
it can avoid the integration, while the conditional normal distribution of latent numeric outcomes Y?,OB

i given YN
i

still awaits the integration:

p
(
YN

i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
︸ ︷︷ ︸

pdf of MVN

·
∫

p
(
YOB

i

∣∣∣Y?,OB
i , γγγ

)
︸ ︷︷ ︸

thresholding (3)

·ϕ
(
Y?,OB

i ;ηηη
(k)
OB,V

(k)
OB

)
︸ ︷︷ ︸

pdf of Y?,OB
i

∣∣∣YN
i

dY?,OB
i ,

where ηηη
(k)
OB and V(k)

OB are the conditional mean and the covariance matrix of Y?,OB
i

∣∣∣YN
i , βββ

(k),τττ(k),µµµ(k),ΣΣΣ (k); Ci.
It remains to integrate the product of two functions, the first of which only declares lower and upper integration

bounds while the second is the probability density function of a multivariate normal distribution with the mean
ηηη
(k)
OB and the covariance matrix V(k)

OB. For each individual categorical outcome r ∈ ROB and observation j ∈
{1, . . . ,ni} the value yr

i, j = l determines an interval given by the corresponding pair of γ parameters, see (3):

Y r
i, j = l =⇒ Y ?,r

i, j ∈
(
γ

r
l , γ

r
l+1
]
=:
(
er

i j, f r
i j
]
.

If we denote the resulting Cartesian product of these intervals as �
(
γγγ, YOB

i
)
= (eeei, fff i ]⊂RdOB

then the remaining
integral can be written in the form

Ik

(
YOB

i

)
=

∫
�(γγγ,YOB

i )

p
(
Y?,OB

i

∣∣∣YN
i ,βββ

(k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
dY?,OB

i =

fff i∫
eeei

ϕ

(
yyy; ηηη

(k)
OB,V

(k)
OB

)
dyyy. (14)

Finally, after the integrals Ik for all k = 1, . . . ,K are computed, the classification probabilities can be calculated
proportionally:

ui,k (θθθ) =
wk · p

(
YN

i

∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
· Ik
(
YOB

i
)

K
∑

k′=1
wk′ · p

(
YN

i

∣∣βββ (k′),τττ(k
′),µµµ(k′),ΣΣΣ (k′); Ci

)
· Ik′
(
YOB

i

) . (15)

In order to compute integrals (14) needed in (15), we adopted an effective algorithm presented by Genz (1992),
which is also based on the MCMC sampling. Since the approximation of such an integral is needed K-times for
each generated state of the Gibbs sampling, the procedure is considerably time-consuming. The implemented
function pmvnorm from the package mvtnorm (Genz et al, 2019) is used in our applications.
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4.3 Classification rules

Once we have estimated the posterior means of classification probabilities Ûi,k we perform the classification as
follows. Naturally, for subject i we choose cluster k such that the corresponding estimated Ûi,k is the largest among
the all k = 1, . . . ,K values. However, that may not be the most fitting choice in cases where two of the clusters
have both comparable and high probability.

In order to prevent misclassification, we may to allow subjects to remain unclassified when the decision is un-
clear. One way to accomplish this is that we classify a particular subject into the cluster with the highest probability
only if it clearly overcomes the second largest probability. That is, when the difference between the two largest
probabilities is higher than a chosen threshold. However, the choice of the value of this threshold for different
values of K would be another problem to be dealt with. On the other hand, with a Bayesian approach another tool
to quantify uncertainty in classification is readily available. Next to the classification probabilities Ûi,k which are
the posterior means of ui,k(θθθ) = P [Ui = k |Yi, θθθ ; Ci ], we can additionally calculate the credible intervals for each
ui,k(θθθ). In our application, we make use of 95% highest posterior density (HPD) credible intervals and propose
to classify subject i into class k with the highest classification probability Ûi,k if and only if its lower 95% HPD
bound is still higher than any other upper 95% HPD bound of the remaining probabilities. Otherwise, subject
i remains unclassified. This procedure fills clusters with their most typical representatives and keep indecisive
subjects aside. Unclassified subjects can then be additionally analysed to determine the pair (or potentially larger
group) of clusters they are most associated with.

4.4 Number of groups

Throughout the paper, we treat the number of latent classes K known and to be selected in advance. In most
circumstances, however, there is no prior knowledge of the suitable value of K to be used. Usual practice in this
situation is to fit models with several values of K and then to choose the one that optimizes one of the known
criteria. To this end, we follow the steps of Aitkin et al (2009) and use the procedure based on exploration of the
posterior distribution of deviances for models with different values of K.

Deviance is a general goodness-of-fit measure derived from the log-likelihood function. For given K, it is
defined as

DK(θθθ ;Y,C ) =−2log p(Y|θθθ ; C ) =−2
n

∑
i=1

log p(Yi|θθθ ; Ci). (16)

Aitkin et al (2009) propose to decide about the two values K1 < K2 of the number of groups on the basis of the
posterior probability

P
[
DK1(θθθ ;Y,C )> DK2(θθθ ;Y,C )

∣∣Y; C
]

(17)

that compares the deviances of the two nested models.
With the MCMC based inference, the quantity (17) is easily calculated as soon as the deviance value (16)

is evaluated for each sampled value of the model parameters θθθ . In this respect, we note that the contribution of
individual i to the deviance is expressed as

−2log p(Yi|θθθ ; Ci) =−2log

[
K

∑
k=1

∫ ∫
p
(
Yi,Y?,OB

i ,bbbi,Ui = k
∣∣∣θθθ ; Ci

)
dbbbi dY?,OB

i

]
(18)

and includes the integration (12) for calculating classification probabilities, which has been described in Sec-
tion 4.2. Using the same notation, we can write

DK(θθθ ;Y,C ) =−2
n

∑
i=1

log

[
K

∑
k=1

wk · p
(
YN

i

∣∣∣βββ (k),τττ(k),µµµ(k),ΣΣΣ (k); Ci

)
· Ik

(
YOB

i

)]
, (19)

where the denominator of (15) is inserted into the logarithm. Therefore, calculation of the deviance for one set of
parameters θθθ requires the calculation of the classification probabilities for every individual and hence is possibly
extremely time-consuming.
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5 Simulation

To demonstrate the functionality of our proposed approach, we performed a simulation study. To this end, data
consisting of a numeric, a binary and an ordinal variable were generated while assuming different types of ran-
dom effects structure. The only parameter distinguishing the latent groups (K = 2 or K = 3) was the parameter
connected to the parametrization of time, i.e. intercept or slope. Parameters describing the covariance structure (τττ
and ΣΣΣ

−1) were held equal for all latent groups.

5.1 Simulation design

Each type of response (numeric, binary and ordinal) is represented by only one longitudinally measured variable
(YN

i, j, YB
i, j, YO

i, j , i = 1, . . . ,n and j = 1, . . . ,ni). We set the number of observations per one subject ni to be fixed at
ni = 4 for each of the n subjects, n∈ {100,500,1000}, which also corresponds to the same amount of observations
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Fig. 3: The samples of a numeric outcome distinguishing different scenario types (row difference, column struc-
ture of random effects) when K = 3 latent groups are supposed.
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per household available in the EU-SILC data. The part of the predictor, which is common to all types of variables
is of the form

1 ·X1
i, j−2 ·X2

i, j, where X1
i,1 = · · ·= X1

i,4
iid∼ Bernoulli(0.5) and X2

i, j
iid∼ Unif (0,1) .

Then, we suppose that each subject has its set of observational times 0 < ti,1 < ti,2 < ti,3 < ti,4 < 1 which were gen-
erated as an ordered sample from a uniform distribution on an interval (0, 1). We assume the linear parametrization
of time, which, however, depends on the structure of random effects. We consider three scenarios

1. (r = intercept): b0,i +β1ti, j, random intercept term and fixed slope,
2. (r = slope): β0 +b1,iti, j, fixed intercept term and random slope,
3. (r = both): b0,i +b1,iti, j, both intercept and slope are random effects.

We keep the same random effects structure for all outcome types. Therefore, the random effects of i-th subject are
multivariate normal of dimension three (cases 1 and 2) or six (case 3). Its variance matrix ΣΣΣ was an adequately
chosen matrix with a non-diagonal form; more details can be found in supplementary materials. Another level of
scenario settings arise from considering the three types of differences assumed among the K = 2 or K = 3 latent
groups:

a) (d = intercept): only the intercept term β
(k)
0 (case 2) and µµµ

(k)
0 (case 1 and 3) are class-specific, but the slope

parameters β1 and µµµ1 are not,
b) (d = slope): only the slope parameters β

(k)
1 (case 1) and µµµ

(k)
1 (case 2 and 3) are class-specific, but the intercept

terms β0 and µ0 are not,
c) (d = both): both the intercept and the slope terms β

(k)
0 , β

(k)
1 , µµµ

(k)
0 and µµµ

(k)
1 are class-specific.

These three types of differences are combined with the three types of random effects structure leading to nine
different scenarios that are examined for K = 2,3 and different sample sizes n. The values of intercept and slope
for each of the nine scenarios were chosen in different ways to obtain clusters distinguishable by the eye (see
Figure 3 for the case K = 3). The true values of intercept and slope parameters can be found in Tables S2 and S3
in supplementary materials. The group allocation indicator Ui was always generated from a uniform distribution,
which results in clusters of comparable sizes. All (latent) numeric outcomes were sampled with unit variance
τ = 1. The binary variable was obtained by threshold γB1 = 1 and the ordinal variable by thresholds γO1 =−1 and
γO2 = 2.

Each scenario under given K and n was replicated 200-times to explore the properties of the resulting esti-
mators and the classification procedure. For each dataset, the inference is based on an MCMC sample of size
M = 10000. The classification probabilities were calculated for a thinned (1:10) sample to save on the compu-
tational time needed to evaluate the multivariate normal integrals (14). The simulation study was conducted on
a computational cluster consisting of CPU units: Intel(R) Xeon(R) CPU E5-2620 v2, 2.10 GHz, 64 GB RAM.
The mean computation time for generating a chain of M = 10000 sampled values followed by a much more de-
manding computation of 1000 classification probabilities for all n subjects would not take less than an hour even
for the lowest values of n = 100 and K = 2 (around 80 minutes). The most challenging combination of n = 1000
and K = 3 took around 1200 minutes. The number of calls of pmvnorm used for the approximation of posterior
distribution of classification probabilities seem to influence the computational time the most; the MCMC sampling
itself takes only several seconds to complete (about a minute for the most challenging case n = 1000 and K = 3).

5.2 Statistical properties

First, Figure 4 focuses on the properties of the posterior means of the model parameters being considered as
classical estimators of the respective quantities. The colours distinguish the estimates in different classes (k =
1, . . . ,K) and the corresponding true values of the intercept and slope parameters are captured by dashed lines.
The grey colour depicts the true value shared by all classes. Each segment represents 2.5% and 97.5% quantiles of
200 times replicated estimators and the full circle represents ite mean. Figure 4 provides estimates of parameters
belonging to ordinal outcome only; plots for numeric and binary are postponed to supplementary materials.

Figure 4 demonstrates that the proposed procedure is capable of providing the estimators with reasonable
statistical properties despite the latent modelling and the thresholding concept. In most cases, it successfully
discovers the difference among classes as intervals of different colours tend not to overlap with each other. There
is also an apparent decreasing trend in standard deviation as n increases, suggesting consistency of the estimators.
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This is disrupted only when the corresponding estimate does not reach the true value. This phenomenon occurs
mostly in the estimation of the intercept term when it is considered to be random and different among clusters at
the same time. Such behaviour can also be seen for the class-specific slope term when both intercept and slope
term are random effects. In these situations, the estimates are shrunk towards the mean of the true values. This
might be a result of a combination of the incapability of discrimination between classes for low value of n and the
fact that LME usually tends to shrink random effects to zero. In the case of K = 3, this effect does not fully vanish
even for n = 1000, see the row both and the column intercept. However, it seems that the large number of subjects
n can overcome this issue, which we rely on in the real data analysis shown in Section 6.

5.3 Classification ability

First, Table 1 contains the percentages of the correctly classified subjects (using the HPD interval rule) averaged
across the 200 replications. This percentage differs scenario by scenario as the random structures and differences
among the classes interact in different ways leading to diverse success rates. For example, the case with a class-
specific random slope successfully classifies the vast majority of subjects for both K = 2 and K = 3, which is in
agreement with the strict separation in the corresponding plot of Figure 3. Classification does not work satisfacto-
rily in the problematic cases discussed above. Since for the low values of n, the difference between classes is not
estimated to be as strict as it should be, a much larger percentage of subjects is kept unclassified in such cases. By
increasing n, the percentage of unclassified subjects rapidly decreases and converts mainly into the correctly clas-
sified category. Nevertheless, under all scenarios, we managed to keep the misclassification rate very low, always
under 10%. The unclassified proportion is also much higher for K = 3 as one of the classes (green) is surrounded
from both sides, which significantly reduces the ability to distinguish among classes, see Figure 3 for illustration.

The classification ability of our approach will also be evaluated by calculating the overall probability that
a subject belonging to the k-th cluster is correctly classified in this cluster. To this end, for each k, we calculate
the arithmetic mean pk of the MCMC estimates Ûi,k of the posterior allocation probabilities (11) of belonging to
cluster k across all cluster members:

pk =
1

|i : Ui = k| ∑
i:Ui=k

Ûi,k. (20)

Further, to explore the impact of the longitudinally increasing amount of information, we also calculated the
classification probabilities “dynamically”. This means that for each subject, we pretend a situation that subject i is
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Fig. 4: 95% quantile bounds and means for the intercept and slope parameters (separated by light grey dotted
lines) for the ordinal outcome under different random effects structures and differences between classes. The true
values of the parameters are depicted by dashed lines (dark grey if common to all classes).
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Table 1: Percentages (standard deviation) of correctly classified, unclassified and misclassified subjects (using the
HPD interval rule) for several choices of n, K, structure of random effects and class differences in 200 replications.

r
1

d
2

n K = 2 K = 3
Correct [%] Uncl. [%] Miscl. [%] Correct [%] Uncl. [%] Miscl. [%]

in
te

rc
ep

t

in
te

rc
ep

t 100 27.0 (17.2) 63.2 (25.4) 9.8 (13.7) 23.0 (17.5) 70.2 (21.0) 6.8 (9.4)
500 62.5 (27.2) 33.0 (27.3) 4.4 (3.8) 44.3 (20.6) 50.8 (22.1) 4.9 (4.4)

1000 85.1 (6.7) 10.1 (7.1) 4.8 (0.9) 58.6 (16.9) 35.5 (17.2) 6.0 (3.1)

in
te

rc
ep

t

sl
op

e 100 76.8 (5.4) 20.3 (5.5) 2.9 (1.9) 56.0 (8.5) 40.4 (8.9) 3.6 (2.4)
500 86.1 (1.8) 8.9 (1.8) 5.0 (1.0) 74.6 (2.0) 19.0 (2.1) 6.4 (1.2)

1000 87.5 (1.1) 6.7 (0.9) 5.9 (0.7) 78.2 (1.5) 13.8 (1.5) 8.0 (0.8)

in
te

rc
ep

t

bo
th

100 86.5 (4.4) 12.0 (4.4) 1.5 (1.1) 58.0 (9.4) 38.5 (10.2) 3.4 (2.2)
500 92.9 (1.4) 4.5 (1.1) 2.6 (0.7) 76.9 (2.5) 16.5 (2.5) 6.7 (1.1)

1000 93.8 (0.8) 3.3 (0.6) 2.9 (0.5) 79.4 (1.6) 12.8 (1.6) 7.8 (0.8)

sl
op

e

in
te

rc
ep

t 100 96.2 (2.6) 3.4 (2.5) 0.4 (0.6) 61.2 (15.5) 36.4 (15.7) 2.3 (1.8)
500 97.9 (0.5) 1.5 (0.5) 0.6 (0.4) 87.6 (2.2) 9.2 (2.2) 3.2 (0.7)

1000 98.3 (0.4) 0.9 (0.3) 0.8 (0.3) 90.2 (1.2) 6.2 (1.1) 3.6 (0.5)

sl
op

e

sl
op

e 100 80.1 (20.4) 16.3 (19.0) 3.6 (8.7) 85.7 (13.5) 13.3 (13.6) 1.0 (1.2)
500 92.8 (1.5) 4.6 (1.4) 2.6 (0.7) 94.9 (1.2) 3.6 (1.0) 1.5 (0.5)

1000 93.9 (0.9) 3.3 (0.7) 2.8 (0.5) 95.5 (0.7) 2.6 (0.5) 1.9 (0.4)

sl
op

e

bo
th

100 85.3 (18.0) 13.8 (18.0) 0.9 (0.9) 62.2 (23.5) 35.8 (23.4) 2.0 (2.7)
500 96.2 (1.0) 2.6 (0.9) 1.3 (0.6) 92.4 (1.7) 5.5 (1.5) 2.1 (0.8)

1000 96.7 (0.6) 1.8 (0.4) 1.5 (0.4) 93.3 (0.9) 4.1 (0.9) 2.5 (0.5)

bo
th

in
te

rc
ep

t 100 18.8 (13.7) 76.0 (16.6) 5.2 (7.2) 18.7 (15.2) 78.1 (16.7) 3.2 (4.1)
500 35.4 (25.2) 58.7 (27.2) 6.0 (8.5) 30.6 (18.5) 65.1 (20.5) 4.3 (3.9)

1000 70.5 (22.4) 24.3 (23.4) 5.2 (1.9) 46.4 (12.1) 48.2 (13.9) 5.4 (2.4)

bo
th

sl
op

e 100 16.2 (13.2) 79.2 (16.8) 4.5 (6.0) 23.4 (22.3) 74.9 (23.6) 1.6 (2.3)
500 69.7 (18.1) 24.7 (19.4) 5.6 (2.0) 69.8 (13.4) 25.2 (14.4) 5.0 (1.4)

1000 80.5 (3.0) 12.0 (3.3) 7.4 (1.2) 81.1 (2.2) 11.9 (2.1) 7.0 (0.8)

bo
th

bo
th

100 16.7 (14.5) 80.3 (17.3) 3.0 (5.5) 19.4 (19.8) 79.7 (20.7) 0.9 (1.4)
500 43.6 (30.5) 53.3 (32.3) 3.0 (2.8) 66.3 (19.6) 29.1 (21.1) 4.5 (1.9)

1000 80.3 (10.5) 13.5 (11.1) 6.2 (1.2) 80.9 (3.3) 12.1 (3.5) 7.0 (1.0)

1 Structure of random effects.
2 Difference among classes.
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to be classified on the basis of a set of first j ∈ {1, . . . ,ni} longitudinal observations that enter the expression (15)
and consequently also the expression (20). Figure 5 shows the mean and the quantile bounds of such a dynamically
calculated mean probabilities p2 based on 200 replications of experiments with K = 3 clusters. Class 2 has been
chosen for demonstration as it is the middle one that overlaps the other two, which covers the most problematic
case (with respect to successful classification). The other choices of k and K (with much higher probabilities) can
be found in the supplement.

If a difference among classes lies only in the random intercept term, then there seems to be no improvement
with any additional observation. However, in other scenarios, the probability improves with any additional obser-
vation from later times as they help to fit the corresponding medium slope value better. This results in rejecting
the low and extremely large slope values of other classes, and therefore increasing the probability of classification
towards the true middle class. It also improves with the increasing number of subjects n since the classes are then
better distinguished.

6 Application to EU-SILC data

We will now apply the proposed methodology in order to find the temporal patterns of the evolution of the chosen
indicators for households in the EU-SILC database in the Czech Republic. The chosen time period of 2005 – 2016
covers the economical crisis and we expect it to heavily impact the budget of households, thus leading to different
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Fig. 5: Subjects of class 2 when K = 3. The mean and 2.5% and 97.5% quantile of mean classification probabilities
p2 towards the true class calculated dynamically using only first j ∈ {1,2,3,4} observations under several random
effects structure and difference among K = 3 classes. Three lines of the same colour in one cell correspond to the
increasing values of n ∈ {100,500,1000}.
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ways of coping with the crisis. From those who were not affected and continue to prosper, to those who suffer
unpleasant consequences. We chose one numeric, binary and ordinal variables that reflect the financial situation
of a household the most and aim to discover several different patterns in their evolution while jointly modelling
them.

6.1 Data description

First, we need to delve into the data gathering mechanism, which is crucial for the appropriate interpretation of the
results. The EU-SILC longitudinal study follows a rotational design – rotating part of the sample from one year to
the next and retaining the other unchanged part. The study in the Czech Republic was launched in 2005 with more
than 7000 households. Each following year, about a quarter of households in the study were dropped and replaced
by newly entering ones. Apart from the natural exit from the study, households were followed for no longer than
4 years. Since the primary focus is on the evolution part, we use for the analysis only those households that were
interviewed exactly ni = 4 times. This decision reduces the number of total households used for the analysis to
n = 20323.

The analysis will be performed on the following outcomes:

(i) Total disposable income (numeric),
(ii) Capacity to afford paying for a one week annual holiday away from home (binary - yes/no),

(iii) Financial burden of the total housing cost (ordinal - a heavy burden/a slight burden/no burden at all).

All-year income (in EUR) of the household (sum of all gross personal income components reduced by taxes on
wealth, income and social insurance) follows heavily skewed distribution. Therefore, we work with its logarithmic
transformation, which suits our LME assumptions much better. The binary outcome referred to as Affordability
of a one week holiday has the actual meaning ‘ability to pay’ regardless of whether the household wants it. The
ordinal outcome (in short Financial burden of housing cost) was filled subjectively by the respondent to assess
his/her feeling about the extent to which housing costs are a financial burden to the household. For obvious reasons,
these three cannot be considered as being completely independent.

The data contain information about the year and month of the interview (CZE data keep only the quarter –
either Q1 or Q2). We construct the time variable as the number of years past the beginning of 2005, which limits
the time into the interval [0, 12). For the regression part of the model, we will also use the Equivalised household
size, which is a sum of weights of each of the household members. The adult in the role of the head of the family
has a weight of 1, others have either a weight of 0.5 or 0.3 depending on whether they are older or younger than
14, respectively.

6.2 Model structure

Clearly, the three outcomes are strongly related and we may benefit from modelling them jointly. We assume the
LME model with the same structure of both fixed and random components for the numeric outcome and latent
numeric counterparts of the binary and ordinal outcomes. Being aware of possible change in the evolution of these
outcomes within the time period 2005 – 2016, we parametrize the effect of time by a B-spline of order 3 with knots
in the years 2005, 2008, 2010 and 2017, which leads to six β parameters including the intercept. This fixed part
of the model is extended by the Equivalised household size as an additional regressor (denoted by S). The random
effects structure, which is also responsible for the covariance structure among outcomes, is simply composed of
the zero mean random intercept term, which allows households to evolve on a different level than others. The
model formula for j-th observation of i-th household at time ti, j is then:

β
r
0 +β

r
1B1(ti, j)+ · · ·+β

r
5B5(ti, j) + β

r
6Si, j︸ ︷︷ ︸

fixed effects

+ br
0,i︸︷︷︸

random intercepts

, r ∈ {N,B,O},

where B1, . . . , B5 are B-spline functions corresponding to spline of order 3 with knots at 0, 3, 5 and 12 that does not

include the intercept and bbb0,i =
(

bN0,i,b
B
0,i,b

O
0,i

)>
is the three-dimensional mean-zero vector of random intercepts.

Our primary objective is to identify different patterns in the evolution of the chosen outcomes. Hence, fixed
effects βββ

(k) are supposed to be cluster-specific leading to different patterns captured by the splines. Other model
parameters (ΣΣΣ and τττ) responsible for the variance covariance structure are a nuisance with respect to our primary
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objective. To substantially reduce the dimension of parametric space and to concentrate on differences in patterns
and not the dependency structure, we keep ΣΣΣ and τττ the same in all classes.

6.3 Results

Contrary to the previous simulation study, we had to be more careful when sampling from the posterior distri-
bution. The initial values of all the unknown parameters and latent variables were randomly generated to obtain
different starting points for the sampled chains. The progress in each of the model parameters was visually moni-
tored every 10000th step in order to propose a reasonable choice of initial values for the subsequent continuation
of sampling. Chains required up to hundred thousands iterations until the visual stationarity in all of the aspects
was reached. The slow convergence was mainly caused by the threshold parameter γ due to almost negligible steps.
A final chain length of M = 10000 used for the analysis and results interpretation was sampled only after such
visual stationarity was verified and then checked for label-switching issues. In the calculation of the classification
probabilities and deviance we, again thinned the chain by 10 to save on computation time.

Following Section 4.4, we applied our methodology under several different choices of the number of hidden
clusters K and examined the posterior distribution of deviance in order to select the most suitable one. To this end,
we searched for a value of K where the decrease in deviance becomes negligible. Although, some improvement
in the decrement of deviance is visible in Figure 6, we can also notice that the solution for K = 4 surprisingly
achieved lower deviance than the one for K = 5. With K = 5 and also with higher values, small groups of house-
holds of extraordinary and very specific behaviour emerged leading us to the conclusion that from K = 5 onwards,
we faced a clear overfitting problem, which can be also seen on Figure 7. This contains estimated splines curves
for the logarithm of Total disposable income for each of the considered solutions. Case K = 1 shows us a general
increasing trend flattening after the year 2011 (red curve), which seems to be followed by the majority of house-
holds even for higher K. With K = 3 a new violet cluster appears that follows the same shape of the general curve
but on much higher level. It represents about 5–9% of households having a high income at their disposal. The so-
lution for K = 2 actually started with parallel curves of the same shape, however, it slowly transformed one of the
clusters into a very rare U-shaped trend (blue curve) cluster. For K ≥ 5 such a cluster appears again accompanied
by a golden cluster that behaves in reverse. This is why this solution should be rather viewed as an extension of
the K = 3 solution. However, situation K = 4 avoids these clusters of extreme behaviour and additionally covers
a turquoise cluster representing more than 10% of households of very low disposable income. This cluster seems
to be the reason why this solution defeats K = 5 in terms of the deviance. The fact that the solution for K = 5
should rather be viewed as overfitting is also seen on the classification performance of the model. With K = 5,
25% of households remained unclassified), as the red and green clusters do not substantially differ. To interpret
such clusters more precisely, we should not forget the other outcomes used. The resulting spline shapes for the
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Fig. 6: Comparison of posterior distribution of deviances based on the model with the number of clusters K =
1,2,3,4,5.
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Fig. 7: Spline curves for the logarithm of the Total disposable household income of unit Equivalised household
size for different choices of the number of clusters K.
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Affordability of a one week holiday and the Financial burden of total housing cost can be found in the supplement,
(Figures S14–S15).

Additional arguments on why the K = 5 solution is not satisfactory are as follows. As our goal is to find
different patterns in evolution, we could have actually even been interested in the blue and golden clusters of
extreme antagonistic behaviour. These clusters may cover households undergoing some substantial transformation,
which may indeed be what we aim to identify. However, we must not forget the fact that households were only
followed for 4 consecutive years. Therefore, the blue cluster should rather be interpreted in the following way: it
consists of households measured in

– 2005 – 2009 - with rapidly decreasing income,
– 2009 – 2011 - with very low disposable income,
– 2011 – 2016 - with steeply increasing income,

but not necessarily following this trend for the whole span of 12 years, analogously for the golden cluster. Hence,
these two clusters do not represent two of the typical outcome evolutions of a Czech household. This is the reason
why we consider them rather an overfitting issue than actual clusters worthy of exploration. This leaves us with
K = 4 solution being the most suitable for the overall interpretation.

In the K = 4 situation, households in the violet cluster with exceptionally high income can also always afford to
pay for one week holiday abroad and do not find the housing cost to be a particularly heavy burden, see Figure 8.
On the other hand, the turquoise cluster represents households of completely reverse characteristics - very low
disposable income, inability to pay for a one week holiday abroad and almost all of them struggle with payments
for housing. The other two remaining clusters (red and green) share a very similar and ordinary evolution of Total
disposable income, but can still be distinguished. The proportions of categorical outcomes can be seen changing
in time, especially the years 2010 and 2011 when the red cluster has the lowest percentage of households able to
pay for a one week holiday, while the green cluster has the largest. Moreover, the evolution of proportions in both
categorical outcomes is reversely mirrored; when one cluster thrives, the other struggles and vice versa. It almost
seems like the large 60% cluster of average households was divided in half based on the undergoing positive or
negative changes at certain periods of time. This division was enabled by our spline parametrization and the 4-year
rotational panel invoked by the EU-SILC study.

7 Conclusion

First, we faced the problem of a joint modelling of longitudinally measured numeric, ordinal and binary outcomes.
To this end, we proposed to use the multivariate linear mixed effects model on numeric and latent numeric out-
comes corresponding to the categorical ones by exploiting the thresholding concept. While assuming all involved
random effects follow a joint normal distribution, we enabled the longitudinal outcomes to be correlated. In ad-
dition, we considered the mixture of those models which allowed us to cluster individuals into several groups
of various patterns in terms of the time evolution of the outcomes or the covariance structure. We allowed for
specification of cluster-specific parameters, which provides the user with full flexibility to adjust their model to
particular applications. The hierarchical nature of the model was then exploited within a fully Bayesian approach
and the MCMC Gibbs sampling to estimate the model parameters and apply the clustering procedure based on the
posterior distribution of the classification probabilities.

The proposed methodology was tested in a simulation study aimed at examining the ability to properly esti-
mate model parameters and to correctly capture the patterns of each individual cluster. The results of the simulation
study empirically show consistency of the parameter estimates, even in the case of categorical variables modelled
by the thresholding approach. On the other hand, issues particularly related to the rate of convergence of the
thresholds of latent numeric variables have been observed. Together with the slow approximation of the posterior
distribution of classification probabilities caused by frequent integration of multivariate normal density over a mul-
tidimensional interval, it motivates us to replace the latent numeric outcome concept with suitable GLMMs (e.g.
logit mixed-models), which are fully described by the model parameters and do not require any latent variables.
Nevertheless, such models complicate the full-conditional distributions of unknown parameters, which requires
sampling via the Metropolis proposal step instead of sampling directly from a well-known distributional family as
in the current Gibbs procedure.

Another important issue, only marginally addressed by us is the choice of K, the total number of clusters. As an
ultimate goal, nevertheless going far beyond the scope of this paper, we may attempt for an automated selection of
the total number of clusters K. The use of a Dirichlet process mixture models by the lines of Neal (2000) might be
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considered. Frühwirth-Schnatter and Malsiner-Walli (2019) recently proposed a concept of sparse finite mixtures,
which might also be considered in connection with our methodology.

Further, the covariance matrix ΣΣΣ of random effects also needs careful attention. One should note that its
dimension rises with the number of modelled outcomes and the complexity of the random effects structure. Hence,
it may prove useful to abandon the complete generality and replace a general matrix ΣΣΣ with a commonly used block
structure.

So far, we have examined the properties of our methodology under a rather low number of outcomes. Ad-
ditional work may thus focus on a much higher number of measured outcomes and possibly on an evaluation
of their relevance towards clustering using, for example, methods presented by Raftery and Dean (2006). The
variable selection process could also be extended to the regression part part of the model. For example, in the
EU-SILC database each household has several potential characteristics (family size, type of dwelling, number of
rooms, degree of urbanization, region, country, gender, age or level of education of the head of a household, . . . ),
where their influence on outcomes and subsequent clustering may be of interest.

Regarding the real data analysis, we successfully managed to discover several different patterns in the evo-
lution of Total disposable income, Affordability of a one week holiday abroad and Financial burden of the total
housing cost. Minorities of an extremely high (7.43%) or low (11.58%) living standard are easily distinguishable
unlike the other mid-class households of similar income and categorical proportions but with different periods of
increasing and decreasing tendencies. Using more than a four-cluster solution separates out households undergo-
ing a huge progress or recession over a certain period of time. Although these findings may be of some interest,
the corresponding patterns as a whole are unrealistic due to the rotational design of the study, which requires only
observations from four consecutive years, and hence, these clusters are irrelevant from the realistic point of view.
Maybe clustering not only based on the evolution over time itself but also on the covariance structure including
relationships between the outcomes by allowing τττ and ΣΣΣ to be cluster-specific could improve the cluster diversity.

Finally, the whole methodology was implemented as a set of routines integrated into (R Core Team,
2021). For those interested in applications, the implementation is provided via GitHub at https://github.com/
vavrajan/ClassNumOrdBin.git together with a tutorial on how to use it. The - combination truly proved
to be more efficient than a pure implementation. The computation time, however, mainly depends on the num-
ber of subjects n - the larger it is, the higher the number of latent parameters is to be sampled. For example, each of
the cluster indicators Ui requires computation of K full conditional probabilities, which is still easily manageable
as the latent numeric outcomes are at our disposal. This, however, does not hold for the classification probabili-
ties (15) computed immediately after the sampling using an additional function within environment, since
an integration over latent numeric outcomes need to be performed. The temporarily best solution (in terms of com-
putation time and accuracy) involved calling a version of pmvnorm function from the mvtnorm package which
itself uses MCMC principles. Triggering this iterative process K-times for each individual and each sampled set
of parameters takes a heavy toll.
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Appendix

A Full-conditioned distributions in Gibbs sampling

In this section, we will denote byΨΨΨ =
{

UUU ,Y?,OB,bbb,www,γγγ,βββ ,µµµ,ΣΣΣ−1,τττ,τττR,Q−1
}

the set of all parameters including
randomized hyperparameters. We then derive full-conditioned distributions for all parameters ψψψ ∈ΨΨΨ one by
one. All derivations are based on viewing p

(
Y|ΨΨΨ ; ζζζ , C

)
· p(ΨΨΨ |ζζζ ) as a function of parameter ψψψ , which can be
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decomposed into the following products:

p
(
ψψψ
∣∣Y,ΨΨΨ−ψψψ ;ζζζ ,C

)
∝

n

∏
i=1

p
(
YOB

i

∣∣∣Y?,OB
i ,γγγ

)
·

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi,βββ
(Ui),τττ(Ui);Ci

)
·

·
n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
·

n

∏
i=1

p(Ui|www) ·

· p(www|ααα) · p
(

γγγ

∣∣∣γr
1,r ∈RO

)
· p(βββ |τττ;βββ 0,D) · p(τττ|a1,a2) ·

· p(µµµ|τττR,µµµ0) · p(τττR|a3,a4) · p
(

ΣΣΣ
−1∣∣Q−1;ν0

)
· p
(
Q−1∣∣DQ,ν1

)
, (21)

where ζζζ denotes all fixed hyperparameters of prior distributions. Derivations are made under the assumption that
parameters βββ , τττ , µµµ , τττR, ΣΣΣ

−1 and Q−1 are all group-specific. Similar derivations (with corresponding changes) can
be made in the case of a chosen subset of group-specific parameters. Note that if τττR and Q−1 are group-specific,
then µµµ and ΣΣΣ

−1 must also be group-specific.

A.1 Probabilities www

Prior probabilities www of belonging to a certain cluster, i.e. wk = P(Ui = k), appear only in p(Ui|www) and its prior
distribution p(www|ααα), therefore:

p(www |Y,ΨΨΨ−www;ζζζ ,C ) ∝

n

∏
i=1

p(Ui|www) · p(www|ααα),

p(www |UUU ;ααα ) ∝

K

∏
k=1

w

n
∑

i=1
1(Ui=k)

k ·
K

∏
k=1

wαk−1
k =

K

∏
k=1

wnk(UUU)+αk−1
k ,

where nk(UUU) is the total number of appearances of value k among all current group-allocation indicators UUU =
{Ui, i = 1, . . . ,n}, i.e. the total number of subjects (from n possible) currently belonging to group k. We recognize
the shape of pdf of Dirichlet distribution, thus,

www|Y,ΨΨΨ−www,ζζζ ;C ∼ DirK (nnn(UUU)+ααα) ,

where nnn(UUU) =
(
n1(UUU), . . . ,nK(UUU)

)>.

A.2 Group-allocation indicators Ui

According to (21), the group-allocation indicator Ui appears only in its prior distribution Ui|www and at places, where
it selects the corresponding group-specific parameter:

p(Ui |Y,ΨΨΨ−Ui ;ζζζ ,C ) ∝ p
(
YN

i ,Y
?,OB
i

∣∣∣ ,bbbi,βββ
(Ui),τττ(Ui);Ci

)
· p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p(Ui|www) .

Ui only attains values k ∈ {1, . . . ,K}, therefore, we aim to calculate full-conditioned probability that ith subject is
allocated in the group k:

P
(

Ui = k
∣∣∣YN

i ,Y
?,OB
i ,bbbi,βββ ,τττ,µµµ,ΣΣΣ

−1,www;ζζζ ,Ci

)
∝ wk · ∏

r∈RNum

(
τ
(k)
r

) ni
2 ·
∣∣∣ΣΣΣ−(k)∣∣∣ 1

2 ·

· exp

{
−1

2 ∑
r∈RNum

ni

∑
j=1

τ
(k)
r

(
yr

i, j−η
(k),r
i, j

)2
− 1

2 ∑
r∈ROB

ni

∑
j=1

(
y?,ri, j −η

(k),r
i, j

)2
− 1

2

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)}

,

where η
(k),r
i, j =

(
xxxr

i, j

)>
βββ
(k),r+

(
zzzr

i, j

)>
bbbr

i is the linear predictor of j-th observation of outcome r ∈R of ith subject
when belonging to the group k.
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A.3 Latent numeric variables Y?,OB
i

Latent numeric outcomes Y?,OB
i for actually measured ordinal and binary outcomes YOB

i appear only in the thresh-
olding procedure and the multivariate LME for both YN

i and Y?,OB
i :

p
(
Y?,OB

i

∣∣∣Y,ΨΨΨ−Y?,OB
i

;ζζζ ,C
)

∝ p
(
YOB

i

∣∣∣Y?,OB
i ,γγγ

)
· p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi,βββ
(Ui),τττ(Ui);Ci

)
.

From (7), we see that for all r ∈ ROB and j = 1, . . . ,ni are Y ?,r
i, j independently distributed. Ignoring the thresh-

olding concept Y ?,r
i, j would follow N

(
η
(Ui),r
i, j , 1

)
, however, corresponding density is now limited by indicator

1(γr
l , γr

l+1]

(
y?,OB

i

)
, where l = yr

i, j. Therefore, the full-conditioned distribution is truncated normal distribution

on the interval
(
γr

l , γr
l+1

]
:

Y ?,r
i, j

∣∣∣Y r
i, j = l,γγγ ∼ TN

(
η
(Ui),r
i, j , 1, γ

r
l , γ

r
l+1

)
.

A.4 Thresholds γγγ

Parameter γγγ influences (21) only in the thresholding phase and in the prior distribution of γγγ:

p
(
γγγ
∣∣Y,ΨΨΨ−γγγr ;ζζζ ,C

)
∝

n

∏
i=1

p
(
YOB

i

∣∣∣Y?,OB
i ,γγγ

)
· p
(

γγγ

∣∣∣γr
1,r ∈RO

)
.

Let us consider ordinal outcome r ∈ROrd and the corresponding set of thresholds: −∞ = γr
0,γ

r
1,γγγ

r,γLr = ∞. Let
Y r

l be the set of all latent numeric outcomes Y ?,r
i, j such that the truly measured ordinal category is l = 0, . . . ,Lr−1,

i.e.
Y r

l =
{

Y ?,r
i, j : Y r

i, j = l, i = 1, . . . ,n, j = 1, . . . ,ni

}
,

which is assumed to be non-empty (all levels of outcome Lr are attained at least once). The latent numeric variables
had to be generated according to the thresholding concept, therefore, the following inequalities hold:

−∞ < y0
∈Y r

0

< γ
r
1 < y1

∈Y r
1

< γ
r
2 < y2

∈Y r
2

< · · ·< γ
r
Lr−1 < yLr−1

∈Y r
Lr−1

< ∞.

Thus, under the uniform prior for γγγr (set in Section 4.1) we get that the individual thresholds γr
l are uniformly

distributed on intervals given by maxima and minima of the corresponding sets:

γ
r
l |YYY r,YYY ?,r ∼ Unif

[
max

y∈Y r
l−1

y, min
y∈Y r

l

y

]
, l = 1, . . . ,Lr.

A.5 Precision parameters τττ

Parameters τττ =
{

τ
(k)
r : k = 1, . . . ,K, r ∈RNum

}
are the inverse variance of errors of the supposed LME models

over numeric outcomes. The right-hand side of (21) includes τττ only in three factors: the supposed LME for YN
i

and the prior distribution of (βββ ,τττ):

p(τττ |Y,ΨΨΨ−τττ ;ζζζ ,C ) ∝

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi,βββ
(Ui),τττ(Ui);Ci

)
· p(βββ |τττ;βββ 0,D) · p(τττ|a1,a2) .

From the structure of (7) and priors p(βββ |τττ) and p(τττ) (set in Section 4.1) we see that individual τ
(k)
r are distributed

independently of each other (given all other information and parameters):

p
(

τ
(k)
r

∣∣∣YYY r,UUU ,bbbr,βββ (k),r;βββ
r
0,D

r,a1,a2,C
r
)

∝

(
τ
(k)
r

) 1
2

n
∑

i=1
ni1(Ui=k)+ 1

2 dFr +a1−1
·

· exp

−τ
(k)
r

1
2 ∑

i∈Nk(UUU)

ni

∑
j=1

(
yr

i, j−η
(k),r
i, j

)2
+

1
2

dFr

∑
j=1

(
β
(k),r
j −β r

0, j

)2

dr
j, j

+a2


 ,
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where Nk(UUU) = {i : Ui = k, i = 1, . . . ,n} is a set of subjects currently belonging to group k. For YYY r,C r and current
values of UUU ,bbbr and βββ

(k) let us denote

ã(k),r1 =
1
2 ∑

i∈Nk(UUU)

ni +
dF

r

2
+a1,

ã(k),r2 =
1
2 ∑

i∈Nk(UUU)

ni

∑
j=1

(
yr

i, j−η
(k),r
i, j

)2
+

1
2

dFr

∑
j=1

(
β
(k),r
j −β r

0, j

)2

dr
j, j

+a2.

Under this notation we see that

τ
(k)
r

∣∣∣YYY r,UUU ,bbbr,βββ (k),r;βββ
r
0,D

r,a1,a2,C
r ∼ Γ

(
ã(k),r1 , ã(k),r2

)
independently for each r ∈RNum and k = 1, . . . ,K.

A.6 Fixed effects βββ

Fixed effects βββ appear only in the LME model specification and prior distribution:

p
(
βββ
∣∣Y,ΨΨΨ−βββ ;ζζζ ,C

)
∝

n

∏
i=1

p
(
YN

i ,Y
?,OB
i

∣∣∣bbbi,βββ
(Ui),τττ(Ui);Ci

)
· p(βββ |τττ;βββ 0,D) ,

which can be decomposed for individual outcomes r ∈R and k = 1, . . . ,K as follows:

p
(

βββ
(k),r

∣∣∣YYY r,UUU ,bbbr,τ
(k)
r ;βββ

r
0,D

r,C r
)

∝ exp

{
−τ

(k)
r

2

(
βββ
(k),r−βββ

r
0

)>
[Dr]−1

(
βββ
(k),r−βββ

r
0

)}
·

· exp

{
−τ

(k)
r

2

(
ỹyyr
Nk(UUU)−Xr

Nk(UUU)βββ
(k),r
)>(

ỹyyr
Nk(UUU)−Xr

Nk(UUU)βββ
(k),r
)}

,

where notation •Nk(UUU) restricts given expression • to the subset of subjects in group k:

Xr
Nk(UUU) =


...
Xr

i
...

 , i ∈Nk(UUU), ỹyyr
Nk(UUU) =


[
(yyyr

i −Zr
i bbb

r
i )
> , i ∈Nk(UUU)

]>
, if r ∈RNum,[(

yyy?,ri −Zr
i bbb

r
i
)>

, i ∈Nk(UUU)
]>

, if r ∈ROB.

Using basic algebraic operations and ignoring several multiplicative constants, we can rewrite the probability
density function of full-conditioned distribution of βββ

(k),r into:

p
(

βββ
(k),r

∣∣∣YYY r,UUU ,bbbr,τ
(k)
r ;βββ

r
0,D

r,C r
)

∝

exp

{
−τ

(k)
r

2

(
βββ
(k),r− β̃ββ

(k),r
)> [(

Xr
Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
](

βββ
(k),r− β̃ββ

(k),r
)}

,

where

β̃ββ
(k),r

=

[(
Xr

Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1((

Xr
Nk(UUU)

)>
ỹyyr
Nk(UUU)+(Dr)−1

βββ
(k),r
0

)
,

which compared to pdf of multivariate normal distribution yields

βββ
(k),r

∣∣∣YYY r,UUU ,bbbr,τ
(k)
r ;βββ

r
0,D

r,C r ∼ NdFr

(
β̃ββ
(k),r

,
1

τ
(k)
r

[(
Xr

Nk(UUU)

)>
Xr

Nk(UUU)+(Dr)−1
]−1
)
.
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A.7 Prior precisions τττR for µµµ

Parameter τττR serves as an auxiliary parameter for specifying prior distribution of µµµ , see Section 4.1. The derivation
of the full-conditioned distribution of this parameter is then solely based on combining p(µµµ|τττR) and with the prior
Γ (a3,a4). Therefore,

p(τττR |µµµ; µµµ0,a3,a4 ) ∝

K

∏
k=1

dR

∏
j=1

(
τ
(k)
R, j

)a3+
1
2−1

exp
{
−τ

(k)
R, j

[
a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
]}

and

τ
(k)
R, j

∣∣∣µ(k)
j ; µ

(k)
0, j ,a3,a4 ∼ Γ

(
a3 +

1
2
,a4 +

1
2

(
µ
(k)
j −µ

(k)
0, j

)2
)

independently for all j = 1, . . . ,dR and k = 1, . . . ,D.

A.8 Prior expected values µµµ for bbb

Parameter µµµ consists of all possible expected values µµµ(k) of random effects bbbi in all groups k = 1, . . . ,K. The
right-hand side of (21) is, in the case of this parameter, simplified into

p
(
µµµ
∣∣Y,ΨΨΨ−µµµ ;ζζζ ,C

)
∝

n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p(µµµ|τττR; µµµ0) .

From the product across all subjects for given group k = 1, . . . ,K we extract only those factors that correspond to
subjects within the k-th group, i.e. Nk(UUU). By performing several algebraic operations and ignoring multiplicative
constants, we obtain

p
(

µµµ
(k)
∣∣∣UUU ,bbb,ΣΣΣ−(k),τττ(k)R ; µµµ

(k)
0

)
∝ ∏

i∈Nk(UUU)

p
(

bbbi

∣∣∣µµµ(k),ΣΣΣ−(k)
)
· p
(

µµµ
(k)|τττ(k)R ; µµµ

(k)
0

)
∝ exp

{
−1

2 ∑
i∈Nk(UUU)

(
bbbi−µµµ

(k)
)>

ΣΣΣ
−(k)

(
bbbi−µµµ

(k)
)
− 1

2

(
µµµ
(k)−µµµ

(k)
0

)>
diag

(
τττ
(k)
R

)(
µµµ
(k)−µµµ

(k)
0

)}

∝ exp
{
−1

2

(
µµµ
(k)− µ̃µµ

(k)
)> [

nk(UUU)ΣΣΣ−(k)+diag
(

τττ
(k)
R

)](
µµµ
(k)− µ̃µµ

(k)
)}

,

where

µ̃µµ
(k)

=
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1

nk(UUU)ΣΣΣ−(k)
1

nk(UUU) ∑
i∈Nk(UUU)

bbbi︸ ︷︷ ︸
bbb

k
(UUU)

+diag
(

τττ
(k)
R

)
µµµ0


leading to the following full-conditioned distribution

µµµ
(k)
∣∣∣UUU ,bbb,ΣΣΣ−(k),τττ(k)R ; µµµ

(k)
0 ∼ NdR

(
µ̃µµ
(k)
,
[
nk(UUU)ΣΣΣ−(k)+diag

(
τττ
(k)
R

)]−1
)

independently for all k = 1, . . . ,K.

A.9 Prior scale matrices Q−1 for ΣΣΣ
−1

Parameter Q−1 is the set of auxiliary parameters that makes prior distribution of ΣΣΣ
−1 more flexible within Gibbs

sampler. The right-hand side of (21) shrinks into

p
(
Q−1 ∣∣Y,ΨΨΨ−Q−1 ;ζζζ ,C

)
∝ p

(
ΣΣΣ
−1∣∣Q−1;ν0

)
· p
(
Q−1∣∣DQ,ν1

)
,
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where the two pdfs on the right hand side correspond to Wishart distribution. Combining them we get

p
(
Q−(k)

∣∣∣ΣΣΣ−(k);ν0,ν1,DQ
)

∝

∣∣∣Q−(k)∣∣∣ ν0+ν1−dR−1
2

exp
{
−Tr

[(
ΣΣΣ
−(k)+

(
DQ
)−1

)
Q−(k)

]}
,

which resembles pdf of Wishart distribution. Therefore,

Q−(k)
∣∣∣ΣΣΣ−(k);ν0,ν1,DQ ∼ WdR

([
ΣΣΣ
−(k)+

(
DQ
)−1

]−1

,ν0 +ν1

)
independently for all k = 1, . . . ,K.

A.10 Prior inverse covariance matrices ΣΣΣ
−1 for random effects bbb

Parameter ΣΣΣ
−1 is the set of inverse covariance matrices for random effects bbbi that contributes to the right-hand

side of (21) only in the pdf for random effects and in the prior distribution of ΣΣΣ
−1:

p
(
ΣΣΣ
−1 ∣∣Y,ΨΨΨ−ΣΣΣ

−1 ;ζζζ ,C
)

∝

n

∏
i=1

p
(

bbbi

∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
· p
(

ΣΣΣ
−1∣∣Q−1;ν0

)
.

Again, we need to separate subjects into the groups Nk(UUU),k = 1, . . . ,K according to their current allocation
indicators UUU . Similar to before, the equation above decomposes into K independent parts - one for each group
k = 1, . . . ,K. Considering the kth group, the right-hand side of the equation above reduces into

p
(

ΣΣΣ
−(k)

∣∣∣UUU ,bbb,µµµ(k),Q−(k);ν0

)
∝
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,

which again resembles the pdf of Wishart distribution. Therefore, independently for all k = 1, . . . ,K

ΣΣΣ
−(k)

∣∣∣UUU ,bbb,µµµ(k),Q−(k);ν0 ∼ WdR

(
Q̃(k),nk(UUU)+ν0

)
,

where
Q̃(k) =

(
Q̃−(k)

)−1
and Q̃−(k) =Q−(k)+

1
2 ∑

i∈Nk(UUU)

(
bbbi−µµµ

(k)
)(

bbbi−µµµ
(k)
)>

.

A.11 Random effects bbb

The key role of our model is played by the random effects bbbi, i = 1, . . . ,n that create linear predictors ηηη
(k),r
i ,

k = 1, . . . ,K and r ∈R. The probability density function of corresponding full-conditioned distribution is based
on only two parts of the right-hand side of (21):

p(bbb |Y,ΨΨΨ−bbb;ζζζ ,C ) ∝

n

∏
i=1

p
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i ,Y
?,OB
i
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·
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p
(
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∣∣∣µµµ(Ui),ΣΣΣ−(Ui)
)
.

Clearly, random effects bbbi will be distributed independently even in the full-conditioned distribution. Let us select
subject i (say from group Ui = k), in which case its corresponding pdf is of the shape

p
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,
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where ỹyyr
i = yyyr

i −Xr
i βββ

r and ỹyy?,ri = yyy?,ri −Xr
i βββ

r. Constructing

ỹyyi =



...√
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i
...
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...


,

r ∈RNum,

r ∈ROB,
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. . . √
τ
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i
. . .
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. . .


we can simplify the above to

exp
{
−1

2

(
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)>(
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(
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(k)
)}

,

which after several algebraic operations and ignoring multiplicative constants becomes

exp
{
−1

2

(
b̃bbi−bbbi

)> [
Z̃>i Z̃i +ΣΣΣ

−(k)
](

b̃bbi−bbbi

)}
,

where

b̃bbi =
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1(

Z̃>i ỹyyi +ΣΣΣ
−(k)

µµµ
(k)
)
.

Therefore, the full-conditioned distribution of bbbi for a subject belonging to group k = 1, . . . ,K is

bbbi

∣∣∣YN
i ,Y

?,OB
i ,Ui,βββ ,τττ,µµµ,ΣΣΣ

−1;Ci ∼ NdR

(
b̃bbi,
[
Z̃>i Z̃i +ΣΣΣ

−(k)
]−1
)
.
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Frühwirth-Schnatter S (2006) Finite Mixture and Markov Switching Models. Springer
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