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Abstract

Generalized linear mixed models are popular to regress a discrete response when
there is clustering, e.g. in longitudinal studies or in hierarchical data structures. It
is standard to assume that the random effects have a normal distribution. Recently,
it has been examined whether wrongly assuming a normal distribution for the ran-
dom effects is important for the estimation of the fixed effects parameters. While
it has been shown that misspecifying the distribution of the random effects has
a minor effect in the context of linear mixed models, the conclusion for generalized
mixed models is less clear. Some studies report a minor impact, while others report
that the assumption of normality really matters especially when the variance of the
random effect is relatively high. Since it is unclear whether the normality assump-
tion is truly satisfied in practice, it is important that generalized mixed models are
available which relax the normality assumption. A replacement of the normal distri-
bution with a mixture of Gaussian distributions specified on a grid whereby only the
weights of the mixture components are estimated using a penalized approach ensur-
ing a smooth distribution for the random effects is proposed. The parameters of the
model are estimated in a Bayesian context using MCMC techniques. The usefulness
of the approach is illustrated on two longitudinal studies using R-functions.
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1 Introduction

The generalized linear mixed model (GLMM) is a popular tool to regress a dis-
crete response when the measurements are clustered (e.g., multicenter clinical
trials and longitudinal studies). Let Y i = (Yi,1, . . . , Yi,ni

)′ (i = 1, . . . , N) be
the response vector in the i-th cluster or the longitudinal profile of the i-th
unit and let Y = (Y ′

1, . . . , Y
′

N)′ be the whole response vector. In the GLMM,
it is assumed that the distribution of the response belongs to an exponential
family and the effect of the covariates on the (i, l)-th response is modelled
using a linear predictor ηi,l as

ηi,l = h−1
{

E(Yi,l |β, bi)
}

= β′xi,l + b′

izi,l (i = 1, . . . , N, l = 1, . . . , ni),

(1)
where h−1 is a known link function, xi,l ∈ Rp is a vector of covariates and zi,l ∈
Rq represents a subset of covariates for which the effect may vary randomly
across units. Further, β = (β1, . . . , βp)

′ is the vector of regression coefficients
(fixed effects) and b1 = (b1,1, . . . , b1,q)

′, . . . , bN = (bN,1, . . . , bN,q)
′ are unit

specific zero-mean vectors of random effects. Further, we will denote B =
(b1, . . . , bN)′ the matrix of random effects. For a systematic exposition to
GLMM, see, e.g., Molenberghs and Verbeke (2005). In this paper we focus on
the most popular GLMMs (1) where the response is either binary or a count.
When the response is multinomial response, a multivariate GLMM (see, e.g.,
Fahrmeir and Tutz, 2001) is necessary, in which case expression (1) must be
adjusted accordingly.

It is conventionally assumed that the random effects are normally distributed,

i.e., that bi
i.i.d.
∼ Nq(0, D). However, it has been indicated at several places in

the literature (Neuhaus, Hauck, and Kalbfleisch, 1992; Kleinman and Ibrahim,
1998b; Heagerty and Kurland, 2001; Agresti, Caffo, and Ohman-Strickland,
2004; Litière et al., 2008) that, in contrast to the linear mixed model, misspec-
ification of the random effects distribution in GLMM might influence inference
on the fixed effects (e.g., the treatment effect) which are usually of primary
interest but the situation is not clear. Several authors claim that misspeci-
fication of the random effects distribution has often a minor impact on the
estimation of the fixed effects. On the other hand, it has been reported that
the bias in estimating the fixed effects in a GLMM with a misspecified random
effects distribution increases with increasing variability of the random effects
and especially when the true random effect distribution is skewed or multi-
modal. Clearly, an incorrectly assumed random effects distribution influences
inference on the random effects. Further, estimated values of the individual
random effects, e.g., their empirical Bayes estimates, cannot be used to check
the validity of the distributional assumption due to the shrinkage (Verbeke
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and Lesaffre, 1997).

We remark that the random effects distributional assumption concerns can
often be alleviated or outright eliminated by specifying a marginal model
estimated using, e.g., generalized estimating equations (GEE) method (Liang
and Zeger, 1986). Many modifications of this approach have appeared in the
literature since then. For instance recently, Jara, Garćıa-Zattera, and Lesaffre
(2007a) suggested a Bayesian semiparametric marginal model. However, the
interpretation of the parameters of the marginal model is generally different
from the interpretation of the parameters in the conditional (random effects)
model. Lee and Nelder (2004) provide a discussion on which of the two models
is to be preferred with a conclusion that conditional models are fundamental,
from which also marginal predictions should be made. For this and other
reasons, we will concentrate on conditional models.

For the above mentioned reasons, there is a need for GLMMs with a more
flexible random effects distribution. One approach is to estimate the distri-
bution using nonparametric maximum-likelihood method (Laird, 1978) lead-
ing to a discrete solution. This approach has been suggested in the context
of GLMM by, e.g. Follmann and Lambert (1989), Butler and Louis (1992),
Zackin, De Gruttola, and Laird (1996). An alternative approach leading to
a continuous random effects distribution is offered by the heterogeneity model
of Verbeke and Lesaffre (1996), Fieuws, Spiessens, and Draney (2004), Molen-
berghs and Verbeke (2005, Chapter 23) who specify the random effects dis-
tribution as a heteroscedastic normal mixture with estimated number of com-
ponents, means and variances of the components. Normal mixtures have also
been used in a model for binary data by Caffo, Ming-Wen, and Rohde (2007).
Alternatively, Chen, Zhang, and Davidian (2002) used the semi-nonparametric
approach of Gallant and Nychka (1987) to specify the distribution of random
effects estimated with a Monte Carlo EM algorithm.

The GLMM can also be specified in a Bayesian context. Several authors re-
placed the normal prior for the random effects and used Bayesian nonpara-
metric methods for this purpose (Bush and MacEachern, 1996, Walker and
Mallick, 1997, Mukhopadhyay and Gelfand, 1997, Kleinman and Ibrahim,
1998b, Hanson, 2006, Jara, Hanson, and Lesaffre, 2007b).

Recently, the ‘penalized Gaussian mixture (PGM)’ approach has been sug-
gested which delivers a flexible model for the random effects distribution. The
approach is based on the idea of penalized smoothing promoted by Eilers and
Marx (1996). Ghidey, Lesaffre, and Eilers (2004) used the PGM to model
the random effects distribution in a linear mixed model. Komárek, Lesaffre,
and Hilton (2005) used it as a flexible specification of the distribution of
a logarithm of the baseline event time in a survival regression model. Further,
Komárek and Lesaffre (2006); Bogaerts and Lesaffre (2007) used the bivari-
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ate PGM in a survival models for paired censored data. Finally, Komárek
and Lesaffre (2007) exploited the PGM to model all distributional parts in
a random effects survival regression model. In summary, in all previous ap-
plications, the PGM was involved in models for continuous response. The
objective of this paper is to show how the PGM can be used as a model for
the random effects distribution in a (multivariate) GLMM leading to the PGM
GLMM which is primarily intended to analyze a discrete response. Further-
more, our approach can be used, as above mentioned competitive approaches
as a diagnostic tool to check parametric assumptions on the distribution of
the random effects. For inference, we will use a simulation based Markov chain
Monte Carlo (MCMC) technique. For practical usage of the proposed method-
ology we prepared a contributed package glmmAK in R (R Development Core
Team, 2007).

The rest of the paper is organized as follows. In Section 2, we review the
PGM and incorporate it as a model for the random effects distribution in
the GLMM. Section 3 discusses inference for the proposed model and related
MCMC. In Section 5, we apply our model to two longitudinal studies with
binary and count data. Concluding remarks are given in Section 6.

2 Penalized Gaussian mixture in the GLMM

2.1 PGM distribution of random effects

We assume that the random effects b1, . . . , bN are i.i.d. distributed with
a density g(b) and

g(b) = g(b1, . . . , bq) =
1

τ1 · · · τq

g∗(b∗1, . . . , b
∗

q), (2)

where τ = (τ1, . . . , τq)
′ is a vector of unknown scale parameters and b∗ =

(b∗1, . . . , b
∗

q)
′ = ( b1

τ1
, . . . , bq

τq
)′ denotes a standardized random effect vector.

The shape of the standardized density g∗(b∗) is modelled flexibly using a
penalized approach motivated by the work of Eilers and Marx (1996) in the
following way. For the mth margin (m = 1, . . . , q), we choose a fine grid of
a relatively high number Lm = 2Km +1 (equal to 31 – 41) of equidistant knots
µm = (µm,−Km

, . . . , µm,Km
)′ centered around zero, i.e., µm,0 = 0. That is, if we

denote the distance between two consecutive knots in the mth margin as δm,
we can write µm,jm

= jmδm (jm =−Km, . . . , Km). Further, we choose for each
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margin a basis standard deviation σm and write the model for g∗ as:

g∗(b∗1, . . . , b
∗

q) =
1

σ1 · · ·σq

K1∑

j1=−K1

· · ·
Kq
∑

jq=−Kq

wj1,...,jq
ϕ

(

b∗1 − µ1,j1

σ1

)

· · ·ϕ

(

b∗q − µq,jq

σq

)

,

(3)
where ϕ is a density of the standard normal distribution N (0, 1) and w =
{

wj1,...,jq
: j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq

}

is a set of L = L1 ×· · ·×
Lq mixture weights that have to be estimated. In the estimation procedure,
a roughness penalty on w will be introduced to avoid identifiability problems
and overfitting the data. Hence the name of the method: penalized Gaussian
mixture (PGM).

Eilers and Marx (1996) proposed to use B-splines as basis functions to smooth
unknown curves. However, when estimating a density, it seems natural to use
parametric densities, like normals, instead. Moreover, due to the fact that an
appropriately standardized B-spline approaches a normal density as its degree
tends to infinity (Unser, Aldroubi, and Eden, 1992), the PGM can be viewed
as a limiting case of the penalized smoothing with B-splines.

It is seen from equation (3) that the unknown function g∗ is expressed as
a mixture of densities of the q-variate normal distributions with means taken
from a multivariate grid of knots M =

{

Mj1,...,jq
= (µ1,j1, . . . , µq,jq

)′ : j1 =

−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq

}

and a common diagonal covariance ma-

trix Σ = diag(σ2
1, . . . , σ

2
q ). Although all mixture components are uncorrelated,

the off-diagonal elements of the covariance matrix of the distribution g∗ are
not necessarily equal to zero. Indeed, only specific combinations of the weights
w would lead to zero correlation, see expression (7).

To obtain a reasonable model for the unknown distribution, the knots should
be put in the area where the true random effects density has a significant
amount of probability mass. Since scale parameters τ are included in model
(3), the knots should cover an area where a zero-mean and unit-variances
distribution has most of its probability mass. To this end, the choice of the
boundary knots µm,−Km

≈ −5, µm,Km
≈ 5 (m = 1, . . . , q) usually suffices.

Further, the distance δm between the two consecutive knots in the mth margin
equal to 0.3 is small enough to approximate g∗ with satisfactory precision, as
is illustrated in Komárek et al. (2005). Finally, the value σm = (2/3)δm is
motivated by the correspondence to cubic B-splines, as explained in Komárek
et al. (2005).

Satisfactory conditions for the PGM weights to ensure that (3) is a density are
wj1,...,jq

> 0 (j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq) and
∑

j1 · · ·
∑

jq
wj1,...,jq

=

1. To avoid constrained estimation, the transformed weights a =
{

aj1,...,jq
:
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j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq

}

given by

aj1,...,jq
= log

(
wj1,...,jq

w0,...,0

)

, wj1,...,jq
(a) =

exp(aj1,...,jq
)

∑

k1

· · ·
∑

kq

exp(ak1,...,kq
)

(4)

(j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq)

are estimated instead of w. For identifiability reasons a0,...,0 = 0.

2.2 Mean effect of the random effects covariates and variance components of
the random effects

Unless we impose non-linear constraints on the PGM weights, the means of the
margins of the PGM (3) are not necessarily equal to zero and their variances
are not necessarily equal to one. This fact has to be taken into account when
quantifying the mean effect of the covariates involved in zi,l and the variance
components of the random effects.

Let β∗ = (β∗

1 , . . . , β
∗

q )
′ be the mean of the PGM (3) and D∗ = (d∗

m,s)m=1,...,q,s=1,...,q

its covariance matrix. Further, let for a fixed m ∈ {1, . . . , q} and a fixed jm ∈
{−Km, . . . , Km}, w

m+
jm

be the weight obtained by summing up wk1,...,km−1,jm,km,...,kq

over k1, . . . , km−1, km+1, . . . , kq. Similarly, let wm,s+
jm,js

(m 6= s) be the weight ob-
tained by performing the above summation but now fixing two subscripts.
With a little algebra, we can derive that

E(b∗m) = β∗

m =
Km∑

jm=−Km

wm+
jm

µm,jm
, (5)

var(b∗m) = d∗

m,m =
Km∑

jm=−Km

wm+
jm

(µm,jm
− β∗

m)2 + σ2
m, (6)

cov(b∗m, b∗s) = d∗

m,s =
Km∑

jm=−Km

Ks∑

js=−Ks

wm,s+
jm,js

(µm,jm
− β∗

m) · (µs,js
− β∗

s ) (7)

(m = 1, . . . , q, s = 1, . . . , q, m 6= s).

In our specification of the model, we assume that the random effect covariate
vector zi,l is a subset of the fixed effect covariate vector xi,l. Without loss of
generality, we will assume that the first q components of xi,l are equal to zi,l.
We denote the mean effect of the covariates involved in zi,l as γ = (γ1, . . . , γq)

′,
which is equal to the sum of the corresponding fixed effect and the mean of
the corresponding random effect, i.e.

γm = βm + E(bm) = βm + τmβ∗

m (m = 1, . . . , q). (8)
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The variance components of the random effects, represented by their covari-
ance matrix var(b) = D = (dm,s)m=1,...,q,s=1,...,q are equal to

var(bm) = dm,m = τ 2
m d∗

m,m (m = 1, . . . , q), (9)

cov(bm, bs) = dm,s = τmτs d∗

m,s (m = 1, . . . , q, s = 1, . . . , q, m 6= s). (10)

3 Estimation and inference

It is well known that even with normally distributed random effects, the likeli-
hood of the GLMM (1) cannot be evaluated analytically, except in the special
case of a linear mixed model with a normally distributed response. That is,
even in relatively simple situations, the classical maximum-likelihood (ML)
estimation of parameters of the GLMM must rely on approximations like
Gaussian quadrature.

Alternatively, we can specify the model from a Bayesian perspective and
use characteristics of the posterior distribution obtained using a simulation
based Markov chain Monte Carlo (MCMC) methodology (see, e.g., Robert and
Casella, 2004) for the inference. This approach will be followed here. However,
we want to stress that the Bayesian specification of the model is used purely
for computational feasibility. For this reason, prior distributions for all param-
eters, except for the mixture weights will be specified as vague. Nevertheless,
the priors can easily be adopted if there is any prior information available,
e.g., when using the GLMM for a meta-analysis. For the transformed mix-
ture weights a, the prior distribution based on the intrinsic Gaussian Markov
random field (IGMRF, Rue and Held, 2005) will be used which is a Bayesian
form of the roughness penalty (see Lang and Brezger, 2004).

3.1 Prior distributions

Let θ = (β′, τ ′, a′, b′

1, . . . , b′

N , r′

1, . . . , r′

N , λ)′ be the vector of all model
parameters. Namely, it includes traditional parameters β, τ , a, as well as
latent quantities (values of random effects b1, . . . , bN and component labels
r1, . . . , rN introduced below) , and smoothing hyperparameters λ defined
below. Analogously to the survival models of Komárek and Lesaffre (2006,
2007), the prior distribution for θ is specified hierarchically using the following
decomposition:

p(θ) = p(β) × p(τ ) ×
N∏

i=1

{

p(bi | ri, τ ) × p(ri |a)
︸ ︷︷ ︸

p(bi, ri | τ , a)

}

× p(a |λ) × p(λ). (11)
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For ‘fixed effects’ β, we take a normal prior with possibly high variances.
For inverse variance parameters τ−2 = (τ−2

1 , . . . , τ−2
q )′, we take a product of

independent gamma priors with possibly small values of the shape and rate
parameters. That is,

β ∼ Np(β0, Sβ0
) (12)

τ−2 ∼
q
∏

m=1

Gamma(ζm,1, ζm,2), (13)

which are the choices made conventionally in the context of hierarchical re-
gression models (see Gelman et al., 2004)

It is advantageous to introduce for each observation (sampled from the mix-
ture) its latent component label and assume that the observation belongs
to that mixture component. In our context, mixture observations are given
by the values of random effects b1, . . . , bN . Let r1 = (r1,1, . . . , r1,q)

′, . . . ,
rN = (rN,1, . . . , rN,q)

′ be their component labels, i.e., discrete random vectors
with values in {−K1, . . . , K1} × · · ·× {−Kq, . . . , Kq}. The PGM model, ex-

pressions (2) and (3), determines the factor
∏

i

{

p(bi | ri, τ )×p(ri |a)
}

in (11)
as follows

bi

∣
∣
∣ ri, τ ∼ Nq

[

(τ1µ1,ri,1
, . . . , τqµq,ri,q

)′, diag
{

(τ1σ1)
2, . . . , (τqσq)

2
}]

, (14)

P
(

ri = (j1, . . . , jq)
′

∣
∣
∣a
)

= wj1,...,jq
(a) (15)

(i = 1, . . . , N, j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq).

Note, that the use of component labels is a direct application of Bayesian data
augmentation of Tanner and Wong (1987) since integration of the component

label ri out of the prior, i.e.,
∫

p(bi, ri | τ , a) dPri
leads to the mixture given

by (2) and (3).

The term p(a |λ) in the prior (11) is specified as a combination of intrinsic
Gaussian Markov random fields in each margin as

p(a |λ) ∝ exp



−

{

λ1

2

∑

j1

· · ·
∑

jq

(

∆d
1aj1,...,jq

)2

+· · ·+
λq

2

∑

j1

· · ·
∑

jq

(

∆d
qaj1,...,jq

)2
}

,

(16)
where ∆d

m is a difference operator of order d in the mth margin (e.g., ∆3
1aj1,j2,...,jq

=
aj1,j2,...,jq

− 3aj1−1,j2,...,jq
+3aj1−2,j2,...,jq

− aj1−3,j2,...,jq
), and λ = (λ1, . . . , λq)

′ are
smoothing hyperparameters. In fact, the prior density (16) is that of an (im-
proper) multivariate normal distribution which can be seen from

p(a |λ) ∝ exp

{

−
1

2
a′

(

λ1 P
′

d,1Pd,1 + · · ·+ λq P
′

d,qPd,q

)

a

}

, (17)
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where Pd,1, . . . , Pd,q are corresponding difference operator matrices. The link
between roughness penalties and the IGMRF prior is described in detail by
Lang and Brezger (2004).

It is seen from (17) that the components of the vector λ determine directly the
inverse variance of the IGMRF prior for a. For this reason, we use a product
of independent gamma priors, with possibly small values of the shape and rate
parameters, for λ, i.e.,

λ ∼
q
∏

m=1

Gamma(ξm,1, ξm,2). (18)

However, other commonly used priors for components of the inverse variance
(see Gelman, 2006) are possible as well.

3.2 Posterior calculation

The posterior distribution of the parameters of the PGM GLMM is given using
the Bayes’ formula as p(θ |y) ∝ p(y | θ) p(θ), where

p(y | θ) = p(y |β, B) =
N∏

i=1

ni∏

l=1

p(yi,l |β, bi) (19)

is the likelihood determined by the distribution of the response. In the follow-
ing, let

Li(β, bi) =
ni∏

l=1

p(yi,l |β, bi), L(β, B) = p(y |β, B) =
N∏

i=1

Li(β, bi). (20)

To sample from the posterior distribution, we use a hybrid version of the Gibbs
sampler (Gelfand and Smith, 1990) with a block update of subsets of the pa-
rameter vector θ. Detail are given in the appendix. MCMC simulations and
tools for posterior computation in the case of (a) a logit model with a binomial
response, (b) a log-linear model with a Poisson response and (c) a cumulative
logit model with a multinomial response together with uni- or bivariate ran-
dom effects (q ≤ 2) are implemented in the R contributed package glmmAK

which is available from the Comprehensive R Archive Network (CRAN).

4 Simulation study

To validate our approach we conducted a small simulation study which mimics
to a certain extent the Toenail infection data analyzed in Section 5.1. For N =
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Table 1
Simulation study, 100 datasets: Bias, Std. Dev. and MSE are average bias, standard
deviation and mean squared error, respectively of the estimates (posterior means).
For each quantity, a better value when comparing the PGM and the Normal model
is written in bold.

PGM GLMM Normal GLMM

Bias Std. Dev. (MSE) Bias Std. Dev. (MSE)

Setting γ(Intercept) = −1.5

N =50 −1.6923 1.7830 (6.0428) −2.4604 1.7575 (9.1423)

L
og

-N
or

m
.

100 −1.4725 1.3628 (4.0255) −2.2325 1.1023 (6.1991)
300 −0.6318 0.6268 (0.7921) −1.9571 0.6085 (4.2006)
600 −0.3688 0.3899 (0.2881) −2.0557 0.4000 (4.3857)

N =50 0.6629 0.9632 (1.3673) 1.0747 0.7897 (1.7786)

M
ix

tu
re

100 0.5480 0.8062 (0.9504) 1.0710 0.5571 (1.4575)
300 0.1896 0.7879 (0.6567) 1.0736 0.3096 (1.2484)
600 0.5427 0.5062 (0.5508) 1.1668 0.2183 (1.4091)

β(Trt) = −0.5

N =50 −0.0062 1.8533 (3.4346) −0.1227 1.8132 (3.3028)

L
og

-N
or

m
.

100 −0.1108 1.2633 (1.6083) −0.1686 1.3581 (1.8729)
300 −0.0019 0.5431 (0.2949) −0.1462 0.6474 (0.4406)
600 0.0294 0.3338 (0.1123) −0.0942 0.4456 (0.2074)

N =50 0.1021 0.8528 (0.7377) 0.1201 0.9390 (0.8961)

M
ix

tu
re

100 0.0734 0.6258 (0.3970) 0.1379 0.7416 (0.5690)
300 0.0717 0.3277 (0.1125) 0.1009 0.4232 (0.1892)
600 0.0424 0.2303 (0.0548) 0.0485 0.2800 (0.0808)

β(Time) = −0.4

N =50 −0.0096 0.1276 (0.0164) −0.0035 0.1231 (0.0152)

L
og

-N
or

m
.

100 0.0154 0.0712 (0.0053) 0.0271 0.0696 (0.0056)
300 0.0230 0.0590 (0.0040) 0.0353 0.0384 (0.0027)
600 0.0523 0.0940 (0.0116) 0.0365 0.0249 (0.0020)

N =50 −0.0395 0.0794 (0.0079) −0.0589 0.0820 (0.0102)

M
ix

tu
re

100 −0.0246 0.0549 (0.0036) −0.0498 0.0580 (0.0058)
300 0.0079 0.0454 (0.0021) −0.0350 0.0332 (0.0023)
600 0.0216 0.0523 (0.0032) −0.0305 0.0221 (0.0014)

sd(b) = 4.0

N =50 0.4142 1.8488 (3.5895) 1.2038 2.0887 (5.8119)

L
og

-N
or

m
.

100 0.1187 1.4294 (2.0573) 0.7975 1.1778 (2.0233)
300 −0.6806 0.8751 (1.2290) 0.6207 0.6514 (0.8095)
600 −1.4469 1.1063 (3.3175) 0.5344 0.3617 (0.4165)

N =50 −0.6706 0.7699 (1.0424) −0.9635 0.6123 (1.3032)

M
ix

tu
re

100 −0.5531 0.7886 (0.9278) −0.9432 0.4185 (1.0649)
300 −0.4193 1.1568 (1.5140) −1.0016 0.2194 (1.0514)
600 −0.9540 1.1114 (2.1453) −1.0964 0.1610 (1.2279)
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dence interval.
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50, 100, 300, 600, binary longitudinal responses yi,j (i = 1, . . . , N, j = 1, . . . , 7)
were generated according to the following random intercept logit model

logit
{

P(Yi,l = 1 |β, bi)
}

= β1 + β2Trti + β3Timei,j + bi, (21)

where β1 = γ(Intercept) = −1.5, β2 = β(Trt) = −0.5, β3 = β(Time) = −0.4.
Further, the binary covariate Trti was equal to 1 for N/2 subjects and equal to
0 for N/2 subjects. The continuous covariate Timei,j was independently gen-
erated from a normal distribution N (µT,j, σ2

T,j) with µT = (µT,1, . . . , µT,7)
′

= (0, 1, 2, 3, 6, 9, 12)′ and σT = (σT,1, . . . , σT,7)
′ = (0, 0.1, 0.2, 0.3, 0.5,

0.6, 0.8)′. The random intercepts bi were obtained as bi = τ b∗i with τ =
sd(bi) = 4.0. Standardized random intercepts b∗i were generated from a zero-
mean shifted and unit-variance scaled (a) log-normal distribution, (b) normal
mixture 0.4N (−2, 0.52) + 0.6N (1.33, 0.62). Note that the log-normal density
in (a) is a typical representative of a skewed distribution whose support more-
over does not cover the whole real line. On the other hand, the mixture in
(b) is asymmetric and bimodal (see also Figure 1). For each setting (combina-
tion of the sample size N and a random intercept density), we generated 100
datasets. For comparison purposes, each simulated dataset was analyzed by
the PGM GLMM and also by the GLMM under the assumption of normally
distributed random intercepts (Normal GLMM). The same prior distributions
were used as in subsection 5.1. Posterior means based on the MCMC sam-
ple of length 10 000 with 1:5 thinning and a burn-in of 10 000 iterations are
considered as point estimates for each model.

Summaries of the results for important model parameters are given in Ta-
ble 1. Results for the estimation of the random intercept density are shown
in Figure 1. With respect to bias in the estimation of parameters reported in
Table 1, the PGM approach performed in 28 scenarios out of 32 better than
the Normal model. Moreover, especially in the estimation of the intercept, the
decrease in bias provided by the PGM model is quite considerable as compared
to the Normal model. As could be expected, the more flexible PGM approach
leads to estimates which are often more variable than estimates provided by
the Normal model. However, the increase in variability is usually low, still
leading to a lower value of the MSE in 22 out of 32 scenarios when comparing
the PGM and Normal models. Furthermore, as seen in Figure 1, the random
effects density is reasonably reproduced as well.

5 Applications

Practical use of the proposed method will be illustrated on two real examples.
For the sake of comparison, we fitted all models also under two different as-
sumptions concerning the distribution of random effects. Firstly, we compare
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our PGM GLMM to the most classical (parametric) model with normally
distributed random effects (Normal GLMM). Secondly, we fitted also non-
parametric Bayesian models in which random effects are assumed to follow
a Dirichlet process (DP GLMM, see, Mukhopadhyay and Gelfand, 1997). With
respect to the flexibility concerning the distribution of random effects, the DP
GLMM could be considered as a natural competitor to our PGM GLMM. The
computation for the PGM and Normal GLMMs has been conducted using the
R package glmmAK and the scripts for the analyzes are available in the docu-
mentation to the package. Estimation of the DP GLMM’s has been performed
using the R package DPpackage (Jara, 2007).

In all models in this section relatively flat N (0, 1002) priors were chosen for
the components of the fixed effects vector β. For PGM GLMMs, the fol-
lowing choices for the parameters defining the PGM were taken. Common
to all margins m (m = 1, . . . , q): Km = 15 (Lm = 31), µm,−Km

= −4.5,
µm,Km

= 4.5, δm = 0.3, σm = 0.2. Further, for all margins m, we used a vague
Gamma(1, 0.005) prior for both τ−2

m and λm. In the Normal GLMMs, the ran-
dom effects followed a normal distribution Nq(0, D). In subsection 5.1, q = 1,
D = d1,1 and a vague Gamma(1, 0.005) prior was taken for d−1

1,1. In subsec-
tion 5.2, q = 2, and a Wishart prior for D−1 with two degrees of freedom
and an inverse scale matrix equal to diag(0.005, 0.005) was considered. In the
DP GLMMs, the random effects shifted by a corresponding fixed effect were
assumed to follow a Dirichlet process DP(ν0 G0) with the Gamma(1, 0.005)
prior on the precision parameter ν0. The DP base distribution G0 was assumed
to be normal Nq(γ0, D0). Flat N (0, 1002) hyperpriors were assumed for the
components of the base mean γ0. In subsection 5.1, q = 1, D0 = d0,1,1 and
an inverse-Gamma(1.5, 0.5) prior was taken for d0,1,1. In subsection 5.2, q = 2,
and an inverse-Wishart prior with four degrees of freedom and a scale matrix
equal to diag(1, 1) was considered for D0.

As posterior summary statistics, we report posterior means, standard devia-
tions, MC errors and 95% highest posterior density (HPD) intervals. For a spe-

cific regression parameter β, we report P = 2 min
{

P(β < 0 |y), P(β > 0 |y)
}

which will be called here the P-value and and which can be viewed as the
counterpart of a classical two-sided P-value (see Held, 2004). The convergence
and behavior of the Markov chain was assessed by a critical examination of
the trace and autocorrelation plots, and using the methods of Geweke (1992)
and Raftery and Lewis (1992).

5.1 Binary data: Toenail infection

A longitudinal clinical trial in dermatology was set up to compare the efficacy
of two oral treatments for toenail infection (De Backer et al., 1998). In this
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Table 2
Toenail infection. Posterior summary statistics for model parameters. For each pa-
rameter we report posterior mean (posterior standard deviation; MC error) on the
first row, 95% HPD interval and the P-value (for effect of covariates) on the second
row.

PGM GLMM Normal GLMM

γ1 (Intercept) −1.694 (0.698; 0.041) −1.636 (0.442; 0.005)

(−3.133, −0.499) (−2.535, −0.803)

β2 (Time) −0.388 (0.046; 0.001) −0.395 (0.045; 0.000)

(−0.477, −0.300) P<0.001 (−0.484, −0.308) P<0.001

β3 (Trt) 0.398 (0.433; 0.009) −0.153 (0.590; 0.008)

(−0.444, 1.247) P=0.356 (−1.341, 0.965) P=0.799

β4 (Trt:Time) −0.129 (0.071; 0.001) −0.139 (0.069; 0.000)

(−0.267, 0.011) P=0.069 (−0.278, −0.008) P=0.040

√
d1,1 = sd(b) 3.586 (0.651; 0.039) 4.054 (0.388; 0.003)

(2.590, 4.926) (3.330, 4.835)

DP GLMM

γ1 (Intercept) −2.702 (1.210; 0.011)

(−5.013, −0.873)

β2 (Time) −0.388 (0.046; 0.000)

(−0.481, −0.302) P<0.001

β3 (Trt) 0.334 (0.444; 0.003)

(−0.578, 1.170) P=0.437

β4 (Trt:Time) −0.128 (0.071; 0.000)

(−0.267, 0.011) P=0.068

paper, we will analyze a dichotomized version of the degree of onycholysis
which expresses the degree of separation of the nail plate from the nail-bed
(0 = absent or mild; 1 = moderate or severe). The response was evaluated
at seven visits (approximately on weeks 0, 4, 8, 12, 24, 36 and 48). In total
937 and 971 measurements (n = 1 908) were obtained on 146 and 148 patients
(N = 294) in the control group (itraconazole 200 mg/day) and in the treat-
ment group (terbinafine 250 mg/day), respectively. The effect of the treatment
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on the dichotomized onycholysis has already been analyzed by Lesaffre and
Spiessens (2001) with a logistic random effects model assuming normally dis-
tributed random intercepts. The methodology of our paper allows us, among
other things, to evaluate whether the assumption of normality of the random
effects was reasonable.

Let Yi,l represent the dichotomized onycholysis of the i-th subject at the l-th
visit. We will model it using the following random intercept logit model:

logit
{

P(Yi,l = 1 |β, bi)
}

= β1 +β2 Trti +β3 Timei,l +β4 Timei,l ·Trti + bi, (22)

where Trt denotes the binary treatment indicator and Time the visit time in
months.

For posterior calculations, we generated a sample of length 25 000 obtained
using an MCMC simulation with 1:100 thinning after a burn-in of 25 000
iterations which took, on an AMD Opteron 244 processor (1.8 GHz) with 2
GB RAM running Unix OS, 308 minutes for the PGM model, 268 minutes
for the Normal model and 2 865 minutes for the DP model. Note that the
implementation of the DP model computes also two different measures of
model fit which requires one more reading of the dataset at each of the MCMC
scans. Hence the computational times of the PGM and DP models cannot be
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directly compared. The reason for thinning of the sample was a rather high
autocorrelation for parameters Intercept and sd(b) (about 0.6 for lag=10 and
0.3 for lag=50) in the PGM model.

The left panel of Figure 2 shows an estimate of a standardized version of the
random intercept density in the PGM model. It is clear that the random inter-
cept distribution is quite distinct from normality, suggesting that the patients
could be divided into two or three groups according to their resistance against
the infection and hence that an important covariate has been omitted from
the model. Further, this covariate does not seem to interact with the treat-
ment as the estimated distributions of the random intercept (histograms of
posterior medians of the individual random effects) in both treatment groups
are practically the same, see the right panel of Figure 2.

The effect of assuming incorrectly a normal distribution for the random in-
tercept is shown in Table 2 which reports posterior summary statistics for all
models. As was expected, due to proper randomization, there is no significant
difference between the two treatment groups at baseline which is expressed by
the value of β3. The estimates of treatment over time (coefficient β4) do not
differ greatly between the three methods, however the PGM and DP models
lead to a non-significant result whereas the Normal model suggests a slightly
significant improvement of the treatment. Overally, the effect of covariates is
estimated to be practically the same by both PGM and DP models. That the
results of the Normal model are somewhat different from those of the PGM
and DP models, especially with respect to the treatment effect β3, are in agree-
ment with the previous findings regarding the effect of misspecification of the
random effect distribution in the GLMM (see Section 1). Indeed, the fitted
random intercept density is multimodal here and the variability of the random
intercept is quite high, certainly on the logit scale, see Table 2.

5.2 Count data: Epileptic seizures

Thall and Vail (1990) report the data from a longitudinal study of seizures
in epileptic patients. In total, N = 59 patients were randomized to receive
either the anti-epileptic drug progabide (Trt=1) or placebo (Trt=0), as an ad-
juvant to standard chemotherapy. Patients underwent four successive post-
randomization clinic visits (n = 236). For the ith patient, the response variable
Yi,l denotes the number of seizures during the 2-weeks period before the lth
visit. GLMMs to these data were fitted using an approximate method of pe-
nalized quasi-likelihood (PQL) under the assumption of normality of random
effects by Breslow and Clayton (1993). A semi-parametric Bayesian approach
was taken by Kleinman and Ibrahim (1998a) to analyze these data. Booth
et al. (2003) analyzed the data assuming a model where the counts are con-
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Table 3
Epileptic seizures. Posterior summary statistics for model parameters. For each
parameter we report posterior mean (posterior standard deviation; MC error) on
the first row, 95% HPD interval and the P-value (for effect of covariates) on the
second row.

PGM GLMM Normal GLMM

γ1 (Intercept) −1.377 (1.238; 0.025) −1.419 (1.256; 0.007)

(−3.800, 1.087) (−3.904, 1.034)

γ2 (Visit) −0.275 (0.167; 0.008) −0.273 (0.156; 0.001)

(−0.602, 0.057) P=0.101 (−0.574, 0.036) P=0.083

β3 (Base) 0.866 (0.137; 0.003) 0.885 (0.137; 0.001)

(0.604, 1.143) P<0.001 (0.616, 1.152) P<0.001

β4 (Trt) −0.995 (0.423; 0.009) −0.944 (0.418; 0.003)

(−1.849, −0.184) P=0.021 (−1.765, −0.115) P=0.024

β5 (Base:Trt) 0.371 (0.213; 0.004) 0.346 (0.213; 0.001)

(−0.045, 0.795) P=0.082 (−0.069, 0.764) P=0.107

β6 (Age) 0.487 (0.361; 0.006) 0.492 (0.370; 0.002)

(−0.202, 1.223) P=0.174 (−0.245, 1.207) P=0.182

sd(b1) 0.543 (0.075; 0.004) 0.530 (0.065; 0.000)

(0.408, 0.696) (0.411, 0.661)

sd(b2) 0.711 (0.186; 0.007) 0.613 (0.205; 0.002)

(0.367, 1.092) (0.096, 0.972)

corr(b1, b2) 0.061 (0.220; 0.026) 0.042 (0.314; 0.002)

(−0.437, 0.486) (−0.571, 0.714)

DP GLMM

γ1 (Intercept) −1.427 (1.252; 0.056)

(−3.871, 1.080)

γ2 (Visit) −0.269 (0.157; 0.001)

(−0.568, 0.045) P=0.087

β3 (Base) 0.885 (0.137; 0.002)

(0.619, 1.158) P<0.001

β4 (Trt) −0.930 (0.438; 0.003)

(−1.783, −0.070) P=0.032

β5 (Base:Trt) 0.340 (0.226; 0.002)

(−0.094, 0.787) P=0.133

β6 (Age) 0.493 (0.367; 0.016)

(−0.215, 1.232) P=0.175
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ditionally independent negative binomial variables. We will specify the linear
predictor of the GLMM in the same way as in Breslow and Clayton’s Model
IV, i.e.,

log
{

E(Yi,l |β, bi)
}

=

β1 + β2Visiti,l + β3Basei + β4Trti + β5Basei · Trti + β6Agei + bi,1 + bi,2Visiti,l,
(23)

where Visit is the centered visit time in weeks divided by 10 (−0.3, −0.1, 0.1,
0.3), Base is the logarithm of 1

4
the 8-week pre-randomization seizure count

and Age is the logarithm of age in years.

Posterior calculations are based on a sample of length 25 000 generated using
an MCMC simulation with 1:200 thinning after a burn-in of 25 000 iterations.
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This took, on the same processor as in subsection 5.1, 594 minutes for the
PGM model, 46 minutes for the Normal model and 740 minutes for the DP
model. For the parameters reported in Table 3, a high autocorrelation was
found only for the correlation coefficient between the random effects in the
PGM model. It valued 0.97 for lag=10 and 0.92 for lag=50, hence a rather
drastic thinning of the MCMC sample was needed. The lag=10 autocorrelation
values lies below 0.08 for the parameters Intercept, Base, Trt, Base:Trt, Age,
sd(b2) and between 0.12 and 0.17 for the parameters Visit, sd(b1).

The estimated density of the random effects (standardized to have zero-mean
and unit-variances) is shown in Figure 3. It is seen that for this example, the
normality assumption for the random effects holds. Consequently, see Table 3,
the posterior summary for both fixed effects and variance components of the
random effects are similar in all three models, with the Normal model showing
in several cases somewhat narrower HPD intervals. Based on posterior medi-
ans of the individual random effects, one can identify patients with extreme
values of seizure counts and/or changes in seizure counts over the time, even
after the adjustment for covariates, see Figure 4. Not surprisingly, due to the
normality of random effects, this exercise led to practically the same figure as
that resulted from the PQL analysis of Breslow and Clayton (1993).
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19



6 Concluding remarks

It has been indicated in the literature that misspecification of the random
effects distribution in GLMM can influence the estimation of quantities of the
primary interest, like the fixed effects. To avoid such misspecification, we have
suggested to model the distribution of the random effects in a flexible way
using the penalized Gaussian mixture.

It seems that the price for flexibility is the computational burden as the models
need to be fitted using a simulation based MCMC methodology. Moreover, as
we have seen in our examples a rather drastic thinning of the MCMC sample
is necessary to decrease the autocorrelation in the chains which on its turn
increases the required computational time. However, the amount of thinning
that we have used is not exceptional in the applications where IGMRF pri-
ors are involved (compare to, e.g., Knorr-Held and Rue, 2002). Furthermore,
for both our applications, the required computational time could have been
shortened in two ways. Firstly, as indicated by rather low MC errors in Ta-
bles 2 and 3, the chains of length 25 000 used there provide estimates having
(unnecessarily) high precision implying that shorter chains could have been
used for the inference. Secondly, a burn-in period of the MCMC might have
been shortened as well, especially in models with univariate random effects. We
have computed the quantities presented in Tables 2 and 3 also using the chains
with a shorter burn-in of 5 000 iterations. In the toenail infection example, the
relative distance between the estimated posterior means obtained using the
chain with a burn-in of 5 000 and 25 000, respectively, remained between 0.3%
and 3.8%. In the epileptic seizures example which involved bivariate random
effects, shorter burn-in led to a relative change of the posterior means of 0.6%
to 19.1% for all parameters of Table 3 except corr(b1, b2) where the posterior
mean changed from 0.061 to −0.172 and 95% HPD interval changed from
(−0.437, 0.486) to (−0.384, 0.131). Moreover, many methods that relax the
normality assumption on the random effects require a Monte Carlo component
in the estimation procedure which leads to somewhat longer computational
time.

A possible drawback of the current implementation of our method is that
model selection can only be based on quantities like “P-values” from Tables 2
and 3. Note that these can also easily be computed in a simultaneous manner
for a subset of the parameter vector as indicated in Besag et al. (1995, p. 30).
Model selection however, could have been based on measures of the model
complexity and fit as suggested by Spiegelhalter et al. (2002) but this option
must further be explored.

One could also pose a question whether all the effort is worthwhile and whether
our model does not overemphasize model fit or makes too ambitious attempts
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to prevent misspecification. With respect to the model fit, we controls only
one component of the GLMM – the random effects distribution. All other
components, especially the link function and the linear form of the predictor,
are fixed in advance. Moreover, the random effects distribution is not allowed
to adapt too closely the data because of the penalty term included in the esti-
mation procedure. Finally, although the number of parameters of the random
effects distribution is relatively high, it is always limited and does not increase
with the sample size as is the case, e.g., when using fully nonparametric ap-
proaches. Therefore we believe that the PGM is a parsimonious way to express
an unknown distribution.

To conclude, we argue that our approach is worthwhile since it can offer the
user more certainty about the effect of the distributional assumptions of the
random effects on the estimation of the fixed effects, as exemplified here in the
analysis of the toenail infection. Additionally, the results of our more complex
model can serve as a scientifically sound justification of the assumptions in
simpler models. For example, based on the results from our PGM model, one
can justify a GLMM with normally distributed random effects for the analysis
of the epileptic data in subsection 5.2.
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A Markov chain Monte Carlo sampling

In this appendix, we will discuss the shape of the full conditional distribu-
tions for blocks of parameters that are jointly updated in one iteration of the
MCMC sampler. We also give hints on how to sample from the full conditional
distributions if their shape is not standard.
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A.1 Updating the fixed effects β

The full conditional distribution for the fixed effects β depends only on the
response vector y and the values of random effects B:

p(β | · · · ) ∝ p(β) × L(β, B) ∝ exp
{

−
1

2
(β − β0)

′
S
−1
β0

(β − β0)
}

× L(β, B).

(A.1)
Let β(t) and B(t) denote the current values of β and B, respectively. To sample
from (A.1) we use a Metropolis-Hastings algorithm with a multivariate normal
proposal with the following mean and covariance matrix:

m(β(t)) = V(β(t))
{

S
−1
β0

β0 + I
(

β(t)
)

β(t) + U
(

β(t)
)}

V(β(t)) =
{

S
−1
β0

+ I
(

β(t)
)}−1

,
(A.2)

where

U
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β(t)
)
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∂L(β, B)

∂β
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β(t), B
(t)
)

, I
(

β(t)
)

= −E

{

∂2L(β, B)

∂β∂β′

∣
∣
∣
∣
∣
β(t), B

(t)

}

.

(A.3)
This procedure corresponds to conjugacy of p(β) with the second-order nor-
mal approximation of L(β, B) constructed around its mode located using one
Fisher-scoring step. Written in this form, the procedure can directly be ap-
plied to an arbitrary regression model where the likelihood L(β, B) is not
conjugate with a normal prior p(β). We remark, that for univariate GLMM’s,
our proposal is the same as a weighted least squares proposal of Gamerman
(1997).

A.2 Updating the random effects b1, . . . , bN

For a fixed unit i, the full conditional distribution of its random effect bi is
given by

p(bi | · · · ) ∝ p(bi | ri, τ )×Li(bi, β) ∝ exp
{

−
q
∑

m=1

(bi,m − τmµm,ri,m
)2

2(τmσm)2

}

×Li(bi, β).

(A.4)
In (A.4), the likelihood of the GLMM is combined with a normal “prior” in
the same way as in (A.4). To update a vector of unit specific random effects
bi, we apply the same procedure as in subsection A.1.
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A.3 Updating the inverse variance parameters τ−2

The full conditional distribution of the inverse variance parameters τ−2 is the
following product

p(τ−2 | · · · ) ∝ p(τ−2) ×
N∏

i=1

p(bi | ri, τ )

∝
q
∏

m=1

{
(

τ−2
m

)ζ∗
m,1

−1
exp

(

ζ∗

m,3

√

τ−2
m − ζ∗

m,2τ
−2
m

)}

,

(A.5)

where

ζ∗

m,1 = ζm,1 +
N

2
, ζ∗

m,2 = ζm,2 +

∑N
i=1 b2

i,m

2σ2
m

, ζ∗

m,3 =

∑N
i=1 µm,ri,m

bi,m

σ2
m

(m = 1, . . . , q). (A.6)

Sampling from each component of the product (A.5) is somewhat complicated
by the fact that it is generally not log-concave. However, it can be shown that
it is unimodal which allows us to use a simpler version of the slice sampler
(Neal, 2003).

A.4 Updating the component labels r1, . . . , rN

Updating of the component labels r1, . . . , rN is straightforward since for fixed
i, the full conditional distribution is discrete with

P(ri = (j1, . . . , jq)
′ | · · · ) ∝ P(ri = (j1, . . . , jq)

′ |a) × p(bi | ri, τ )

∝ wj1...,jq
(a) exp

{

−
q
∑

m=1

(bi,m − τmµm,jm
)2

2(τmσm)2

}

(j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq).

(A.7)

A.5 Updating the transformed PGM weights a

Let Nj1,...,jq
be the number of random effects currently allocated in the (j1, . . . , jq)th

mixture component, i.e.,

Nj1,...,jq
=

N∑

i=1

I[ri = (j1, . . . , jq)
′] (j1 =−K1, . . . , K1, . . . , jq =−Kq, . . . , Kq).

(A.8)
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The full conditional distribution of the (j1, . . . , jq)th element of a is given by

p(aj1,...,jq
| · · · ) ∝ p(a |λ) ×

N∏

i=1

p(ri |a)

∝ exp

[

−

{

aj1,...,jq
− E(aj1,...,jq

|a−(j1,...,jq), λ)
}2

2 var(aj1,...,jq
|a−(j1,...,jq), λ)

]

×
exp(Nj1,...,jq

aj1,...,jq
)

{
∑K1

k1=−K1
· · ·

∑Kq

kq=−Kq
exp(ak1,...,kq

)
}N

,

(A.9)

where a−(j1,...,jq) denotes the vector a with omitted (j1, . . . , jq)th element,
E(aj1,...,jq

|a−(j1,...,jq), λ), and var(aj1,...,jq
|a−(j1,...,jq), λ) are the conditional mo-

ments resulting from the IGMRF prior (17), see Komárek and Lesaffre (2006,
2007) for more details. To sample from (A.9) we use the slice sampling method
of Neal (2003) which use is simplified by the fact that the distribution (A.9)
is log-concave.

A.6 Updating the smoothing hyperparameters λ

Updating the smoothing hyperparameters λ is easy as their full conditional
distribution is a product of independent gamma distributions:

p(λ | · · · ) ∝ p(λ) × p(a |λ)

λ | · · · ∼
q
∏

m=1

Gamma

(

ξm,1 +
Lm − d + 1

2
, ξm,2 +

a′P′

d,1Pd,1a

2

)
(A.10)

References

Agresti, A., Caffo, B., Ohman-Strickland, P., 2004. Examples in which mis-
specification of a random effects distribution reduces efficiency, and possible
remedies. Computational Statistics and Data Analysis 47, 639–653.

Besag, J., Green, P., Higdon, D., Mengersen, K., 1995. Bayesian computation
and stochastic systems (with Discussion). Statistical Science 10, 3–66.

Bogaerts, K., Lesaffre, E., 2007. Estimating local and global measures of as-
sociation for bivariate interval censored data with a smooth estimate of the
density. Submitted.

Booth, J., Casella, G., Friedl, H., Hobert, J., 2003. Negative binomial loglinear
mixed models. Statistical Modelling 3, 179–191.

Breslow, N. E., Clayton, D. G., 1993. Approximate inference in generalized
linear mixed models. Journal of the American Statistical Association 88,
9–25.

24



Bush, C. A., MacEachern, S. N., 1996. A semiparametric Bayesian model for
randomised block designs. Biometrika 83, 275–285.

Butler, S. M., Louis, T., 1992. Random effects models with nonparametric
priors. Statistics in Medicine 11, 1981–2000.

Caffo, B., Ming-Wen, A., Rohde, C., 2007. Flexible random intercept models
for binary outcomes using mixtures of normals. Computational Statistics
and Data Analysis 51, 5220–5235.

Chen, J., Zhang, D., Davidian, M., 2002. A Monte Carlo EM algorithm for
generalized linear mixed models with flexible random effects distribution.
Biostatistics 3, 347–360.

De Backer, M., De Vroey, C., Lesaffre, E., Scheys, I., De Keyser, P., 1998.
Twelve weeks of continuous onychomycosis caused by dermatophytes:
A double blind comparative trial of terbafine 250 mg/day versus itracona-
zole 200 mg/day. Journal of the American Academy of Dermatology 38,
S57–S63.

Eilers, P. H. C., Marx, B. D., 1996. Flexible smoothing with B-splines and
penalties (with Discussion). Statistical Science 11, 89–121.

Fahrmeir, L., Tutz, G., 2001. Multivariate Statistical Modelling Based on Gen-
eralized Linear Models, Second Edition. Springer-Verlag, New York.

Fieuws, S., Spiessens, B., Draney, K., 2004. Mixture models. In: De Boeck, P.,
Wilson, M. (Eds.), Explanatory item response models: A generalized linear
and nonlinear approach. Springer-Verlag, New York, Ch. 11, pp. 317–340.

Follmann, D. A., Lambert, D., 1989. Generalizing logistic regression by non-
parametric mixing. Journal of the American Statistical Association 84, 295–
300.

Gallant, A. R., Nychka, D. W., 1987. Semi-nonparametric maximum likelihood
estimation. Econometrica 55, 363–390.

Gamerman, D., 1997. Sampling from the posterior distribution in generalized
linear mixed models. Statistics and Computing 7, 57–68.

Gelfand, A. E., Smith, A. F. M., 1990. Sampling-based approaches to calcu-
lating marginal densities. Journal of the American Statistical Association
85, 398–409.

Gelman, A., 2006. Prior distributions for variance parameters in hierarchical
models. Bayesian Analysis 1, 515–533.

Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B., 2004. Bayesian Data
Analysis, Second Edition. Chapman & Hall/CRC, Boca Raton.

Geweke, J., 1992. Evaluating the accuracy of sampling-based approaches
to calculating posterior moments (with Discussion). In: Bernardo, J. M.,
Berger, J. O., Dawid, A. P., Smith, A. F. M. (Eds.), Bayesian Statistics.
Vol. 4. Oxford University Press, Oxford, pp. 169–193.

Ghidey, W., Lesaffre, E., Eilers, P., 2004. Smooth random effects distribution
in a linear mixed model. Biometrics 60, 945–953.

Hanson, T., 2006. Inference for mixtures of finite Polya tree models. Journal
of the American Statistical Association 101, 1548–1565.

Heagerty, P. J., Kurland, B. F., 2001. Misspecified maximum likelihood esti-

25



mates and generalised linear mixed models. Biometrika 88, 973–985.
Held, L., 2004. Simultaneous posterior probability statements from Monte

Carlo output. Journal of Computational and Graphical Statistics 13, 20–
35.

Jara, A., 2007. Applied Bayesian non- and semi-parametric inference using
DPpackage. Submitted.
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