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Abstract

We consider the Mizukami–Hughes method for the numerical solution of scalar two-dimensional steady convection–diffusion
equations using conforming triangular piecewise linear finite elements. We propose several modifications of this method to eliminate
its shortcomings. The improved method still satisfies the discrete maximum principle and gives very accurate discrete solutions in con-
vection-dominated regime, which is illustrated by several numerical experiments. In addition, we show how the Mizukami–Hughes
method can be applied to convection–diffusion–reaction equations and to three-dimensional problems.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we propose several improvements of the
Mizukami–Hughes method introduced in [14] for solving
the convection–diffusion equation

�eDuþ b � ru ¼ f in X: ð1Þ
Here X is a bounded two-dimensional domain with a
polygonal boundary oX, f is a given outer source of the
unknown scalar quantity u, e > 0 is the diffusivity, which
is assumed to be constant, and b is the flow velocity. Eq.
(1) is equipped with boundary conditions

u ¼ ub on CD; e
ou
on
¼ g on CN; ð2Þ

where CD and CN are disjoint and relatively open subsets of

oX satisfying meas1(CD) > 0 and CD [ CN ¼ oX, n is the
outward unit normal vector to oX and ub, g are given
functions.

Despite the apparent simplicity of problem (1) and (2),
its numerical solution is by no means an easy task since
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convection often dominates diffusion and hence the solu-
tion of (1) and (2) typically contains narrow inner and
boundary layers. It is well known that the application of
the classical Galerkin finite element method is inappropri-
ate in this case since the discrete solution is usually globally
polluted by spurious oscillations.

To enhance the stability and accuracy of the Galerkin
discretization of (1) and (2) in convection-dominated
regime, various stabilization strategies have been developed
during the last three decades. One of the most efficient pro-
cedures for solving convection-dominated equations is the
streamline upwind/Petrov–Galerkin (SUPG) method [2]
which consistently introduces numerical diffusion along
streamlines. Although this method produces to a great
extent accurate and oscillation-free solutions, it does not
preclude small nonphysical oscillations localized in narrow
regions along sharp layers. Since these oscillations are not
permissible in many applications, various terms introduc-
ing artificial crosswind diffusion in the neighborhood of
layers have been proposed to be added to the SUPG for-
mulation in order to obtain a method which is monotone
or which at least reduces the local oscillations (cf. e.g.
[1,3–6,8,9,13,15] and the references there). This procedure
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is usually referred to as discontinuity capturing (or shock
capturing). A basic problem of most of these methods is
the design of appropriate stabilization parameters which
lead to sufficiently small nonphysical oscillations without
compromising accuracy.

An interesting monotone method for solving (1) and (2)
was introduced by Mizukami and Hughes [14] for linear
triangular finite elements. Although it is not clear how to
generalize this method to other types of finite elements, it
deserves some attention since it seems to give very accurate
solutions and possesses many nice properties. First of all,
in contrast to the most discontinuity-capturing methods,
the solutions always satisfy the discrete maximum princi-
ple, which ensures that no spurious oscillations will appear,
not even in the vicinity of sharp layers. Further, as a
method of upwind type, it does not contain any stabiliza-
tion parameters, which also is a great advantage in compar-
ison with the most other stabilized methods. Moreover,
it is conservative and since it is a Petrov–Galerkin method,
it is consistent. Last but not least, the Mizukami–Hughes
method is based on a clear and simple idea whereas many
discontinuity-capturing methods are derived using heuristic
ad hoc arguments. Like many discontinuity-capturing
methods for solving (1) and (2), the Mizukami–Hughes
method depends on the unknown discrete solution and
hence it is nonlinear.

Although the Mizukami–Hughes discrete solutions are
often very accurate, we observed that, in some cases, they
are not correct. Moreover, sometimes it was very difficult
to solve the nonlinear problem with a prescribed accuracy.
Therefore, in this paper, we propose some improvements of
the method which correct the mentioned shortcomings and
keep its quality in cases in which it works well. We will be
interested in the strongly convection-dominated case char-
acterized by the condition e� jbj, where jbj is the Euclid-
ean norm of b.

A drawback of both the original and the improved ver-
sions of the Mizukami–Hughes method is that no exis-
tence, uniqueness and convergence results are available.
Moreover, it seems to be rather difficult to generalize the
method to more complicated problems. Nevertheless, we
shall show that the method can be extended to convec-
tion–diffusion–reaction equations and to the three-dimen-
sional case.

The plan of the paper is as follows. First, in the next
section, we describe and comment the original Mizu-
kami–Hughes method published in [14]. Then, in Sections
3–5, we discuss shortcomings of this method and propose
some modifications to eliminate them. Since this will take
several pages, we briefly summarize the improved method
in Section 6. Section 7 contains our numerical results
which illustrate the high accuracy of the improved
method. In Section 8, we deal with a generalization of
the Mizukami–Hughes method to convection–diffusion–
reaction equations and, finally, in Section 9, we discuss
the application of the Mizukami–Hughes method to the
three-dimensional case.
2. The Mizukami–Hughes method

Let Th be a triangulation of X consisting of a finite
number of open triangular elements K. The discretization
parameter h in the notation Th is a positive real number
satisfying diam(K) 6 h for any K 2Th. We assume that
X ¼

S
K2Th

K and that the closures of any two different ele-

ments K, eK 2Th are either disjoint or possess either a
common vertex or a common edge. Further, we assume
that any edge of an element K 2Th which lies on oX is
contained either in CD or in CN. Finally, we assume that
the triangulation Th is of weakly acute type, i.e., the mag-
nitude of all angles of elements K 2Th is less than or equal
to p/2. This property will be used for proving the discrete
maximum principle.

The solution u of (1) and (2) will be approximated by a
continuous piecewise linear function uh from the space

V h ¼ fv 2 CðXÞ; vjK 2 P 1ðKÞ 8K 2Thg:
Let a1; . . . ; aMh be the vertices of Th lying in X [ CN and let
aMhþ1; . . . ; aNh be the vertices of Th lying on CD. For any
i 2 {1, . . . ,Nh}, let ui 2 Vh be the function satisfying
ui(aj) = dij for j = 1, . . . ,Nh, where dij is the Kronecker sym-
bol. Then V h ¼ spanfuig

Nh
i¼1. The Mizukami–Hughes

method is a Petrov–Galerkin method with weighting
functions

~ui ¼ ui þ
X

K2Th;

ai2K

CK
i vK ; i ¼ 1; . . . ;Mh;

where CK
i are constants to be determined later and vK is the

characteristic function of K (i.e., vK = 1 in K and vK = 0 else-
where). The discrete solution uh of (1) and (2) is defined by

uh 2 V h;

eðruh;ruiÞ þ ðb � ruh; ~uiÞ ¼ ðf ; ~uiÞ þ ðg;uiÞCN ;

i ¼ 1; . . . ;Mh;

uhðaiÞ ¼ ubðaiÞ; i ¼ Mh þ 1; . . . ;Nh;

where (Æ, Æ) denotes the inner product in L2(X) and ð�; �ÞCN

is the inner product in L2(CN). Moreover, here and in the
following, the flow velocity b is considered to be piecewise
constant (equal to the original function b at barycentres of
elements of Th).

It remains to define the constants CK
i , which is the key

point of the method. Mizukami and Hughes require for
any K 2Th that

CK
i P �1

3
8i 2 f1; . . . ;N hg; ai 2 K;

XNh

i¼1
ai2K

CK
i ¼ 0 ð3Þ

and that the local convection matrix AK with entries

aK
ij ¼ ðb � ruj; ~uiÞK ; i ¼ 1; . . . ;Mh; j ¼ 1; . . . ;Nh;
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is of nonnegative type (i.e., off-diagonal entries of AK are
nonpositive and the sum of the entries in each row of AK

is nonnegative, cf. [7]). As usual, (Æ, Æ)K denotes the inner
product in L2(K). The latter condition in (3) implies that
uh satisfies a discrete mass conservation law if the data in
(1) and (2) satisfy CN = oX, g = 0 and b = const., cf. [11].

The matrix AK has three columns and at most three rows
and it will be of nonnegative type as soon as aK

ij 6 0 for
i 5 j. Note that

aK
ij ¼ ðb � rujÞjK

Z
K

~ui dx ¼ ðb � rujÞjKmeas2ðKÞ 1
3
þ CK

i

� �
:

Let K be any element of the triangulation Th and let the
vertices of K be a1, a2 and a3. For each vertex ai,
i = 1,2,3, we define a vertex zone VZi and an edge zone
EZi whose boundaries consist of lines intersecting the bary-
centre of K which are parallel to the two edges of K pos-
sessing the vertex ai, see Fig. 1. The common part of the
boundaries of two adjacent zones is included in the respec-
tive vertex zone. To avoid misunderstandings, we shall
later also use the notation EZK

i instead of EZi.
Without loss of generality, we may assume that the ver-

tices of K are numbered in such a way that b points into the
vertex zone or the edge zone of a1 as depicted in Fig. 1.
Then

b 2 VZ1 () b � ru1 > 0; b � ru2 6 0; b � ru3 6 0;

b 2 EZ1 () b � ru1 < 0; b � ru2 > 0; b � ru3 > 0;

where we write $ui instead of $uijK for simplicity.
If b 2 VZ1, then (3) holds and AK is of nonnegative type

for

CK
1 ¼ 2

3
; CK

2 ¼ CK
3 ¼ �1

3
:

If AK has three rows, this is the only possibility how to
choose these constants. On the other hand, if b 2 EZ1, then
it is generally not possible to choose the constants
CK

1 ;C
K
2 ;C

K
3 in such a way that (3) holds and AK is of non-
Fig. 1. Definition of edge zones and vertex zones.
negative type. However, Mizukami and Hughes made the
important observation that u still solves Eq. (1) if we re-
place b by any function ~b such that ~b� b is orthogonal
to $u. This suggests to define the constants CK

i in such a
way that the matrix AK is of nonnegative type for b re-
placed by a function ~b pointing into a vertex zone. Since
$u is not known a priori, we obtain a nonlinear problem
where the constants CK

i depend on the discrete solution
uh which we want to compute.

Let us assume that b Æ $uhjK 5 0 and let w 5 0 be a vec-
tor orthogonal to $uhjK. Then there exists a 2 R such that
b + aw 2 VZ2 or b + aw 2 VZ3. The dashed and dotted
arcs in Fig. 2 indicate to which part of the plane the vector
w should point from the barycentre of K if the first or the
second possibility should arrive. To simplify the presenta-
tion, let us introduce the sets

V k ¼ fa 2 R; bþ aw 2 VZkg; k ¼ 2; 3:

Mizukami and Hughes show that, depending on V2 and
V3, the following values of the constants CK

i should be
used:

V 2 6¼ ; and V 3 ¼ ;
) CK

2 ¼ 2
3
; CK

1 ¼ CK
3 ¼ �1

3
; ð4Þ

V 2 ¼ ; and V 3 6¼ ;
) CK

3 ¼ 2
3
; CK

1 ¼ CK
2 ¼ �1

3
; ð5Þ

V 2 6¼ ; and V 3 6¼ ;
) CK

1 ¼ �1
3
; CK

2 þ CK
3 ¼ 1

3
;

CK
2 P �1

3
; CK

3 P �1
3
: ð6Þ

If, for some k 2 {2,3}, the set Vk is nonempty,
we choose ak 2 Vk and define the matrix eAK;k with entries

~aK;k
ij ¼ ððbþ akwÞ � ruj; ~uiÞK ; i; j ¼ 1; 2; 3 ðai 2 X [ CNÞ;

where ~ui are defined using CK
i ’s from (4) if k = 2 and using

CK
i ’s from (5) if k = 3. As we have seen above, the matrix
1

2

3

Fig. 2. Orientations of w for which b + aw 2 VZ2 or b + aw 2 VZ3.
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eAK;k is of nonnegative type. Let us assume that V2 or V3

is empty and let Vk be the nonempty set. Since uhjK =
u1u1 + u2u2 + u3u3, the vector U = (u1,u2,u3) satisfies for
i = 1,2,3 (with ai 2 X [ CN)

ðAKUÞi ¼ ðb � ruh; ~uiÞK ¼ ððbþ akwÞ � ruh; ~uiÞK ¼ ðeAK;kUÞi:

In case (6), we have

AK ¼ ðCK
2 þ 1

3
ÞAK;2 þ ðCK

3 þ 1
3
ÞAK;3;

where AK,2 and AK,3 are matrices defined like AK but using
CK

i ’s from (4) and (5), respectively. Consequently, for
i = 1,2,3 (with ai 2 X [ CN), we obtain

ðAKUÞi ¼ ðCK
2 þ 1

3
ÞðeAK;2UÞi þ ðCK

3 þ 1
3
ÞðeAK;3UÞi:

Thus, in all three cases (4)–(6), the discrete solution satisfies

ðAKUÞi ¼ ðeAKUÞi; i ¼ 1; 2; 3 ðai 2 X [ CNÞ; ð7Þ
where eAK is a matrix of nonnegative type. In case (6),
Mizukami and Hughes suggest to set

CK
i ¼

b � rui

3jb � ru1j
; i ¼ 1; 2; 3: ð8Þ

This choice is also considered if b 2 EZ1 satisfies
b Æ $uhjK = 0. If b = 0, Mizukami and Hughes set CK

i ¼ 0
for i = 1,2,3.

The above choice of the constants CK
i assures that the

discrete solution always satisfies (7) with a matrix eAK of
nonnegative type. Denoting by D the matrix having the
entries dij = ($uj,$ui), i = 1, . . . ,Mh, j = 1, . . . ,Nh, and byeA the Mh · Nh matrix made up of the local matrices eAK ,
we see that the vector of coefficients of the discrete solution
uh with respect to the basis fuig

Nh
i¼1 of the space Vh is the

solution of a linear system with the matrix C � eDþ eA.
Since the triangulation Th is of weakly acute type, it is eas-

ily seen that the matrix fðruj;ruiÞKg
3
i;j¼1 is of nonnegative

type. Consequently, the matrices D and C also are of non-
negative type. Moreover, since the matrix fdijgMh

i;j¼1 is non-
singular, the matrix fcijgMh

i;j¼1 also is nonsingular. This
implies that uh satisfies the discrete maximum principle
(see e.g. [8]). Thus, for any G � X being a union of closures
of elements of Th, we have

ðf ; ~uiÞ 6 0 8ai 2 int G) max
G

uh ¼ max
oG

uh; ð9Þ

ðf ; ~uiÞP 0 8ai 2 int G) min
G

uh ¼ min
oG

uh; ð10Þ

which shows that the discrete solution does not contain any
spurious oscillations.

3. Improvement of the Mizukami–Hughes method in

boundary layer regions

The Mizukami–Hughes method often provides accurate
and oscillation-free discrete solutions, see the examples in
[14,9]. However, in some cases, we observed that the dis-
crete solution was not correct. We shall demonstrate this
on a simple example which was also considered in [14].
Let X = (0, 1)2 and, like in [14], let us consider uniform
triangulations Th of X of the type depicted in Fig. 3(a),
which consist of 2(N · N) equal right-angled isosceles tri-
angles (N = 5 in Fig. 3(a)). Let N = 10 and let us consider
the problem (1) and (2) with

e ¼ 10�7; b ¼ ð1; 0Þ; f ¼ 1; CD ¼ oX; ub ¼ 0:

ð11Þ
The discrete solution obtained using the Mizukami–
Hughes method is indistinguishable from the discrete solu-
tion corresponding to e! 0. For e! 0, we easily find that
the discrete solution is nodally exact, i.e.,

uhðx; yÞ ¼ x for ðx; yÞ 2 ½0; 0:9� � ½0:1; 0:9�: ð12Þ
Changing b to b = (1,a) with jaj � 1, we expect that the
discrete solution basically remains the same. However,
Fig. 4(a) corresponding to a = �0.0001 shows that the dis-
crete solution changes dramatically. The reason is that the
small change of b causes a significant change of the con-
stants CK

i for elements K 2Th having an edge at the upper
part of the boundary of X, see Fig. 5(a) and (b). Note that
we can set w = (1,0) for these elements K since uh = 0 on
oX. Let us mention that Fig. 4(a) does not show a violation
of the discrete maximum principle since ðf ; ~uiÞ > 0 for all
i 2 {1, . . . ,Mh} and the right-hand side of (10) is satisfied
for any admissible set G.

It is obvious that a small change of b should only lead to
a small change of the constants CK

i and hence a first idea to
improve the behaviour of the method might be to use the
vertex-zone definition of CK

i ’s also for b which is not con-
tained in a vertex zone but is very near to it. However, the
problems also appear for vectors b which cannot be consid-
ered to lie near a vertex zone, e.g. for a 2 [�0.5,�0.1]. For
such a, a nodally exact solution (again for e! 0) should
satisfy

uhðx; yÞ ¼ x for ðx; yÞ 2 ½0; 0:9� � ½0:1; 0:2�: ð13Þ

Let us assume that

(A1) the constants CK
i are defined as described in Section 2

if b lies in a vertex zone;
(A2) CK

j ¼ � 1
3

if b 2 EZK
j for some index j.

Then, for e = 0, it is easy to show that the necessary
condition for the validity of (13) is that, for any element
K having the vertices (x, 0), (x, 0.1), (x � 0.1,0.1) with x 2



0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2
 0.4
 0.6
 0.8

1
 1.2
 1.4

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2
 0.4
 0.6
 0.8

1
 1.2

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2

 0.4
 0.6

 0.8
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2

 0.4
 0.6

 0.8
1

0
 0.2
 0.4
 0.6
 0.8

1
 1.2

a

c

b

d

Fig. 4. Mizukami–Hughes discrete solution for data (11) with b replaced by the indicated vectors: (a) b = (1,�0.0001), (b) b = (1,�0.1), (c) b = (1,�0.4)
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{0.1, 0.2, . . . , 0.9}, the constants CK
i are equal to the values

depicted in Fig. 5(c). Since uh(x, 0) = 0, we have $uh =
(1,10x) and we can set w = (1,�0.1/x). Hence the Mizu-
kami–Hughes method gives the optimal values of CK

i ’s only
if x > 0.1/jaj. Thus, for a = �0.1, the discrete solution uh is
wrong along the whole lower part of the boundary of X
(cf. Fig. 4(b)) whereas, for a = �0.4, the values of CK

i ’s
are correct for elements with x > 0.25 and hence uh is better
although still wrong (cf. Fig. 4(c)).

The problems observed above also appear for the data
(11) if we consider a triangulation of X of the type depicted
in Fig. 3(b) which consists of 4(N · N) equal right-angled
isosceles triangles (N = 5 in Fig. 3(b)). For N = 10, the dis-
crete solution corresponding to the Mizukami–Hughes
method is shown in Fig. 4(d) and, as wee see, it is wrong
(the solution is visualized using its values at the same points
as in Fig. 4(a)–(c)). For e = 0 and under the assumptions
(A1) and (A2), the discrete solution satisfies (12) only if, on
elements K with vertices (x, 0), (x, 0.1), (x � 0.05, 0.05) or
(x, 0.9), (x, 1), (x � 0.05,0.95) where x 2 {0.1, 0.2, . . . , 0.9},
we set CK

i ¼ � 1
3

for i corresponding to (x, 0.1) or (x, 0.9).
Whereas, for the examples mentioned above, we could
think of redefining CK

i ’s employing the relation between b
and w in some more sophisticated way, now this is not pos-
sible since w = b. Moreover, the direction of $uh on K also
cannot be employed since it changes if f = �1 is used instead
of f = 1 whereas the values of CK

i ’s have to remain the same.
In view of the above discussed and many other numeri-

cal experiments, we conclude that the definition of CK
i ’s for

b lying in an edge zone is not appropriate if K lies in the
numerical boundary layer. The only remedy we have found
is to set CK

i ¼ � 1
3

for all i corresponding to inner vertices.
This leads us to the following requirement:

(A3) CK
i ¼ � 1

3
for all i = 1,2,3 if K \ CD 6¼ ; and if

b 2 EZK
j for some j 2 {1,2,3}.
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Note that the constants CK
i corresponding to vertices

ai 2 CD do not influence the discrete solution so that we
could also define them in such a way that (3) is formally
satisfied.

The requirement (A3) is not sufficient to avoid wrong
discrete solutions on a triangulation of the type from
Fig. 3(b) if b = (1,a) with a 5 0. In this case we require
that

(A3*) CK
i ¼ � 1

3
for all i = 1,2,3 if all vertices of K are con-

nected by edges to vertices on CD and if b 2 EZK
j for

some j 2 {1,2,3}.

For b = (1,0), this stronger requirement is not needed
on a triangulation of the type from Fig. 3(b): for N = 10,
there exists a unique uh 2 Vh satisfying (12) and such that
b Æ $uh = f on any element of Th with vertices of the type
(x,y), (x,y + 0.1), (x + 0.05,y + 0.05) and on any element
having an edge on the boundary of (0,0.9) · (0.1,0.9).
Assuming (A3), it is easy to verify that this uh solves the
discrete problem with e = 0. However, generally, (A3*)
is a necessary condition for obtaining a nodally exact
solution.

4. Continuous dependence of CK
i ’s on the orientation

of the convection b

Let us consider the situation depicted in Fig. 5(a). Since
b lies in a vertex zone, the values of the constants CK

i are
independent of the discrete solution uh. Now, like in the
preceding section, let us change b to b = (1,a) with a < 0,
jaj � 1. Then b lies in an edge zone which we denote EZ1

and the constants CK
i are determined according to (4)–(6).

Assuming that both V2 and V3 are nonempty, the formula
(8) replaces the value 2

3
in Fig. 5(a) by 1þa

3
and the value � 1

3

at the vertex with y = 0.9 by � a
3
. Thus, the definition of the

constants CK
i is discontinuous with respect to the orienta-

tion of b. This does not seem to be reasonable and our
numerical experiments show that it may deteriorate the
quality of the discrete solution. Therefore, in this section,
we propose another way how to compute the constants
CK

i in case (6).
Let us again consider an element K with vertices a1, a2

and a3. If b 2 VZ2, then CK
2 ¼ 2

3
, CK

3 ¼ � 1
3

and, if b 2 VZ3,

then CK
2 ¼ � 1

3
, CK

3 ¼ 2
3
. Thus, if b 2 EZ1, it is sensible to set

CK
2 ¼ F

a3

a2 þ a3

� �
; CK

3 ¼ F
a2

a2 þ a3

� �
;

where a2 and a3 are the angles depicted in Fig. 6 and
F : ½0; 1� ! � 1

3
; 2

3

� �
is a continuous monotone function sat-

isfying F ð0Þ ¼ � 1
3

and F ð1Þ ¼ 2
3
. It is convenient to replace

F by the function

GðxÞ ¼ 2F
xþ 1

2

� �
� 1

3
:

Then

CK
2 ¼

1

6
þ 1

2
G

a3 � a2

a2 þ a3

� �
; CK

3 ¼
1

6
þ 1

2
G

a2 � a3

a2 þ a3

� �
and G is a continuous monotone function satisfying

G : ½�1; 1� ! ½�1; 1�; Gð�1Þ ¼ �1; Gð1Þ ¼ 1: ð14Þ
Moreover, (6) implies that G is odd.

To make the computation of the constants CK
i cheaper,

we use the approximation

a3 � a2

a2 þ a3

	
sin 1

2
ða3 � a2Þ

� �
sin 1

2
ða2 þ a3Þ

� � ¼ cos a2 � cos a3

1� cosða2 þ a3Þ
;

which is certainly acceptable for a2 þ a3 6
p
2
. Note that,

denoting by v2 and v3 unit vectors pointing from a1 to a2

and a3, respectively, and by s the unit vector in the direc-
tion of b (cf. Fig. 6), we have

cos a2 � cos a3

1� cosða2 þ a3Þ
¼ ðv2 � v3Þ � s

1� v2 � v3

:

Thus, we arrive at the formulas

CK
2 ¼

1

6
þ 1

2
G
ðv2 � v3Þ � s
1� v2 � v3

� �
; CK

3 ¼
1

3
� CK

2 ; ð15Þ

where G is a continuous monotone odd function satisfying
(14). We performed a lot of numerical experiments which
revealed that a good choice for the function G is to simply
set

GðxÞ ¼ x:
5. Continuous dependence of CK
i ’s on the orientation

of $uh

Let us consider the situation depicted in Fig. 2, i.e.,
b 2 EZ1. If the vector w points from the barycentre of K

into the part of EZ1 marked by the dashed arc, then the
constants CK

i are determined by (4) and hence CK
2 ¼ 2

3
and

CK
3 ¼ � 1

3
. However, as soon as w comes into the interior

of VZ3, the values of these constants change to values given



P. Knobloch / Comput. Methods Appl. Mech. Engrg. 196 (2006) 579–594 585
by (15). Consequently, the constants CK
i depend on the ori-

entation of w (and hence of $uh) in a discontinuous way.
Our numerical experiences show that, in some cases, this
prevents the nonlinear iterative process from converging.
Therefore, in the following, we describe a modification of
the formula (15) taking into account the orientation of w.
We assume that b Æ $uhjK 5 0.

We shall need some additional notation which is intro-
duced in Fig. 7. Here, the straight dashed lines are axes
of the angles between the two lines which cross at the bary-
centre of K and are parallel to the edges of K containing the
vertex a1. One of these angles is the same as the angle x1 of
K at a1 and we introduce a unit vector v in the direction
of the axis of this angle pointing as in Fig. 7. Without
loss of generality, we may assume that jwj = 1 and
that w Æ v P 0. Therefore, the dashed and dotted arcs in
Fig. 7, which have the same meaning as in Fig. 2, are
restricted to the corresponding half plane. We denote by
d the angle between w and the part of the boundary of
EZ1 which is ‘nearer’ to w (cf. Fig. 7). Like in Fig. 6, we
introduce the angles a2 and a3 and the unit vectors v2, v3

and s.
If w 2 EZ1, the constants CK

i are uniquely determined by
(4) and (5). Thus, let us consider the case (6) and let
j,k 2 {2, 3}, j 5 k, be such that w 2 VZj [ EZk (j = 3 in
Fig. 7). It suffices to discuss the choice of CK

j since
CK

1 ¼ � 1
3

and CK
k ¼ 1

3
� CK

j . Obviously, aj 2 (0,x1) and

d 2 (0,j] with j ¼ p
2
� x1

2
. We shall require the following

values of CK
j in the limit cases:

d ¼ j) CK
j is determined by ð15Þ;

aj ! 0; d90) CK
j is determined by ð15Þ ð) CK

j ! 2
3
Þ;

d! 0; aj90) CK
j ! �1

3
:

If aj! 0, d! 0, then b Æ $uhjK 	 0 and hence the choice of
CK

i ’s is not important since AKU 	 0 in (7). Denoting by CK
j

the value of CK
j determined by (15), we set

CK
j ¼ CK

j Uðaj; dÞ � 1
3
½1� Uðaj; dÞ�;
VZ

EZ

2VZ

EZ2

EZ1

1VZ

3

b VZVZ2 3+ αw in w inb + α

w

v

3 ω1

δ

b

2

1

3

Fig. 7. Definition of angles x1 and d and of the vector v.
where U : ([0,x1] · [0,j])n(0,0)! [0,1] is a continuous
function. The above requirements imply that

Uðaj; jÞ ¼ Uð0; dÞ ¼ 1; Uðaj; 0Þ ¼ 0 8aj 2 ð0;x1�;
d 2 ð0; j�:

Since the direction of w may strongly vary during the non-
linear iterative process, the constant CK

j should be mainly
determined by (15) and the orientation of w should influence
CK

j only if d/j is smaller than aj/x1. Therefore, we set

Uðaj; dÞ ¼ min 1;
2 sin d
rj sin j

� 	
; ð16Þ

where

rj ¼

sin aj

sin x1

2

if aj <
x1

2
;

1 if aj P
x1

2
:

8>><>>:
Of course, many other formulas for U(aj,d) can also be

used. Let us mention that the computation of (16) is inex-
pensive since, denoting by v?j a unit vector orthogonal to vj,
we have

sin j ¼ v � vj; sin
x1

2
¼ jv � v?j j; sin d ¼ jw � v?j j;

sin aj ¼ js � v?j j:
Remark 1. The dependence of the constants CK
i on w is

also discontinuous if the orientation of w passes the
direction of s (i.e., of b). However, this does not seem to be
important since, if w 	 s, we have b Æ $uhjK 	 0 and hence
AKU 	 0 in (7).
6. Summary of the improved Mizukami–Hughes method

In this section we summarize the definitions of the con-
stants CK

i introduced in the previous sections. Let us con-
sider any element K 2Th and let a1, a2 and a3 be its
vertices. If b 5 0, we assume that b points into the vertex
zone or the edge zone of a1 (cf. Fig. 1) and we denote

s ¼ b

jbj ; v2 ¼
a2 � a1

ja2 � a1j
; v3 ¼

a3 � a1

ja3 � a1j
; v ¼ v2 þ v3

jv2 þ v3j
:

Further, we introduce unit vectors w, v?, v?2 and v?3 such
that

w � ruhjK ¼ 0; v? � v ¼ 0; v?2 � v2 ¼ 0; v?3 � v3 ¼ 0;

w � v P 0; v? � v3 P 0:

Finally, we recall the spaces V2 and V3 introduced in
Section 2. Then the constants CK

1 , CK
2 and CK

3 are deter-
mined according to the algorithm in Fig. 8. It is obvious
that the improved method preserves the general properties
of the original Mizukami–Hughes method, particularly, it
satisfies the discrete maximum principle discussed at the
end of Section 2.



Fig. 8. Definition of the constants CK
i in the improved Mizukami–Hughes method.
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7. Numerical results

In this section we demonstrate the properties of the
improved Mizukami–Hughes method by means of several
standard test problems formulated in Examples 1–7 below
and taken (in a slightly modified form) from [9,12,14]. In all
these examples we consider e = 10�7 and, except for Exam-
ple 6, X = (0,1)2. Unless otherwise specified, we use a trian-
gulation of the type depicted in Fig. 3(a). The number of
elements will be determined by the parameter N introduced
at the beginning of Section 3. In Examples 1–3, the convec-
tion vector b is defined using an angle h which is assumed
to satisfy h 2 (0,p/2). To simplify the definitions of various
parts of oX, we introduce the sets

C1 ¼ ðf0g � ð0; 1�Þ [ ð½0; 1Þ � f1gÞ;
C2 ¼ ðf0g � ð0:7; 1�Þ [ ð½0; 1Þ � f1gÞ:

In the captions of figures we denote by MH the original
Mizukami–Hughes method [14] and by IMH the improved
Mizukami–Hughes method introduced in this paper. Let us
mention that the discrete solutions obtained using the
SUPG method [2] contain spurious oscillations for all the
examples except for Example 6.
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Fig. 9. Example 1, IMH, N = 10.
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Fig. 12. Example 3, h ¼ p
3
, IMH, N = 20.
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Fig. 10. Example 2, h ¼ p
3
, IMH, N = 20.
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Fig. 11. Example 2, h ¼ p
3
, N = 20, MH, IMH and exact solution on y = 0.
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Example 1 (Convection skew to the mesh with boundary

layers)

b ¼ ðcos h;� sin hÞ; f ¼ 0; CD ¼ oX;

ub ¼ 1 on C1; ub ¼ 0 on CD n C1:

Both the original and the improved Mizukami–Hughes
method give the same discrete solution which is nodally
exact (cf. Fig. 9). This easily follows from the definition
of the constants CK

i . However, for h 5 p/4, it is rather
difficult to compute the discrete solution of the original
Mizukami–Hughes method due to the discontinuous
dependence of CK

i ’s on the orientation of $uh. On the other
hand, the computation of the discrete solution of the
improved Mizukami–Hughes method needs only a few
nonlinear iterations.

Example 2 (Convection skew to the mesh with an inner

layer)

b ¼ ðcos h;� sin hÞ; f ¼ 0; g ¼ 0; CD ¼ C1;

ub ¼ 1 on C2; ub ¼ 0 on CD n C2:

For h = p/4, the vector b points into vertex zones in all
elements of the triangulation and it is easy to see that, for
both methods, the discrete solution is constant along the
diagonals in Fig. 3(a) if e! 0. Consequently, both the ori-
ginal and the improved Mizukami–Hughes method give the
same nodally exact discrete solution. If h 5 p/4, the dis-
crete solutions are not nodally exact but they are similar
for both methods. Fig. 10 shows the discrete solution for
h = p/3 and N = 20 obtained using the improved Mizu-
kami–Hughes method. Fig. 11 compares the outflow pro-
files along the x-axis for the two methods and the exact
solution of the hyperbolic limit of (1). The solution of the
improved method seems to be slightly better. Like for the
previous example, the discrete solution is much more diffi-
cult to compute for the original Mizukami–Hughes
method.

Example 3 (Convection skew to the mesh with inner and

boundary layers)
b ¼ ðcos h;� sin hÞ; f ¼ 0; CD ¼ oX;

ub ¼ 1 on C2; ub ¼ 0 on CD n C2:

This test problem is more complicated than the previous
one since, in addition to the inner layer, it also involves one
or two boundary layers. The relation between the original
and the improved Mizukami–Hughes method is similar
as in the previous example. Fig. 12 shows the discrete solu-
tion obtained using the improved Mizukami–Hughes
method for h = p/3 and N = 20.
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Example 4 (Convection with a constant source term)

b ¼ ð1; aÞ; a 2 ð�0:5; 0:5Þ; f ¼ 1; CD ¼ oX; ub ¼ 0:

This problem was already considered in Section 3 where
we have seen that the original Mizukami–Hughes method
gives wrong discrete solutions (cf. Fig. 4). As we see from
Fig. 13, the discrete solutions of the improved Mizu-
kami–Hughes method seem to be correct in all cases
considered in Section 3. Moreover, the improved Mizu-
kami–Hughes method gives the discrete solutions shown
in Fig. 13(a)–(c) also if we use a triangulation of the type
depicted in Fig. 3(b).

Example 5 (Convection with a nonconstant source term)

b ¼ ð1; aÞ; a 2 ð�0:5; 0:5Þ; CD ¼ oX; ub ¼ 0;

f ¼ 1 in ð0; 1
2
Þ � ð0; 1Þ; f ¼ �1 in ð1

2
; 1Þ � ð0; 1Þ:

Like in the previous example, both methods coincide
and give a nodally exact solution for a = 0 and a triangu-
lation of the type depicted in Fig. 3(a). This is no longer
true if we use a 5 0 or a triangulation of the type depicted
in Fig. 3(b). Figs. 14 and 15 demonstrate that the original
Mizukami–Hughes method generally gives wrong discrete
solutions whereas the solutions of the improved Mizu-
kami–Hughes method seem to be correct.
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Fig. 13. Example 4, IMH, N = 10: (a) a = �0.0001, (b) a =
Example 6 (Donut problem). We consider X = (0, 1)2nC
with C ¼ 1

2


 �
� 0; 1

2

� �
. The convection field b is defined

by

bðx; yÞ ¼ ð�y þ 1
2
; x� 1

2
Þ

so that it represents a vortex around the midpoint of the
unit square in the counter-clockwise direction. Therefore,
C represents an inflow boundary denoted by Cin if we ap-
proach C from the right but it also represents an outflow
boundary denoted by Cout if we approach it from the left.
We set

f ¼ 0; g ¼ 0; CD ¼ Cin [ o½ð0;1Þ2�; CN ¼ Cout;

ub ¼ 0 on CD nCin; ub
1
2
; y
� �

¼ sinðpð1� 2yÞÞ for y 2 0; 1
2

� �
:

For this problem, an almost nodally exact discrete solu-
tion can be obtained using the SUPG method and it is
interesting to see to what extent the discrete solution dete-
riorates if other stabilized methods are used. The solution
of the improved Mizukami–Hughes discretization is shown
in Fig. 16 and is similar to the solution obtained using the
original Mizukami–Hughes method. Fig. 17 shows a com-
parison of the discrete solutions of the two Mizukami–
Hughes methods and the exact solution of the hyperbolic
limit of (1) by means of cuts through graphs of the solu-
tions along the line x = 1/2. It seems that the improved
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�0.1, (c) a = �0.4 and (d) a = 0, Th from Fig. 3(b).
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Fig. 14. Example 5, a = �0.1, N = 10: (a) MH and (b) IMH.
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Fig. 15. Example 5, a = 0, Th from Fig. 3(b), N = 10: (a) MH and (b) IMH.
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Fig. 16. Example 6, IMH, N = 32.
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Fig. 17. Example 6, N = 32, MH, IMH and exact solution on x = 1/2.
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Mizukami–Hughes method gives a slightly better solution.
The two discrete solutions are comparable with best
discrete solutions obtained using discontinuity-capturing
methods mentioned in the introduction.

Example 7 (Problem with known exact solution)

b ¼ ð2; 3Þ; CD ¼ oX:

The functions f and ub are chosen in such a way that

2ðx� 1Þ
� �

3ðy � 1Þ
� �
uðx; yÞ ¼ xy2 � y2 exp
e

� x exp
e

þ exp
2ðx� 1Þ þ 3ðy � 1Þ

e

� �
is the exact solution of (1) and (2).

The function u contains two typical exponential bound-
ary layers and hence this example represents a suitable tool
for gauging the accuracy of numerical methods for the
solution of convection–diffusion problems. The discrete
solution obtained using the improved Mizukami–Hughes
method for N = 20 can be seen in Fig. 18. Fig. 19 shows
the discrete solution computed using the SUPG method
[2] with the so-called optimal definition of the stabilization
parameter and element size defined as the element diameter
in the direction of the flow. We consider the SUPG method
here since it is known to approximate solutions with layers
on non-layer-adapted meshes at least outside the layers
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Fig. 19. Example 7, SUPG, N = 20.

Table 1
Example 7, errors of the improved Mizukami–Hughes method

N k Æ k0,X k Æ k0,1,h k � k
0;X j � j
1;X j � j
0;1;h
20 5.91 � 2 7.02 � 3 3.68 � 4 2.05 � 2 2.15 � 3
40 4.20 � 2 3.93 � 3 1.13 � 4 1.02 � 2 6.71 � 4
80 2.98 � 2 2.07 � 3 3.14 � 5 5.06 � 3 1.87 � 4
160 2.11 � 2 1.05 � 3 8.30 � 6 2.52 � 3 4.94 � 5

Order 0.50 0.98 1.92 1.01 1.92

Table 2
Example 7, errors of the SUPG method

N k Æ k0,X k Æ k0,1,h k � k
0;X j � j
1;X j � j
0;1;h
20 4.91 � 2 5.08 � 1 3.33 � 4 2.49 � 2 9.37 � 3
40 3.51 � 2 5.70 � 1 3.95 � 5 1.00 � 2 2.32 � 4
80 2.50 � 2 6.02 � 1 9.80 � 6 4.99 � 3 7.06 � 6
160 1.78 � 2 6.18 � 1 2.45 � 6 2.49 � 3 1.74 � 6

Order 0.49 �0.04 2.00 1.00 2.02
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very precisely. Therefore, it is interesting to compare the
accuracy of the SUPG method with the accuracy of
the improved Mizukami–Hughes method. We measure
the errors of the discrete solutions by means of the norm
in L2(X) denoted by k Æ k0,X and using the discrete L1 norm
on X denoted by k Æ k0,1,h and defined as the maximum of
the absolute values of errors at vertices of the triangulation.
In addition, we consider this type of norms on the domain
X* � (0,0.8)2 which does not contain a neighborhood of
the layers. The respective norms are denoted by k � k
0;X
and j � j
0;1;h. Finally, we evaluate the H1(X*) seminorm
denoted by j � j
1;X. Because of the boundary layers it makes
no sense to show the H1(X) seminorm. Like in the previous
examples, the bilinear forms of the discrete problems were
computed exactly whereas the right-hand sides were evalu-
ated using quadrature formulas which are exact for piece-
wise cubic f. The evaluation of the L2 norms
(respectively, the H1 seminorm) was exact for piecewise
quadratic (respectively, cubic) functions. The obtained
results are shown in Tables 1 and 2 and we see that, outside
the layers, both methods converge with optimal conver-
gence orders. On fine meshes, the SUPG method is more
precise in X* than the modified Mizukami–Hughes method,
particularly, with respect to the discrete L1 norm. How-
ever, on the whole domain X, the SUPG solution does
not converge in the discrete L1 norm since the magnitude
of the spurious oscillations visible in Fig. 19 does not
decrease for decreasing h as long as h is significantly larger
than the width of the boundary layers. On the other hand,
the solution of the modified Mizukami–Hughes method
converges on the whole domain X with first order of accu-
racy in the discrete L1 norm and does not contain any spu-
rious oscillations as we can also see from Fig. 18.

8. Application of the Mizukami–Hughes method to

convection–diffusion–reaction equations

In this section we extend the Mizukami–Hughes method
described in the preceding sections to convection–diffu-
sion–reaction equations

�eDuþ b � ruþ cu ¼ f in X; ð17Þ
where c is a given function. Our aim again is to derive a
numerical method satisfying the discrete maximum princi-
ple and hence we shall assume that c P 0 since otherwise
no maximum principle generally holds for Eq. (17). Again,
we consider the singularly perturbed case, i.e., e� jbj + c.

The discrete solution uh of (17), (2) is defined by

uh 2 V h;

eðruh;ruiÞ þ ðb � ruh þ cuh; ~uiÞ
¼ ðf ; ~uiÞ þ ðg;uiÞCN ; i ¼ 1; . . . ;Mh;

uhðaiÞ ¼ ubðaiÞ; i ¼ Mh þ 1; . . . ;Nh:

Like for b, we assume that c is piecewise constant.
For any K 2Th, the local reaction matrix RK has

entries

rK
ij ¼ ðcuj; ~uiÞK ¼ 1

3
cjKmeas2ðKÞ 1

4
þ CK

i þ 1
4
dij

� �
(with i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai; aj 2 K), where dij is the
Kronecker symbol. We define the matrix SK � AK + RK

(with entries sK
ij ), where AK is the local convection matrix
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introduced in Section 2. Like before, we want to define the
constants CK

i in such a way that the matrix SK is of nonneg-
ative type or at least satisfies an analogue of (7), i.e.,

SKU ¼ eS KU ; ð18Þ

where eS K is a matrix of nonnegative type. Note thatXNh

j¼1

aj2K

sK
ij ¼

XNh

j¼1

aj2K

rK
ij ¼ cjKmeas2ðKÞ 1

3
þ CK

i

� �
8i 2 f1; . . . ;Mhg; ai 2 K;

and hence the first condition in (3) is necessary for SK to be
of nonnegative type.

On the other hand, the second condition in (3) cannot be
fulfilled in general. To see this, let us denote the vertices of
K by a1, a2, a3 and let us assume that b 2 VZ1 (from now on
we shall write b, c, $ui instead of bjK, cjK, $uijK, respec-
tively). Then sK

21 and sK
31 may be nonpositive only if CK

2 <
� 1

4
and CK

3 < � 1
4
. A necessary condition for sK

12 and sK
13 to

be nonpositive is

2
3
cð1

4
þ CK

1 Þ 6 b � ru1ð13þ CK
1 Þ:

If CK
1 2 ð12 ; 2

3
�, which is necessary for the validity of (3), this

inequality will not be satisfied for c P 2b Æ $u1. Hence the
validity of the second condition in (3) cannot be generally
required.

Fortunately, the second condition in (3) is not needed to
assure that (7) holds with a matrix eAK of nonnegative type.
It is easy to check that (7) still holds if those constants in
the definition of AK, for which larger values than � 1

3
are

prescribed, are replaced by any values from the interval
½� 1

3
;1Þ. Thus, our idea is first to compute the constants

CK
i according to the algorithm in Fig. 8 and then possibly

to decrease some of the constants in such a way that (18)
holds with a matrix eS K of nonnegative type. Since, for
c > 0, the matrix RK is of nonnegative type if and only if

all the constants CK
i are from the interval � 1

3
;� 1

4

� �
, a con-

stant CK
i provided by the algorithm in Fig. 8 will not be

decreased if CK
i 6 � 1

4
. If CK

i > � 1
4
, it is never necessary to

decrease this constant below the value � 1
4
.

Now let us describe the new definition of the constants
CK

i in detail. We again denote the vertices of K by a1, a2,
a3 and assume that b 2 VZ1. Then, according to Fig. 8,
CK

2 ¼ CK
3 ¼ � 1

3
and hence we only have to assure that sK

12

and sK
13 are nonpositive, which is the case if and only if

36ðb � ruj þ 1
3
cÞð1

3
þ CK

1 Þ 6 c; j ¼ 2; 3: ð19Þ

Of course, the constant CK
1 ¼ 2

3
provided by the algorithm

in Fig. 8 generally does not satisfy this inequality. There-
fore, denoting

n ¼ 36 maxf0; b � ru2 þ 1
3
c; b � ru3 þ 1

3
cg;

we set

CK
1 :¼ min

2

3
;� 1

3
þ c

n

� 	
(if c = n = 0, we define c/n =1). Since b Æ $uj 6 0 for
j = 2,3, we really have CK

1 P � 1
4
.

Now let us assume that b 2 EZ1 and that K does not
have the properties formulated in (A3) and (A3*) at the
end of Section 3. If b Æ $uhjK = 0, then AKU = 0 and we
set CK

1 ¼ � 1
3

and CK
2 ¼ CK

3 ¼ � 1
4
, which guarantees that

the matrix RK is of nonnegative type. Let b Æ $uhjK 5 0
and let the vector w be defined like in Section 6. It is con-
venient to denote for a 2 R and j,k 2 {1,2,3}, j 5 k,

njðaÞ ¼ 36ðb � ruj þ aw � ruj þ 1
3
cÞ;

njkðaÞ ¼ maxf0; njðaÞ; nkðaÞg:

Let us first assume that V2 5 ; and V3 = ;. Then
CK

1 ¼ CK
3 ¼ � 1

3
and, like in Section 2, we deduce that (18)

holds with eS K ¼ 1
3
þ CK

2

� �eAK;2 þ RK . The matrix eAK;2 was
defined in Section 2 using an arbitrarily chosen a2 2 V2

and its first and third row consist of zeros. Therefore, we
only have to assure that the entries esK

21 and esK
23 of the matrixeSK are nonpositive for some a2 2 V2. Like in (19), we get

the condition that, for some a 2 V2,

njðaÞð13þ CK
2 Þ 6 c; j ¼ 1; 3:

The set V2 is a closed interval and hence it is easy to
compute

n ¼ min
a2V 2

n13ðaÞ:

Thus, it suffices to set

CK
2 :¼ min

2

3
;� 1

3
þ c

n

� 	
:

Since n13(a) 6 12c for any a 2 V2, we again have CK
2 P � 1

4
.

The case V2 = ;, V3 5 ; is treated analogously.
If both V2 and V3 are nonempty, then CK

1 ¼ � 1
3

but the
constants CK

2 and CK
3 provided by the algorithm in Fig. 8

may be so large that (18) does not hold for any matrixeSK of nonnegative type. Therefore, like above, we set

CK
2 :¼ min CK

2 ;�
1

3
þ c

n

� 	
; CK

3 :¼ min CK
3 ;�

1

3
þ c

n0

� 	
;

where

n ¼ min
a2V 2

n13ðaÞ; n0 ¼ min
a2V 3

n12ðaÞ:

Up to now, we have not mentioned the case when b = 0

and hence AK = 0. We set CK
1 ¼ CK

2 ¼ CK
3 ¼ � 1

4
, which

leads to a matrix SK with positive diagonal entries and zero
off-diagonal entries.

The above modifications of the constants CK
i assure that

the discrete solution of (17), (2) always satisfies (18) with a
matrix eS K of nonnegative type. Therefore (see the end of
Section 2), the discrete solution satisfies the discrete maxi-
mum principle and hence it does not contain any spurious
oscillations.

Let us illustrate the properties of the improved Mizu-
kami–Hughes method with the above described definition
of the constants CK

i by means of two simple test problems
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Fig. 22. Example 9, Galerkin, N = 20.
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taken from [10,16]. Like in Section 7, we consider e = 10�7,
X = (0, 1)2 and triangulations of the type depicted in
Fig. 3(a).

Example 8 (Reaction without convection)

b ¼ 0; c ¼ 1; f ¼ 1; CD ¼ oX; ub ¼ 0:

Fig. 20 shows a discrete solution computed using the
Galerkin discretization (corresponding to the Mizukami–
Hughes method with all CK

i ’s equal to zero) and we observe
significant spurious oscillations along the whole boundary
of X. On the other hand, the improved Mizukami–Hughes
method gives a nodally exact discrete solution, see Fig. 21.

Example 9 (Reaction with convection)

bðx; yÞ ¼ ð1� y2; 0Þ; c ¼ 25; f ¼ 0; CD ¼ f0g � ð0; 1Þ;
g ¼ 0; ub ¼ 1:

The Galerkin solution (cf. Fig. 22) again exhibits spuri-
ous oscillations which become even larger if the SUPG
method described in the previous section is applied. The
discrete solution obtained using the improved Mizukami–
Hughes method with CK

i ’s defined by the algorithm in
Fig. 8 is comparable with the SUPG solution. However,
using the constants CK

i introduced in this section, we obtain
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Fig. 23. Example 9, IMH, N = 20.
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Fig. 20. Example 8, Galerkin, N = 10.
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Fig. 21. Example 8, IMH, N = 10.
the discrete solution depicted in Fig. 23 where no spurious
oscillations are present.

Remark 2. If the assumption that e� jbj + c is not
satisfied and the reaction term dominates the convection
term (in particular, if b = 0), the invalidity of the second
condition in (3) may lead to a large error of the discrete
solution. Therefore, in this case, instead of requiring that
SK or eSK be of nonnegative type, one should require this
property of the matrix DK + SK or DK þ eSK , respectively,
where DK is the local diffusion matrix with entries
dK

ij ¼ eðruj;ruiÞK . Assuming that DK has three rows
(since otherwise the second condition in (3) can always be
fulfilled), there is at least one row of DK whose all entries
are different from zero. Therefore, adding DK to SK or eSK

always enables to increase at least one of the constants CK
i .

In this way, the second condition in (3) can often be
(nearly) satisfied since dK

ij 	 e whereas rK
ij 	 c meas2ðKÞ.
9. The Mizukami–Hughes method in three dimensions

In this section, we briefly show how the ideas presented
in Section 2 can be applied to the three-dimensional case.

We assume that X is a bounded three-dimensional
domain with a polyhedral boundary oX and that we are
given a triangulation Th of X consisting of a finite number
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of open tetrahedral elements K. The notation, assumptions
and concepts introduced in Section 1 and at the beginning
of Section 2 (by the end of the definition of the discrete
solution) can be extended in a natural way to the three-
dimensional case and hence we shall not mention them
again.

Analogously as in Section 2, the local convection matri-
ces AK have entries

aK
ij ¼ ðb � ruj; ~uiÞK ¼ ðb � rujÞjKmeas3ðKÞð14þ CK

i Þ;

i = 1, . . . ,Mh, j = 1, . . . ,Nh, ai; aj 2 K. Therefore, we shall
require that the constants CK

i satisfy

CK
i P �1

4
8i 2 f1; . . . ;Nhg; ai 2 K;

XNh

i¼1
ai2K

CK
i ¼ 0: ð20Þ

Let K be any element of the triangulation Th and let the
vertices of K be a1, a2, a3 and a4. We divide the space R3

into 14 sets whose boundaries are formed by the four
planes containing the barycentre ac of K which are parallel
to the faces of K. We denote these sets as vertex zones VZi,
face zones FZi and edge zones EZij, i, j 2 I, i < j, where we
used the index set I = {1,2,3,4} for brevity. Precisely, the
sets are defined in the following way:

VZi ¼ fx 2 R3; ðx� acÞ � rui > 0; ðx� acÞ � ruk 6 0

8k 2 I n figg;
FZi ¼ fx 2 R3; ðx� acÞ � rui < 0; ðx� acÞ � ruk P 0

8k 2 I n fig;
9l 2 I n fig : ðx� acÞ � ruk > 0 8k 2 I n fi; lgg;

EZij ¼ fx 2 R3; ðx� acÞ � rui > 0; ðx� acÞ � ruj > 0;

ðx� acÞ � ruk < 0 8k 2 I n fi; jgg:

Again, we write $ui instead of $uijK for simplicity. Note
that[

i2I

VZi

 !
[

[
i2I

FZi

 !
[

[
i;j2I ;i<j

EZij

 !
¼ R3 n facg

and that all the 14 sets are mutually disjoint.
To get a better impression of the form of these sets,

we introduce the points

uij ¼
3ai þ aj

4
; vij ¼

ai þ
X

k2Infjg
ak

4
; i; j 2 I ; i 6¼ j:

Obviously, a point uij lies on the edge of K with end points
ai, aj and a point vij lies on the face of K opposite the vertex
aj. It is easy to verify that the closure of K \ VZi is a par-
allelepiped whose eight vertices are ac, ai, uik, vik, k 2 In{i},
the closure of K \ FZi is a tetrahedron whose four vertices
are ac, vki, k 2 In{i}, and the closure of K \ EZij is a poly-
hedron with seven vertices ac, uij, uji, vik, vjk, k 2 In{i, j}.
Examples of an edge zone, a face zone and a vertex zone
can be seen in Fig. 24. Note that, for any k 2 I, all the nine
points uik and vij with i, j 2 In{k}, i 5 j, are contained in the
plane containing ac and being parallel to the face of K

opposite ak.
Now let us discuss the definition of the constants

CK
1 ; . . . ;CK

4 . If b points into a vertex zone, say VZj, j 2 I,
then (20) holds and AK is of nonnegative type for

CK
j ¼ 3

4
; CK

k ¼ �1
4
8k 2 I n fjg:

If AK has four rows, this is the only possibility how to
choose these constants.

Now let us assume that b does not point into any of the
vertex zones. Then the constants CK

i cannot be generally
defined in such a way that (20) holds and the matrix AK

is of nonnegative type. Therefore, like in Section 2, we shall
try to find such constants CK

i , that the coefficient vector
U 2 R4 of uhjK with respect to the basis {uijK}i2I satisfies

AKU ¼ eAKU ; ð21Þ
where eAK is a matrix of nonnegative type. This is trivially
satisfied if b Æ $uhjK = 0 and hence we shall assume that
b Æ $uhjK 5 0 in the following. Similarly as in Section 2,
we introduce the sets

V k ¼ f~b 2 R3; ð~b� bÞ � ruhjK ¼ 0; ac þ ~b 2 VZkg; k 2 I :

If b points into the face zone FZj, j 2 I, there exists
k 2 In{j} such that Vk 5 ; and we may consider any con-
stants CK

i satisfying (20) and the following requirements:

V k 6¼ ; 8k 2 I n fjg ) CK
j ¼ �1

4
; ð22Þ

9k 2 I n fjg : V k ¼ ; and V l 6¼ ; 8l 2 I n fj; kg
) CK

j ¼ CK
k ¼ �1

4
; ð23Þ

9k 2 I n fjg : V k 6¼ ; and V l ¼ ; 8l 2 I n fj; kg
) CK

l ¼ �1
4
8l 2 I n fkg: ð24Þ

If b points into the edge zone EZjk, j,k 2 I, j < k, then
Vj [ Vk 5 ; and we consider any constants CK

i satisfying
(20) and the following requirements:

V j 6¼ ; and V k 6¼ ; ) CK
l ¼�1

4
8l 2 I n fj;kg; ð25Þ

V j 6¼ ; and V k ¼ ; ) CK
l ¼�1

4
8l 2 I n fjg; ð26Þ

V j ¼ ; and V k 6¼ ; ) CK
l ¼�1

4
8l 2 I n fkg: ð27Þ
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Let us assume that the constants CK
i are defined according

to (20) and (22)–(27) and let us introduce vectors ~b1; . . . ; ~b4

such that, for any i 2 I,

~bi ¼ b if CK
i ¼ �1

4
; ~bi 2 V i if CK

i > �1
4
:

We define a matrix eAK with entries

~aK
ij ¼ ð~bi � rujÞjKmeas3ðKÞð14þ CK

i Þ; i; j 2 I ; ai 2 X [ CN:

Then eAK is of nonnegative type and (21) holds.
There are many possibilities how to satisfy the require-

ments (20) and (22)–(27) and, since (21) always holds with

a matrix eAK of nonnegative type, the discrete solution uh

always satisfies the discrete maximum principle. However,
not every choice of the constants CK

i satisfying (20) and
(22)–(27) is appropriate and we may encounter similar
difficulties like those ones discussed in Sections 3–5. The
derivation of suitable formulas for the constants CK

i will
be a subject of our further research.

10. Conclusions

In this paper we introduced several improvements of the
Mizukami–Hughes method for the numerical solution of
two-dimensional steady convection–diffusion equations.
We have shown that the improved method satisfies the dis-
crete maximum principle and we demonstrated by means
of various numerical results that it gives very accurate dis-
crete solutions with no spurious oscillations. Moreover,
our extensive numerical tests (which will be published in
a separate paper) revealed that none of the discontinuity-
capturing methods mentioned in the introduction can be
regarded as superior to the improved Mizukami–Hughes
method. Therefore, the improved Mizukami–Hughes
method seems to be one of the best choices for solving
the problem (1) and (2) using conforming piecewise linear
triangular finite elements if convection strongly dominates
diffusion. We have also shown that the Mizukami–Hughes
method can be extended to convection–diffusion–reaction
equations and to the three-dimensional case but here
further research is necessary.
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