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1 Introduction

Nonconforming finite elements are attractive for applications from computational
fluid dynamics since they usually satisfy an inf–sup condition and lead to an efficient
parallel implementation. However, it was realized that they often lead to a rather
low accuracy in the convection dominated regime. Therefore, in this paper, we
discuss a recently proposed class (cf. [2, 3]) of new nonconforming finite elements,
the so called Pmod

1 element, and we demonstrate that these elements assure a good
accuracy in cases of dominant convection and are suitable for approximating the
velocity in incompressible flow problems.

2 Assumptions and notation

We assume that we are given a family {Th} of triangulations of a polygonal domain
Ω ⊂ R2 consisting of closed triangular elements K having the usual compatibility
properties and satisfying hK ≡ diam(K) ≤ h for any K ∈ Th. We assume that the
elements K are shape regular, i.e., there exists a constant σ independent of h such
that hK/%K ≤ σ for any K ∈ Th and h > 0, where %K is the maximum diameter of
circles inscribed into K.

We denote by Eh the set of the edges E of Th and by E i
h the subset of Eh consisting

of inner edges. Further, we denote by hE the length of the edge E and by xE,1, xE,2

the end points of E. For any inner edge E ∈ E i
h, we define the jump of a function

v across E by
[|v|]E = (v|K)|E − (v| eK)|E ,

where K, K̃ are the two elements adjacent to E (we fix one of the two possible

choices of K, K̃). If an edge E ∈ Eh lies on ∂Ω, then we set [|v|]E = v|E.

3 Definition and properties of the Pmod
1 element

In [2, 3], a general definition of the Pmod
1 element was established using a fixed non-

conforming bubble function b̂ ∈ H1(K̂) defined on the standard reference element

K̂. We denote by Ê one of the edges of K̂ and by x̂1, x̂2 the end points of Ê, and
we make the following assumptions:

b̂|∂ bK\ bE = 0 , ‖b̂‖0, bE 6= 0 ,

b̂| bE is odd with respect to the midpoint of Ê,

γ ≡ 1

|Ê|

∫
bE b̂ λ̂1 dσ̂ > 0 for λ̂1 ∈ P1(Ê) with λ̂1(x̂1) = 1, λ̂1(x̂2) = 0.



An example of the function b̂ possessing the above properties is

b̂ = λ̂2
1 λ̂2 − λ̂1 λ̂

2
2 , (1)

where λ̂1, λ̂2 are the barycentric coordinates on K̂ with respect to x̂1, x̂2, respec-
tively. For any K ∈ Th and any edge E of K, we introduce a nonconforming bubble
function

bK,E =

{
b̂ ◦ F−1

K in K,

0 in Ω \K,

where FK : K̂ → K is a unique regular affine mapping satisfying FK(K̂) = K,
FK(x̂1) = xE,1 and FK(x̂2) = xE,2. Now, on any element K, we define the Pmod

1

element by the space

Pmod
1 (K) = P1(K)⊕ span{bK,E|K}E∈Eh, E⊂K

and by the six nodal functionals

IE(v) =
1

hE

∫
E

v dσ , JE(v) =
1

γ hE

∫
E

v (λE,1 −
1

2
) dσ , E ∈ Eh, E ⊂ K ,

where λE,1 is the barycentric coordinate on E with respect to xE,1. It is easy to
see that the six nodal functionals are unisolvent with the space Pmod

1 (K). The
corresponding finite element space is the space

Vmod
h = {vh ∈ Vnc

h ⊕ Bh ;

∫
E

[|vh|]E q dσ = 0 ∀ q ∈ P1(E), E ∈ Eh} ,

where

Vnc
h = {vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E

[|vh|]E dσ = 0 ∀ E ∈ Eh}

is the piecewise linear nonconforming space and

Bh = span{bK,E}K∈Th, E∈Eh, E⊂K .

We use the notations Pmod
1 and Vmod

h since the new class of elements we just de-
scribed can be viewed as a modification of the nonconforming P1 element (which
leads to the space Vnc

h ). Note that the space Vmod
h contains continuous piecewise

linear functions and hence it has first order approximation properties with respect
to the discrete H1 norm. Further, it is very important (cf. the next section) that
the space Vmod

h satisfies the patch test of order 3, i.e., the property (3) from Sec-
tion 4 holds for Vh = Vmod

h with k = 2. Another important feature of the space
Vmod

h is that it contains a basis consisting of functions {χE}E∈Ei
h
, {ψE}E∈Ei

h
whose

supports are contained always in the two elements K, K̃ adjacent to the respective
edge E. Denoting by E, E1, E2 the edges of K and by E, E3, E4 the edges of K̃,
the functions χE, ψE are defined by

χE = bK,E + b eK,E ,

ψE = ζE + βE,E1 bK,E1 + βE,E2 bK,E2 + βE,E3 b eK,E3
+ βE,E4 b eK,E4

,



where ζE is the usual nonconforming piecewise linear basis function assigned to the
edge E and βE,E1 , . . . , βE,E4 are uniquely determined constants. Then χE ∈ H1

0 (Ω)
whereas ψE has jumps across the edges E1, . . . , E4.

Thus, we can conclude that the Pmod
1 element leads to an edge–oriented noncon-

forming first order finite element space satisfying the patch test of order 3. Note
that Vmod

h can be implemented using the same data structures as the space Vnc
h and

that if b̂ ⊂ C(K̂), then Vmod
h consists of piecewise continuous functions which are

continuous in the midpoints of inner edges and vanish in the midpoints of boundary
edges. This is a further feature common with the space Vnc

h . The increased number
of degrees of freedom (dim Vmod

h = 2 dim Vnc
h ) is worthwhile since the space Vmod

h

often leads to a substantial improvement of the quality of the discrete solution.

4 Numerical solution of convection dominated problems

To see the properties of the Pmod
1 element when applied to the numerical solution

of convection dominated problems, we consider the convection–diffusion equation

−ε∆u+ b · ∇u+ c u = f in Ω, u = 0 on ∂Ω, (2)

where ε > 0 is a (small) constant, b ∈ W 1,∞(Ω)2, c ∈ L∞(Ω) and f ∈ L2(Ω). As
usual, we assume that

c− 1

2
div b ≥ c0 ,

where c0 is a positive constant. This assumption guarantees that (2) admits a
unique weak solution for all positive values of the parameter ε.

To solve the equation (2) numerically, we introduce a nonconforming first order
finite element space Vh defined on the triangulation Th and look for a solution uh ∈
Vh satisfying an appropriate discrete analogue of the weak formulation including
a streamline diffusion term introduced to stabilize the discretization in convection
dominated regions (cf. [2, 3]). Let us assume that the space Vh satisfies the patch
test of order k + 1 for some k ≥ 0, i.e.,∫

E

[|vh|]E q dσ = 0 ∀ vh ∈ Vh, q ∈ Pk(E), E ∈ Eh , (3)

and that u ∈ Hm(Ω) with m = max{2, k + 1} and b ∈ W k+1,∞(Ω)2. Then one can
prove (cf. [2, 3]) that the following error estimate with respect to the streamline
diffusion norm holds in case of dominant convection:

|||u− uh||| ≤ C h3/2 |u|2,Ω + C hk min

{
h√
ε
, 1

}
‖u‖m,Ω , (4)

where C is a constant independent of h, ε and u. The second term on the right–hand
side of (4) stems from the nonconformity only and it is not present if Vh ⊂ H1

0 (Ω)
in which case (4) reduces to the well–known error estimate assuring the convergence
order 3/2 which is known to be optimal for first order spaces on general meshes.
However, for Vh = Vnc

h , the assumption (3) only holds for k = 0 and we only get
the convergence order 1. Moreover, we observe that an ε–uniform estimate is only



possible with the convergence order 0. Numerical experiments really confirm this
pessimistic prediction, which suggests that it is generally a property of the method
and not a consequence of an unaccurate estimation. On the other hand, using
Vh = Vmod

h , the property (3) holds for k = 2 and hence we obtain the optimal ε–
uniform convergence order 3/2. The superiority of Vmod

h over Vnc
h was also confirmed

by many numerical tests.

5 Numerical solution of incompressible flow problems

Now let us discuss the application of the Pmod
1 element to the numerical solution

of incompressible flow problems. We already know from the previous section that
the Pmod

1 element is suitable for resolving effects of dominant convection and hence
let us focus our attention on the incompressibility. Thus, we consider as a model
problem the Stokes equations

−ν∆ u +∇p = f , div u = 0 in Ω , u = 0 on ∂Ω , (5)

where u is the velocity and p is the pressure in an incompressible viscous fluid
contained in Ω. The parameter ν > 0 is the kinematic viscosity and f is an outer
volume force. As a discretization we consider just the discrete analogue of the
weak formulation of (5), without introducing any stabilization. It is well known
that the space [Vmod

h ]2 can be used for approximating u only if there is a space
Qh for approximating p such that the two spaces satisfy an inf–sup condition. It
was shown in [1] that the inf–sup condition holds for Qh consisting of discontinuous

piecewise linear functions provided that
∫ bK b̂ dx̂ = 0 (which is satisfied for b̂ defined

by (1)) and that any element K ∈ Th has at least one vertex in Ω. Thus, also for
the Stokes equations, one can get much better results using the Pmod

1 element than
using the nonconforming P1 element which only satisfies the inf–sup condition for
Qh consisting of piecewise constant functions. Therefore, in view of this section and
Section 4, it is not surprising that also in case of the incompressible Navier–Stokes
equations, the Pmod

1 element is superior over the nonconforming P1 element.
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