ON SOME NONCONFORMING FINITE ELEMENTS FOR INCOMPRESSIBLE FLOW PROBLEMS

Petr Knobloch Charles University, Faculty of Mathematics and Physics, Prague

1 Introduction

Nonconforming finite elements are attractive for applications from computational fluid dynamics since they usually satisfy an inf-sup condition and lead to an efficient parallel implementation. However, it was realized that they often lead to a rather low accuracy in the convection dominated regime. Therefore, in this paper, we discuss a recently proposed class (cf. [2, 3]) of new nonconforming finite elements, the so called P_1^{mod} element, and we demonstrate that these elements assure a good accuracy in cases of dominant convection and are suitable for approximating the velocity in incompressible flow problems.

2 Assumptions and notation

We assume that we are given a family $\{\mathcal{T}_h\}$ of triangulations of a polygonal domain $\Omega \subset \mathbb{R}^2$ consisting of closed triangular elements K having the usual compatibility properties and satisfying $h_K \equiv \operatorname{diam}(K) \leq h$ for any $K \in \mathcal{T}_h$. We assume that the elements K are shape regular, i.e., there exists a constant σ independent of h such that $h_K/\varrho_K \leq \sigma$ for any $K \in \mathcal{T}_h$ and h > 0, where ϱ_K is the maximum diameter of circles inscribed into K.

We denote by \mathcal{E}_h the set of the edges E of \mathcal{T}_h and by \mathcal{E}_h^i the subset of \mathcal{E}_h consisting of inner edges. Further, we denote by h_E the length of the edge E and by $x_{E,1}, x_{E,2}$ the end points of E. For any inner edge $E \in \mathcal{E}_h^i$, we define the jump of a function v across E by

$$[|v|]_E = (v|_K)|_E - (v|_{\widetilde{K}})|_E,$$

where K, \widetilde{K} are the two elements adjacent to E (we fix one of the two possible choices of K, \widetilde{K}). If an edge $E \in \mathcal{E}_h$ lies on $\partial\Omega$, then we set $[|v|]_E = v|_E$.

3 Definition and properties of the P_1^{mod} element

In [2, 3], a general definition of the P_1^{mod} element was established using a fixed nonconforming bubble function $\hat{b} \in H^1(\hat{K})$ defined on the standard reference element \hat{K} . We denote by \hat{E} one of the edges of \hat{K} and by \hat{x}_1 , \hat{x}_2 the end points of \hat{E} , and we make the following assumptions:

$$\widehat{b}|_{\partial \widehat{K} \setminus \widehat{E}} = 0, \qquad \|\widehat{b}\|_{0,\widehat{E}} \neq 0,$$

 $\widehat{b}|_{\widehat{E}}$ is odd with respect to the midpoint of \widehat{E} ,

$$\gamma \equiv \frac{1}{|\widehat{E}|} \int_{\widehat{E}} \widehat{b} \,\widehat{\lambda}_1 \,\mathrm{d}\widehat{\sigma} > 0 \quad \text{for } \widehat{\lambda}_1 \in P_1(\widehat{E}) \text{ with } \widehat{\lambda}_1(\widehat{x}_1) = 1, \,\widehat{\lambda}_1(\widehat{x}_2) = 0.$$

An example of the function \hat{b} possessing the above properties is

$$\widehat{b} = \widehat{\lambda}_1^2 \,\widehat{\lambda}_2 - \widehat{\lambda}_1 \,\widehat{\lambda}_2^2 \,, \tag{1}$$

where $\widehat{\lambda}_1$, $\widehat{\lambda}_2$ are the barycentric coordinates on \widehat{K} with respect to \widehat{x}_1 , \widehat{x}_2 , respectively. For any $K \in \mathcal{T}_h$ and any edge E of K, we introduce a nonconforming bubble function

$$b_{K,E} = \begin{cases} \widehat{b} \circ F_K^{-1} & \text{ in } K, \\ 0 & \text{ in } \Omega \setminus K, \end{cases}$$

where $F_K : \widehat{K} \to K$ is a unique regular affine mapping satisfying $F_K(\widehat{K}) = K$, $F_K(\widehat{x}_1) = x_{E,1}$ and $F_K(\widehat{x}_2) = x_{E,2}$. Now, on any element K, we define the P_1^{mod} element by the space

$$P_1^{mod}(K) = P_1(K) \oplus \operatorname{span}\{b_{K,E}|_K\}_{E \in \mathcal{E}_h, E \subset K}$$

and by the six nodal functionals

$$I_E(v) = \frac{1}{h_E} \int_E v \,\mathrm{d}\sigma, \quad J_E(v) = \frac{1}{\gamma h_E} \int_E v \left(\lambda_{E,1} - \frac{1}{2}\right) \,\mathrm{d}\sigma, \qquad E \in \mathcal{E}_h, \ E \subset K,$$

where $\lambda_{E,1}$ is the barycentric coordinate on E with respect to $x_{E,1}$. It is easy to see that the six nodal functionals are unisolvent with the space $P_1^{mod}(K)$. The corresponding finite element space is the space

$$\mathbf{V}_h^{mod} = \left\{ v_h \in \mathbf{V}_h^{nc} \oplus \mathbf{B}_h ; \int_E \left[|v_h| \right]_E q \, \mathrm{d}\sigma = 0 \quad \forall \ q \in P_1(E), \ E \in \mathcal{E}_h \right\},\$$

where

$$\mathbf{V}_h^{nc} = \{ v_h \in L^2(\Omega) \, ; \, v_h |_K \in P_1(K) \ \forall \ K \in \mathcal{T}_h \, , \quad \int_E [|v_h|]_E \, \mathrm{d}\sigma = 0 \ \forall \ E \in \mathcal{E}_h \}$$

is the piecewise linear nonconforming space and

$$\mathbf{B}_h = \operatorname{span}\{b_{K,E}\}_{K \in \mathcal{T}_h, E \in \mathcal{E}_h, E \subset K}.$$

We use the notations P_1^{mod} and V_h^{mod} since the new class of elements we just described can be viewed as a modification of the nonconforming P_1 element (which leads to the space V_h^{nc}). Note that the space V_h^{mod} contains continuous piecewise linear functions and hence it has first order approximation properties with respect to the discrete H^1 norm. Further, it is very important (cf. the next section) that the space V_h^{mod} satisfies the patch test of order 3, i.e., the property (3) from Section 4 holds for $V_h = V_h^{mod}$ with k = 2. Another important feature of the space V_h^{mod} is that it contains a basis consisting of functions $\{\chi_E\}_{E \in \mathcal{E}_h^i}, \{\psi_E\}_{E \in \mathcal{E}_h^i}$ whose supports are contained always in the two elements K, \tilde{K} adjacent to the respective edge E. Denoting by E, E_1 , E_2 the edges of K and by E, E_3 , E_4 the edges of \tilde{K} , the functions χ_E , ψ_E are defined by

$$\begin{aligned} \chi_E &= b_{K,E} + b_{\widetilde{K},E} \,, \\ \psi_E &= \zeta_E + \beta_{E,E_1} \, b_{K,E_1} + \beta_{E,E_2} \, b_{K,E_2} + \beta_{E,E_3} \, b_{\widetilde{K},E_3} + \beta_{E,E_4} \, b_{\widetilde{K},E_4} \,, \end{aligned}$$

where ζ_E is the usual nonconforming piecewise linear basis function assigned to the edge E and $\beta_{E,E_1}, \ldots, \beta_{E,E_4}$ are uniquely determined constants. Then $\chi_E \in H_0^1(\Omega)$ whereas ψ_E has jumps across the edges E_1, \ldots, E_4 .

Thus, we can conclude that the P_1^{mod} element leads to an edge-oriented nonconforming first order finite element space satisfying the patch test of order 3. Note that V_h^{mod} can be implemented using the same data structures as the space V_h^{nc} and that if $\hat{b} \subset C(\hat{K})$, then V_h^{mod} consists of piecewise continuous functions which are continuous in the midpoints of inner edges and vanish in the midpoints of boundary edges. This is a further feature common with the space V_h^{nc} . The increased number of degrees of freedom (dim $V_h^{mod} = 2 \dim V_h^{nc}$) is worthwhile since the space V_h^{mod} often leads to a substantial improvement of the quality of the discrete solution.

4 Numerical solution of convection dominated problems

To see the properties of the P_1^{mod} element when applied to the numerical solution of convection dominated problems, we consider the convection-diffusion equation

$$-\varepsilon \Delta u + \boldsymbol{b} \cdot \nabla u + c \, \boldsymbol{u} = f \quad \text{in } \Omega, \qquad \boldsymbol{u} = 0 \quad \text{on } \partial \Omega, \tag{2}$$

where $\varepsilon > 0$ is a (small) constant, $\boldsymbol{b} \in W^{1,\infty}(\Omega)^2$, $c \in L^{\infty}(\Omega)$ and $f \in L^2(\Omega)$. As usual, we assume that

$$c - \frac{1}{2} \operatorname{div} \boldsymbol{b} \ge c_0 \,,$$

where c_0 is a positive constant. This assumption guarantees that (2) admits a unique weak solution for all positive values of the parameter ε .

To solve the equation (2) numerically, we introduce a nonconforming first order finite element space V_h defined on the triangulation \mathcal{T}_h and look for a solution $u_h \in$ V_h satisfying an appropriate discrete analogue of the weak formulation including a streamline diffusion term introduced to stabilize the discretization in convection dominated regions (cf. [2, 3]). Let us assume that the space V_h satisfies the patch test of order k + 1 for some $k \geq 0$, i.e.,

$$\int_{E} \left[|v_{h}| \right]_{E} q \, \mathrm{d}\sigma = 0 \qquad \forall v_{h} \in \mathcal{V}_{h}, q \in P_{k}(E), E \in \mathcal{E}_{h}, \qquad (3)$$

and that $u \in H^m(\Omega)$ with $m = \max\{2, k+1\}$ and $\mathbf{b} \in W^{k+1,\infty}(\Omega)^2$. Then one can prove (cf. [2, 3]) that the following error estimate with respect to the streamline diffusion norm holds in case of dominant convection:

$$|||u - u_h||| \le C h^{3/2} |u|_{2,\Omega} + C h^k \min\left\{\frac{h}{\sqrt{\varepsilon}}, 1\right\} ||u||_{m,\Omega}, \qquad (4)$$

where C is a constant independent of h, ε and u. The second term on the right-hand side of (4) stems from the nonconformity only and it is not present if $V_h \subset H_0^1(\Omega)$ in which case (4) reduces to the well-known error estimate assuring the convergence order 3/2 which is known to be optimal for first order spaces on general meshes. However, for $V_h = V_h^{nc}$, the assumption (3) only holds for k = 0 and we only get the convergence order 1. Moreover, we observe that an ε -uniform estimate is only possible with the convergence order 0. Numerical experiments really confirm this pessimistic prediction, which suggests that it is generally a property of the method and not a consequence of an unaccurate estimation. On the other hand, using $V_h = V_h^{mod}$, the property (3) holds for k = 2 and hence we obtain the optimal ε -uniform convergence order 3/2. The superiority of V_h^{mod} over V_h^{nc} was also confirmed by many numerical tests.

5 Numerical solution of incompressible flow problems

Now let us discuss the application of the P_1^{mod} element to the numerical solution of incompressible flow problems. We already know from the previous section that the P_1^{mod} element is suitable for resolving effects of dominant convection and hence let us focus our attention on the incompressibility. Thus, we consider as a model problem the Stokes equations

$$-\nu \Delta \boldsymbol{u} + \nabla p = \boldsymbol{f}, \quad \operatorname{div} \boldsymbol{u} = 0 \quad \operatorname{in} \ \Omega, \qquad \boldsymbol{u} = \boldsymbol{0} \quad \operatorname{on} \ \partial \Omega, \tag{5}$$

where \boldsymbol{u} is the velocity and p is the pressure in an incompressible viscous fluid contained in Ω . The parameter $\nu > 0$ is the kinematic viscosity and \boldsymbol{f} is an outer volume force. As a discretization we consider just the discrete analogue of the weak formulation of (5), without introducing any stabilization. It is well known that the space $[V_h^{mod}]^2$ can be used for approximating \boldsymbol{u} only if there is a space Q_h for approximating p such that the two spaces satisfy an inf–sup condition. It was shown in [1] that the inf–sup condition holds for Q_h consisting of discontinuous piecewise linear functions provided that $\int_{\widehat{K}} \widehat{b} d\widehat{x} = 0$ (which is satisfied for \widehat{b} defined by (1)) and that any element $K \in \mathcal{T}_h$ has at least one vertex in Ω . Thus, also for the Stokes equations, one can get much better results using the P_1^{mod} element than using the nonconforming P_1 element which only satisfies the inf–sup condition for Q_h consisting of piecewise constant functions. Therefore, in view of this section and Section 4, it is not surprising that also in case of the incompressible Navier–Stokes equations, the P_1^{mod} element is superior over the nonconforming P_1 element.

6 Acknowledgement

This research has been supported by the grant No. 275/2001/B–MAT/MFF of the Grant Agency of the Charles University and by the grant MSM 113200007.

References

- [1] Knobloch, P.: On the inf–sup condition for the P_1^{mod} element, Preprint No. MATH-KNM-2001/4, Faculty of Mathematics and Physics, Charles University, Prague, 2001
- [2] Knobloch, P., Tobiska, L.: The P_1^{mod} element: a new nonconforming finite element for convection-diffusion problems, Preprint Nr. 28, Fakultät für Mathematik, Ottovon-Guericke-Universität, Magdeburg, 1999
- [3] Knobloch, P., Tobiska, L.: On bubble–based modifications of the nonconforming P₁ element for solving convection–diffusion equations, CD–Rom Proceedings of ECCO-MAS 2000 (E. Oñate, G. Bugeda and B. Suárez eds.), FIB, CIMNE, Barcelona, 2000, 1–20