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Charles University, Malostranské nám. 25, 11800 Praha 1, Czech Republic

e-mail: knobloch@karlin.mff.cuni.cz

†Institut für Analysis und Numerik, Otto–von–Guericke–Universität Magdeburg
Postfach 4120, 39016 Magdeburg, Germany

e-mail: Lutz.Tobiska@mathematik.uni-magdeburg.de

Key words: Convection–Diffusion Equation, Streamline Diffusion Method, Finite Ele-
ment Method, Nonconforming Finite Elements, Error Estimates.

Abstract. We consider nonconforming streamline diffusion finite element discretizations
for solving convection–diffusion problems. Using these discretizations with the noncon-
forming P1 element, the properties of the discrete solutions are much worse than in the
conforming case. We show that an improvement can be attained by modifying the non-
conforming P1 element using suitable general nonconforming bubble functions in such a
way that the resulting space satisfies the patch test of order 2. In this way, we obtain a
class of new nonconforming first order finite element spaces. We also derive a subclass
of these general spaces for which the patch test of order 3 holds and hence the optimal
convergence order 3/2 can be established. We give a rigorous convergence analysis and
present various numerical results which demonstrate the robustness of the new method.
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1 INTRODUCTION

We consider the convection–diffusion equation

−ε∆ u+ b · ∇u+ c u = f in Ω, u = ub on ∂Ω, (1)

where Ω ⊂ IR2 is a bounded domain with a polygonal boundary ∂Ω, ε > 0 is constant,
b ∈W 2,∞(Ω)2, c ∈ L∞(Ω), f ∈ L2(Ω) and ub ∈ H3/2(∂Ω). We assume that

c− 1

2
div b ≥ c0 ,

where c0 is a positive constant. This assumption guarantees that (1) admits a unique
solution for all positive values of the parameter ε.

We are mainly interested in cases when the convective part b · ∇u dominates the
diffusive part ε∆ u, i.e., when ε� 1. The solutions of convection dominated convection–
diffusion equations typically contain inner and boundary layers which are difficult to
approximate numerically unless the computational mesh is sufficiently fine. Standard
Galerkin finite element methods applied on meshes which are not fine enough produce
unphysical oscillations and therefore, various stabilized methods have been developed.
In this paper we concentrate on the streamline diffusion method1,2 which is known to
combine good stability properties with a high accuracy outside the layers. The properties
of the streamline diffusion method were intensively studied during the past decade and
nowadays its convergence properties are well understood in the case of conforming finite
element approximations2,3,4,5,6.

However, the properties of the streamline diffusion method are much less clear if non-
conforming finite elements are applied. Nonconforming finite element methods are very
attractive for approximating incompressible materials since they usually fulfil a Babuška–
Brezzi condition and discretely divergence–free bases can often easily be constructed.
Moreover, implementations on parallel MIMD–machines are more effective for noncon-
forming finite element methods than for conforming elements7,8,9. However, since the
finite element functions are discontinuous across the edges of the triangulation, theoret-
ical investigations of nonconforming finite element methods involve various additional
difficulties in comparison with the conforming case.

Particularly, in the case of the streamline diffusion method, the nonconformity causes
that the coercivity of the respective bilinear form depends on the type of discretization
used for the convective term. Moreover, error analysis requires ε–uniform error estimates
of consistency errors and additional terms involving jumps of finite element functions
across element edges. Therefore, special techniques are necessary to recover the optimal
convergence order 3/2 in the streamline diffusion norm when using first order approxima-

tion finite element spaces. In10,11 the mentioned difficulties have been overcome by adding
some special jump terms to the standard streamline diffusion finite element method. How-
ever, a drawback of the jump terms is that they are difficult to implement. An alternate
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way to get an ε–uniform consistency error estimate was found in12 where superconvergence
properties on uniform meshes were used.

In this paper, we consider general triangular meshes and we look for nonconforming
first order finite element spaces for which ε–uniform error estimates in the streamline
diffusion norm with a positive convergence order can be established without modifying
the discretization. We shall start with the P nc

1 element consisting of piecewise linear func-
tions which are continuous in the midpoints of inner edges of the triangulation. Using
this element in a streamline diffusion finite element method, the properties of the discrete
solution are much worse than in the conforming case. We shall show that an improve-
ment can be attained by modifying the P nc

1 element using suitable nonconforming bubble
functions in such a way that the resulting space satisfies the patch test of order 2. This
property makes it possible to establish better estimates of the consistency errors. We only
require that the nonconforming bubble functions possess some rather general properties
so that we obtain a class of new finite element spaces. Each of these finite element spaces
can be represented by the direct sum of a subspace of H1

0 (Ω) and a space consisting of

modified P nc
1 functions. Particularly, we derive the nonconforming Pmod

1 element of13,
for which the patch test of order 3 holds and the optimal convergence order 3/2 can be
proved.

The paper is organized in the following way. First, in Section 2, we summarize the
necessary notation. Then, in Section 3, we establish a weak formulation of (1) and describe
the nonconforming streamline diffusion finite element method considered in this paper. In
Section 4, we present the error analysis. Section 5 is devoted to the construction of general
nonconforming first order finite element spaces satisfying the patch test of order 2. In
Section 6, we consider a subclass of the general finite element spaces satisfying the patch
test of order 3 which we denote as the Pmod

1 element. We also give an example of piecewise
cubic basis functions which are used in all our numerical experiments. Finally, in Section 7,
we present numerical results which demonstrate the good behaviour of discretizations
employing the Pmod

1 element. The numerical results support the optimal convergence order
3/2 and indicate that discretizations using the new finite element are very robust. The
results are qualitatively much better than for the P nc

1 element, and inner and boundary
layers are detected very accurately. Moreover, the iterative solver used to compute the
discrete solutions converges much faster than for the P nc

1 element.

2 NOTATION

We assume that we are given a family {Th} of triangulations of the domain Ω consisting

of closed triangular elements K having the usual compatibility properties (see e.g.14) and
satisfying hK ≡ diam(K) ≤ h for anyK ∈ Th. We assume that the family of triangulations
is regular, i.e., there exists a constant C independent of h such that

hK

�K

≤ C ∀ K ∈ Th, h > 0 ,
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where �K is the maximum diameter of circles inscribed into K.
We denote by Eh the set of the edges E of Th. The set of inner edges will be denoted

by E i
h and the set of boundary edges by E b

h. Further, we denote by hE the length of the
edge E, by CE the midpoint of E, by xE,1, xE,2 the end points of E and by λE,1, λE,2 the
barycentric coordinates on E with respect to xE,1, xE,2, respectively. The union of the
elements adjacent to an edge E will be denoted by SE. For any edge E, we choose a fixed
unit normal vector nE to E. If E ⊂ ∂Ω, then nE coincides with the outer normal vector
to ∂Ω. Consider any E ∈ E i

h and let K, K̃ be the two elements possessing the edge E
denoted such that nE points into K̃. If v is a function belonging to the space

H2,h(Ω) = {v ∈ L2(Ω) ; v|K ∈ H2(K) ∀ K ∈ Th} ,

then we define the jump of v across E by

[|v|]E = (v|K)|E − (v|
K̃
)|E . (2)

If E ∈ E b
h, then we set

[|v|]E = v|E ,
which is the jump defined by (2) with v extended by zero outside Ω.

In the following sections, we shall need the spaces

Ṽconf
h = {vh ∈ C(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th} , Vconf

h = Ṽconf
h ∩H1

0 (Ω) ,

Vnc
h = {vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E
[|vh|]E dσ = 0 ∀ E ∈ Eh} ,

and we shall denote by ih : H2(Ω) → Ṽconf
h the Lagrange interpolation operator. It is well

known that

|v − ihv|m,K ≤ C h2−m
K |v|2,K ∀ v ∈ H2(K), K ∈ Th, m = 0, 1 . (3)

We denote by {ζE}E∈Ei
h
the usual basis in Vnc

h , i.e., each ζE is piecewise linear, equals 1

on E and vanishes in the midpoints of all edges different from E.
Throughout the paper we use standard notation Lp(Ω), W k,p(Ω), Hk(Ω) =

W k,2(Ω), Ck(Ω), etc. for the usual function spaces, see e.g.14. The norm and semi-
norm in the Sobolev space W k,p(Ω) will be denoted by ‖ · ‖k,p,Ω and | · |k,p,Ω, respectively,
and we set ‖ · ‖k,Ω = ‖ · ‖k,2,Ω and | · |k,Ω = | · |k,2,Ω. Further, we define a discrete analogue
of | · |1,Ω by

|v|1,h =

( ∑
K∈Th

|v|21,K

)1/2

.

The scalar product in the spaces L2(G) and L2(G)2 will be denoted by (·, ·)G and we set
(·, ·) = (·, ·)Ω. Finally, we use the notation C, C̃ to denote generic constants independent
of h and ε.
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3 WEAK FORMULATION AND DISCRETE PROBLEM

Since ub ∈ H3/2(∂Ω), there exists an extension ũb ∈ H2(Ω) of ub. Applying standard
techniques, we derive the following weak formulation of the equation (1):

Find u ∈ H1(Ω) such that u− ũb ∈ H1
0 (Ω) and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω) ,

where
a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

This weak formulation has a unique solution.
We shall approximate the space H1

0 (Ω) by a nonconforming first order finite element
space Vh and at this stage we only assume that

Vconf
h ⊂ Vh ⊂ H2,h(Ω) . (4)

The inclusion Vconf
h ⊂ Vh assures first order approximation properties of Vh with respect

to | · |1,h when h → 0. The inclusion Vh ⊂ H2,h(Ω) makes it possible to introduce a
streamline diffusion stabilization.

To establish a finite element discretization of (1), we first introduce the bilinear forms

ad
h(u, v) = ε

∑
K∈Th

(∇u,∇v)K ,

as
h(u, v) =

1

2

∑
K∈Th

[(b · ∇u, v)K − (b · ∇v, u)K − (div b, u v)K] ,

which respectively correspond to the diffusive and convective terms from the equation (1).
The bilinear form as

h is skew–symmetric if div b = 0. That gives rise to the notation askew
h

below. Further, we define a streamline diffusion term by

asd
h (u, v) =

∑
K∈Th

(−ε∆ u+ b · ∇u+ c u, δK b · ∇v)K ,

where δK ≥ 0 is a control parameter. Now, denoting

askew
h (u, v) = ad

h(u, v) + a
s
h(u, v) + (c u, v) + asd

h (u, v) ,

lh(v) = (f, v) +
∑

K∈Th

(f, δK b · ∇v)K ,

the streamline diffusion finite element method investigated in this paper reads:

Find uh ∈ Vh ⊕ Ṽconf
h such that uh − ihũb ∈ Vh and

askew
h (uh, vh) = lh(vh) ∀ vh ∈ Vh . (5)
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Using standard arguments (cf.14, Chapter III), we deduce that there exist constants
µ1, µ2 independent of h such that, for any vh ∈ Vh and K ∈ Th, we have

‖∆ vh‖0,K ≤ µ1 h
−1
K |vh|1,K , |vh|1,K ≤ µ2 h

−1
K ‖vh‖0,K . (6)

We assume that the control parameter δK satisfies

0 ≤ δK ≤ min

{
c0

2 ‖c‖2
0,∞,K

,
h2

K

2 ε µ2
1

}
. (7)

Since the streamline diffusion stabilization is of importance in convection dominated re-
gions only, we admit δK = 0 in (7). A possible choice of δK is

δK =

 κK hK if hK > ε,

0 if hK ≤ ε,
(8)

where κK satisfies

0 < κ0 ≤ κK ≤ min

{
c0

2 ‖c‖2
0,∞,K hK

,
hK

2 ε µ2
1

}
. (9)

The following result implies that the discrete problem (5) has a unique solution.

Theorem 1 Under the assumption (7), the bilinear form askew
h is coercive, i.e.,

askew
h (vh, vh) ≥

1

2
|||vh|||2 ∀ vh ∈ Vh , (10)

where the streamline diffusion norm ||| · ||| is defined by

|||v||| =
( ∑

K∈Th

{ε |v|21,K + c0 ‖v‖2
0,K + δK ‖b · ∇v‖2

0,K}
)1/2

.

Proof. See13. ♣

Remark 1 We shall also discuss the convergence properties of the discrete problem (5)
when the convective term from (1) is discretized using the convective bilinear form

ac
h(u, v) =

∑
K∈Th

(b · ∇u, v)K .

Thus, the bilinear form askew
h in (5) is replaced by

aconv
h (u, v) = ad

h(u, v) + a
c
h(u, v) + (c u, v) + asd

h (u, v) . (11)

Unfortunately, in general, a result similar to (10) does not hold for this bilinear form.
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4 ERROR ANALYSIS

In this section we assume that the weak solution of (1) satisfies u ∈ H2(Ω). If we
use a conforming finite element space Vh ⊂ H1

0 (Ω) in the discrete problem (5), then the
weak solution u also solves the discrete problem, which leads to the well–known Galerkin
orthogonality. If, however, we use a nonconforming space Vh, then the discrete functions
have jumps across edges and (5) is not longer valid for the weak solution. We only obtain

askew
h (u, vh) = lh(vh) + r

d
h(u, vh) + r

s
h(u, vh) ∀ vh ∈ Vh ,

where the consistency errors rd
h, r

s
h, are given by

rd
h(u, vh) = ε

∑
E∈Eh

∫
E

∂u

∂nE

[|vh|]E dσ ,

rs
h(u, vh) = −1

2

∑
E∈Eh

∫
E
(b · nE) u [|vh|]E dσ .

The behaviour of the consistency errors is crucial for the convergence properties of the
discrete problem and it is desirable to design such spaces Vh that the consistency errors
are ‘small’.

First, let us formulate a convergence result valid for a general first order finite element
space Vh satisfying the patch test of order 1.

Theorem 2 Let the weak solution of (1) belong to H2(Ω) and let the assumptions (4)
and (7) be fulfilled. In addition, let the space Vh satisfy∫

E
[|vh|]E dσ = 0 ∀ vh ∈ Vh, E ∈ Eh . (12)

Then the discrete solution uh satisfies

|||u− uh||| ≤ C h
( ∑

K∈Th

γK |u|22,K

)1/2

+ C

( ∑
E∈Eh

γE ‖u‖2
2,SE

)1/2

, (13)

where

γK = ε+ h2
K + δK + (max{ε, δK})−1 h2

K , γE = min

{
h2

E

ε
, 1

}
. (14)

Proof. See13. ♣

Estimate (13) is optimal with respect to the discretization parameter h since, for any
fixed ε, it assures the convergence order 1. However, an ε–uniform estimate can only
be obtained if we replace γE by 1, which leads to the convergence order 0. Numerical
experiments for Vh = Vnc

h really confirm this pessimistic prediction (see Section 7), which
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suggests that it is generally a property of the method and not a consequence of an un-
accurate estimation. There are two basic ways how the properties of the method can be
improved: either we can modify the discretization (cf. e.g.10,11) or we can try to improve
the properties of the space Vh. Here we consider the latter possibility.

The second term on the right–hand side of (13), which causes the bad behaviour of this
estimate, comes from the estimation of the consistency error rs

h(u, vh) and of the term

∑
E∈Eh

∫
E
(b · nE)w [|vh|]E dσ , w = ihu− u , (15)

which arises in consequence of an integration by parts applied to the bilinear form as
h.

Let us explain how the consistency error rs
h(u, vh) and the term (15) are estimated. We

shall need projection operators Mk
E : L2(E) → Pk(E), k ≥ 0, defined by∫

E
qMk

E v dσ =
∫

E
q v dσ ∀ q ∈ Pk(E), v ∈ L2(E), E ∈ Eh .

According to15, Lemma 3, there exists a constant C independent of E and h such that∣∣∣∣∫
E
ϕ (v −Mk

E v) dσ

∣∣∣∣ ≤ C hk+1
E |ϕ|1,K |v|k+1,K (16)

for all K ∈ Th, E ⊂ K, ϕ ∈ H1(K) and v ∈ Hk+1(K).
First, let us estimate the term (15). The property (12) allows us to subtract any

constant function from (b · nE)w. Particularly, we can subtract M0
E((b · nE)w), which

in view of (16) and (3) gives∫
E
(b · nE)w [|vh|]E dσ =

∫
E
[(b · nE)w −M0

E((b · nE)w)] [|vh|]E dσ

≤ C hE ‖w‖1,SE
|vh|1,SE

≤ C̃ h2
E |u|2,SE

|vh|1,SE
. (17)

Using (6), we derive∫
E
(b · nE)w [|vh|]E dσ ≤ C hE |u|2,SE

γ
1/2
E (ε |vh|21,SE

+ c0 ‖vh‖2
0,SE

)1/2 ,

which implies that

∑
E∈Eh

∫
E
(b · nE)w [|vh|]E dσ ≤ C h

( ∑
E∈Eh

γE |u|22,SE

)1/2

|||vh||| .

The consistency error rs
h(u, vh) can be estimated in a similar way. We have∫

E
(b · nE) u [|vh|]E dσ =

∫
E
[(b · nE) u−M0

E((b · nE) u)] [|vh|]E dσ

≤ C hE ‖u‖1,SE
|vh|1,SE

(18)
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and hence we only get

rs
h(u, vh) ≤ C

( ∑
E∈Eh

γE ‖u‖2
1,SE

)1/2

|||vh||| .

As we see, it is the consistency error rs
h which deteriorates the convergence order,

uniform in ε, in the estimate (13). To obtain the same estimate of rs
h(u, vh) as for the

term (15), it would be sufficient if we could replace M0
E by M1

E in (18). Thus, it suffices
to require that Vh satisfies the patch test of order 2, i.e.,∫

E
[|vh|]E q dσ = 0 ∀ vh ∈ Vh, q ∈ P1(E), E ∈ Eh . (19)

Then, instead of (18), we get∫
E
(b · nE) u [|vh|]E dσ =

∫
E
[(b · nE) u−M1

E((b · nE) u)] [|vh|]E dσ

≤ C h2
E ‖u‖2,SE

|vh|1,SE
(20)

and hence

rs
h(u, vh) ≤ C h

( ∑
E∈Eh

γE ‖u‖2
2,SE

)1/2

|||vh||| .

Thus, we obtain the following result.

Theorem 3 Let the weak solution of (1) belong to H2(Ω) and let the assumptions (4)
and (7) be fulfilled. In addition, let the space Vh satisfy (19). Then the discrete solution
uh satisfies

|||u− uh||| ≤ C h
( ∑

K∈Th

γK |u|22,K

)1/2

+ C h

( ∑
E∈Eh

γE ‖u‖2
2,SE

)1/2

, (21)

where γK and γE are given by (14).

Remark 2 If we consider the discrete problem (5) with askew
h replaced by aconv

h defined in
(11), there is no consistency error induced by the convective term. Therefore, assuming
coercivity of aconv

h , the estimate (21) also holds if only the assumptions of Theorem 2 are
satisfied.

Theorem 3 shows that, for a first order finite element space Vh satisfying (19) and for
δK defined by (8) with bounded κK satisfying (9), we have the estimate

|||u− uh||| ≤ C h ‖u‖2,Ω ,

where the constant C is independent of ε (for ε bounded by some ε0 > 0). This is
a substantial improvement in comparison with Theorem 2. However, the question is
whether a nonconforming space Vh satisfying (19) and having a structure convenient
for practical computations can be constructed. This question will be discussed in the
following section.
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5 CONSTRUCTION OF A SPACE Vh SATISFYING THE PATCH TEST
OF ORDER 2

Our aim is to construct a nonconforming first order finite element space Vh satisfying
the patch test of order 2 expressed by (19). The simplest nonconforming finite element
space, the space Vnc

h , does not possess this property and our idea is to construct the
desired space Vh by modifying functions from Vnc

h . Precisely, for any function vh ∈ Vnc
h ,

we want to find some ‘simple’ function bh such that vh + bh satisfies the patch test of
order 2. Since the patch test of order 1 holds for the space Vnc

h , it also has to be valid for
the function bh. Thus, given any vh ∈ Vnc

h , we look for a function bh satisfying∫
E
[|bh|]E dσ = 0 ,

∫
E
[|bh|]E λE,1 dσ = −

∫
E
[|vh|]E λE,1 dσ ∀ E ∈ Eh . (22)

To fulfil (22), it seems to be natural to seek the function bh in the form

bh =
∑

E′∈Eh

αE′ ϕE′ , (23)

where the functions ϕE′ satisfy∫
E
[|ϕE′|]E dσ = 0 ∀ E ∈ Eh , (24)∫

E
[|ϕE′|]E λE,1 dσ = 0 ∀ E ∈ Eh \ {E ′} , (25)∫

E′
[|ϕE′|]E′ λE′,1 dσ �= 0 . (26)

Then (22) holds for bh defined by (23) with

αE = −
∫
E [|vh|]E λE,1 dσ∫
E [|ϕE|]E λE,1 dσ

, E ∈ Eh . (27)

Replacing any function vh ∈ Vnc
h by a function vh+bh with bh defined by (23) and (27),

we obtain a space

Vmod
h = {vh ∈ Vnc

h ⊕ Bh ;
∫

E
[|vh|]E q dσ = 0 ∀ q ∈ P1(E), E ∈ Eh} , (28)

where
Bh = span{ϕE}E∈Eh

. (29)

We use the notation Vmod
h since this space consists of modified functions from Vnc

h . The
space Vmod

h has several properties common with Vnc
h : it is a nonconforming first order

finite element space which has the same dimension as Vnc
h and whose degrees of freedom

are associated with edges. However, as we know from the preceding section, the space
Vmod

h allows us to derive a better error estimate than the space Vnc
h .
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The functions ϕE can be constructed in various ways. Here, we shall consider functions
ϕE having supports contained in the elements (or element) adjacent to the respective
edge E and we shall show how to construct such functions using a fixed bubble function
b̂ ∈ H1(K̂) defined on the standard reference element K̂. We denote by Ê one of the
edges of K̂ and by x̂1, x̂2 the end points of Ê, and we shall assume that the function b̂
has the following properties:

b̂|
∂K̂\Ê = 0 , ‖b̂‖

0,Ê
�= 0 ,

∫
Ê
b̂ dσ̂ = 0 , (30)

γ ≡ 1

|Ê|

∫
Ê
b̂ λ̂1 dσ̂ > 0 for λ̂1 ∈ P1(Ê) with λ̂1(x̂1) = 1, λ̂1(x̂2) = 0. (31)

Now, for any K ∈ Th and any edge E of K, we introduce a nonconforming bubble function

bK,E =

 b̂ ◦ F−1
K in K,

0 in Ω \K,

where FK : K̂ → K is a unique regular affine mapping satisfying FK(K̂) = K, FK(x̂1) =

xE,1 and FK(x̂2) = xE,2 (cf. e.g.14). Then, the functions ϕE can be constructed in the
following way. If E ∈ E b

h and K is the element adjacent to E, we set

ϕE = 2 bK,E .

If E ∈ E i
h and K, K̃ are the two elements adjacent to E and chosen in such a way that

nE points into K̃, we define
ϕE = bK,E − b

K̃,E
.

Clearly, the functions ϕE have their supports in the elements (or element) adjacent to E
and it is easy to check that∫

E
[|ϕE|]E λE,1 dσ = 2 γ hE ∀ E ∈ Eh .

In addition, each function ϕE vanishes on all edges different from E. Thus, we see that
the functions ϕE satisfy (24)–(26).

Unfortunately, there is a severe drawback of the above–defined space Vmod
h compared

to the space Vnc
h . A stiffness matrix built up using the basis {ζE}E∈Ei

h
of Vnc

h typically

contains 5 nonzero entries in each row. However, constructing the stiffness matrix using
the basis functions of Vmod

h defined as modified functions ζE , we generally obtain 27
nonzero entries in each row. The reason is that the supports of the basis functions from
Vmod

h lie in six elements whereas supports of basis functions of Vnc
h consist of two elements

only.
An easy remedy for the mentioned drawback of the space Vmod

h is to enlarge the space
Bh used in the definition (28) of Vmod

h . Since now we consider functions ϕE constructed

11
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using the functions bK,E, the enlargement is very easy. Instead of defining Bh by (29), we
simply set

Bh = span{bK,E}K∈Th, E∈Eh, E⊂∂K . (32)

Then one can show in the same way as in13 that the space Vmod
h defined by (28) and (32)

contains a basis consisting of functions {χE}E∈Ei
h
, {ψE}E∈Ei

h
whose supports are contained

always in the two elements K, K̃ adjacent to the respective edge E. Denoting by E, E1,
E2 the edges of K and by E, E3, E4 the edges of K̃, the functions χE , ψE are defined by

χE = bK,E + b
K̃,E

, (33)

ψE = ζE + βE,E1 bK,E1 + βE,E2 bK,E2 + βE,E3 bK̃,E3
+ βE,E4 bK̃,E4

, (34)

where ζE are the basis functions of Vnc
h defined in Section 2 and βE,E1, . . . , βE,E4 are

uniquely determined coefficients. Note that χE ∈ H1
0 (Ω) whereas ψE has jumps across

the edges E1, . . . , E4.
Again, the space Vmod

h defined by (28) and (32) is an edge–oriented nonconforming
first order finite element space satisfying the patch test of order 2. The stiffness matrix
corresponding to the basis functions χE , ψE is now easy to implement since it consists
of four matrices having the same structure as the stiffness matrix corresponding to the
space Vnc

h . The enlargement of the stiffness matrix and of the number of unknowns
(dim Vmod

h = 2 dim Vnc
h ) is worthwhile since the space Vmod

h often leads to a substantial
improvement of the quality of the discrete solution as we shall see in Section 7.

Remark 3 Let us consider the discrete problem (5) with Vh = Vmod
h . Then the discrete

solution uh can be uniquely decomposed into its piecewise linear part ulin
h and its bubble

part ubub
h ∈ Bh, i.e., uh = ulin

h + ubub
h . It can be shown in the same way as in13 that, for

u ∈ H2(Ω), we have

|u− ulin
h |1,h ≤ |u− uh|1,h + 2 |u− ihu|1,Ω ,

‖u− ulin
h ‖0,Ω ≤ C ‖u− uh‖0,Ω + C ‖u− ihu‖0,Ω ,

|||u− ulin
h ||| ≤ C

(
1 + max

K∈Th

δ
1/2
K

)
(|||u− uh|||+ |||u− ihu|||) .

Thus, ulin
h converges to the weak solution with the same convergence orders as uh and

the estimates of Theorems 2 and 3 remain valid for ulin
h . Therefore, it is possible and for

practical reasons sensible to consider the linear part of uh as a discrete solution of (1).

Remark 4 The definitions of the functions ζE and ψE can be extended to boundary
edges in an obvious way. Setting

αE = (ihũb)(CE) , βE =
1

γ hE

∫
E
(ihũb − αE ζE)λE,1 dσ , E ∈ E b

h ,

12
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the function
ũbh =

∑
E∈Eb

h

(αE ψE + βE χE)

satisfies ũbh− ihũb ∈ Vmod
h . Thus, we can use ũbh as the boundary condition in the discrete

problem (5), which is more convenient for implementational reason than the use of ihũb.

Details can be found in13.

6 PATCH TEST OF ORDER 3

In the preceding section, we have constructed a general nonconforming first order finite
element space Vmod

h satisfying the patch test of order 2. Further properties of this space
depend on the definition of the function b̂. Particularly, one can ask whether a suitable
choice of b̂ can assure the patch test of order 3, i.e., the validity of∫

E
[|vh|]E q dσ = 0 ∀ vh ∈ Vmod

h , q ∈ P2(E), E ∈ Eh . (35)

Since Vmod
h satisfies the patch test of order 2, the property (35) is equivalent to∫

E
[|vh|]E λE,1 λE,2 dσ = 0 ∀ vh ∈ Vmod

h , E ∈ Eh .

The function λE,1 λE,2 is even with respect to CE and therefore, it suffices to assure that
[|vh|]E is odd with respect to CE for any vh ∈ Vmod

h and any E ∈ Eh. This is satisfied for
functions from Vnc

h and hence (35) holds under the additional assumption that

b̂|
Ê

is odd with respect to the midpoint of Ê. (36)

If the function b̂ is continuous, then the assumption (36) guarantees that functions from
Bh vanish in the midpoints of all edges of the triangulation. In this case, the space Vmod

h

consists of piecewise continuous functions which are continuous in the midpoints of inner
edges and vanish in the midpoints of boundary edges. This is a further feature common
with Vnc

h .
However, there is a much more important consequence of the property (36). In view

of (35), we can replace M0
E and M1

E in (17) and (20), respectively, by M2
E . Assuming

that u ∈ H3(Ω) and b ∈W 3,∞(Ω)2, we then derive

|rs
h(u, vh)|+

∣∣∣∣∣∣
∑

E∈Eh

∫
E
(b · nE)w [|vh|]E dσ

∣∣∣∣∣∣ ≤ C h2

( ∑
E∈Eh

γE ‖u‖2
3,SE

)1/2

|||vh|||

so that

|||u− uh||| ≤ C h
( ∑

K∈Th

γK |u|22,K

)1/2

+ C h2

( ∑
E∈Eh

γE ‖u‖2
3,SE

)1/2

.

13
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Let us consider the convection dominated case in which ε ≤ h. Then, defining δK by
(8) with bounded κK satisfying (9), we have γK ≤ C h and hence it follows from the above
estimate that

|||u− uh||| ≤ C h3/2 ‖u‖3,Ω ,

where the constant C is independent of ε. It is known from the conforming finite element
method that on general meshes the convergence order 3/2 is optimal16.

As we see, the assumption (36) guarantees that the convective consistency error is of
order O(h2) (ε–uniformly) and that, for a fixed ε, it is of order O(h3). Let us remark that
for the space Vnc

h , we only have O(1) and O(h), respectively. The diffusive consistency
error rd

h can be even estimated by

rd
h(u, vh) ≤ C h3 ε1/2 |u|4,Ω |||vh||| ,

provided that u ∈ H4(Ω). This estimate is again better by the factor h2 compared with
Vnc

h . The improvement of the estimate of rd
h does not influence the asymptotic behaviour

of the discrete solution but it certainly improves the accuracy.
The space Vmod

h defined using a function b̂ satisfying (30), (31) and (36) was already

introduced in13 and the corresponding finite element was named the Pmod
1 element. A

particular example of the Pmod
1 element can be constructed by setting

b̂ = λ̂2
1 λ̂2 − λ̂1 λ̂

2
2 ,

where λ̂1, λ̂2 are the barycentric coordinates on the reference element K̂ with respect to
x̂1, x̂2, respectively. To express the formulas (33), (34) for the basis functions χE and ψE

in terms of the barycentric coordinates, we denote by K and K̃ the two elements adjacent
to an edge E ∈ E i

h and by λ1, λ2 and λ̃1, λ̃2 the barycentric coordinates on K and K̃
with respect to xE,1, xE,2, respectively. Further, we respectively denote by λ3 and λ̃3 the

remaining barycentric coordinates on K and K̃. Then

χE =


λ2

1 λ2 − λ1 λ
2
2 in K,

λ̃2
1 λ̃2 − λ̃1 λ̃

2
2 in K̃ \ E,

0 in Ω \ {K ∪ K̃}

and

ψE =


1− 2 λ3 − 10 (λ2

1 λ3 − λ1 λ
2
3)− 10 (λ2

2 λ3 − λ2 λ
2
3) in K,

1− 2 λ̃3 − 10 (λ̃2
1 λ̃3 − λ̃1 λ̃

2
3)− 10 (λ̃2

2 λ̃3 − λ̃2 λ̃
2
3) in K̃ \ E,

0 in Ω \ {K ∪ K̃}.

14
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Figure 1: Exact solution of Example 1
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Figure 2: Exact solution of Example 2

7 NUMERICAL RESULTS

The aim of this section is to compare streamline diffusion finite element discretizations
of the equation (1) employing the P nc

1 element (i.e., the space Vnc
h ) with discretizations

in which the modified space Vmod
h is used and to demonstrate the robustness of the latter

discretizations. We only consider the piecewise cubic example of the space Vmod
h described

at the end of the preceding section which we denote as the Pmod
1 element in the following.

We shall investigate both the discretization (5) and the discretization obtained from (5)
by replacing askew

h by aconv
h defined in (11). Thus, we have two types of discretizations

and two types of spaces, which gives four combinations. However, since the combination
aconv

h /Pmod
1 mostly gave very similar results as askew

h /Pmod
1 , we mainly consider the following

three methods: aconv
h /P nc

1 , askew
h /P nc

1 and askew
h /Pmod

1 . We recall that no theoretical results
are available for the problems with aconv

h because of the missing coercivity proof for aconv
h .

The bilinear forms askew
h and aconv

h were computed exactly whereas the right–hand side lh
was evaluated using a quadrature formula which is exact for piecewise cubic f . The arising
linear systems were solved applying the GMRES method with ILU preconditioning. The
computations were terminated if the ratio of the norms of the residuum and the right–
hand side was smaller than 10−8. The errors of the discrete solutions were measured in
the norms ||| · ||| and | · |1,h. The evaluation of ||| · ||| (resp. | · |1,h) was exact for piecewise
quadratic (resp. cubic) functions. For the Pmod

1 element, we give the errors of the piecewise
linear part ulin

h of uh (see Remark 3).

Example 1 Smooth polynomial solution.
Let Ω = (0, 1)2, b = (3, 2), c = 2 and ub = 0. For a given ε > 0, the right–hand side f is
chosen such that

u(x, y) = 100 x2 (1− x)2 y (1− y) (1− 2 y)

is the exact solution of (1), see Fig. 1.

It is not surprising that, for all three methods and for any fixed ε, numerical experiments
confirm the linear convergence of the discrete solution to the above solution u in both
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Figure 3: Type of the triangulations used for Examples 1–3

the norms ||| · ||| and | · |1,h. However, the convergence behaviour with respect to ε is
more interesting. Therefore, in Tables 1 and 2, we present errors of the discrete solutions
for various values of h and for ε = h4. The results were obtained for Friedrichs–
Keller triangulations of Ω of the type depicted in Fig. 3 and for δK defined by (8) with
κK = 1. The convergence orders were always computed using values from triangulations
with h = 1.77 · 10−2 and h = 8.84 · 10−3. Table 1 shows that the solutions of the
discretization askew

h /Pmod
1 converge with the optimal order 3/2 in the streamline diffusion

norm ||| · |||, as predicted by our theory. The same convergence order is also observed
for the discretization aconv

h /P nc
1 . Further, we observe that the solutions of (5) with the

h ε aconv
h /P nc

1 askew
h /P nc

1 askew
h /Pmod

1

7.07−2 2.50−5 1.43−1 7.79−1 1.48−1
3.54−2 1.56−6 5.10−2 7.43−1 5.24−2
1.77−2 9.77−8 1.80−2 7.09−1 1.85−2
8.84−3 6.10−9 6.36−3 6.86−1 6.56−3
conv. order 1.50 0.05 1.50

Table 1: Example 1, errors |||u − uh|||

h ε aconv
h /P nc

1 askew
h /P nc

1 askew
h /Pmod

1

7.07−2 2.50−5 1.40+0 4.29+1 2.14−1
3.54−2 1.56−6 1.09+0 8.66+1 1.07−1
1.77−2 9.77−8 7.57−1 1.78+2 5.37−2
8.84−3 6.10−9 4.98−1 3.72+2 2.69−2
conv. order 0.60 −1.06 1.00

Table 2: Example 1, errors |u − uh|1,h
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Figure 5: Example 2, errors of solution of
aconv

h /Pnc
1 for h = 0.0354

P nc
1 element do not converge in ||| · ||| which is in agreement with Theorem 2. Thus,

the discretization askew
h /P nc

1 cannot compete with the other two methods. According to
Table 1, the discretizations askew

h /Pmod
1 and aconv

h /P nc
1 seem to be comparable, however,

Table 2 indicates that the discretization askew
h /Pmod

1 is much more accurate than both
aconv

h /P nc
1 and askew

h /P nc
1 . In addition, we observe an optimal ε–uniform convergence of

solutions of askew
h /Pmod

1 with respect to | · |1,h. The superiority of askew
h /Pmod

1 can also be
seen from the following example.

Example 2 Layers at the outflow part of the boundary.
Let Ω = (0, 1)2, ε = 10−8, b = (2, 3) and c = 1. The right–hand side f and the boundary
condition ub are chosen such that

u(x, y) = x y2 − y2 exp

(
2 (x− 1)

ε

)
− x exp

(
3 (y − 1)

ε

)
+ exp

(
2 (x− 1) + 3 (y − 1)

ε

)
is the exact solution of (1). This function has boundary layers at x = 1 and y = 1, see
Fig. 2.

The domain Ω was again discretized using a triangulation of the type depicted in Fig. 3
and δK was defined by (8) with κK = 0.25. Fig. 4–6 show errors uh − u for all three dis-
cretizations obtained for h = 0.0354. We observe that, for askew

h /Pmod
1 , the errors are

located in a region near the boundary layers. For aconv
h /P nc

1 , the errors are located in
nearly the same region but they oscillate and are more than ten times larger. Finally, for
askew

h /P nc
1 , the errors are smaller than for aconv

h /P nc
1 but they are distributed over a large

part of Ω and they again oscillate. Again, we can conclude, that the discretization em-
ploying the Pmod

1 element is much more better than discretizations using the P nc
1 element.

To demonstrate the robustness of discretizations employing the Pmod
1 element, we also

consider the following two examples which do not fit into the theory presented in this
paper.
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Figure 6: Example 2, errors of solution of
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1 for h = 0.0354
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h /Pmod

1 for
h = 0.0354

Example 3 Inner and boundary layers.
We consider Ω = (0, 1)2, ε = 10−6, b = (1/2,

√
3/2), c = 0, f = 0 and

ub(x, y) =

 0 for x ≥ 1/2 or y = 1,

1 else.

The solution u has an inner layer along the line y =
√
3 (x − 1/2) and boundary layers

along y = 1 and x = 1, y >
√
3/2.

Example 4 Inner and boundary layers.
Let Ω = (−3, 9)× (−3, 3) \ {(x, y) ∈ IR2 ; x2 + y2 ≤ 1}, ε = 10−6, b = (1, 0), c = 0, f = 0
and

ub(x, y) =

 0 for x = −3 or y = ±3,

1 else.

In addition, instead of the Dirichlet boundary condition along the line x = 9, we prescribe
∂u/∂x = 0. The solution u has two inner layers along (0, 9)×{±1} and a boundary layer
along the curve x ≤ 0, x2 + y2 = 1.

For solving Example 3, we used the same triangulation as for Example 2. The triangu-
lation used for Example 4 is depicted in Fig. 8. In both cases we used δK defined by (8)
with κK = 0.2. The computed solutions are shown in Fig. 7 and 9. Instead of showing
the discontinuous solutions uh directly, we present corresponding conforming functions
ũh ∈ Ṽconf

h such that the value of ũh at any inner vertex is equal to the arithmetic mean
value of the values of uh at the midpoints of edges connected with this vertex. We see
that inner and boundary layers are detected very well and that the methods behave in a
robust way although the assumptions made in Section 1 are not satisfied.
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Figure 8: Triangulation for Example 4 (13488 el-
ements)
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Figure 9: Example 4, solution of aconv
h /Pmod

1 for
the triangulation from Fig. 8

The above numerical results show that the discretizations employing the Pmod
1 element

are substantially better than discretizations using the P nc
1 element. The Pmod

1 element
always gave optimal convergence orders and behaved very robust with respect to ε. In
addition, the iterative solver used to compute the discrete solutions converged much faster
for the Pmod

1 element than for discretizations using the P nc
1 element. Thus, the Pmod

1

element not only improves the stability of the discrete solution, but also the convergence
properties of the solver.
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