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ABSTRACT

We prove the uniform validity of discrete Friedrichs’ inequality for gene-
ral nonconforming finite element spaces defined over triangulations con-
sisting of triangles and/or quadrilaterals. The result is valid for arbitrary
polygonal domains and also for locally refined triangulations.
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1. INTRODUCTION

In the theory of second order partial differential equations (cf. e.g. [26]),
a significant role is played by the Friedrichs inequality (often also called
Poincaré’s inequality)

kvk0;� � Cjvj1,� 8v 2 H1
0 ð�Þ, ð1Þ

where � is a bounded domain in R
d , d � 2. The notation k 	 k0;� denotes the

norm in the Lebesgue space L2 (�) and j 	 j1;� is the seminorm in the Sobolev
space H1 (�). This space consists of functions from L2 (�) whose generalized
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first derivatives are also in L2 (�). The space H1
0 ð�Þ is formed by functions

from H1 (�) having zero traces on the boundary @� of the domain �.
We refer to [1] or [23] for details on Sobolev spaces.

For problems where Dirichlet boundary conditions are only prescribed
on a part �D of the boundary @�, the Friedrichs inequality

kvk0;� � Cjvj1;� 8 v 2 V ð2Þ

with

V ¼ fv 2 H1
ð�Þ; v ¼ 0 on �Dg

is needed. This inequality holds as long as measd
1(�
D) 6¼ 0 (cf. e.g. [23,

p. 20]). Particularly, for �D¼ @�, the inequality (2) is identical with (1).
The importance of (2) consists in the fact that it implies an equivalence
in V between the H1 (�) norm k 	 k1;� and the seminorm j 	 j1;�.

A powerful numerical method for solving second order partial diffe-
rential equations is the finite element method (cf. e.g. [6]). An important
feature of the finite element method is that it is based on week formulations
of the respective equations, which enables to investigate the existence and
convergence of discrete solutions employing various approaches of the func-
tional analysis and the theory of Sobolev spaces. Thus, it is not surprising
that one needs a discrete analogue of the Friedrichs inequality (2) (shortly
discrete Friedrichs inequality).

If the above space V is approximated by a space Vh defined using the
conforming finite element method, without committing any variational
crimes in the sense of [29], then Vh�V. Therefore, in this case, we automa-
tically get the Friedrichs inequality also for the space Vh. Often, however,
some variational crimes are committed and, consequently, Vh 6�V. In this
case, it is usually obvious that a discrete Friedrichs inequality holds for
each space Vh with some constant Ch but it is not clear how these constants
Ch depend on the discretization parameter h.

There are two types of variational crimes which can cause that Vh 6�V.
The first one is an approximation of the boundary of �, which was
thoroughly investigated in [13], [18], [31]. In these papers, it was shown
that the constants Ch are bounded independently of h.

The second type of variational crimes is an approximation of V
by functions having jumps across element edges, which leads to noncon-
forming finite element spaces. The nonconforming finite element method
has been already investigated for more than three decades and during this
time, many various nonconforming finite elements have been developed
(cf. e.g. [5], [8], [9], [15], [16], [21], [22], [25]). Although the mentioned jumps
of nonconforming finite element functions cause additional difficulties in
theoretical investigations of the corresponding finite element discretizations,
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the application of nonconforming elements can be justified since they possess
several favourable properties. First, nonconforming finite elements are more
suitable for a parallel implementation than conforming elements since they
lead to a cheap local communication between processors. Nowadays, with
the increasing importance of parallel computers for scientific computations,
this feature becomes still more and more important. Another important
feature of nonconforming finite elements is that they usually fulfil an inf-
sup condition so that they are very attractive for solving problems describing
incompressible or nearly incompressible materials.

Like for the first type of variational crimes, it is again not obvious
whether, for a given family of nonconforming finite element spaces, a discrete
Friedrichs inequality holds uniformly with respect to the discretization
parameter h (i.e., with a constant C independent of h). In the literature,
results on the uniform validity of the discrete Friedrichs inequality for
nonconforming finite element spaces are rather rare and they are mostly
established under some restrictive assumptions like convexity of � or the
validity of an inverse assumption on the triangulation (cf. [10], [14], [17],
[30]). A proof for quadrilateral elements which does not use these two restric-
tive assumptions but is still much less general than the proof in the present
paper can be found in [28]. The little attention paid to investigations of the
discrete Friedrichs inequality for nonconforming finite elements is probably
due to the fact that finite element discretizations can be seemingly analyzed
without using a uniform discrete Friedrichs inequality. Namely, for proving
the existence of a discrete solution, the h-dependent Friedrichs inequality is
sufficient and the discrete Friedrichs inequality is often not needed at all for
proving a convergence in the discrete analogue of the seminorm j 	 j1;�.
Moreover, convergence in the norm k 	 k0;� can often be proven by applying
the Aubin–Nitsche duality argument (cf. e.g. [5], [9], [25]), again without
using a discrete Friedrichs inequality. However, the regularity of the dual
problem needed for applying the Aubin–Nitsche trick is often known only for
special problems (e.g. convex domains, Dirichlet boundary conditions etc.)
so that, in fact, an estimate in the L2(�) norm is generally not available
without applying the Friedrichs inequality.

The aim of the present paper is to prove that a discrete Friedrichs inequa-
lity holds uniformly with respect to the discretization parameter h for general
nonconforming finite element spaces Vh approximating the space V. For
simplicity we shall confine ourselves to the two-dimensional case and to trian-
gulations consisting of triangles and/or quadrilaterals, however, it will be
obvious that our considerations can be easily generalized to three dimensions.
Let us emphasize that our proof is valid for general polygonal domains and for
triangulations satisfying a shape regularity assumption only. Particularly,
we allow locally refined meshes containing elements with arbitrarily large
ratios of their diameters, which is very important for applying adaptive refine-
ment techniques. In addition, quadrilateral elements may be non-convex and
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they are allowed to degenerate to triangles. Finally, let us mention that for
spaces Vh consisting of functions satisfying the patch test of order 1, the
present paper implies the validity of the discrete Friedrichs inequality with
a constant independent of the polynomial degrees of functions from Vh.
Thus, the discrete Friedrichs inequality can also be applied to nonconforming
spaces constructed by means of the hp finite element method (cf. [27] for the
conforming case).

The paper is organized in the following way. In the next section we
summarize notation and all the assumptions made in this paper. In Section
3 we introduce a general set Wh containing any usual nonconforming finite
element space. This generalization will facilitate the proof of the discrete
Friedrichs inequality. The idea of the proof is to map the set Wh into the
space V using a Clément type interpolation operator (cf. [7], [2], [3]) and then
to apply the Friedrichs inequality (2). The interpolation operator is described
and investigated in Section 4. Then, in Section 5, we prove that the set Wh

satisfies the uniform discrete Friedrichs inequality. Finally, in Section 6, we
compare the results of this paper with some recent results concerning the
discrete Korn inequality.

2. NOTATION AND ASSUMPTIONS

We suppose that � is a bounded domain in R
2 having a polygonal

boundary @� and that �D� @� is a relatively open set satisfying
meas1(�

D) 6¼ 0.
We assume that we are given a family of triangulations T h of the

domain � consisting of triangular and/or quadrilateral elements K having
the usual compatibility properties (see e.g. [6]) and satisfying
hK� diam(K)� h for any K 2 T h. We assume that any edge of T h lying on
@� belongs either to �D or to @�n�D:

For each triangulation T h, we introduce a triangulation T �h obtained
from T h by dividing each quadrilateral element of T h into two triangles. This
construction of T �h is not unique unless T h only consists of triangles in which
case we have T �h ¼ T h. Thus, we assume that, for each triangulation T h, one
of the possible triangulations T �h has been fixed. We require that this family
of triangulations T �h is regular, i.e., there exists a constant � independent of h
satisfying

hK
%K
� � 8K 2 T �h; ð3Þ

where %K is the maximum diameter of circles inscribed into K. Note that our
assumptions do not exclude the case when some quadrilateral elements of T h
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degenerate to triangles. Also, quadrilateral elements of T h are allowed to be
non-convex.

We denote by Eh the set of the edges E of T h and by Eih and EDh the
subsets of Eh consisting of inner edges and boundary edges lying on �D,
respectively. For any edge E, we choose a fixed unit normal vector nE. If
E� @�, then nE coincides with the outer normal vector to the boundary of �.

For any inner edge E, we define the jump of a function v across E by

v½ �E¼ vjKð Þ E
�� 
 vj ~KK

� �
E;
�� ð4Þ

where K, ~KK are the two elements adjacent to E denoted in such a way that nE
points into ~KK. If an edge E 2 Eh lies on the boundary of �, then we set

v½ �E¼ vjE :

Throughout the paper we use standard notation L2
ðGÞ;Hk

ðGÞ ¼
Wk;2

ðGÞ;PkðGÞ;Cð �GGÞ, etc. for the usual function spaces defined on a set G,
see e.g. [6]. The norm and seminorm in the Sobolev space Hk(G) will be
denoted by k 	 kk;G and j 	 jk;G; respectively. In addition, we define discrete
analogues of k 	 k1;� and j 	 j1;� by

kvk1;h ¼
X
K2T h

kvk21;K

 !1=2

, jvj1;h ¼
X
K2T h

jvj21;K

 !1=2

:

Finally, for notational convenience, we set j 	 j0;h ¼ k 	 k0;�:

3. GENERALIZATION OF NONCONFORMING FINITE

ELEMENT SPACES

Nonconforming finite element spaces defined over the triangulation T h and
approximating the space V introduced in Section 1 have typically the form

Vh ¼ v 2 L2
ð�Þ; vjK 2 RðKÞ 8K 2 T h, ’E v½ �E

� �
¼ 0 8E 2 Eih [ E

D
h

� �
:

Here, R(K)�H1(K) are finite-dimensional spaces of functions defined on
the elements K, and ’E are functions which determine how strongly functions
from neighbouring elements are coupled on the common edges E. The func-
tions ’E also determine in which sense the homogenous Dirichlet boundary
condition on �D is approximated.

The strongest possible coupling is the continuity requirement which can
be achieved, e.g., by setting

’EðvÞ ¼ jvj:
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Then Vh�V, i.e., Vh is a conforming space.
For nonconforming finite element spaces, the values ’EðvÞ usually repre-

sent either integral moments of v on E or values of v at some Gaussian points
on E (cf. e.g. [5], [9], [16], [21], [25]). Thus, for example, for first order spaces,
we typically have

’EðvÞ ¼
1

meas1ðEÞ

Z
E

v d�

or

’EðvÞ ¼ vðCEÞ,

where CE is the midpoint of E. These two choices of ’E often lead to the
same finite element space (like e.g. for the linear triangular Crouzeix–Raviart
element [9]), but in some cases they are not equivalent (e.g. for the rotated
bilinear element [25]). Denoting by  E a linear mapping which transforms the
reference edge ÊE � ½0; 1� � f0g onto the edge E, the above mappings ’E are
defined by ’E (v)¼ ’(v � E) with

’ðv̂vÞ ¼

Z
ÊE

v̂v d�̂� ð5Þ

or

’ðv̂vÞ ¼ v̂vðCÊEÞ, ð6Þ

where CÊE is the midpoint of ÊE and v̂v is a function defined on ÊE.
Let us first consider a space Vh defined using functions ’E repre-

senting integral moments on edges E. Then, on any edge E 2 Eih [ E
D
h , the

functions v 2 Vh satisfy the patch test of order 1, i.e.,

Z
E

½v�E d� ¼ 0 8E 2 Eih [ E
D
h , v 2 Vh: ð7Þ

Thus, the space Vh is a subspace of the space

Wh ¼ v 2 L2
ð�Þ; vjK 2H

1
ðKÞ 8K 2 T h, ’ v½ �E � E

� �
¼ 0 8E 2 Eih [E

D
h

� �
,

where ’ is defined by (5). More generally, we can state that the space Vh is a
subset of the above setWh defined using a suitable function ’ possessing the
following two properties:

’ 2 CðL2
ðÊEÞ; RÞ, ð8Þ
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8 v̂v 2 P0ðÊEÞ : ’ðv̂vÞ ¼ 0 , v̂v ¼ 0: ð9Þ

The first property means that

v̂vn ! v̂v in L2
ðÊEÞ ) ’ðv̂vnÞ ! ’ðv̂vÞ in R: ð10Þ

Note that the properties (8) and (9) do not guarantee that Wh has a linear
structure. Nevertheless, they are sufficient for proving that Wh satisfies the
discrete Friedrichs inequality

kvk0,� � Cjvj1;h 8 v 2Wh ð11Þ

with a constant C depending only on �, �D, ’ and � from (3). This result,
which will be proven in Section 5, implies that any nonconforming finite
element space Vh satisfying (7) (and hence contained in Wh defined using ’
from (5)) fulfils the discrete Friedrichs inequality with a constant independent
of both h and the polynomial degrees of functions from Vh.

However, as we mentioned above, the functions ’E in the definition
of Vh may also represent values of their arguments at some points on the
edges E, which does not necessarily imply the validity of (7). Nevertheless, the
space Vh is still contained in Wh for some suitable function ’ satisfying (8)
and (9).

To see this, let us for simplicity consider a space Vh consisting of
functions continuous in the midpoints of edges, i.e., ’ is given by (6).
Further, for simplicity, we assume that the elements of T h are of the same
type (i.e., either triangles or quadrilaterals). The spaces R(K) in the definition
of Vh are typically constructed by specifying a finite–dimensional space
RðK̂KÞ � CðK̂KÞ \H1

ðK̂KÞ of (usually polynomial) functions defined on a refe-
rence element K̂K and by transforming functions from RðK̂KÞ into functions
defined on the elements K. The transformations are performed via regular
linear or bilinear mappings which map K̂K onto K. Since these mappings are
linear along the edges of K̂K , we deduce that there exists a finite–dimensional
space SðÊEÞ � CðÊEÞ such that P0ðÊEÞ � SðÊEÞ and v½ �E � E 2 SðÊEÞ for any
v 2 Vh and any E 2 Eh: Denoting by P the orthogonal projection of
L2
ðÊEÞ onto SðÊEÞ and replacing the function ’ by ’ � P, we obtain a function

satisfying (8) and (9) and leading to a set Wh containing the space Vh.
Analogously we can proceed if ’E(v) represents values of v at other

points on E or if T h contains both triangles and quadrilaterals. Moreover,
we can also treat cases when various coupling conditions are used to define
the space Vh. For example, if on some edges the coupling is given by ’ from
(5) and on other edges by ’ from (6), we can set

’ðv̂vÞ ¼ v̂v CÊE
� � Z

ÊE

v̂vd�̂�
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and extend this function to L2
ðÊEÞ as above. Then the corresponding set Wh

again contains the respective space Vh.
However, in all the above cases where the function ’ has to be extended

to L2
ðÊEÞ, the resulting setWh depends on the polynomial degrees of functions

from Vh and hence we derive discrete Friedrichs inequalities which are uni-
form in h but not necessarily in the polynomial degrees of functions from Vh.

Thus, we can conclude that, for any usual nonconforming finite element
space Vh, there exists a function ’ independent of h and satisfying (8) and (9)
such that the corresponding set Wh contains the space Vh. Therefore, to
derive a discrete Friedrichs inequality for Vh, it suffices to investigate the
validity of (11). For this, we shall first introduce a suitable interpolation
operator which maps Wh into V.

4. AN INTERPOLATION OPERATOR

Usual interpolation operators, like e.g. Lagrange’s interpolation opera-
tors, require some smoothness of the interpolated functions, e.g. the conti-
nuity. However, functions from the set Wh have jumps across interelement
edges and are only of class H1 in the interiors of elements. Thus, we need
an interpolation operator defined for functions having a very low regularity
only.

Such an interpolation operator was introduced by Clément [7] and
the basic idea was to replace the point values used in the definition of
a Lagrange interpolation operator by values obtained by projecting the inter-
polated function into spaces of polynomials on macroelements. This tech-
nique was further developed in [2], where the projections were constructed
on reference macroelements, and also in [3], where piecewise polynomial
functions on reference macroelements were considered. Further modifi-
cations of the Clément operator can be found e.g. in [4].

Here we shall consider the interpolation operator of [3] (however,
those ones of [7] and [2] could also be used). This operator is defined for
functions from L1(�) and has usual optimal approximation properties if the
interpolated functions are smooth enough. We shall present a particular case
of this operator for which the interpolates are piecewise linear. This will serve
our purpose.

We consider any of the triangulations T �h introduced in Section 2
and denote by a1; . . . ; aNh the vertices of the elements of this triangulation.
We assume that vertices lying on �D are numbered first, i.e., denoting by ND

h

the number of vertices on �D, we have a1; . . . ; aND
h
2 �D and aND

h
þ1; . . . ;

aNh =2�
D. For any vertex ai, we denote by 	i the macroelement consisting of

elements of T �h that share this vertex ai (cf. Fig. 1). It follows from (3) that the
number of elements contained in any macroelement is bounded by a constant
depending only on � from (3). Therefore, we can introduce reference macro-
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elements 	̂	1; . . . ; 	̂	L (with L depending on � only) such that any macro-
element 	i is the image of some reference macroelement 	̂	j under a contin-
uous and invertible mapping Fi which is affine on the triangles K̂K making up
	̂	j (cf. Fig. 2). For definiteness, we assume that ai¼Fi(0) and that each
reference macroelement 	̂	j contains the point (1, 0) and consists of equal
isosceles triangles whose vertices different from 0 lie on the unit circle with
the centre at 0. This does not determine 	̂	j uniquely if ai 2 @�. Therefore, in
this case, we further assume that 	̂	j � ½0; 1� � ½0; 1� and that the point (0, 1)
lies in 	̂	j.

For any j 2 f1; . . . ; Lg; we denote


ð	̂	jÞ ¼ fv̂v 2 Cð	̂	jÞ; v̂vjK̂K 2 P1ðK̂KÞ 8 K̂K � 	̂	jg

and we define a projection operator r̂rj 2 LðL
1
ð	̂	jÞ,
ð	̂	jÞÞ byZ

	̂	j

ðv̂v
 r̂rj v̂vÞ	̂	 dx̂x ¼ 0 8 v̂v 2 L1
ð	̂	jÞ, 	̂	 2 
ð	̂	jÞ:

Further, if i 2 1; . . . ; Nh
� �

and 	i ¼ Fið	̂	jÞ for some j 2 1; . . . ; Lf g, then
we set
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riv ¼ r̂rj v � Fið Þ � F
1i 8 v 2 L1 	ið Þ:

This gives an operator ri 2 L L
1 	ið Þ,
 	ið Þ

� �
; where


 	ið Þ ¼ v 2 C 	ið Þ; vjK2 P1ðKÞ 8K � 	i

� �
:

Now, let


h ¼ v 2 Cð ���Þ; vjK2 P1ðKÞ 8K 2 T
�
h

� �
and let ’1; . . . ; ’Nh 2 
h be the usual basis functions, i.e., ’k akð Þ ¼ 1;
’k alð Þ ¼ 0 for any k; l 2 1; . . . ; Nh

� �
, k 6¼ l: Setting

Rhv ¼
XNh

i¼ND
h
þ1

rivð Þ aið Þ’i 8 v 2 L
1
ð�Þ,

we get an interpolation operator Rh 2 L L
1 �ð Þ; 
h \ V

� �
: It was shown in [3]

that, for v 2 V \H2
ð�Þ; the operator Rh has the same approximation proper-

ties as the corresponding Lagrange interpolation operator (for which
rivð Þ aið Þ ¼ v aið Þ). Moreover, it was shown there that

v
 Rhv m;� � C h
1
m v 1;� 8 v 2 V , m ¼ 0; 1;

��������
where C only depends on �. Our aim is to show that this estimate also
holds for functions from the set Wh introduced in the preceding section.

First, however, let us consider the case when no conditions are imposed
on the boundary of �. Then, instead of Wh, we use the set

�WWh ¼ v 2 L2 �ð Þ; vjK 2 H
1 Kð Þ 8K 2 T h, ’ v½ �E � E

� �
¼ 0 8E 2 Eih

� �
ð12Þ

and an appropriate interpolation operator is defined by

�RRhv ¼
XNh
i¼1

rivð Þ aið Þ’i 8 v 2 L
1 �ð Þ:

Clearly, the operator �RRh is a continuous linear mapping from L1(�) into 
h.
To investigate its approximation properties, we shall need the following
lemma.

Lemma 1. Let 	̂	j be any of the above-introduced reference macroelements
and let ÊE1; . . . ; ÊEn be edges of elements K̂K � 	̂	j which do not lie on the

boundary of 	̂	j . For any i ¼ 1; . . . ; n; let  ÊEi be a linear transformation

of the reference edge ÊE onto ÊEi and let ½	�ÊEi be a jump across ÊEi defined
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analogously as in (4). Finally, let

Wð	̂	jÞ ¼

n
v̂v 2 L2

ð	̂	jÞ; v̂vjK̂K 2 H
1
ðK̂KÞ 8 K̂K � 	̂	j,

’ð½v̂v�ÊEi �  ÊEiÞ ¼ 0 8i ¼ 1; . . . ; n
o
,

where ’ is any function satisfying (8) and (9). Then there exists a constant C
such that

inf
q̂q2P0 	̂	jð Þ

kv̂vþ q̂qk1;	̂	j;�
� Cjv̂vj1;	̂	j;�

8 v̂v 2Wð	̂	jÞ, ð13Þ

where

kv̂vk1;	̂	j;�
¼

X
K̂K�	̂	j

kv̂vk2
1;K̂K

0
@

1
A

1=2

, jv̂vj1;	̂	j;�
¼

X
K̂K�	̂	j

jv̂vj2
1;K̂K

0
@

1
A

1=2

:

Proof. We shall prove by contradiction that there exists a constant C
such that

kv̂vk1;	̂	j;�
� C jv̂vj1;	̂	j;�

þ

Z
	̂	j

v̂v dx̂x

�����
�����

 !
8 v̂v 2Wð	̂	jÞ: ð14Þ

Then, for any v̂v 2Wð	̂	jÞ and for q̂q ¼ 

R
	̂	j
v̂v dx̂x=meas2ð	̂	jÞ; we have

kv̂vþ q̂qk1;	̂	j;�
� Cjv̂vj1;	̂	j;�

,

which gives (13). The proof will be similar as in [6, p. 120], where (13) was
proved for v̂v 2 H1

ð	̂	jÞ.
Let us assume that (14) does not hold. Then there exists a sequence

v̂vk
� �1

k¼1
�Wð	̂	jÞ such that

kv̂vkk1;	̂	j;�
¼ 1, jv̂vkj1;	̂	j;�

þ

Z
	̂	j

v̂vk dx̂x

�����
�����< 1

k
8 k � 1: ð15Þ

Let us consider any element K̂K � 	̂	j. Then fv̂vkg
1
k¼1 is bounded in k 	 k1;K̂K

and hence it contains a subsequence which converges weakly in H1
ðK̂KÞ

and, consequently, strongly in L2
ðK̂KÞ due to Rellich’s theorem (cf. e.g. [23,

p. 17]). In view of (15), fv̂vkg
1
k¼1 is a Cauchy sequence with respect to the

seminorm j 	 j1;K̂K and since H1
ðK̂KÞ is complete, we finally deduce that the

mentioned subsequence converges strongly in H1
ðK̂KÞ.

Thus, we see that there exists a subsequence of fv̂vkg
1
k¼1 which we again

denote by fv̂vkg
1
k¼1 such that
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lim
k!1
kv̂v
 v̂vkk1;	̂	j;�

¼ 0,

where v̂v 2 L2
ð	̂	jÞ is a function satisfying v̂vjK̂K 2 H

1
ðK̂KÞ for any K̂K � 	̂	j. For

any edge ÊEi; i ¼ 1; . . . ; n; it follows from trace theorems that

k½v̂v�ÊEi 
 ½v̂vk�ÊEik0;ÊEi � Ckv̂v
 v̂vkk1;	̂	j;�
:

Since ’ð½v̂vk�ÊEi �  ÊEiÞ ¼ 0 for any k � 1; we deduce from (10) that

’ v̂v½ �ÊEi � ÊEi

� �
¼ 0; i ¼ 1, . . . , n: ð16Þ

From (15), we readily get

kv̂vk0;	̂	j
¼ 1, jv̂vj1;	̂	j;�

¼ 0,

Z
	̂	j

v̂vdx̂x ¼ 0, ð17Þ

which implies that v̂vjK̂K 2 P0ðK̂KÞ for any K̂K � 	̂	j. Thus, it follows from (16) and
(9) that v̂v 2 P0ð	̂	jÞ; which is in contradiction with (17). œ

Now we can establish error estimates for the operators ri.

Theorem 1. Let ’ be any function satisfying (8) and (9) and let �WWh be the
corresponding set introduced in (12). Then there exists a constant C depending
only on ’ and � from (3) such that, for any i 2 1; . . . ; Nh

� �
; and any element

K � 	i; the operator ri satisfies

v
 riv
����
m;K
� Ch1
mK

X
~KK�	i

jvj2
1; ~KK

0
@

1
A

1=2

8 v 2 �WWh, m ¼ 0; 1:

Proof. Let us consider any i 2 1; . . . ; Nh
� �

; K � 	i and v 2 �WWh and let
us set v̂v ¼ v � Fi: Let j 2 1; . . . ; Lf g be such that 	i ¼ Fið	̂	jÞ. It was shown
in [3, pp. 1898–1900] that

jv
 rivjm;K� Ch
1
m
K inf

q̂q2P0 	̂	jð Þ
kv̂vþ q̂qk1;	̂	j;�

; m ¼ 0, 1,

where C depends only on �. Defining the linear transformations  ÊEi and
the jumps ½	�ÊEi in the definition of Wð	̂	jÞ from Lemma 1 in a suitable way,
we have v̂v 2Wð	̂	jÞ. Thus, applying (13), we get

jv
 rivjm;K � Ch
1
m
K jv̂vj1;	̂	j;�

; m ¼ 0, 1: 18ð Þ
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Clearly, for each edge ÊEi, there are only two possibilities for defining  ÊEi and
two possibilities for defining 	½ �ÊEi . Since the number of edges ÊEi inside 	̂	j is
bounded by a constant depending only on �, we infer that, for any space
Wð	̂	jÞ, the constant C in (13) can be bounded by a constant depending only
on ’ and �. Therefore, (18) also holds with a constant C depending only on
’ and �. According to [6, Section 15],

jv̂vj1;K̂K � Cjvj1;FiðK̂KÞ 8 K̂K � 	̂	j

with C depending only on � and the theorem follows. œ

Using Theorem 1, one can prove the following approximation properties
of the operator �RRh :

Theorem 2. Let ’ be any function satisfying (8) and (9) and let �WWh be the
corresponding set introduced in (12). Then there exists a constant C depending
only on ’ and � from (3) such that

jv
 �RRhvjm;h � Ch
1
m
jvj1;h 8 v 2 �WWh, m ¼ 0, 1: 19ð Þ

Moreover,

kv
 �RRhvk0;@� � Ch
1=2
jvj1;h 8 v 2 �WWh: 20ð Þ

Proof. The first step is to show that there exists a constant C depending only
on ’ and � such that, for any element K 2 T �h;

jv
 �RRhvjm;K � Ch
1
m
K

X
~KK 2T �h;

~KK \K 6¼6 0

jvj2
1; ~KK

0
BBBB@

1
CCCCA

1=2

8 v 2 �WWh, m ¼ 0; 1: 21ð Þ

The proof is the same as in [3, pp. 1909–1910] where the estimate (21) was
proved for v 2 H1

ð�Þ (it suffices to use Theorem 1 instead of an analogous
result for v 2 H1

ð�Þ). Since the number of elements ~KK intersecting any
element K is bounded by a constant depending only on �, we obtain (19).

Let us mention how to prove (20). Let E � @� be any boundary edge
and let K 2 T �h be the adjacent element. We denote by K̂K the standard
reference triangle and by FK the regular affine mapping which maps K̂K
onto K (cf. [6]). Finally, we consider any v 2 �WWh and set v̂v ¼ v � FK : Then,
using a standard scaling argument and trace theorems, we get

kvk0;E �h
1=2
K kv̂vk0;@K̂K � Ch

1=2
K kv̂vk1;K̂K : ð22Þ
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This and results of [6, Section 15] imply that

kvk0;E �C h
1=2K kvk0;K þ h
1=2
K jvj1;K

� �
,

where C depends only on �. Replacing v by v
 �RRh v; applying (21) and
summing up the squares of the inequalities over all boundary edges, we
derive (20). œ

Before formulating approximation properties of the operator Rh, we
first establish a simple auxiliary result.

Lemma 2. Let K̂K be the standard reference triangle and let ÊE1 be any of its
edges. Let  ÊE1

be a linear transformation of the reference edge ÊE onto ÊE1 and
let ’ be any function satisfying (8) and (9). Finally, let

HðK̂KÞ ¼ v̂v 2 H1
ðK̂KÞ; ’ðv̂v �  ÊE1

Þ ¼ 0
n o

:

Then there exists a constant C such that

kv̂vk1;K̂K �Cjv̂vj1;K̂K 8 v̂v 2 HðK̂KÞ: ð23Þ

Proof. Let us assume that (23) does not hold. Then there exists a sequence
v̂vk
� �1

k¼1
� HðK̂KÞ such that

kv̂vkk1;K̂K ¼ 1, jv̂vkj1;K̂K <
1

k
8 k � 1: 24ð Þ

In the same way as in the proof of Lemma 1, we deduce that this sequence
contains a subsequence, again denoted by v̂vk

� �1
k¼1

, such that

lim
k!1
kv̂v
 v̂vkk1;K̂K ¼ 0

for some v̂v 2 HðK̂KÞ: Obviously, jv̂vj1;K̂K ¼ 0 and hence v̂v 2 P0ðK̂KÞ: Using (9),
we infer that v̂v ¼ 0; which contradicts the first part of (24). œ

Now we are in a position to prove the desired approximation properties
of the operator Rh.

Theorem 3. Let ’ be any function satisfying (8) and (9) and let Wh be the
corresponding set from Section 3. Then there exists a constant C depending
only on ’ and � from (3) such that
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jv
 Rhvjm;h� Ch1
mjvj1;h 8 v 2Wh, m ¼ 0; 1: ð25Þ

Proof. In view of Theorem 2, it suffices to establish an estimate of
�RRhv
 Rhv
�� ��

m;h
: Consider any v 2Wh; K 2 T

�
h and m 2 0; 1f g: Then

j �RRhv
 Rhvjm;K �
XND

h

i¼ 1;

ai 2 K

jðrivÞðaiÞjj’ijm;K :

Choose any i 2 1; . . . ; ND
h

� �
and let K1 � 	i be any element of T �h

adjacent to �D. Let FK1
be a regular affine mapping which maps the standard

reference triangle K̂K onto K1 and set v̂v ¼ v � FK1
. Using the techniques of

[3, p. 1912], we readily derive that

jðrivÞðaiÞj � C
X
~KK�	i

jvj2
1; ~KK

0
@

1
A

1=2

þCkv̂vk1;K̂K ,

where C depends on ’ and � only. Denoting by ÊE1 an edge of K̂K satisfying
FK1
ðÊE1Þ � �D; there is a linear transformation  ÊE1

of the reference edge
ÊE onto ÊE1 such that v̂v belongs to the set HðK̂KÞ from Lemma 2. Therefore,
it follows from (23) that kv̂vk1;K̂K � Cjv̂vj1;K̂K with a constantC depending only on
’. According to [6, Section 15], there exists a constant C depending only on
� such that jv̂vj1;K̂K � Cjvj1;K1

and j’ijm;K � C h
1
m
K for any i 2 1; . . . ;f ND

h g:
Hence, we deduce that

j �RRhv
 Rhvjm;K � Ch
1
m

X
~KK2T �h;

~KK\K 6¼6 0

jvj2
1; ~KK

0
@

1
A

1=2

,

where C depends on ’ and � only. Now, in the same way as in the proof of
Theorem 2, we obtain

j �RRhv
 Rhvjm;h � Ch
1
m
jvj1;h,

where C again depends on ’ and � only. Combining this inequality with
(19), we obtain the theorem. œ

5. PROOF OF THE DISCRETE FRIEDRICHS INEQUALITY

Using Theorem 3, it is very easy to prove the main result of this paper:
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Theorem 4. Let ’ be any function satisfying (8) and (9) and let Wh be the
corresponding set from Section 3. Then there exists a constant C depending
only on �,�D, ’ and � from (3) such that

kvk0;� � Cjvj1;h 8 v 2Wh: ð26Þ

Proof. Consider any v 2Wh: Then

kvk0;� � kv
Rhvk0;� þ kRhvk0;�:

Since Rh v 2 V; we can apply the Friedrichs inequality (2), which gives

kvk0;� �kv
 Rhvk0;� þ CjRhvj1;� � 1þ CÞkv
 Rhvk1;h þ Cjvj1;h:
�

Applying (25), we obtain the theorem. œ

Consequences of this general discrete Friedrichs inequality were already
discussed at the end of Section 3. We recall that Theorem 4 particularly
implies that the discrete Friedrichs inequality holds with a constant indepen-
dent of h for all usual nonconforming finite element spaces, e.g., those
ones of [5], [8], [9], [16], [21], [22], and [25].

Similarly as above, we can also establish a discrete analogue of the
Friedrichs inequality (cf. e.g. [23, p. 20])

kvk0;� � Cðjvj1;� þ kvk0;�DÞ 8 v 2 H
1 �ð Þ: ð27Þ

Theorem 5. Let ’ be any function satisfying (8) and (9) and let �WWh be the
corresponding set from Section 4. Then there exists a constant C depending
only on �, �D, ’ and � from (3) such that

kvk0;� � Cðjvj1;h þ kvk0;�DÞ 8 v 2 �WWh: ð28Þ

Proof. Consider any v 2 �WWh: Then, using (27), we derive

kvk0;� � kv
 �RRhvk0;� þ k �RRhvk0;� � kv
 �RRhvk0;� þ Cðj �RRhvj1;� þ k �RRhvk0;�DÞ

� ð1þ CÞkv
 �RRhvk1;h þ Ckv
 �RRhvk0;�D þ Cðjvj1;h þ kvk0;�DÞ:

Applying Theorem 2, we obtain (28). œ

Theorem 5 has analogous consequences as Theorem 4. So, parti-
cularly, the inequality (28) holds with C independent of h for all usual
nonconforming finite element spaces, e.g., for those ones mentioned below
Theorem 4.
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Remark 1. Consider any E 2 EDh and let K 2 T �h be the element adjacent
to E. Like in the preceding section, we denote by K̂K the standard reference
triangle and by FK the regular affine mapping which maps K̂K onto K. For any
v 2Wh, we set v̂v ¼ v � FK : Then it follows from (22) and (23) that

kvk0;E � Ch
1=2
jv̂vj1;K̂K 8 v 2Wh,

where C depends only on ’. According to [6, Section 15], any v 2Wh satisfies
v̂vj j1;K̂K� C vj j1;K with C depending only on �. Thus we deduce that

kvk0;�D � Ch
1=2
jvj1;h 8 v 2Wh,

where C depends only on ’ and �. Therefore, (26) can also be derived as a
consequence of (28).

6. REMARKS ON DISCRETE KORN’S INEQUALITY

For problems from linear elasticity or fluid mechanics with surface forces
prescribed on the part @�n�D of the boundary (cf. e.g. [24] and [20], respec-
tively), the Korn inequality (cf. [24])

jvj1;� � Ckrvþrv
T
k0;� 8 v 2 V � ½V �d ð29Þ

has to be used in addition to the Friedrichs inequality (2). Clearly, to inves-
tigate discretizations obtained by approximating the space V by a noncon-
forming finite element space Vh, the discrete Korn inequality

jvj21;h � C
X
K2T h

krvþ rvTk20;K 8 v 2 Vh ð30Þ

with C independent of h is needed. Since there has been a confusion in the
last years concerning the validity of (30) for some low order spaces and since
it is convenient to bring the inequalities (30) and (26) into a relation,
we mention here some results on the validity of (30) in the two-dimensional
case. We shall see that the situation is quite different from that one in
the preceding sections.

It is well known since the beginning of the 90s that (30) generally does
not hold for the linear triangular Crouzeix–Raviart element introduced in
[9]. For this element we can even find a triangulation T h such that the right-
hand side of (30) vanishes for some v 2 Vh (cf. [12]). Recently, a counter-
example was given in [19] which shows that a uniform validity of (30)
also cannot be expected of typical nonconforming first order quadrilateral
elements. So, for example, (30) does not hold uniformly for quadrilateral
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elements of [25] and [5] and for their various modifications which can be
found in the literature.

However, under the assumptions of Section 2, it was shown in [19]
that (30) holds uniformly whenever the space Vh satisfies the patch test of
order 2. Similarly as in the preceding section, the validity of the inequality
was established for the space

Wh ¼

n
v 2 L2

ð�Þ2; vjK 2 H
1
ðKÞ2 8 K 2 T h,Z

E

½v�E q d� ¼ 0 8 q 2 P1ðEÞ, E 2 E
i
h [ E

D
h

o

which contains any nonconforming finite element space Vh defined over the
triangulation T h, approximating the space V and satisfying the patch test of
order 2. Thus, the discrete Korn inequality is also uniform with respect to the
polynomial degrees of functions from Vh.

The basic idea of the proof of (30) for Wh originates from [11] and
completely differs from the technique used in the preceding section. The
starting point is the identity

jrvj2 ¼
1

2
ðrvþrvTÞ 	 rv
 curl zð Þ þ rv 	 curl zþ

1

2
rot v
 div zð Þ rot v,

31ð Þ

where

rot v ¼ 

@v1
@x2
þ
@v2
@x1

; curl z ¼

@z1
@x2
@z2
@x2



@z1
@x1



@z2
@x1

0
BB@

1
CCA

and the operator dot denotes the inner product of tensors, i.e., A 	 B ¼
P2

i;j¼1

aij bij for A ¼ ðaijÞ
2
i;j¼1 and B ¼ ðbijÞ

2
i;j¼1. For any v 2Wh; the function

z 2 H1
ð�Þ2 in (31) is chosen in such a way that it continuously depends on

v and, after integrating (31) over elements K and summing up, the last two
terms in (31) vanish. We refer to [19] for details.

Observe that, in contrast to the proof of the discrete Friedrichs inequa-
lity, the ‘continuous’ Korn inequality (29) is not used in the proof of (30).
On the contrary, (29) follows from (30) for Wh since V �Wh:

Finally, let us mention that combining the discrete Korn inequality
forWh with the discrete Friedrichs inequality proved in the preceding section,
we deduce that the Korn inequality

kvk21;h � C
X
K2T h

krv þ rvTk20;K 8 v 2Wh
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holds with C independent of h. Again, this inequality is important for prov-
ing convergence of discrete solutions in the L2

ð�Þ norm.
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