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NUMERICAL SOLUTION OF CONVECTION–DIFFUSION
EQUATIONS USING UPWINDING TECHNIQUES SATISFYING

THE DISCRETE MAXIMUM PRINCIPLE∗

PETR KNOBLOCH1

Abstract. We discuss the application of the finite element method to the numerical solution of
scalar two–dimensional steady convection–diffusion equations with the emphasis on upwinding tech-
niques satisfying the discrete maximum principle. Numerical experiments in convection–dominated
case indicate that the improved Mizukami–Hughes method is the best choice for solving the men-
tioned class of problems using conforming piecewise linear triangular finite elements.
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1. Introduction. This paper is devoted to the application of the finite element
method to the numerical solution of the convection–diffusion equation

−ε ∆u + b · ∇u = f in Ω, u = ub on ∂Ω,(1.1)

where Ω is a bounded two–dimensional domain with a polygonal boundary ∂Ω, f is a
given outer source of the unknown scalar quantity u, ε > 0 is the constant diffusivity,
b is the flow velocity and ub is a given function. The Dirichlet boundary condition is
considered only for brevity.

We are interested in the strongly convection–dominated case ε � |b| in which
the solution of (1.1) typically contains narrow inner and boundary layers. It is well
known that the application of the classical Galerkin finite element method is inappro-
priate in this case since the discrete solution is usually globally polluted by spurious
oscillations. Therefore, various stabilization strategies have been developed during
the last three decades, see e.g. the recent review paper by John and Knobloch [5].
In the present paper, we shall describe some of these methods and compare them
numerically. Particularly, we shall concentrate on upwinding techniques satisfying
the discrete maximum principle. Although these techniques were proposed mainly
at the beginning of the development of stabilized methods, some of them can still
compete with best methods proposed in the recent time when piecewise linear finite
elements are used. Let us mention that the discrete maximum principle ensures that
no spurious oscillations will appear in the discrete solution, not even in the vicinity
of sharp layers. Moreover, it enables to prove uniform convergence results.

The plan of the paper is as follows. First, in the next section, we discuss various
approaches to the numerical solution of problem (1.1). Then, in Sections 3–6 we
describe several upwinding techniques: the method of Tabata in Section 3, methods
based on dual meshes in Section 4, the Mizukami–Hughes method in Section 5 and the
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improved Mizukami–Hughes method in Section 6. Finally, in Section 7, we present
results of our numerical tests.

2. Finite element discretization of problem (1.1). Let Th be a triangulation
of Ω consisting of a finite number of open triangular elements K. The discretization
parameter h in the notation Th is a positive real number satisfying diam(K) ≤ h
for any K ∈ Th. We assume that Ω =

⋃
K∈Th

K and that the closures of any two
different elements of Th are either disjoint or possess either a common vertex or a
common edge. Finally, we assume that the triangulation Th is of weakly acute type,
i.e., the magnitude of all angles of elements K ∈ Th is less than or equal to π/2. This
assumption is needed for proving the discrete maximum principle.

The solution u of (1.1) will be approximated by a continuous piecewise linear
function uh from the space

Vh = {v ∈ C(Ω) ; v|K ∈ P1(K) ∀ K ∈ Th} .

Let a1, . . . , aMh
be the vertices of Th lying in Ω and let aMh+1, . . . , aNh

be the vertices
of Th lying on ∂Ω. For any i ∈ {1, . . . , Nh}, let ϕi ∈ Vh be the function satisfying
ϕi(aj) = δij for j = 1, . . . , Nh, where δij is the Kronecker symbol. Then Vh =

span{ϕi}
Nh

i=1.
The solution uh of the classical Galerkin finite element discretization of prob-

lem (1.1) is defined by

uh ∈ Vh ,(2.1)

uh(ai) = ub(ai) , i = Mh + 1, . . . , Nh ,(2.2)

ε (∇uh,∇ϕi) + (b · ∇uh, ϕi) = (f, ϕi) , i = 1, . . . , Mh ,(2.3)

where (·, ·) is the inner product in L2(Ω) or L2(Ω)2.
As we already mentioned, the Galerkin discretization is inappropriate if convec-

tion dominates diffusion. In this case, Petrov–Galerkin methods are often used, which
consist in replacing (2.3) by

ε (∇uh,∇ϕi) + (b · ∇uh, ϕ̃i) = (f, ϕ̃i) , i = 1, . . . , Mh ,(2.4)

with some suitable weighting functions ϕ̃i. One of the most efficient methods of this
type is the streamline upwind/Petrov–Galerkin (SUPG) method proposed by Brooks
and Hughes [2] where ϕ̃i = ϕi + τ b ·∇ϕi and τ is a stabilization parameter. Denoting
by hK the diameter of K ∈ Th in the direction of b, we set

τ |K =
hK

2 |b|

(
cothPeK −

1

PeK

)
with PeK =

|b|hK

2 ε
,

where PeK is the local Péclet number. Although the SUPG method produces to a
great extent accurate and oscillation–free solutions, it does not preclude small non-
physical oscillations localized in narrow regions along sharp layers. Since these oscil-
lations are not permissible in many applications, various terms introducing artificial
crosswind diffusion in the neighborhood of layers have been proposed to be added
to the SUPG formulation in order to obtain a method which is monotone or which
at least reduces the local oscillations, see e.g. the recent review paper by John and
Knobloch [5]. This procedure is usually referred to as discontinuity capturing (or
shock capturing).
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One of the best discontinuity–capturing methods is the discontinuity–capturing
crosswind–dissipation (DCCD) method by Codina [3, 8] defined by adding the term

(σ D∇uh,∇ϕi) with D =





I −
b ⊗ b

|b|2
if b 6= 0,

0 if b = 0

to the left–hand side of the SUPG discretization (2.4). Here, σ is defined by

σ|K =
1

2
max

{
0, β −

2 ε |uh|1,K

‖Rh(uh)‖0,K diam(K)

}
diam(K)

‖Rh(uh)‖0,K

|uh|1,K

∀K ∈ Th ,

where β is a constant, Rh(uh) = b ·∇uh−f is the residual, ‖ ·‖0,K is the L2(K) norm

and | · |1,K is the H1(K) seminorm. Codina [3] recommends to set β ≈ 0.7. Note that
the DCCD method is nonlinear since σ depends on the unknown discrete solution uh.

Most of the stabilization methods mentioned in this section involve stabilization
parameters but it is not clear how to choose these parameters in an optimal way.
From this point of view, upwinding techniques are very attractive since they do not
involve any stabilization parameters.

3. Tabata’s upwind method. One of the first upwind finite element methods
for the numerical solution of problem (1.1) was proposed by Tabata [10]. The basic

idea is to assign an upwind element Kupwind
i to each vertex ai of the triangulation

lying in Ω. The upwind element Kupwind
i is any element possessing the vertex ai

such that −b(ai) points from ai into the closure of this element, see Fig. 4.1(a). The
discrete problem is obtained from (2.1)–(2.3) using the following approximations:

(b · ∇uh, ϕi) ≈ (b(ai) · ∇uh|Kupwind

i

, ϕi) , (f, ϕi) ≈ (f(ai), ϕi) .

Then the discrete problem satisfies the discrete maximum principle and uniform con-
vergence of the discrete solution uh to the solution u of (1.1) can be proved.

4. Upwinding techniques based on dual meshes. Many upwinding tech-
niques are based on a dual mesh consisting of mutually disjoint domains Di assigned
to vertices ai of the triangulation Th, see Fig. 4.1(b). In this way, a new subdivision of
Ω is obtained. We denote by Γi the boundary of Di, by ni the unit outward normal
vector to Γi and we set Γij = Γi ∩ Γj . To derive an upwind discretization of the
convective term in (2.3), we first consider the approximation

(b · ∇uh, ϕi) = (div(b uh) − uh div b, ϕi) ≈

∫

Di

div(b uh) − uh(ai) div b dx .

Consequently,

(b · ∇uh, ϕi) ≈
Nh∑

j=1

∫

Γij

(uh − uh(ai)) b · ni dσ .

Setting aup
ij = ai if

∫
Γij

b · ni dσ ≥ 0 and aup
ij = aj if

∫
Γij

b · ni dσ < 0, we obtain the

upwind approximation

(b · ∇uh, ϕi) ≈
Nh∑

j=1

(uh(aup
ij ) − uh(ai))

∫

Γij

b · ni dσ .
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Fig. 4.1.

Usually, either circumcentric or barycentric dual elements Di are used. In both cases,
if K is an element containing the vertex ai, then QK

i ≡ Di ∩ K is a quadrilateral
whose vertices are ai, a point zK

i ∈ K and the midpoints of the two edges of K
containing ai. In the circumcentric case, the two edges of QK

i containing zK
i are

perpendicular to the edges of K whereas, in the barycentric case, zK
i is the barycentre

of K. Using the described approximation of the convective term and performing a
similar modification of the right–hand side of (2.3) as in Tabata’s method, we obtain
the method of Kanayama [6] in the circumcentric case and the method of Baba and
Tabata [1] in the barycentric case. Let us also mention the partial upwind scheme of
Ikeda [4] where upwinding is applied only to a part of the convective term, depending
on ε and b. In the strongly convection–dominated case ε � |b| this method reduces
to the method of Kanayama. For all three methods mentioned in this section the
discrete maximum principle is satisfied and uniform convergence results are available.

5. The Mizukami–Hughes method. An interesting upwinding technique sat-
isfying the discrete maximum principle was introduced by Mizukami and Hughes [9].
It is a Petrov–Galerkin method of the form (2.1), (2.2), (2.4) with weighting functions

ϕ̃i = ϕi +
∑

K∈Th,

ai∈K

CK
i χK , i = 1, . . . , Mh ,

where CK
i are constants and χK is the characteristic function of K (i.e., χK = 1 in

K and χK = 0 elsewhere). The flow velocity b is considered to be piecewise constant.
The idea is to choose the constants CK

i for any K ∈ Th in such a way that

CK
i ≥ − 1

3 ∀ i ∈ {1, . . . , Nh} , ai ∈ K ,

Nh∑

i=1
ai∈K

CK
i = 0(5.1)

and that the local convection matrix AK with entries

aK
ij = (b · ∇ϕj , ϕ̃i)K , i = 1, . . . , Mh , j = 1, . . . , Nh , ai, aj ∈ K ,

is of nonnegative type (i.e., off–diagonal entries of AK are nonpositive and the sum
of the entries in each row of AK is nonnegative). As usual, (·, ·)K denotes the inner
product in L2(K).

Let K be any element of the triangulation Th and let the vertices of K be a1,
a2 and a3. For each vertex ai, i = 1, 2, 3, we define a vertex zone VZi and an edge
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Fig. 5.1. Definition of edge zones and vertex zones

zone EZi whose boundaries consist of lines intersecting the barycentre of K which are
parallel to the two edges of K possessing the vertex ai, see Fig. 5.1. The common
part of the boundaries of two adjacent zones is included in the respective vertex zone.

Without loss of generality, we may assume that the vertices of K are numbered
in such a way that b points into the vertex zone or the edge zone of a1 as depicted in
Fig. 5.1. If b ∈ VZ1, then (5.1) holds and AK is of nonnegative type for

CK
1 = 2

3 , CK
2 = CK

3 = − 1
3 .

On the other hand, if b ∈ EZ1, then it is generally not possible to choose the constants
CK

1 , CK
2 , CK

3 in such a way that (5.1) holds and AK is of nonnegative type. Since
u still solves the equation (1.1) if we replace b by any function b̃ such that b̃ − b

is orthogonal to ∇u, Mizukami and Hughes proposed to define the constants CK
i in

such a way that the matrix AK is of nonnegative type for b replaced by a function b̃

pointing into a vertex zone. Since ∇u is not known a priori, we obtain a nonlinear
problem where the constants CK

i depend on the unknown discrete solution uh.
Let us assume that b ∈ EZ1 and b · ∇uh|K 6= 0 and let w 6= 0 be a vector

orthogonal to ∇uh|K . Then at least one of the sets

Vk = {α ∈ R ; b + α w ∈ VZk} , k = 2, 3 ,

is nonempty. Mizukami and Hughes show that, depending on V2 and V3, the following
values of the constants CK

i should be used:

V2 6= ∅ & V3 = ∅ =⇒ CK
2 = 2

3 , CK
1 = CK

3 = − 1
3 ,(5.2)

V2 = ∅ & V3 6= ∅ =⇒ CK
3 = 2

3 , CK
1 = CK

2 = − 1
3 ,(5.3)

V2 6= ∅ & V3 6= ∅ =⇒ CK
1 = − 1

3 , CK
2 + CK

3 = 1
3 ,(5.4)

CK
2 ≥ − 1

3 , CK
3 ≥ − 1

3 .

In case (5.4), Mizukami and Hughes suggest to set

CK
i =

b · ∇ϕi

3 |b · ∇ϕ1|
, i = 1, 2, 3 .

This choice is also considered if b ∈ EZ1 satisfies b · ∇uh|K = 0. If b = 0, Mizukami
and Hughes set CK

i = 0 for i = 1, 2, 3. The discrete problem satisfies the discrete
maximum principle but no convergence results are available.
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6. The improved Mizukami–Hughes method. The constants CK
i of the

Mizukami–Hughes method depend on the orientation of both b and w in a discon-
tinuous way. This does not seem to be reasonable and it may deteriorate the quality
of the discrete solution and prevent the nonlinear iterative process from converging.
Therefore, Knobloch [7] proposed another way how to compute the constants CK

i

in case (5.4) taking into account the orientations of b and w. Moreover, he showed
that the definition of CK

i ’s for b pointing into an edge zone is not appropriate if K
lies in the numerical boundary layer. As a remedy, he proposed to set CK

i = − 1
3

for all i corresponding to inner vertices. All these changes resulted in the improved
Mizukami–Hughes method with constants CK

i defined according to Fig. 6.1.
In Fig. 6.1, we again consider an element K ∈ Th with vertices a1, a2 and a3. If

b 6= 0, we assume that b points into the vertex zone or the edge zone of a1 (cf. Fig. 5.1)
and we denote

s =
b

|b|
, v2 =

a2 − a1

|a2 − a1|
, v3 =

a3 − a1

|a3 − a1|
, v =

v2 + v3

|v2 + v3|
.

Further, we introduce unit vectors w, v
⊥, v

⊥
2 and v

⊥
3 such that

w ·∇uh|K = 0 , v
⊥ ·v = 0 , v

⊥
2 ·v2 = 0 , v

⊥
3 ·v3 = 0 , w ·v ≥ 0 , v

⊥ ·v3 ≥ 0 .

The improved method preserves the general properties of the original Mizukami–
Hughes method, particularly, it satisfies the discrete maximum principle.

7. Numerical results. In this section we present numerical results for the
convection–diffusion equation (1.1) considered in Ω = (0, 1)2 with the data ε = 10−7,
b = (cos(−π/3), sin(−π/3))T , f = 0 and

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,
1 else.

The solution possesses an interior layer in the direction of the convection starting
at (0, 0.7). On the boundary x = 1 and on the right part of the boundary y = 0,
exponential layers are developed. We solved this problem on a uniform triangulation
of the type depicted in Fig. 7.1(a) consisting of 800 triangles.

Fig. 7.1(b)–7.1(h) show the results obtained using the methods discussed in this
paper. The Galerkin solution was computed for ε = 10−3 since for ε → 0 the linear
system is very difficult to solve. The upwind methods as well as the DCCD method
satisfy the discrete maximum principle, but lead to a smearing of the layers. The best
solution was computed by the improved Mizukami–Hughes method, see Fig. 7.1(h).
The high accuracy of the improved Mizukami–Hughes method was also demonstrated
by many other numerical experiments, see e.g. [5, 7].
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(a) Type of trian-
gulation

(b) Galerkin, ε = 10−3

(c) SUPG (d) DCCD

(e) Tabata (f) Baba, Tabata

(g) Kanayama (h) Mizukami, Hughes

Fig. 7.1. Numerical results.


