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Abstract. We consider a nonconforming streamline diffusion finite element method for solving
convection-diffusion problems. The loss of the Galerkin orthogonality of the streamline diffusion
method when applied to nonconforming finite element approximations results in an additional error
term which cannot be estimated uniformly with respect to the perturbation parameter for the stan-
dard piecewise linear or rotated bilinear elements. Therefore, starting from the Crouzeix–Raviart
element, we construct a modified nonconforming first order finite element space on shape regular tri-
angular meshes satisfying a patch test of higher order. A rigorous error analysis of this Pmod

1 element
applied to a streamline diffusion discretization is given. The numerical tests show the robustness
and the high accuracy of the new method.
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1. Introduction. We consider the convection-diffusion equation

−ε∆u+ b · ∇u+ c u = f in Ω, u = ub on ∂Ω,(1.1)

where Ω ⊂ R
2 is a bounded domain with a polygonal boundary ∂Ω, ε ∈ (0, 1) is

constant, b ∈W 1,∞(Ω)2, c ∈ L∞(Ω), f ∈ L2(Ω), and ub ∈ H3/2(∂Ω). We assume that

c− 1

2
div b ≥ c0 ,(1.2)

where c0 is a positive constant. This assumption guarantees that (1.1) admits a unique
solution for all positive values of the parameter ε.

In the convection dominated case, in which ε � 1, the standard Galerkin finite
element method produces unphysical oscillations if the local mesh size is not small
enough. Among several possible remedies for this undesirable behavior, the stream-
line diffusion method [8], [15] attracted considerable attention over the last decade,
in particular because of its structural simplicity, generality, and the quality of the
numerical solution. Summarizing the existing literature we come to the conclusion
that in the case of conforming finite element approximations the convergence proper-
ties of the streamline diffusion methods are well understood; see, e.g., [6], [10], [14],
[15], [18]. Particularly, using piecewise polynomial approximations of degree k in the
convection dominated regime (ε ≤ h), one can prove the error estimate

|||u− uh||| ≤ C hk+1/2 ‖u‖k+1,Ω ,(1.3)
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where ||| · ||| denotes the streamline diffusion norm defined in section 3.
The situation changes dramatically if nonconforming finite element approxima-

tions are used. Finite element methods of nonconforming type are attractive in
computational fluid dynamics since they easily fulfill the Babuška–Brezzi condition.
Moreover, because of their edge-oriented degrees of freedom they result in cheap local
communication when implementing the method on a MIMD-machine (cf. [5], [9], [16]).
Unfortunately, compared to conforming approximations much less is known about the
convergence properties of streamline diffusion-type methods for nonconforming finite
element approximations.

It has been shown in [12] that special care is necessary to prove the error es-
timate (1.3) in the nonconforming case. Indeed, when considering nonconforming
approximation spaces we lose the continuity property over inner element edges, and
the coercivity of the corresponding bilinear form depends on the type of discretization
for the convective term. Our assumptions guarantee that the bilinear form with the
so-called skew-symmetric discretization of the convective term (cf. the bilinear form
askewh in section 3) is always coercive in contrast to the convective form (cf. the bilinear
form aconv

h in subsection 4.1). On the other hand, the skew-symmetric form leads to
an additional term in the consistency error which is difficult to estimate uniformly
in ε. In [11], [12] these difficulties have been overcome by adding some special jump
terms and thus modifying the standard streamline diffusion finite element method.
However, a drawback of these jump terms is that they decrease the sparsity of the
stiffness matrix and that they are difficult to implement. So we would like to avoid the
jump terms, but then the coercivity of the convective bilinear form is open in general.
Recently, it has been discovered in [17] that this coercivity can be guaranteed for
the nonconforming rotated bilinear element on rectangular meshes if |b|1,∞,Ω is small
compared to c0. Unfortunately, a similar result is not true for the nonconforming
linear triangular Crouzeix–Raviart element [4], not even on three-directional meshes.
However, also in cases when the convective bilinear form is coercive, the optimal or-
der O(hk+1/2) cannot be shown in general. For example, in [17] a superconvergence
property on uniform meshes was necessary to prove an ε-uniform convergence result
of optimal order O(h3/2). Thus, summarizing the known results we see that in gen-
eral, without using jump terms and on general meshes, we cannot guarantee the same
optimal convergence results as in the conforming case.

Particularly, our numerical experiences show that, in the convection dominated
regime, it is often not possible to obtain an acceptable accuracy using the mentioned
Crouzeix–Raviart element combined with the standard streamline diffusion discretiza-
tion. In fact, this method is—even for smooth functions—not ε-uniformly convergent.
Therefore, the aim of this paper is to develop a first order nonconforming method on
general triangular meshes which guarantees the same optimal convergence properties
as in the conforming case but does not employ any modifications (such as the above
jump terms) of the standard streamline diffusion method. Let us mention that our
ideas are not restricted to the first order of accuracy and that an extension to higher
order methods is straightforward.

Our method is based on using the standard streamline diffusion discretization with
the skew-symmetric form of the convective term and on introducing a new noncon-
forming finite element space. The theoretical analysis presented in this paper shows
that the optimal convergence order known from the conforming finite element method
can be recovered if the nonconforming space satisfies a patch test of order 3 since then
a better estimate of the consistency error can be obtained. We shall construct such
a space by enriching the Crouzeix–Raviart space by suitable nonconforming bubble
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functions and by restricting the enlarged space to its subspace of functions satisfying
the patch test of order 3. The finite element space obtained in such a way contains
modified Crouzeix–Raviart functions and therefore we call this new element the Pmod

1

element. This new element not only guarantees the optimal convergence order but
also leads to very robust discretizations and much more accurate results than the
Crouzeix–Raviart element. In addition, the iterative solver used to compute the dis-
crete solution converges much faster than for the Crouzeix–Raviart element. Let us
also mention that the Pmod

1 element satisfies a discrete Korn inequality (cf. [13]),
which is not true for most first order nonconforming finite elements, including the
Crouzeix–Raviart element.

The enrichment of the Crouzeix–Raviart space by bubble functions may resemble
the techniques where the bubble functions are used to recover various stabilized meth-
ods and to find a reasonable rule for the choice of the stabilizing parameters (cf., e.g.,
[1], [2]). However, our approach is completely different since we start from a stabilized
method and the bubble functions are added not to replace the stabilization but to
provide an additional stability. In addition, the bubble functions are coupled with
the Crouzeix–Raviart functions so that they cannot be eliminated from the discrete
problem.

The paper is organized in the following way. Section 2 introduces various nota-
tion which will be used in the subsequent sections. In section 3, we recall the weak
formulation of (1.1) and describe a nonconforming streamline diffusion finite element
discretization. Then the error analysis is presented in section 4. Section 5 is de-
voted to the construction of the Pmod

1 element. Section 6 shows that the piecewise
linear part of a Pmod

1 discrete solution asymptotically behaves in the same way as
the discrete solution itself, which is useful for postprocessing. Finally, in section 7,
we present numerical results which demonstrate the good behavior of discretizations
employing the Pmod

1 element.

2. Notation. We assume that we are given a family {Th} of triangulations of the
domain Ω parametrized by a positive parameter h→ 0. Each triangulation Th consists
of a finite number of closed triangular elements K such that hK ≡ diam(K) ≤ h,

Ω =
⋃

K∈Th
K, and any two different elements K, K̃ ∈ Th are either disjoint or

possess either a common vertex or a common edge. In order to prevent the elements
from degenerating when h tends to zero, we assume that the family of triangulations
is regular; i.e., there exists a constant C independent of h such that

hK
�K

≤ C ∀ K ∈ Th, h > 0 ,

where �K is the maximum diameter of circles inscribed into K.
We denote by Eh the set of edges E of Th. The set of inner edges will be denoted

by E i
h and the set of boundary edges by Eb

h. Further, we denote by hE the length of
the edge E and by SE the union of the elements adjacent to E (i.e., SE consists of
one or two elements). For any edge E, we choose a fixed unit normal vector nE to
E. If E ∈ Eb

h, then nE coincides with the outer normal vector to ∂Ω. Consider any

E ∈ E i
h, and let K, K̃ be the two elements possessing the edge E denoted in such a

way that nE points into K̃. If v is a function belonging to the space

H1,h(Ω) = {v ∈ L2(Ω) ; v|K ∈ H1(K) ∀ K ∈ Th} ,
then we define the jump of v across E by

[|v|]E = (v|K)|E − (v|
K̃
)|E .(2.1)
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If E ∈ Eb
h, then we set [|v|]E = v|E , which is the jump defined by (2.1) with v extended

by zero outside Ω.
To formulate a streamline diffusion method for (1.1), we need finite element func-

tions which are piecewise H2. We assume this regularity with respect to subdivisions
of the elements of the triangulation only, which allows more flexibility in the construc-
tion of finite element spaces approximating H1

0 (Ω) (cf. Remark 5.1). The subdivisions

can be defined using a triangulation Ĝ of the standard reference element K̂, and we
assume that the set Ĝ is invariant under affine regular mappings of K̂ onto K̂. Then,
for any element K ∈ Th, we can introduce a subdivision

GK = {FK(Ĝ) ; Ĝ ∈ Ĝ} ,

where FK : K̂ → K is any affine regular mapping which maps K̂ onto K. In view of
the invariance of the triangulation Ĝ, the set GK is independent of the choice of FK .
The space of piecewise H2 functions with respect to the above subdivision of Th will
be denoted by

H2,h

Ĝ (Ω) =
{
v ∈ L2(Ω) ; v|G ∈ H2(G) ∀ G ∈ GK , K ∈ Th

}
.

In the following sections, we shall also need the spaces

Ṽconf
h = {vh ∈ C(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th} , Vconf

h = Ṽconf
h ∩H1

0 (Ω) ,

Vnc
h =

{
vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E

[|vh|]E dσ = 0 ∀ E ∈ Eh
}
,

and we shall denote by ih : H2(Ω) → Ṽconf
h the Lagrange interpolation operator.

Throughout the paper we use standard notation Lp(Ω), W k,p(Ω), Hk(Ω) =
W k,2(Ω), C(Ω), etc. for the usual function spaces; see, e.g., [3]. The norm and
seminorm in the Sobolev space W k,p(Ω) will be denoted by ‖ · ‖k,p,Ω and | · |k,p,Ω,
respectively, and we set ‖ · ‖k,Ω = ‖ · ‖k,2,Ω and | · |k,Ω = | · |k,2,Ω. For the space

H1,h(Ω), we define an analogue of | · |1,Ω by

|v|1,h =

( ∑
K∈Th

|v|21,K
)1/2

, v ∈ H1,h(Ω) .

The inner product in the space L2(G) will be denoted by (·, ·)G, and we set (·, ·) =
(·, ·)Ω. Finally, we denote by C a generic constant independent of h and ε.

3. Weak formulation and discrete problem. Denoting by ũb ∈ H2(Ω) an
extension of ub, a natural weak formulation of the convection-diffusion equation (1.1)
reads as follows:

Find u ∈ H1(Ω) such that u− ũb ∈ H1
0 (Ω) and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω) ,

where

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

This weak formulation has a unique solution.
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We intend to approximate the space H1
0 (Ω) by a nonconforming finite element

space Vh and at this stage we assume only that

Vconf
h ⊂ Vh ⊂ H1,h(Ω) ∩H2,h

Ĝ (Ω) .(3.1)

The inclusion Vconf
h ⊂ Vh ensures first order approximation properties of Vh with

respect to | · |1,h when h→ 0.
A finite element discretization of (1.1) could be simply obtained by using the

bilinear forms

adh(u, v) = ε
∑

K∈Th

(∇u,∇v)K , ach(u, v) =
∑

K∈Th

(b · ∇u, v)K , u, v ∈ H1,h(Ω) ,

instead of the first two terms in a(u, v) and by replacing the space H1
0 (Ω) in the weak

formulation by the finite element space Vh. However, the bilinear form corresponding
to the discrete problem generally would not be coercive and therefore, before passing
from the weak formulation to the discrete problem, we first apply integration by parts
to the convective term (b · ∇u, v) to obtain

(b · ∇u, v) = 1

2
[(b · ∇u, v)− (b · ∇v, u)− (div b, u v)] , u ∈ H1(Ω), v ∈ H1

0 (Ω) .

Thus, a discrete analogue of the second term in the bilinear form a also is

ash(u, v) =
1

2

∑
K∈Th

[(b · ∇u, v)K − (b · ∇v, u)K − (div b, u v)K ] , u, v ∈ H1,h(Ω) .

This bilinear form is skew-symmetric if div b = 0. That gives rise to the notation
askewh below. For u ∈ H2,h

Ĝ (Ω) and v ∈ H1,h(Ω), we define a streamline diffusion term

by

asdh (u, v) =
∑

K∈Th

∑
G∈GK

(−ε∆u+ b · ∇u+ c u, δK b · ∇v)G ,

where δK ≥ 0 is a control parameter. Now, denoting

askewh (u, v) = adh(u, v) + ash(u, v) + (c u, v) + asdh (u, v) ,

lh(v) = (f, v) +
∑

K∈Th

(f, δK b · ∇v)K ,

the streamline diffusion finite element method investigated in this paper reads as
follows:

Find uh ∈ H1,h(Ω) such that uh − ihũb ∈ Vh and

askewh (uh, vh) = lh(vh) ∀ vh ∈ Vh .(3.2)

A natural norm for investigating the properties of the problem (3.2) is the stream-
line diffusion norm

|||v||| =
( ∑

K∈Th

{ε |v|21,K + c0 ‖v‖2
0,K + δK ‖b · ∇v‖2

0,K}
)1/2

.
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Using standard arguments (cf. [3, Chapter III]), we deduce that there exist constants
µ1, µ2 independent of h such that

‖∆ vh‖0,G ≤ µ1 h
−1
K |vh|1,G ∀ vh ∈ Vh, G ∈ GK , K ∈ Th ,(3.3)

|vh|1,K ≤ µ2 h
−1
K ‖vh‖0,K ∀ vh ∈ Vh, K ∈ Th .(3.4)

Assuming that the control parameter δK satisfies

0 ≤ δK ≤ min

{
c0

2 ‖c‖2
0,∞,K

,
h2
K

2 ε µ2
1

}
,(3.5)

one can prove (cf. [12]) that the bilinear form askewh is coercive, i.e.,

askewh (vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Vh .(3.6)

This implies that the discrete problem (3.2) has a unique solution and that this
solution does not depend on the choice of the extension ũb of ub (cf. also Remark 5.2).

Remark 3.1. We admit δK = 0 in (3.5) since the streamline diffusion stabiliza-
tion is important in convection dominated regions only.

4. Error analysis. If the weak solution of (1.1) satisfies u ∈ H2(Ω), then it
fulfills (1.1) almost everywhere in Ω. Multiplying (1.1) by vh ∈ Vh and integrating
by parts, we infer that

askewh (u, vh) = lh(vh) + rdh(u, vh) + rsh(u, vh) ∀ vh ∈ Vh ,(4.1)

where the consistency errors rdh and rsh are given by

rdh(u, vh) = ε
∑

K∈Th

∫
∂K

∂u

∂n∂K
vh dσ = ε

∑
E∈Eh

∫
E

∂u

∂nE
[|vh|]E dσ ,

rsh(u, vh) = −1

2

∑
K∈Th

∫
∂K

(b · n∂K)u vh dσ = −1

2

∑
E∈Eh

∫
E

(b · nE)u [|vh|]E dσ

with n∂K denoting the unit outer normal vector to the boundary ofK. For estimating
the consistency errors, we shall use the following lemma.

Lemma 4.1. For any edge E ∈ Eh and any integer k ≥ 0, letMk
E be the projection

operator from L2(E) onto Pk(E) defined by∫
E

qMk
E v dσ =

∫
E

q v dσ ∀ q ∈ Pk(E), v ∈ L2(E) .

Then there exists a constant C independent of E and h such that∣∣∣∣∫
E

ϕ (v −Mk
E v) dσ

∣∣∣∣ ≤ C hk+1
E |ϕ|1,K |v|k+1,K(4.2)

for all K ∈ Th, E ⊂ ∂K, ϕ ∈ H1(K), and v ∈ Hk+1(K).
Proof. See [4, Lemma 3].
Now we are in a position to prove a convergence result for the discrete prob-

lem (3.2).
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Theorem 4.2. Let the assumptions (3.1) and (3.5) be fulfilled, and let the space
Vh satisfy the patch test of order k + 1, i.e.,∫

E

[|vh|]E q dσ = 0 ∀ vh ∈ Vh, q ∈ Pk(E), E ∈ Eh ,(4.3)

where k ≥ 0 is a given integer. Let the weak solution of (1.1) belong to Hm(Ω), let
m = max{2, k + 1}, and let b ∈W k+1,∞(Ω)2. Then the discrete solution uh satisfies

|||u− uh||| ≤ C h

( ∑
K∈Th

γK |u|22,K
)1/2

+ C hk

( ∑
E∈Eh

γE ‖u‖2
m,SE

)1/2

,(4.4)

where

γK = ε+ h2
K + δK + (max{ε, δK})−1 h2

K , γE = min

{
h2
E

ε
, 1

}
.

Proof. Denoting w = ihu− u and wh = ihu− uh, we have wh ∈ Vh and it follows
from (3.2) and (4.1) that

askewh (wh, vh) = askewh (w, vh) + rdh(u, vh) + rsh(u, vh) ∀ vh ∈ Vh .(4.5)

Integrating by parts, we obtain for any vh ∈ Vh

ash(w, vh) = −ach(vh, w)− (div b, w vh) + nsh(w, vh) ,

where

nsh(w, vh) =
1

2

∑
E∈Eh

∫
E

(b · nE)w [|vh|]E dσ .

Hence denoting

ah(w, vh) = adh(w, vh)− ach(vh, w) + (c− div b, w vh) + asdh (w, vh) ,

we have

askewh (w, vh) = ah(w, vh) + nsh(w, vh) .(4.6)

Combining (4.5), (4.6), (3.6), and the triangular inequality, we infer that

1

2
|||u− uh||| ≤ 1

2
|||w|||+ sup

vh∈Vh

ah(w, vh)

|||vh|||

+ sup
vh∈Vh

nsh(w, vh)

|||vh||| + sup
vh∈Vh

rdh(u, vh)

|||vh||| + sup
vh∈Vh

rsh(u, vh)

|||vh||| .

The first two terms on the right-hand side are well known from the conforming analysis
of the problem (3.2) (cf., e.g., [15]) and can be estimated by

1

2
|||w|||+ sup

vh∈Vh

ah(w, vh)

|||vh||| ≤ C h

( ∑
K∈Th

γK |u|22,K
)1/2

.(4.7)
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The remaining three terms are purely nonconforming terms. The estimation of
rdh(u, vh) is the easiest one: In view of (4.3), we have for any E ∈ Eh∫

E

∂u

∂nE
[|vh|]E dσ =

∫
E

(
∂u

∂nE
−M0

E

∂u

∂nE

)
[|vh|]E dσ,

and hence, applying (4.2), we deduce that

rdh(u, vh) ≤ C hε1/2 |u|2,Ω |||vh||| .

To estimate rsh(u, vh), we apply (4.3) and Lemma 4.1, and we obtain∫
E

(b · nE)u [|vh|]E dσ =

∫
E

[(b · nE)u−Mk
E((b · nE)u)] [|vh|]E dσ

≤ C hk+1
E ‖u‖k+1,SE

|vh|1,SE
,

where the norms over SE are considered to be defined elementwise. Using (3.4), we
derive∫

E

(b · nE)u [|vh|]E dσ ≤ C hkE ‖u‖k+1,SE
γ

1/2
E (ε |vh|21,SE

+ c0 ‖vh‖2
0,SE

)1/2 ,

which implies that

rsh(u, vh) ≤ C hk

( ∑
E∈Eh

γE ‖u‖2
k+1,SE

)1/2

|||vh||| .

The term nsh(w, vh) can be estimated analogously. The only difference is that we also
use the estimate ‖w‖k+1,SE

≤ C hE |u|2,SE
+min{1, k} ‖u‖k+1,SE

. So, we get

nsh(w, vh) ≤ C hmax{1,k}
( ∑

E∈Eh

γE ‖u‖2
m,SE

)1/2

|||vh||| .(4.8)

As we see, for k = 0, the consistency error rsh(u, vh) behaves worse than the term
nsh(w, vh) and does not allow any ε-uniform convergence. Summing up all the esti-
mates, we obtain the theorem.

Remark 4.1. The above estimate together with the condition (3.5) suggests set-
ting

δK =

{
κK hK if hK > ε,

0 if hK ≤ ε,

where κK is bounded independently of h and satisfies

0 < κ0 ≤ κK ≤ min

{
c0

2 ‖c‖2
0,∞,K hK

,
hK
2 ε µ2

1

}
.

Then (max{ε, δK})−1 h2
K ≤ (min{1, κ0})−1 hK , and hence γK ≤ C (ε+ hK).
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Let us consider the convection dominated case ε ≤ h, and let δK be defined as in
Remark 4.1, which implies that γK ≤ C h. Since the sum over edges in (4.4) stems

from the nonconformity only, we obtain for Vh = Vconf
h the well-known estimate

|||u− uh||| ≤ C h3/2 |u|2,Ω ,
where the constant C is independent of u, h, and ε. Therefore, the estimate is called
ε-uniform. It is known that this estimate is optimal on general meshes.

For a general nonconforming space Vh satisfying the assumptions of Theorem 4.2,
the estimate (4.4) leads to the ε-uniform estimate

|||u− uh||| ≤ C h3/2 |u|2,Ω + C hk‖u‖max{2,k+1},Ω .(4.9)

Thus, if we use the space Vh = Vnc
h , which satisfies (4.3) for k = 0 only, the ε-

uniform convergence order is 0. Numerical experiments really confirm this pessimistic
prediction (see section 7), which suggests that it is generally a property of the method
and not a consequence of an inaccurate estimation. On the other hand, the estimate
(4.9) shows that the optimal ε-uniform convergence order 3/2 can be recovered if the
space Vh satisfies the patch test of order 3, i.e., k = 2. This is an unusual requirement
for a nonconforming first order finite element space, but we shall show in section 5
that such spaces can easily be constructed.

4.1. Remarks on the convective discretization. In numerical computations,
one also often considers the discrete problem (3.2) with askewh replaced by the convec-
tive bilinear form aconv

h defined by

aconv
h (u, v) = adh(u, v) + ach(u, v) + (c u, v) + asdh (u, v) .(4.10)

Note that a result similar to (3.6) does not hold for this bilinear form. Indeed,

aconv
h (vh, vh) ≥ 1

2
|||vh|||2 + 1

2

∑
E∈Eh

∫
E

(b · nE) [|v2
h|]E dσ ∀ vh ∈ Vh ,

where the additional term is of order O(‖vh‖2
0,Ω/h) in general (cf. [17]). Of course,

the coercivity is not necessary to prove the unique solvability and to establish error
estimates. It would be sufficient if an inf-sup condition were satisfied, precisely, if the
constants

αh = inf
wh∈V nc

h

sup
vh∈V nc

h

aconv
h (wh, vh)

|||vh||| |||wh|||(4.11)

could be bounded from below by some positive constant independent of h or at least
with a known dependence on h. Unfortunately, this is an open problem.

Let us consider the discrete problem (3.2) with askewh replaced by aconv
h . We again

set w = ihu− u and wh = ihu− uh. To estimate the error u− uh = wh −w it suffices
to investigate wh since w can be estimated by (4.7). Since there is no consistency
error induced by the convective term, we obtain

αh |||wh||| ≤ sup
vh∈Vh

ah(w, vh)

|||vh||| + 2 sup
vh∈Vh

nsh(w, vh)

|||vh||| + sup
vh∈Vh

rdh(u, vh)

|||vh||| .

Hence αh |||wh||| can be estimated by the right-hand side of (4.4). However, for k = 0,
we can apply (4.8) and hence, for δK defined as in Remark 4.1, we always get at least

|||u− ihu|||+ αh |||ihu− uh||| ≤ C h |u|2,Ω .
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Moreover, for Vh = Vnc
h and u ∈ H3(Ω), we have the estimate∫

E

(b · nE)w [|vh|]E dσ ≤ C h3
E ‖u‖3,SE

|vh|1,SE
(4.12)

so that in the convection dominated case ε ≤ h we even obtain

|||u− ihu|||+ αh |||ihu− uh||| ≤ C h3/2 ‖u‖3,Ω .

Let us mention how to prove (4.12). We denote by jh the piecewise quadratic
Lagrange interpolation operator and, for any edge E ∈ Eh, we set bE = M0

E b. Then
we have for any E ∈ Eh∫

E

(b · nE)w [|vh|]E dσ =

∫
E

((b− bE) · nE)w [|vh|]E dσ(4.13)

+

∫
E

(bE · nE) (jhu− u) [|vh|]E dσ +

∫
E

(bE · nE) (ihu− jhu) [|vh|]E dσ .

The last term on the right-hand side vanishes since ihu− jhu is even on E and [|vh|]E
is odd on E. Using Lemma 4.1, we derive for any z ∈ H1(Ω)∫

E

z [|vh|]E dσ =

∫
E

(z −M0
E z) [|vh|]E dσ ≤ C hE |z|1,SE

|vh|1,SE
.

This implies that the first two terms on the right-hand side of (4.13) can be estimated
by C h3

E (|u|2,SE
+ |u|3,SE

) |vh|1,SE
, which proves (4.12).

The above considerations suggest that, in some cases, the bilinear form aconv
h may

lead to better results than askewh , particularly in the case that αh ≥ α0 > 0 could be
verified.

5. Definition of the Pmod
1 element. We have seen above that it is desirable

to construct nonconforming first order finite element spaces satisfying the patch test
of a higher order than usual. In this section, we present a possible way of constructing
such spaces. The idea is to enrich the space Vnc

h by suitable supplementary functions
and then to restrict the enlarged space to its subspace of functions satisfying the patch
test of a given order. Our basic requirement is that this procedure must not destroy
the edge-oriented structure of the space Vnc

h . This construction will lead to a new
finite element space containing as a subspace modified functions from Vnc

h . Therefore,
we denote the new space Vmod

h , and we call the corresponding finite element the Pmod
1

element.
We introduce the Pmod

1 element by describing the respective shape functions on

the standard reference triangle K̂. It turns out that independently of the required
order of the patch test it suffices to enrich the space P1(K̂) corresponding to Vnc

h by

three functions b̂1, b̂2, and b̂3 associated, respectively, with the edges Ê1, Ê2, and Ê3

of the element K̂. This gives the space

Pmod
1 (K̂) = P1(K̂)⊕ span{b̂1, b̂2, b̂3} .

We assume for i ∈ {1, 2, 3} that

b̂i ∈ H1(K̂) , b̂i|∂K̂\Êi
= 0 ,(5.1)

b̂i|Êi
is odd with respect to the midpoint of Êi,(5.2) ∫

Êi

[(1− 2 λ̂i+1) + b̂i] q̂ dσ̂ = 0 ∀ q̂ ∈ P1(Êi) ,(5.3)
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bE1

bE2

bE3

Fig. 5.1. Function λ̂22 λ̂3 − λ̂2 λ̂
2
3.

where λ̂i is the barycentric coordinate on K̂ with respect to the vertex of K̂ opposite
the edge Êi. (We set λ̂4 ≡ λ̂1.) In addition, because of the streamline diffusion

method, we suppose that on the triangulation Ĝ of K̂

b̂i|
Ĝ
∈ H2(Ĝ) ∀ Ĝ ∈ Ĝ .(5.4)

Note that to verify (5.3), it suffices to prove its validity for q̂ = λ̂i+1|Êi
. A simple

example of b̂i satisfying the assumptions (5.1)–(5.4) is the function (cf. Figure 5.1)

b̂i = 10 (λ̂2
i+1 λ̂i+2 − λ̂i+1 λ̂

2
i+2) ,(5.5)

where the indices are to be considered modulo 3.
For any element K ∈ Th, we introduce a regular affine mapping FK : K̂ → K

such that FK(K̂) = K and, using this mapping, we transform the shape functions

from K̂ onto K. In this way, we obtain the spaces

Pmod
1 (K) = P1(K)⊕ span{bK,E |K}E∈Eh, E⊂∂K ,

where

bK,E =

{
b̂i ◦ F−1

K in K,

0 in Ω \K
for E = FK(Êi), i = 1, 2, 3. For each element K, we introduce six local nodal
functionals

IK,E(v) =
1

hE

∫
E

v dσ , JK,E(v) =
3

hE

∫
E

v (2λE − 1) dσ , E ∈ Eh, E ⊂ ∂K ,

where λE ∈ P1(E) equals 1 at one endpoint of E and 0 at the other endpoint of E.
It is easy to verify that these functionals are unisolvent with the space Pmod

1 (K). Of
course, we could also use other local nodal functionals. However, we prefer the above
functionals since they lead to dual basis functions having nice properties.

Now, the finite element space Vmod
h approximating the space H1

0 (Ω) is defined in
a standard way: It consists of all functions which belong to the space Pmod

1 (K) on any
element K ∈ Th, which are continuous on all inner edges in the sense of the equality of
nodal functionals and for which all nodal functionals associated with boundary edges
vanish. This means that

Vmod
h =

{
vh ∈ L2(Ω) ; vh|K ∈ Pmod

1 (K) ∀ K ∈ Th ,∫
E

[|vh|]E q dσ = 0 ∀ q ∈ P1(E), E ∈ Eh
}
.
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For any inner edge E ∈ E i
h, we define global nodal functionals

IE(v) = IK,E(v) , JE(v) = JK,E(v) ,

where K is any element adjacent to E. (Note that, for v ∈ Vmod
h , the choice of K has

no influence on the values of IK,E(v) and JK,E(v).) We denote by {ψE , χE}E∈Ei
h

a

basis of Vmod
h which is dual to the functionals IE , JE ; i.e., for any E,E

′ ∈ E i
h, we have

IE(ψE′) = δE,E′ , JE(ψE′) = 0 , IE(χE′) = 0 , JE(χE′) = δE,E′ ,

where δE,E′ = 1 for E = E′ and δE,E′ = 0 for E �= E′. To establish formulas for ψE

and χE , we denote by K, K̃ the two elements adjacent to E; by E, E1, E2 the edges
of K; by E, E3, E4 the edges of K̃; and by ζE the standard basis function of Vnc

h

associated with the edge E (i.e., ζE is piecewise linear, equals 1 on E, and vanishes
at the midpoints of all edges different from E). Then

ψE = ζE + βE,1 bK,E1 + βE,2 bK,E2 + βE,3 bK̃,E3
+ βE,4 bK̃,E4

,(5.6)

χE = βE,5 bK,E + βE,6 bK̃,E
,(5.7)

where the coefficients βE,1, . . . , βE,6 are uniquely determined and equal 1 or −1. If

the functions b̂1, b̂2, b̂3 are chosen in a suitable way (e.g., b̂i = b̂1 ◦ F̂i, where F̂i is an

affine transformation of K̂ onto K̂), then χE ∈ H1
0 (Ω), and hence the functions χE

generate a conforming subspace of Vmod
h . (This is also the case for the functions χE

presented in subsection 5.2 below.) The functions ψE are always purely nonconforming
functions since they have jumps across the edges E1, . . . , E4, and they can be viewed
as modified basis functions of Vnc

h . In addition, from (5.6) and (5.7), it follows that,
for any vh ∈ Vmod

h and any E ∈ Eh, the jump [|vh|]E is odd with respect to the
midpoint of E. Therefore, ∫

E

[|vh|]E q dσ = 0(5.8)

for any even function q ∈ L1(E). Particularly, (5.8) holds for any q ∈ P2(E) vanishing
at the endpoints of E. This together with the definition of Vmod

h implies that (5.8)
holds for any q ∈ P2(E); i.e., the space Vmod

h satisfies the patch test of order 3.

Moreover, if (5.3) holds for any q̂ ∈ Pk(Êi) with some k > 1, then it is easy to show
that the basis functions ψE and χE satisfy the patch test of order k+1. Consequently,
the whole space Vmod

h then satisfies the patch test of order at least k + 1.
Let us mention that, denoting

Bh = span{bK,E}K∈Th, E∈Eh, E⊂∂K ,(5.9)

the space Vmod
h can also be written as

Vmod
h =

{
vh ∈ Vnc

h ⊕ Bh ;

∫
E

[|vh|]E q dσ = 0 ∀ q ∈ P2(E), E ∈ Eh
}
.

Therefore, the space Vmod
h can be regarded as the space Vnc

h enriched by the non-
conforming bubble functions bK,E and then restricted to the subspace of functions
satisfying the patch test of order 3.
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5.1. Properties of the modified method. As we required at the beginning,
the space Vmod

h is an edge-oriented nonconforming finite element space possessing
first order approximation properties with respect to | · |1,h. The supports of the basis
functions ψE , χE are contained in the supports of the basis functions ζE of Vnc

h , and
hence the space Vmod

h can be implemented using the same data structures as the space
Vnc

h . In addition, owing to (5.4), the space Vmod
h consists of piecewise continuous

functions which are continuous in the midpoints of inner edges and vanish in the
midpoints of boundary edges. This is a further feature common with the space Vnc

h .
However, as we have shown above, there is an immense difference in the behavior

of the solutions to the discrete problem (3.2) for these two spaces: Whereas no ε-
uniform convergence can be shown for the space Vnc

h , the space Vmod
h guarantees the

ε-uniform estimate (cf. (4.9))

|||u− uh||| ≤ C hmin{l,3/2} ‖u‖l+1,Ω , l = 1, 2 .(5.10)

Thus, for u ∈ H3(Ω), we get the optimal ε-uniform convergence order 3/2. Moreover,
numerical tests indicate that discretizations using the space Vmod

h are much more
accurate than those ones using the space Vnc

h (cf. section 7).
The price we pay for the ε-uniform estimate (5.10) is that dim Vmod

h = 2 dim Vnc
h

and that, consequently, the stiffness matrix corresponding to Vmod
h is generally four

times larger than the one corresponding to Vnc
h . However, this does not mean that

using the space Vmod
h is more expensive than using the space Vnc

h since typically a
prescribed accuracy can be attained with the space Vmod

h on much coarser meshes
than with the space Vnc

h .
The number of nonzero entries of the stiffness matrix corresponding to the space

Vmod
h can be reduced to about 80% by using functions b̂1, b̂2, b̂3 with disjoint interiors

of their supports (cf. Remark 5.1 below). In this case, the functions χE can be easily
eliminated from the discrete problem by static condensation. That halves the number
of unknowns and reduces the number of nonzero entries to about 65%.

The dimension of the space Vmod
h is asymptotically the same as for the noncon-

forming piecewise quadratic element [7]. Since this element has second order approx-
imation properties with respect to | · |1,h one would expect a faster convergence than

for the Pmod
1 element. However, the element of [7] satisfies the patch test of order 2

only, and hence the corresponding consistency error tends to zero with the ε-uniform
convergence order 1 (cf. the second term in (4.4)). Consequently, the ε-uniform con-
vergence order of the discrete solution is at most 1 in the convection dominated case,
whereas we have 3/2 for the Pmod

1 element. Note also that the Pmod
1 element is more

suitable for a parallel implementation than the element of [7].

Remark 5.1. Functions b̂1, b̂2, b̂3 with disjoint interiors of their supports men-
tioned above can be obtained in the following way. We divide the reference triangle K̂
into three subtriangles by connecting the barycenter of K̂ with the vertices of K̂ and
denote by K̂i the subtriangle adjacent to the edge Êi, i = 1, 2, 3. Then we require that
b̂i vanishes outside the subtriangle K̂i. On K̂i, the function b̂i can be defined, e.g., by
(5.5), where λ̂i+1 and λ̂i+2 are now considered as barycentric coordinates on K̂i with

respect to the endpoints of Êi. If we set Ĝ = {K̂1, K̂2, K̂3}, then all the assumptions
on b̂i made above are satisfied. Note that generally b̂i �∈ H2(K̂) so that the assumption
that finite element functions are piecewise H2 only with respect to a subdivision of Th
really has a practical importance.

Remark 5.2. In the discrete problem (3.2), inhomogenous Dirichlet boundary
conditions are represented by the condition uh − ihũb ∈ Vh. This is equivalent to
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uh − ũbh ∈ Vh, where ũbh ∈ H1,h(Ω) is any function satisfying ũbh − ihũb ∈ Vh.
Now let us consider the Pmod

1 element. If we extend the definitions of the global nodal
functionals IE, JE and the basis functions ψE, χE to boundary edges, then

ihũb =
∑
E∈Eh

IE(ihũb)ψE + JE(ihũb)χE .

Thus, the inhomogenous Dirichlet boundary conditions can be implemented by setting

ũbh =
∑
E∈Eb

h

IE(ihũb)ψE + JE(ihũb)χE .

It is easy to see that then ũbh does not depend on the choice of the extension ũb of ub.

5.2. Simple representation of the basis functions ψE and χE. Let us
close this section by returning to the example of b̂i given in (5.5) and rewriting the

formulas (5.6), (5.7) for this particular case. We denote by K and K̃ the two elements

adjacent to an edge E ∈ E i
h and by λ1, λ2 and λ̃1, λ̃2 the barycentric coordinates on

K and K̃ with respect to the endpoints of E. Further, we respectively denote by λ3

and λ̃3 the remaining barycentric coordinates on K and K̃. Then

ψE =


1− 2λ3 − 10 (λ2

1 λ3 − λ1 λ
2
3)− 10 (λ2

2 λ3 − λ2 λ
2
3) in K,

1− 2 λ̃3 − 10 (λ̃2
1 λ̃3 − λ̃1 λ̃

2
3)− 10 (λ̃2

2 λ̃3 − λ̃2 λ̃
2
3) in K̃ \ E,

0 in Ω \ {K ∪ K̃},
and, after dividing by 10,

χE =


λ2

1 λ2 − λ1 λ
2
2 in K,

λ̃2
1 λ̃2 − λ̃1 λ̃

2
2 in K̃ \ E,

0 in Ω \ {K ∪ K̃}.
These basis functions were used in the numerical calculations presented in section 7.

6. Convergence of the piecewise linear part ulin
h of uh. Let us consider

the discrete problem (3.2) with Vh = Vmod
h . Then the discrete solution uh belongs to

Ṽnc
h ⊕ Bh, where

Ṽnc
h =

{
vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E

[|vh|]E dσ = 0 ∀ E ∈ E i
h

}
and Bh was defined in (5.9). Thus, uh can be uniquely decomposed into its piecewise

linear part ulin
h ∈ Ṽnc

h and its bubble part ubub
h ∈ Bh, i.e.,

uh = ulin
h + ubub

h .

We shall show that ulin
h converges to the weak solution with the same convergence

order as uh. First, let us prove the following orthogonality result.
Lemma 6.1. The spaces Ṽnc

h and Bh are orthogonal with respect to the H
1
0 (Ω)

inner product, i.e.,∑
K∈Th

(∇vh,∇bh)K = 0 ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.1)
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Consequently,

|vh|21,h + |bh|21,h = |vh + bh|21,h ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.2)

Moreover, for any element K ∈ Th and any a ∈ R
2, we have

‖a · ∇vh‖2
0,K + ‖a · ∇bh‖2

0,K = ‖a · ∇(vh + bh)‖2
0,K ∀ vh ∈ Ṽnc

h , bh ∈ Bh .(6.3)

Proof. For any vh ∈ Ṽnc
h , bh ∈ Bh, i, j ∈ {1, 2}, and K ∈ Th, we derive∫

K

∂vh
∂xi

∂bh
∂xj

dx = −
∫
K

∂2vh
∂xi ∂xj

bh dx+

∫
∂K

∂(vh|K)

∂xi
(n∂K)j bh|K dσ = 0 .

Hence we obtain (6.1) and also

(a · ∇vh,a · ∇bh)K = 0 ∀ vh ∈ Ṽnc
h , bh ∈ Bh, K ∈ Th, a ∈ R

2 .

The validity of (6.2) and (6.3) is then obvious.
With respect to the L2(Ω) norm, an analogous orthogonality result is generally not

available. Nevertheless, transforming the functions vh, bh onto the reference element
and using the equivalence of norms on finite-dimensional spaces, we can prove that

‖vh‖0,Ω + ‖bh‖0,Ω ≤ C ‖vh + bh‖0,Ω ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.4)

Let the weak solution of (1.1) belong to H2(Ω). Then it follows from (6.2) that

|ulin
h − ihu|1,h ≤ |uh − ihu|1,h,(6.5)

and hence, with respect to | · |1,h, the function ulin
h approximates the piecewise linear

interpolate of u at least as well as uh. Moreover, we obtain the following result.
Theorem 6.2. Let u ∈ H2(Ω). Then

|u− ulin
h |1,h ≤ |u− uh|1,h + 2 |u− ihu|1,Ω ,(6.6)

‖u− ulin
h ‖0,Ω≤ C ‖u− uh‖0,Ω + C ‖u− ihu‖0,Ω ,(6.7)

|||u− ulin
h ||| ≤ C

(
1 + max

K∈Th

δ
1/2
K

)
(|||u− uh|||+ |||u− ihu|||) .(6.8)

Proof. Inequality (6.6) is a direct consequence of (6.5). Analogously, using (6.4),
we get (6.7). To prove (6.8), let us consider any K ∈ Th and any a ∈ R

2. Applying
(6.3), we deduce that

‖b · ∇(ihu− ulin
h )‖0,K ≤ ‖(b− a) · ∇(ihu− ulin

h )‖0,K + ‖a · ∇(ihu− uh)‖0,Ω

≤ ‖b− a‖0,∞,K (|ihu− ulin
h |1,K + |ihu− uh|1,K) + ‖b · ∇(ihu− uh)‖0,K .

Since infa∈R2 ‖b− a‖0,∞,K ≤ C hK |b|1,∞,K , it follows from (3.4) that

‖b · ∇(ihu− ulin
h )‖0,K ≤ C (‖ihu− ulin

h ‖0,K + ‖ihu− uh‖0,K) + ‖b · ∇(ihu− uh)‖0,K .

Now, using (6.6), (6.7), and the triangular inequality, we obtain (6.8).
The above estimates show that ulin

h converges to the weak solution with the same
convergence orders as uh and that the estimate of Theorem 4.2 remains valid for ulin

h .
Therefore, it is possible and for practical reasons sensible to consider the piecewise
linear part of uh as a discrete solution of (1.1).
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7. Numerical results. In this section, we present numerical results computed
using either the discretization (3.2) or a discretization obtained from (3.2) by replacing
askewh by aconv

h defined in (4.10). We used the Pnc
1 element (Vh = Vnc

h ) and the

Pmod
1 element (Vh = Vmod

h ) defined using b̂i given in (5.5). (We considered the basis
functions presented in subsection 5.2.) For the Pmod

1 element, we obtained almost
identical results for aconv

h and askewh , and therefore we show only results obtained for
the following three discretizations: aconv

h /Pnc
1 , askewh /Pnc

1 , and askewh /Pmod
1 .

The bilinear forms askewh and aconv
h were computed exactly, whereas the right-hand

side lh was evaluated using a quadrature formula which is exact for piecewise cubic
f . The arising linear systems were solved applying the GMRES method with ILU
preconditioning. The computations were terminated if the ratio of the norms of the
residuum and the right-hand side was smaller than 10−8.

Fig. 7.1. Type of triangulations used in numerical computations.

All presented computational results were obtained for Ω = (0, 1)2 discretized using
Friedrichs–Keller triangulations of the type depicted in Figure 7.1. We present results
obtained for h

.
= 7.07 · 10−2, h

.
= 3.54 · 10−2, h

.
= 1.77 · 10−2, and h

.
= 8.84 · 10−3,

which corresponds to 800, 3200, 12800, and 51200 elements, respectively. The errors
of the discrete solutions were measured in the norms ‖ · ‖0,Ω, | · |1,h, ||| · ||| and in
the discrete L∞ norm ‖ · ‖0,∞,h which is defined as the maximum of the errors in the
midpoints of edges. The evaluation of ‖ · ‖0,Ω (resp., | · |1,h) was exact for piecewise
quadratic (resp., cubic) functions. For the Pmod

1 element, we give the errors of the
piecewise linear part ulin

h of uh. (See section 6.) The convergence orders were always
computed using values from triangulations with h

.
= 1.77 · 10−2 and h

.
= 8.84 · 10−3.

The three discretizations were used to solve the convection-diffusion equation
(1.1) for three types of solutions specified in Examples 7.1–7.3 below. The parameter
δK was defined as in Remark 4.1 with κK = 1, κK = 0.25, and κK = 0.2, respectively.
Examples 7.1 and 7.2 are the same as in [11] and [12].

Example 7.1 (smooth polynomial solution). Let b = (3, 2), c = 2, and ub = 0.
For a given ε > 0, the right-hand side f is chosen such that

u(x, y) = 100x2 (1− x)2 y (1− y) (1− 2 y)

is the exact solution of (1.1); see Figure 7.2.
For ε = 1, we observed optimal convergence orders for all three discretizations,

and the errors of the discrete solutions were very similar. To investigate whether the
methods are ε-uniform, i.e., whether an estimate of the type

|||u− uh||| ≤ C hν ‖u‖
holds with C and ν independent of ε, we considered ε = hα for various values of α.
Tables 7.1–7.3 show results obtained for α = 4. We remark that the values of h
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Fig. 7.2. Exact solution of Example 7.1.

and ε are rounded in all the tables. The solutions of the discretization aconv
h /Pnc

1

converge with the optimal order 3/2 in the streamline diffusion norm ||| · |||, which is
in correspondence with subsection 4.1. Note, however, that on unstructured meshes
this optimal convergence order was not observed, which indicates that the constants
αh in (4.11) generally cannot be bounded from below by some α0 > 0 independent
of h. The influence of the consistency error rsh with respect to ε can clearly be seen
from Table 7.2: the solution of (3.2) with the Pnc

1 element does not converge in ||| · |||,
which is in agreement with Theorem 4.2. Table 7.3 shows that the Pmod

1 element leads
to best possible convergence orders which can be expected from a first order finite
element space. Particularly, we observe the convergence order 3/2 in the streamline

Table 7.1
Example 7.1; errors for aconv

h with the Pnc
1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 1.49−2 1.40+0 1.43−1 6.87−2
3.54−2 1.56−6 5.86−3 1.09+0 5.10−2 3.88−2
1.77−2 9.77−8 2.07−3 7.57−1 1.80−2 2.20−2
8.84−3 6.10−9 6.94−4 4.98−1 6.36−3 1.20−2
conv. order 1.58 0.60 1.50 0.88

Table 7.2
Example 7.1; errors for askewh with the Pnc

1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 4.56−1 4.29+1 7.79−1 1.89+0
3.54−2 1.56−6 4.32−1 8.66+1 7.43−1 1.71+0
1.77−2 9.77−8 4.27−1 1.78+2 7.09−1 1.47+0
8.84−3 6.10−9 4.37−1 3.72+2 6.86−1 1.53+0
conv. order −0.03 −1.06 0.05 −0.06

Table 7.3
Example 7.1; errors for askewh with the Pmod

1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 2.19−3 2.14−1 1.48−1 7.76−3
3.54−2 1.56−6 5.53−4 1.07−1 5.24−2 2.03−3
1.77−2 9.77−8 1.40−4 5.37−2 1.85−2 5.12−4
8.84−3 6.10−9 3.53−5 2.69−2 6.56−3 1.28−4
conv. order 1.99 1.00 1.50 2.00
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Table 7.4
Example 7.1; comparison between aconv

h with Pnc
1 and askewh with Pmod

1 for h
.
= 8.84 · 10−3.

‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,hε
Pnc
1 Pmod

1 Pnc
1 Pmod

1 Pnc
1 Pmod

1 Pnc
1 Pmod

1

1−04 4.14−5 3.61−5 2.94−2 2.69−2 6.29−3 6.56−3 1.90−4 1.27−4
1−06 4.83−4 3.52−5 3.46−1 2.69−2 6.33−3 6.56−3 8.31−3 1.28−4
1−08 6.93−4 3.53−5 4.98−1 2.69−2 6.36−3 6.56−3 1.20−2 1.28−4
1−10 6.96−4 3.53−5 5.00−1 2.69−2 6.36−3 6.56−3 1.20−2 1.28−4

diffusion norm, which is again in agreement with our theory in section 4. The conver-
gence orders are better than for aconv

h /Pnc
1 and askewh /Pnc

1 , and the discrete solutions
obtained using the Pmod

1 element are in all cases more accurate than P nc
1 solutions.

Table 7.4 shows results obtained for various values of ε on a fixed triangulation. The
errors for askewh /Pmod

1 are almost independent of ε in all norms, whereas the errors for
aconv
h /Pnc

1 increase when ε decreases.
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Fig. 7.3. Exact solution of Example 7.2.

Example 7.2 (layers at the outflow part of the boundary). Let b = (2, 3) and
c = 1. For a given ε > 0, the right-hand side f and the boundary condition ub are
chosen such that

u(x, y) = x y2−y2 exp

(
2 (x− 1)

ε

)
−x exp

(
3 (y − 1)

ε

)
+exp

(
2 (x− 1) + 3 (y − 1)

ε

)
is the exact solution of (1.1). This function has boundary layers at x = 1 and y = 1;
see Figure 7.3.

All three discretizations gave identical errors in ||| · ||| with convergence order 1.00
and in | · |1,h with convergence order 0.50. The reduction of the convergence order

Table 7.5
Example 7.2; comparison between all three discretizations for ε = 10−8.

‖ · ‖0,Ω ‖ · ‖0,∞,h

h aconv
h askewh askewh aconv

h askewh askewh

Pnc
1 Pnc

1 Pmod
1 Pnc

1 Pnc
1 Pmod

1

7.07−2 1.32+0 7.54−1 8.72−2 9.21+0 3.65+0 6.08−1
3.54−2 1.92+0 8.23−1 6.22−2 1.89+1 4.74+0 6.37−1
1.77−2 2.74+0 8.70−1 4.42−2 3.84+1 5.72+0 6.52−1
8.84−3 3.89+0 8.98−1 3.13−2 7.72+1 6.50+0 6.60−1
order −0.50 −0.05 0.50 −1.01 −0.18 −0.02
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Table 7.6
Example 7.2; errors for aconv

h with the Pnc
1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 2.53−2 2.83+0 2.99−2 1.93−1
3.54−2 9.20−4 2.03−1 2.87−3 9.07−3
1.77−2 9.75−5 4.02−2 9.62−4 2.93−4
8.84−3 2.42−5 1.99−2 3.39−4 7.14−5
order 2.01 1.01 1.50 2.04

Table 7.7
Example 7.2; errors for askewh with the Pnc

1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 3.09−1 3.47+1 3.36−1 1.31+0
3.54−2 3.13−1 6.98+1 3.22−1 1.33+0
1.77−2 3.14−1 1.40+2 3.19−1 1.31+0
8.84−3 3.15−1 2.80+2 3.18−1 1.31+0
order 0.00 −1.00 0.00 0.00

Table 7.8
Example 7.2; errors for askewh with the Pmod

1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 1.69−3 3.54−2 1.48−2 1.74−2
3.54−2 4.05−5 8.80−3 2.78−3 4.37−4
1.77−2 8.63−6 4.37−3 9.79−4 2.93−5
8.84−3 2.16−6 2.19−3 3.46−4 7.37−6
order 2.00 1.00 1.50 1.99

is caused by the interpolation error in the boundary layer region since the thickness
of the layers is smaller than h for all triangulations used. The errors in ‖ · ‖0,Ω and
‖ · ‖0,∞,h are shown in Table 7.5. The errors for aconv

h /Pnc
1 increase for decreasing h

and the errors for askewh /Pnc
1 do not change significantly. For askewh /Pmod

1 , the discrete
solution converges in ‖ · ‖0,Ω with order 0.50. Since the boundary layer is not resolved
by the mesh, no convergence is observed in the maximum norm.

The streamline diffusion method with conforming finite element approximations
is known to approximate solutions with layers on nonlayer-adapted meshes at least
outside the layers very precisely. Tables 7.6–7.8 show the behavior of the discrete so-
lutions outside the boundary layers in the domain Ω∗ = (0, 0.8)2. The discretizations
aconv
h /Pnc

1 and askewh /Pmod
1 give optimal convergence orders, but askewh /Pmod

1 is about
10 times more accurate than aconv

h /Pnc
1 in all norms except for ||| · |||. Table 7.7 shows

that the discretization askewh /Pnc
1 is completely useless.

Example 7.3 (inner and boundary layers). We set b = (1/2,
√
3/2), c = 0,

f = 0, and

ub(x, y) =

{
0 for x ≥ 1/2 or y = 1,

1 else.

For ε→ 0, the solution u of (1.1) tends to the function

u0(x, y) =

{
0 for y ≤ √

3 (x− 1/2),

1 else,
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Fig. 7.4. Solution of Example 7.3 for h
.
= 3.54 · 10−2.

which is the solution of the hyperbolic limit of (1.1). Thus, for small ε, the solution u
has an inner layer along the line y =

√
3 (x − 1/2) and boundary layers along y = 1

and x = 1, y >
√
3/2. We consider ε = 10−6 below.

This example does not fit into the theory presented in this paper, particularly
since ub �∈ H3/2(∂Ω). However, it is a challenging test case which can indicate the
quality of numerical methods for solving (1.1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
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1-0.5
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0.5

1

Fig. 7.5. Example 7.3; errors larger than
0.01 for h

.
= 1.77 · 10−2.

Fig. 7.6. Example 7.3; region of errors
larger than 0.1 for h

.
= 8.84 · 10−3.

Figures 7.4–7.6 show results computed using the discrete problem (3.2) with the
Pmod

1 element. Instead of showing the discontinuous solution uh directly, we present a

corresponding conforming function ũh ∈ Ṽconf
h such that the value of ũh at any inner

vertex is equal to the arithmetic mean value of the values of uh at the midpoints of
edges connected with this vertex. The errors of ũh in Figures 7.5 and 7.6 were com-
puted using the limit solution u0. We see that inner and boundary layers are detected
very well and that the method behaves in a robust way, although the assumptions
made in section 1 are not satisfied.

We can conclude that in all numerical tests we have performed, the Pmod
1 element

always led to optimal convergence orders and behaved very robustly with respect to
ε. The accuracy of solutions obtained using the Pmod

1 element was always better than
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for the Pnc
1 element and, moreover, the iterative solver used to compute the discrete

solutions converged much faster for the Pmod
1 element than for discretizations using

the Pnc
1 element. Thus, the Pmod

1 element not only improves the stability of the
discrete solution but also the convergence properties of the solver.
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