Analysis of algebraic flux correction schemes

Petr Knobloch Charles University, Prague

joint work with

Gabriel R. Barrenechea (Glasgow) Volker John (Berlin)

Czech–Japanese Seminar in Applied Mathematics 2018 Noto-cho, July 13–16, 2018

Outline

- algebraic flux correction scheme for a steady-state convection—diffusion—reaction equation
- formulation as edge-based stabilization
- theoretical analysis under general assumptions: solvability, discrete maximum principle, error estimates
- examples of limiters
- numerical results

Stabilization

Problem for a PDE containing a wide range of scales \Rightarrow Galerkin FEM fails unless all scales are resolved.

Resolution of all scales typically not affordable.

Remedy: modification of the Galerkin FEM (stabilization)

- 1) in the integral form
- 2) on the algebraic level (goal: conservation & DMP)

Algebraically stabilized schemes

Boris, Book (1973), Zalesak (1979) – basic philosophy of flux-corrected transport

Arminjon, Dervieux (1989), Selmin (1987), Löhner, Morgan, Peraire, Vahdati (1987) – FEM-FCT

Kuzmin et al. (2001–now) – algebraic flux correction
– algebraic stabilizations for linear boundary value problems

first rigorous theoretical analysis of the AFC method: Barrenechea, John, K. (IMAJNA 2015, SINUM 2016, M3AS 2017)

a unified framework:

Barrenechea, John, K., Rankin (SeMA 2018)

Steady-state convection-diffusion-reaction equation

$$-\varepsilon \Delta u + \mathbf{b} \cdot \nabla u + c \, u = f \quad \text{in } \Omega, \qquad u = u_b \quad \text{on } \partial \Omega$$

with constant $\varepsilon > 0$ and

$$\nabla \cdot \mathbf{b} = 0, \qquad c \ge \sigma_0 \ge 0 \qquad \text{in } \Omega.$$

FE discretization

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h,$$

where

$$W_h = \{ v_h \in C(\overline{\Omega}) ; v|_K \in P_1(K) \forall K \in \mathscr{T}_h \}, \qquad V_h = W_h \cap H_0^1(\Omega),$$
$$a(u_h, v_h) = \varepsilon (\nabla u_h, \nabla v_h) + (\mathbf{b} \cdot \nabla u_h, v_h) + (c u_h, v_h).$$

Algebraic problem

$$\sum_{j=1}^{N} a_{ij} u_j = f_i, \qquad i = 1, \dots, M,$$
$$u_i = u_i^b, \qquad i = M + 1, \dots, N.$$

Algebraic problem

$$\sum_{j=1}^{N} a_{ij} u_j = f_i, \qquad i = 1, \dots, M,$$
$$u_i = u_i^b, \qquad i = M + 1, \dots, N.$$

Properties: $(a_{ij})_{i,j=1}^{M}$ is positive definite,

$$\sum_{j=1}^N a_{ij} \ge 0 \quad \forall \ i = 1, \dots, M$$

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Symmetric artificial diffusion matrix \mathbb{D} :

$$d_{ij} = -\max\{a_{ij}, 0, a_{ji}\}$$
 $\forall i \neq j,$ $d_{ii} = -\sum_{j \neq i} d_{ij}.$

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Symmetric artificial diffusion matrix \mathbb{D} :

 $d_{ij} = -\max\{a_{ij}, 0, a_{ji}\} \qquad \forall i \neq j,$

 \Rightarrow $\mathbb{A} + \mathbb{D}$ satisfies conditions for DMP

Stabilized problem: $(\mathbb{A} U)_i + (\mathbb{D} U)_i = f_i$, $i = 1, \dots, M$,

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Symmetric artificial diffusion matrix \mathbb{D} :

 $d_{ij} = -\max\{a_{ij}, 0, a_{ji}\} \qquad \forall i \neq j, \qquad d_{ii} = -\sum d_{ij}.$

 \Rightarrow $\mathbb{A} + \mathbb{D}$ satisfies conditions for DMP

Stabilized problem: $(\mathbb{A} U)_i + (\mathbb{D} U)_i = f_i, \quad i = 1, \dots, M,$ $(\mathbb{D} U)_i = \sum_{j \neq i} f_{ij} \quad \text{with} \quad f_{ij} = d_{ij} (u_j - u_i).$

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Symmetric artificial diffusion matrix \mathbb{D} :

 $d_{ij} = -\max\{a_{ij}, 0, a_{ji}\} \qquad \forall i \neq j,$

 \Rightarrow $\mathbb{A} + \mathbb{D}$ satisfies conditions for DMP

Stabilized problem: $(\mathbb{A} U)_i + (\mathbb{D} U)_i = f_i$, i = 1, ..., M, $(\mathbb{D} U)_i = \sum_{j \neq i} f_{ij}$ with $f_{ij} = d_{ij} (u_j - u_i)$.

Limiting: limit the diffusive fluxes f_{ij} to reduce smearing

Aim: manipulate the algebraic system in such a way that the solution satisfies DMP and layers are not smeared.

 $\mathbb{A} = (a_{ij})_{i,j=1}^N$... FE matrix for homogeneous natural b.c.

Symmetric artificial diffusion matrix \mathbb{D} :

 $d_{ij} = -\max\{a_{ij}, 0, a_{ji}\} \qquad \forall i \neq j,$

 \Rightarrow $\mathbb{A} + \mathbb{D}$ satisfies conditions for DMP

Stabilized problem: $(\mathbb{A} U)_i + (\mathbb{D} U)_i = f_i, \quad i = 1, \dots, M,$ $(\mathbb{D} U)_i = \sum_{j \neq i} f_{ij} \text{ with } f_{ij} = d_{ij} (u_j - u_i).$

Limiting: limit the diffusive fluxes f_{ij} to reduce smearing $(\mathbb{A} U)_i + \sum_{j \neq i} \beta_{ij} f_{ij} = f_i, \quad i = 1, \dots, M, \quad \beta_{ij} \in [0, 1].$

$$\sum_{j=1}^{N} a_{ij} u_j + \sum_{j=1}^{N} \beta_{ij}(\mathbf{U}) d_{ij} (u_j - u_i) = f_i, \qquad i = 1, \dots, M,$$
$$u_i = u_i^b, \qquad i = M + 1, \dots, N,$$

where $\beta_{ij}(U) \in [0,1]$ and

$$\beta_{ij} = \beta_{ji}, \qquad i, j = 1, \ldots, N.$$

$$\sum_{j=1}^{N} a_{ij} u_j + \sum_{j=1}^{N} \beta_{ij}(\mathbf{U}) d_{ij} (u_j - u_i) = f_i, \qquad i = 1, \dots, M,$$
$$u_i = u_i^b, \qquad i = M + 1, \dots, N,$$

where $\beta_{ij}(U) \in [0,1]$ and

$$\beta_{ij} = \beta_{ji}, \quad i, j = 1, \ldots, N.$$

Variational form of the AFC scheme

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a(u_h, v_h) + d_h(u_h; u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h$$

,

where

$$d_h(z; v, w) = \sum_{i,j=1}^N \beta_{ij}(z) \, d_{ij} \, (v(x_j) - v(x_i)) \, w(x_i)$$

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a_h(u_h; u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h,$$

where
$$a_h(z; v, w) = a(v, w) + d_h(z; v, w)$$
 and

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| (v(x_{E,1}) - v(x_{E,2})) (w(x_{E,1}) - w(x_{E,2})).$$

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a_h(u_h; u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h,$$

where
$$a_h(z; v, w) = a(v, w) + d_h(z; v, w)$$
 and

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| (v(x_{E,1}) - v(x_{E,2})) (w(x_{E,1}) - w(x_{E,2})).$$

One has

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| h_E (\nabla v \cdot \mathbf{t}_E, \nabla w \cdot \mathbf{t}_E)_E \qquad \forall v, w \in W_h.$$

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a_h(u_h; u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h,$$

where
$$a_h(z; v, w) = a(v, w) + d_h(z; v, w)$$
 and

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| (v(x_{E,1}) - v(x_{E,2})) (w(x_{E,1}) - w(x_{E,2})).$$

One has

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| h_E (\nabla v \cdot \mathbf{t}_E, \nabla w \cdot \mathbf{t}_E)_E \qquad \forall v, w \in W_h.$$

Assumption (A1):

For any $E \in \mathscr{E}_h$, the function $\beta_E(u_h)(\nabla u_h)|_E \cdot \mathbf{t}_E$ is a continuous function of $u_h \in V_h$.

Find $u_h \in W_h$ such that $u_h(x_i) = u_b(x_i)$, i = M + 1, ..., N, and

$$a_h(u_h; u_h, v_h) = (f, v_h) \qquad \forall v_h \in V_h,$$

where
$$a_h(z; v, w) = a(v, w) + d_h(z; v, w)$$
 and

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| \left(v(x_{E,1}) - v(x_{E,2}) \right) \left(w(x_{E,1}) - w(x_{E,2}) \right).$$

One has

$$d_h(z;v,w) = \sum_{E \in \mathscr{E}_h} \beta_E(z) |d_E| h_E (\nabla v \cdot \mathbf{t}_E, \nabla w \cdot \mathbf{t}_E)_E \qquad \forall v, w \in W_h.$$

Theorem For any $\beta_E \in [0, 1]$ satisfying Assumption (A1), the edge-based AFC scheme has a solution.

Discrete maximum principle

Local sets for i = 1, ..., M: $S_i = \{j \in \{1, ..., N\} \setminus \{i\}; x_i \text{ and } x_j \text{ are endpoints of the same edge}\}$ $\Delta_i = \{K \in \mathscr{T}_h; x_i \in K\}$

Assumption (A2):

Consider any $u_h \in W_h$ and any $i \in \{1, ..., M\}$. If $u_h(x_i)$ is a strict local extremum of u_h on Δ_i , i.e.,

$$u_h(x_i) > u_h(x) \quad \forall x \in \Delta_i \setminus \{x_i\}$$

or

$$u_h(x_i) < u_h(x) \quad \forall x \in \Delta_i \setminus \{x_i\},$$

then

$$a_h(u_h; \varphi_j, \varphi_i) \leq 0 \qquad \forall \ j \in S_i.$$

Local discrete maximum principle

Let $u_h \in W_h$ be a solution of the AFC scheme with limiters β_E satisfying Assumption (A2). Consider any $i \in \{1, ..., M\}$. Then

$$f \leq 0 ext{ in } \Delta_i \quad \Rightarrow \quad \max_{\Delta_i} u_h \leq \max_{\partial \Delta_i} u_h^+,$$

 $f \geq 0 ext{ in } \Delta_i \quad \Rightarrow \quad \min_{\Delta_i} u_h \geq \min_{\partial \Delta_i} u_h^-,$

where $u_h^+ = \max\{0, u_h\}$ and $u_h^- = \min\{0, u_h\}$. If, in addition, c = 0 in Δ_i , then

$$f \leq 0 \text{ in } \Delta_i \quad \Rightarrow \quad \max_{\Delta_i} u_h = \max_{\partial \Delta_i} u_h,$$

 $f \geq 0 \text{ in } \Delta_i \quad \Rightarrow \quad \min_{\Delta_i} u_h = \min_{\partial \Delta_i} u_h.$

Global discrete maximum principle

Let $u_h \in W_h$ be a solution of the AFC scheme with limiters β_E satisfying Assumptions (A1) and (A2). Then

$$f \leq 0 \text{ in } \Omega \implies \max_{\overline{\Omega}} u_h \leq \max_{\partial \Omega} u_h^+,$$

 $f \geq 0 \text{ in } \Omega \implies \min_{\overline{\Omega}} u_h \geq \min_{\partial \Omega} u_h^-.$

If, in addition, c = 0 in Ω , then

$$f \leq 0 \text{ in } \Omega \quad \Rightarrow \quad \max_{\overline{\Omega}} u_h = \max_{\partial \Omega} u_h,$$
$$f \geq 0 \text{ in } \Omega \quad \Rightarrow \quad \min_{\overline{\Omega}} u_h = \min_{\partial \Omega} u_h.$$

A priori error estimates

Natural norm:
$$||v||_h = \left(\varepsilon |v|_{1,\Omega}^2 + \sigma_0 ||v||_{0,\Omega}^2 + d_h(u_h;v,v) \right)^{1/2}$$

Theorem Let $u \in H^2(\Omega)$ and $\sigma_0 > 0$. Then

$$\|u - u_h\|_h \le C \left(\varepsilon + \sigma_0^{-1} \{ \|\mathbf{b}\|_{0,\infty,\Omega}^2 + \|c\|_{0,\infty,\Omega}^2 h^2 \} \right)^{1/2} h \|u\|_{2,\Omega}$$

$$+ d_h (u_h; i_h u, i_h u)^{1/2} .$$

A priori error estimates

Natural norm:
$$||v||_h = \left(\varepsilon |v|_{1,\Omega}^2 + \sigma_0 ||v||_{0,\Omega}^2 + d_h(u_h;v,v) \right)^{1/2}$$

Theorem Let $u \in H^2(\Omega)$ and $\sigma_0 > 0$. Then

$$\|u - u_h\|_h \le C \left(\varepsilon + \sigma_0^{-1} \{ \|\mathbf{b}\|_{0,\infty,\Omega}^2 + \|c\|_{0,\infty,\Omega}^2 h^2 \} \right)^{1/2} h \|u\|_{2,\Omega}$$

$$+ d_h (u_h; i_h u, i_h u)^{1/2} .$$

1-

Lemma Denoting

$$A_h = \max_{E \in \mathscr{E}_h} \left(\left| d_E \right| h_E^{2-d} \right),$$

one has

$$d_h(u_h; i_h u, i_h u) \leq CA_h |i_h u|_{1,\Omega}^2 \qquad \forall u_h \in W_h, u \in C(\overline{\Omega}).$$

If, in particular, d_E are defined as at the beginning, then

$$d_h(u_h; i_h u, i_h u) \leq C(\varepsilon + \|\mathbf{b}\|_{0,\infty,\Omega} h + \|c\|_{0,\infty,\Omega} h^2) |i_h u|_{1,\Omega}^2.$$

An improved estimate

Assumption (A3):

The limiters β_E possess the linearity-preservation property, i.e.,

$$\beta_E(u_h) = 0$$
 if $u_h|_{\omega_E} \in P_1(\omega_E)$ $\forall E \in \mathscr{E}_h$.

Assumption (A4):

For any $E \in \mathscr{E}_h$ with endpoints x_i and x_j , the function $\beta_E(u_h)(\nabla u_h)|_E \cdot \mathbf{t}_E$ is Lipschitz continuous in the sense that $|\beta_E(u_h)(\nabla u_h)|_E \cdot \mathbf{t}_E - \beta_E(v_h)(\nabla v_h)|_E \cdot \mathbf{t}_E|$ $\leq C \sum_{E' \in \mathscr{E}_i \cup \mathscr{E}_i} |(\nabla(u_h - v_h))|_{E'} \cdot \mathbf{t}_{E'}|.$

An improved estimate

Assumption (A3):

The limiters β_E possess the linearity-preservation property, i.e.,

$$\beta_E(u_h) = 0$$
 if $u_h|_{\omega_E} \in P_1(\omega_E)$ $\forall E \in \mathscr{E}_h$.

Assumption (A4):

For any $E \in \mathscr{E}_h$ with endpoints x_i and x_j , the function $\beta_E(u_h)(\nabla u_h)|_E \cdot \mathbf{t}_E$ is Lipschitz continuous in the sense that $|\beta_E(u_h)(\nabla u_h)|_E \cdot \mathbf{t}_E - \beta_E(v_h)(\nabla v_h)|_E \cdot \mathbf{t}_E|$ $\leq C \sum_{E' \in \mathscr{E}_i \cup \mathscr{E}_i} |(\nabla(u_h - v_h))|_{E'} \cdot \mathbf{t}_{E'}|.$

Lemma Under Assumptions (A3) and (A4) one has

$$d_h(u_h; i_h u, i_h u) \leq \frac{\varepsilon}{2} |u_h - i_h u|_{1,\Omega}^2 + C \frac{A_h^2}{\varepsilon} |i_h u|_{1,\Omega}^2 + \varepsilon h^2 |u|_{2,\Omega}^2.$$

Kuzmin's limiter

Zalesak (1979), Kuzmin (2007)

Kuzmin's limiter

Zalesak (1979), Kuzmin (2007)

$$\begin{split} P_{i}^{+} &:= \sum_{j=1}^{N} f_{ij}^{+}, \quad Q_{i}^{+} := -\sum_{j=1}^{N} f_{ij}^{-}, \quad R_{i}^{+} := \min\left\{1, \frac{Q_{i}^{+}}{P_{i}^{+}}\right\}, \\ P_{i}^{-} &:= \sum_{j=1}^{N} f_{ij}^{-}, \quad Q_{i}^{-} := -\sum_{j=1}^{N} f_{ij}^{+}, \quad R_{i}^{-} := \min\left\{1, \frac{Q_{i}^{-}}{P_{i}^{-}}\right\}. \\ a_{ji} &\leq a_{ij} & f_{ij} = d_{ij} (u_{j} - u_{i}) \\ \widetilde{\alpha}_{ij} &:= \begin{cases} R_{i}^{+} & \text{if } f_{ij} > 0, \\ 1 & \text{if } f_{ij} = 0, \\ R_{i}^{-} & \text{if } f_{ij} < 0, \end{cases} \quad \beta_{E} := \begin{cases} 1 - \widetilde{\alpha}_{ij} & \text{if } a_{ji} \leq a_{ij}, \\ 1 - \widetilde{\alpha}_{ji} & \text{else.} \end{cases} \end{split}$$

Assumption (A2) satisfied if $\min\{a_{ij}, a_{ji}\} \le 0 \quad \forall i, j \in \{1, \dots, N\}$

Kuzmin's limiter

Zalesak (1979), Kuzmin (2007)

$$\begin{split} P_{i}^{+} &:= \sum_{j=1}^{N} f_{ij}^{+}, \quad Q_{i}^{+} := -\sum_{j=1}^{N} f_{ij}^{-}, \quad R_{i}^{+} := \min\left\{1, \frac{Q_{i}^{+}}{P_{i}^{+}}\right\}, \\ P_{i}^{-} &:= \sum_{j=1}^{N} f_{ij}^{-}, \quad Q_{i}^{-} := -\sum_{j=1}^{N} f_{ij}^{+}, \quad R_{i}^{-} := \min\left\{1, \frac{Q_{i}^{-}}{P_{i}^{-}}\right\}. \\ a_{ji} &\leq a_{ij} & f_{ij} = d_{ij} (u_{j} - u_{i}) \\ \widetilde{\alpha}_{ij} &:= \begin{cases} R_{i}^{+} & \text{if } f_{ij} > 0, \\ 1 & \text{if } f_{ij} = 0, \\ R_{i}^{-} & \text{if } f_{ij} < 0, \end{cases} \quad \beta_{E} := \begin{cases} 1 - \widetilde{\alpha}_{ij} & \text{if } a_{ji} \leq a_{ij}, \\ 1 - \widetilde{\alpha}_{ji} & \text{else.} \end{cases} \end{split}$$

Assumption (A2) satisfied if $\min\{a_{ij}, a_{ji}\} \le 0 \quad \forall i, j \in \{1, \dots, N\}$

⇒ DMP guranteed for Delaunay meshes for lumped react. term ... and often holds on non-Delaunay meshes!!!

BJK limiter Kuzmin (2012), Barrenechea, John, K. (2016)

$$u_i^{\max} := \max_{j \in S_i \cup \{i\}} u_j, \qquad u_i^{\min} := \min_{j \in S_i \cup \{i\}} u_j, \qquad q_i := \gamma_i \sum_{j \in S_i} d_{ij},$$
$$P_i^+ := \sum_{j \in S_i} f_{ij}^+, \qquad Q_i^+ := q_i \left(u_i - u_i^{\max} \right), \qquad R_i^+ := \min \left\{ 1, \frac{Q_i^+}{P_i^+} \right\},$$

$$P_i^- := \sum_{j \in S_i} f_{ij}^-, \quad Q_i^- := q_i \left(u_i - u_i^{\min} \right), \quad R_i^- := \min \left\{ 1, \frac{Q_i^-}{P_i^-} \right\},$$

$$\widetilde{\alpha}_{ij} := \begin{cases} R_i^+ & \text{if } f_{ij} > 0, \\ 1 & \text{if } f_{ij} = 0, \\ R_i^- & \text{if } f_{ij} < 0, \end{cases} \qquad \qquad \beta_E := 1 - \min\{\widetilde{\alpha}_{ij}, \widetilde{\alpha}_{ji}\}.$$

BJK limiter Kuzmin (2012), Barrenechea, John, K. (2016)

$$u_i^{\max} := \max_{j \in S_i \cup \{i\}} u_j, \qquad u_i^{\min} := \min_{j \in S_i \cup \{i\}} u_j, \qquad q_i := \gamma_i \sum_{j \in S_i} d_{ij},$$
$$P_i^+ := \sum_{j \in S_i} f_{ij}^+, \qquad Q_i^+ := q_i \left(u_i - u_i^{\max} \right), \qquad R_i^+ := \min \left\{ 1, \frac{Q_i^+}{P_i^+} \right\},$$

$$P_i^- := \sum_{j \in S_i} f_{ij}^-, \quad Q_i^- := q_i \left(u_i - u_i^{\min} \right), \quad R_i^- := \min \left\{ 1, \frac{Q_i^-}{P_i^-} \right\},$$

$$\widetilde{\alpha}_{ij} := \begin{cases} R_i^+ & \text{if } f_{ij} > 0, \\ 1 & \text{if } f_{ij} = 0, \\ R_i^- & \text{if } f_{ij} < 0, \end{cases} \qquad \qquad \beta_E := 1 - \min\{\widetilde{\alpha}_{ij}, \widetilde{\alpha}_{ji}\}.$$

Assumption (A2) always satisfied⇒ DMP guranteed for arbitrary meshes!

Validity of Assumption (A3) (linearity preservation)

Kuzmin's limiter: only for $\mathbf{b} = \text{const.}$ and special meshes (e.g., Friedrichs–Keller)

BJK limiter:

for arbitrary meshes if

$$\gamma_i = \frac{\max_{x_j \in \partial \Delta_i} |x_i - x_j|}{\operatorname{dist}(x_i, \partial \Delta_i^{\operatorname{conv}})}, \qquad i = 1, \dots, M$$

Validity of Assumption (A3) (linearity preservation)

Kuzmin's limiter: only for $\mathbf{b} = \text{const.}$ and special meshes (e.g., Friedrichs–Keller)

BJK limiter: for arbitrary meshes if

$$\gamma_i = \frac{\max_{x_j \in \partial \Delta_i} |x_i - x_j|}{\operatorname{dist}(x_i, \partial \Delta_i^{\operatorname{conv}})}, \qquad i = 1, \dots, M$$

Improved error estimate on special meshes

$$\|u-u_h\|_h \leq Ch \|u\|_{2,\Omega} + C \frac{h}{\sqrt{\varepsilon}} |i_h u|_{1,\Omega}$$

Example 1 (polynomial solution)

$$\Omega = (0,1)^2$$
, $\mathbf{b} = (3,2)$, $c = 1$, $u_b = 0$.

The right-hand side f is chosen such that, for given ε ,

$$u(x,y) = 100x^{2}(1-x)^{2}y(1-y)(1-2y)$$

is the exact solution.

Example 1, Kuzmin's limiter, $\varepsilon = 10^{-8}$

ne	$\ e_h\ _{0,\Omega}$	ord.	$ e_h _{1,\Omega}$	ord.	$d_h^{1/2}(u_h)$	ord.
32	5.457e-3	1.85	2.287e-1	1.10	1.163e-2	2.11
64	1.408e-3	1.95	1.074e-1	1.09	2.683e-3	2.12
128	3.493e-4	2.01	5.113e-2	1.07	6.410e-4	2.07
256	8.652e-5	2.01	2.546e-2	1.01	1.633e-4	1.97
512	2.152e-5	2.01	1.321e-2	0.95	4.099e-5	1.99
1024	5.357e-6	2.01	6.822e-3	0.95	1.018e-5	2.01

Non-Delaunay meshes

Example 1, Kuzmin's limiter, $\varepsilon = 10$ (non-Delaunay mesh)

ne	$\ e_h\ _{0,\Omega}$	ord.	$ e_h _{1,\Omega}$	ord.	$\left\ e_{h} ight\ _{h}$	ord.
16	5.637e-2	0.22	6.741e-1	0.41	2.626e+0	0.24
32	5.385e-2	0.07	5.908e-1	0.19	2.437e+0	0.11
64	5.332e-2	0.01	5.661e-1	0.06	2.380e+0	0.03
128	5.321e-2	0.00	5.593e-1	0.02	2.363e+0	0.01
256	5.319e-2	0.00	5.575e-1	0.00	2.358e+0	0.00
512	5.320e-2	0.00	5.570e-1	0.00	2.356e+0	0.00

Example 1, BJK limiter, $\varepsilon = 10$ (non-Delaunay mesh)

ne	$\ e_h\ _{0,\Omega}$	ord.	$ e_h _{1,\Omega}$	ord.	$\left\ e_{h} ight\ _{h}$	ord.
16	1.786e-2	1.74	4.726e-1	0.87	1.522e+0	0.88
32	4.218e-3	2.08	2.404e-1	0.98	7.633e-1	1.00
64	1.016e-3	2.05	1.213e-1	0.99	3.841e-1	0.99
128	2.545e-4	2.00	6.082e-2	1.00	1.924e-1	1.00
256	6.439e-5	1.98	3.045e-2	1.00	9.632e-2	1.00
512	1.628e-5	1.98	1.524e-2	1.00	4.819e-2	1.00

Example 2 (interior layer and exponential boundary layers)

$$\varepsilon = 10^{-8}$$
$$|\mathbf{b}| = 1$$
$$c = 0$$
$$f = 0$$

Example 2, BJK limiter

Example 2, BJK limiter

Example 3 (P. Hemker's problem)

u = 0

Example 3, Grid 1 (left) and Grid 2 (right), both level 0

Example 3, width of the interior layer at x = 4

Example 3, level 3 (~ 10000 dofs), errors along x = 4

Example 3, level 5 (\sim 150000 **dofs), errors along** *x* = 4

Conclusions

- unified theoretical analysis for algebraic flux correction schemes applied to convection–diffusion–reaction equations
- theory applicable to various limiters
- properties of the limiters illustrated by numerical results