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Preface

The analysis of singular perturbed differential equations began early in the
twentieth century, when approximate solutions were constructed from asymp-
totic expansions. (Preliminary attempts appear in the nineteenth century –
see [vD94].) This technique has flourished since the mid-1960s and its principal
ideas and methods are described in several textbooks; nevertheless, asymp-
totic expansions may be impossible to construct or may fail to simplify the
given problem and then numerical approximations are often the only option.

The systematic study of numerical methods for singular perturbation prob-
lems started somewhat later – in the 1970s. From this time onwards the re-
search frontier has steadily expanded, but the exposition of new developments
in the analysis of these numerical methods has not received its due attention.
The first textbook that concentrated on this analysis was [DMS80], which
collected various results for ordinary differential equations. But after 1980
no further textbook appeared until 1996, when three books were published:
Miller et al. [MOS96], which specializes in upwind finite difference methods
on Shishkin meshes, Morton’s book [Mor96], which is a general introduction
to numerical methods for convection-diffusion problems with an emphasis on
the cell-vertex finite volume method, and [RST96], the first edition of the
present book. Nevertheless many methods and techniques that are important
today, especially for partial differential equations, were developed after 1996.
To give some examples, layer-adapted special meshes are frequently used,
new stabilization techniques (such as discontinuous Galerkin methods and lo-
cal subspace projections) are prominent, and there is a growing interest in
the use of adaptive methods. Consequently contemporary researchers must
comb the literature to gain an overview of current developments in this active
area. In this second edition we retain the exposition of basic material that
underpinned the first edition while extending its coverage to significant new
numerical methods for singularly perturbed differential equations.

Our purposes in writing this introductory book are twofold. First, we
present a structured and comprehensive account of current ideas in the nu-
merical analysis of singularly perturbed differential equations. Second, this
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important area has many open problems and we hope that our book will
stimulate their investigation. Our choice of topics is inevitably personal and
reflects our own main interests.

We have learned a great deal about singularly perturbed problems from
other researchers. We thank those colleagues who helped and influenced
us; these include V.B. Andreev, A.E. Berger, P.A. Farrell, A. Felgenhauer,
E.C. Gartland, Ch. Großmann, A.F. Hegarty, V. John, R.B. Kellogg,
N. Kopteva, G. Lube, N. Madden, G. Matthies, J.J.H. Miller, K.W. Morton,
F. Schieweck, G.I. Shishkin, E. Süli, and R. Vulanović; in particular Herbert
Goering and Eugene O’Riordan guided our initial steps in the area. Our re-
search colleague T. Linß deserves additional thanks for providing many of the
figures in this book.

Our work was supported by the Deutsche Forschungsgemeinschaft and by
the Boole Centre for Research in Informatics at the National University of
Ireland, Cork. We are grateful to them, to the Mathematisches Forschungsin-
stitut in Oberwolfach for its hospitality, and to Springer-Verlag for its coop-
eration.
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Notation

I identity
L differential operator
L∗ adjoint operator
a(·, ·) bilinear form
g, G Green’s function
V, V ∗ Banach space and the corresponding dual space
Vh finite-dimensional subspace of V
|| · ||V norm on the space V
|| · ||∗,d discrete version of the norm || · ||∗
r · s scalar product of vectors in Rd

(·, ·) scalar product in Hilbert space
f(v) or 〈f, v〉 functional f applied to v
||f ||∗ norm of the functional f
U →֒ V continuous embedding of U in V
Ω given space variable(s) domain
∂Ω = Γ boundary of Ω
meas (Ω) measure of Ω
n outward-pointing unit vector normal to ∂Ω
t, T time with t ∈ (0, T )
Q = Ω × (0, T ) given domain for nonstationary problems
Cl(Ω), Cl,α(Ω) function spaces
Lp(Ω) function space, 1 ≤ p ≤ ∞
|| · ||0,p norm in Lp(Ω)
|| · ||Lp,d discrete norm in Lp(Ω)
Wm,p(Ω), ‖ · ‖m,p,Ω Sobolev spaces and their norms
H l(Ω), H l

0(Ω) Sobolev spaces W 1,2(Ω)
|| · ||l, | · |l norm and seminorm in H l(Ω)
|| · ||l,E H l-norm restricted to E ⊂ Ω
ε singular perturbation parameter
C generic constant, independent of ε



XIV Notation

|| · ||ε ε-weighted H1(Ω) norm
|| · ||gr graph norm
∇ or grad gradient
div, div c = ∇ · c divergence operator
O(·), o(·) Landau symbols
Pr polynomials of degree at most r
P disc

r piecewise polynomials of degree at most r, discontinu-
ous across element boundaries

Qr products of polynomials of degree at most r
Qdisc

r products of polynomials of degree at most r, discon-
tinuous across element boundaries

h, hi mesh parameter in space
τ, τj mesh parameter in time
Lh difference operator
D+, D−, D0 difference quotients
△,△h Laplacian and its discretization
ωh, Ωh set of meshpoints

u, uh, ui, u
j
i , uij unknown(s)

u0 reduced solution
Ih interpolation operator
uI = Ih u nodal interpolant of u
πhu, Πhu, ihu quasi-interpolant of u, defined for non-smooth func-

tions u
mesh-dependent norms are written with three vertical lines: ||| · ‖|

||| · |||SD norm used in streamline diffusion finite element
method

||| · |||CIP norm used in continuous interior penalty finite element
method

||| · |||LPS norm used in local projection stabilization finite ele-
ment method

||| · |||dG norm used in discontinuous Galerkin finite element
method

||| · |||GLS norm used in the Galerkin least-squares finite element
method



Introduction

Imagine a river – a river flowing strongly and smoothly. Liquid pollution pours
into the water at a certain point. What shape does the pollution stain form
on the surface of the river?

Two physical processes operate here: the pollution diffuses slowly through
the water, but the dominant mechanism is the swift movement of the river,
which rapidly convects the pollution downstream. Convection alone would
carry the pollution along a one-dimensional curve on the surface; diffusion
gradually spreads that curve, resulting in a long thin curved wedge shape.

When convection and diffusion are both present in a linear differential
equation and convection dominates, we have a convection-diffusion problem.

The simplest mathematical model of a convection-diffusion problem is a
two-point boundary value problem of the form

−εu′′(x) + a(x)u′(x) + b(x)u(x) = f(x) for 0 < x < 1,

with u(0) = u(1) = 0, where ε is a small positive parameter and a, b and f
are some given functions. Here the term u′′ corresponds to diffusion and its
coefficient −ε is small. The term u′ represents convection, while u and f play
the rôles of a source and driving term respectively. (Spriet and Vansteenkiste
[SV82] explain why diffusion and convection should be modelled by second-
order and first-order derivatives respectively.)

Example 0.1. Consider the problem

−εu′′(x) + u′(x) = 1 for 0 < x < 1, (0.1)

with u(0) = u(1) = 0 and 0 < ε ≪ 1.
Suppose that we set formally ε = 0 here. This yields

u′(x) = 1 for 0 < x < 1, (0.2)

with u(0) = u(1) = 0. Unlike (0.1) this problem has no solution in C1[0, 1].
We infer that when ε is near zero, the solution of (0.1) is badly behaved in
some way. ♣
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Problems like (0.1) form the subject matter of this book. They are differen-
tial equations (ordinary or partial) that depend on a small positive parameter
ε and whose solutions (or their derivatives) approach a discontinuous limit as
ε approaches zero. Such problems are said to be singularly perturbed, where
we regard ε as a perturbation parameter. In more technical terms, one cannot
represent the solution of a singularly perturbed differential equation as an
asymptotic expansion in powers of ε.

The solutions of singular perturbation problems typically contain layers.
Ludwig Prandtl introduced the terminology boundary layer at the Third Inter-
national Congress of Mathematicians in Heidelberg in 1904. (Prandtl’s paper,
“Über Flüssigkeitsbewegung bei sehr kleiner Reibung”, is one of the most in-
fluential applied mathematics papers of the 20th century.) To see how such
layers arise, consider the following time-dependent Navier-Stokes problem in
two space variables x and y:

∂u

∂t
− 1

Re
△u + (u · ∇)u = −∇ p in the upper half-plane y > 0, (0.3a)

∇ · u = 0 in the same domain, (0.3b)

u = 0 on the boundary y = 0, (0.3c)

at large Reynolds number Re. One can regard the boundary y = 0 as a fixed
plate, and we assume that the velocity u at y = ∞ is parallel to the x-axis
with magnitude U . We seek a flow, at constant pressure p, whose velocity is
parallel to the plate and independent of x. Then equation (0.3a) reduces to

∂u

∂t
= ε

∂2u

∂y2
, where ε =

1

Re
.

Set η = y/(2
√

εt) and let u(y, t) = U f(η). A computation leads to

u = 2U erf(η), where erf(η) =
1√
π

∫ η

0

e−s2

ds. (0.4)

Equation (0.4) shows that there is a narrow region near y = 0 where u departs
significantly from the constant flow U . We say that u has a boundary layer at
y = 0. See [CM93] for a detailed discussion. Linearization of (0.3) yields an
equation of the form

∂u

∂t
− ε△u + b · ∇u + cu = f,

where b is independent of u. Such convection-diffusion equations model many
fluid flows [Hir88, KL04]; they appear in the well-known Oseen equations and
in related subjects like water pollution problems [REI+07], simulation of oil
extraction from underground reservoirs [Ewi83], flows in chemical reactors
[Alh07] and convective heat transport problems with large Péclet numbers
[Jak59].

Of course, convection-diffusion equations do not arise only in fluid flows;
the next illustration comes from semiconductor device simulation.
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Example 0.2. The “continuity equation” for electrons [PHSM87] in a steady-
state scaled model of a one-dimensional semiconductor – with several simpli-
fying assumptions – is

d2n

dx2
− d

dx

[
n

d

dx
(ψ + log n)

]
= 0, (0.5)

where the unknown function n is the electron concentration, and ψ (which
is computed from another part of the model) is the electrostatic potential.
Now dψ/dx is typically very large (perhaps 105) on part of its domain (see
[PHSM87, Figure 2]), so the unit coefficient of the diffusion term d2n/dx2 will
be dominated there by the convection term coefficient. That is, equation (0.5)
is a convection-diffusion problem. ♣

Singularly perturbed differential equations appear in several branches of
applied mathematics. (We have seen only two examples, albeit significant
ones.) The analysis and numerical solution of convection-diffusion problems
deservedly attracts substantial attention.

In this book, we discuss the nature of solutions of various singularly per-
turbed differential equations before presenting methods for their numerical
solution. Thus Part I begins with an exposition of the technique of matched
asymptotic expansions, which is then used to examine various classes of two-
point boundary value problems. In Part II we move on to time-dependent
problems with one space dimension. Elliptic and parabolic problems in several
space dimensions come in Part III. Finally, Part IV discusses finite element
methods for a significant applied model: the Navier-Stokes equations.

If any discretization technique is applied to a parameter-dependent prob-
lem, then the behaviour of the discretization depends on the parameter.
For singularly perturbed problems, conventional techniques often lead to dis-
cretizations that are worthless if the singular perturbation parameter is close
to some critical value. We are interested in robust methods that work for all
values of the singular perturbation parameter. We therefore track carefully
the dependence on this parameter of those constants that arise in consistency,
stability and error estimates. Thus the philosophy of this book emphasizes
realistic error estimates. This contrasts sharply with much published research
whose analysis ignores the effect of parameter dependence. There is a growing
awareness of the dangers of this neglect; in the particular case of the incom-
pressible Navier-Stokes equations, Johnson, Rannacher and Boman [JRB95a]
observe that existing analyses often contain constants that depend on exp(Re),
where Re is the Reynolds number, and conclude that “in the majority of cases
of interest, the existing error analysis has no meaning”. We hope that the
careful approach that is followed here will provide a serviceable foundation
for future work.

Discretization leads to a linear or nonlinear system of equations with a
large number of unknowns. Iterative methods are commonly used to solve
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these systems. It is important to realize that these solvers, like the underly-
ing discretization, should be robust with respect to the singular perturbation
parameter. The discretization of a convection-diffusion problem usually pro-
duces a nonsymmetric system of equations and this asymmetry complicates
the linear algebra analysis. No attempt is made in this book to discuss these
issues; instead the recent textbook of Elman, Silvester and Wathen [ESW05]
is recommended.

In general standard notation is used for function spaces, norms, etc. (see
the notation list on page XIII), but two special conventions should be noted.
First, the unknown u in a singular perturbation problem depends, of course,
on the perturbation parameter ε. While one must always bear this dependence
in mind, it is not included in our notation; that is, we write u(x) instead of,
for instance, u(x, ε) or uε(x). This simplifies the notation, especially when
the discretization requires the use of some indices that depend on the mesh.
On the other hand, an expression like limε→0 u(x) then looks odd, but one
should remember that the unknown u does depend on ε. Every notation has
its advantages and disadvantages! Second, in our analysis it is important to
declare whether or not each constant depends on ε. Thus we denote by C
(sometimes subscripted or superscripted) a generic constant that is always
independent of the perturbation parameter and of any mesh used. Other letters
are used to denote other “constants” when such a dependence is present.

The following example illustrates our system of numbering and internal
cross-referencing. In Part I, Theorem 1.4 lies in Chapter 1 (hence the num-
bering “1.∗”). In Part I it is referred to as “Theorem 1.4”, but we call it
“Theorem I.1.4” when it’s referred to from outside Part I. A similar conven-
tion is used for equations, Lemmas, etc.

We assume that the reader is familiar with the basic theory of ordinary
and partial differential equations, and with the jargon and usage of finite
difference and finite element methods.

Finally, despite our best efforts, mistakes are undoubtedly present in this
book. We invite each reader to email us [rst-book@ovgu.de] any corrections
that s/he notices, and this information will be made publicly available at the
website [www.rst-book.ovgu.de].



Part I

Ordinary Differential Equations



Part I of this book deals with singularly perturbed two-point boundary
value problems. This field of research is of interest in its own right and also
serves as an introduction to the more complicated problems posed in higher
dimensions that we shall meet later in Parts II, III and IV. An initial discussion
of analytical techniques such as maximum principles, asymptotic expansions
and stability estimates for the solution of the boundary value problem provides
the background needed for the numerical analysis of these ordinary differential
equations. Then finite difference, finite element and finite volume methods are
presented and analysed, error estimates are derived in various norms, and the
relevance of mesh selection is examined. The material here is explained in
detail in order to lead the reader gently into this fascinating world.



1

The Analytical Behaviour of Solutions

We begin with a general form of the problem that will occupy our attention
throughout most of Part I. Consider the linear two-point boundary value
problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (d, e),

with the boundary conditions

αdu(d)− βdu
′(d) = γd,

αeu(e)− βeu
′(e) = γe.

Assume that the functions b, c and f are continuous. The constants αd, αe,
βd, βe, γd and γe are given, and the parameter ε satisfies 0 < ε≪ 1.

In general, one can assume homogeneous boundary conditions γd = γe = 0
by subtracting from u a smooth function ψ that satisfies the original boundary
conditions. For example, given Dirichlet boundary conditions u(d) = γd and
u(e) = γe, take

ψ(x) = γd
x− e

d− e
+ γe

x− d

e− d

and set u∗(x) = u(x)−ψ(x). Then u∗ is the solution of a differential equation
of the same type but with homogeneous boundary conditions.

One can also assume without loss of generality that x ∈ [0, 1] by means of
the linear transformation

x �→ x− d

e− d
.

The analytical behaviour of the solution of a singularly perturbed bound-
ary value problem depends on the nature of the boundary conditions. From
the numerical analyst’s point of view, the most difficult case is when these con-
ditions are Dirichlet. We consequently pay scant attention to other boundary
conditions. Thus Sections 1.1 and 1.2 investigate the singularly perturbed
problem
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Lu : = −εu′′ + b(x)u′ + c(x)u = f(x) for x ∈ (0, 1), (1.1a)

u(0) = u(1) = 0, with c(x) ≥ 0 for x ∈ [0, 1] , (1.1b)

under the conditions on ε, b, c and f stated earlier. This is a typical convection-
diffusion problem (see the Introduction) because in general we assume that b
is not identically zero.

We begin our study by stating three closely-related properties of differen-
tial operators M : C2(0, 1) → C(0, 1). Let w ∈ C2(0, 1) ∩ C[0, 1]. Then M is
said to be inverse-monotone if the inequalities

Mw(x) ≥ 0 for all x ∈ (0, 1), w(0) ≥ 0, w(1) ≥ 0

together imply that w(x) ≥ 0 for all x ∈ [0, 1]. To see that the operator L of
(1.1) is inverse-monotone, one argues by contradiction [GT83].

We say that M satisfies a maximum principle if Mu(x) = 0 for all x ∈ (0, 1)
implies that

min{u(0), u(1), 0} ≤ u(x) ≤ max{u(0), u(1), 0} for all x ∈ [0, 1].

Inverse-monotonicity implies that L satisfies a maximum principle. It also im-
plies that L satisfies the following comparison principle which for our purposes
is the most useful of the three properties.

Lemma 1.1 (Comparison principle). Let v, w ∈ C2(0, 1)∩C[0, 1] satisfy

Lw(x) ≥ Lv(x) for all x ∈ (0, 1)

and w(0) ≥ v(0), w(1) ≥ v(1). Then

w(x) ≥ v(x) for all x ∈ [0, 1].

We then say that w is a barrier function for v. A fairly complete discussion of
maximum and comparison principles for second-order elliptic problems can be
found in [GT83]. Unfortunately the terminology in the literature is inconsis-
tent, in the sense that each of the three properties above is sometimes called
a maximum principle.

Lemma 1.1 implies immediately the uniqueness of classical solutions of the
boundary value problem (1.1). In this one-dimensional case, the existence of a
classical solution follows. The condition c ≥ 0 cannot in general be discarded,
as is evident from the problem

−εu′′ + λu = 0 on (0, 1), u(0) = u(1) = 0,

which has multiple solutions when λ = −εk2π2, k = 1, 2, . . . .
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1.1 Linear Second-Order Problems Without Turning
Points

Existence and uniqueness of the classical solution u of (1.1) are now guaran-
teed, but the behaviour of u when ε is small is still obscure. To gain an initial
insight into the structure of u when ε is near zero, we study a simple example.

Example 1.2. The boundary value problem

−εu′′ + u′ = 1 on (0, 1), u(0) = u(1) = 0,

has the solution

u(x) = x− exp(− 1−x
ε )− exp(− 1

ε )

1− exp(− 1
ε )

.

Hence, for a ∈ [0, 1),

lim
x→a

lim
ε→0

u(x) = a = lim
ε→0

lim
x→a

u(x),

but
1 = lim

x→1
lim
ε→0

u(x) �= lim
ε→0

lim
x→1

u(x) = 0.

The presence of a point (x = 1 in this example) where such an inequality
appears means that the problem is singularly perturbed . The inequality implies
that the solution u(x) changes abruptly as x approaches 1 – we say that there
is a boundary layer at x = 1. See Figure 1.1. ♣
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0

0.1
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x

u

Fig. 1.1. Solution of Example 1.2 with a boundary layer at x = 1
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1.1.1 Asymptotic Expansions

Can we approximate the solution u of (1.1) by a simple known function? Yes,
by means of a standard technique in singular perturbation theory called the
method of matched asymptotic expansions; see, for instance, [Eck73, O’M91].
The function uas constructed by this technique is an asymptotic expansion
of u; it illuminates the nature of u and thus is valuable information.

The function uas is an asymptotic expansion of order m of u (in the max-
imum norm) if there is a constant C such that

|u(x)− uas(x)| ≤ Cεm+1 for all x ∈ [0, 1] and all ε sufficiently small.

Here we remind the reader that throughout the book C denotes a generic
constant that is independent of ε. In the construction of uas for (1.1), we
assume that b, c and f are sufficiently smooth on [0,1].

The first step is to try to find a global expansion (or regular expansion or
outer expansion) ug. This function will be a good approximation of u away
from any layer(s), i.e., on nearly all of the domain [0, 1]. We set

ug(x) =
m∑

ν=0

ενuν(x), (1.2)

where the uν(x) are yet to be determined. (Here, as for regular perturbations,
we try to expand the solution in a Taylor-type series.) Define the operator L0

by formally setting ε = 0 in L, viz.,

L0v := bv′ + cv.

Substituting ug into (1.1) and equating coefficients of like powers of ε yields

L0u0 = f,

L0uν = u′′
ν−1 for ν = 1, ..., m.

If b(x) has any zero in the interval [0, 1], this causes difficulty in defining the
coefficients uν of the global expansion because the operator L0 then becomes
singular. Zeros of b are called turning points. We exclude such phenomena
here and defer their examination to Section 1.2.

Suppose that b(x) �= 0 for all x ∈ [0, 1]. Then in principle one can calculate
u0, u1, . . . , um explicitly, provided that there is some additional condition on
each of these functions that ensures its uniqueness. One of the boundary
conditions in (1.1b) should be used to define u0, and the crucial question is:
which boundary condition should we discard? Guided by Example 1.2, we
state the following cancellation law, which specifies the boundary condition
to discard (see Section 1.4.1 for a more general formulation):

• If b > 0 then the boundary layer is located at x = 1 and to define u0 one
omits the boundary condition at x = 1. If b < 0 then the boundary layer
is located at x = 0 and the boundary condition at x = 0 is dropped.
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The transformation x �→ 1 − x reduces the case b < 0 to b > 0; thus
it suffices to study the case b > 0 in detail. The coefficients in the global
expansion ug are defined by

L0u0 = f, u0(0) = 0, (1.3a)

L0uν = u′′
ν−1, uν(0) = 0 for ν = 1, ..., m. (1.3b)

We call equation (1.3a) the reduced problem and u0 is the reduced solution.
The condition u0(0) = 0 comes from (1.1b), while the conditions uν(0) = 0
for ν ≥ 1 ensure that ug(0) = u(0).

The aim of the method of matched asymptotic expansions is to construct
an approximation of u that is valid for all x ∈ [0, 1]. But ug cannot be such
an approximation since it fails to satisfy the boundary condition at x = 1.
Therefore one adds a local correction to ug near x = 1. First, observe that
the difference w := u− ug satisfies

Lw = εm+1u′′
m,

w(0) = 0, w(1) = −
m∑

ν=0

ενuν(1).

Write L = εL1+L0. Recalling that a local correction is needed near x = 1,
where the solution u has a boundary layer, we stretch the scale there in the
x direction by introducing the local variable

ξ =
1− x

δ
, where δ > 0 is small and yet to be specified.

One chooses δ such that L0 and εL1 have formally the same order with respect
to ε after the independent variable is transformed from x to ξ. That is, since
b �= 0, one sets

εδ−2 ≈ δ−1.

This leads to the choice δ = ε.
In terms of the new variable ξ, use Taylor expansions to write

b(1− εξ) =

∞∑

ν=0

bνενξν with b0 = b(1),

c(1− εξ) =

∞∑

ν=0

cνενξν with c0 = c(1).

Consequently, for any sufficiently differentiable function g, we can express L
in terms of ξ as

εL1g + L0g =
1

ε

∞∑

ν=0

ενL∗
νg,

with
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L∗
0 := − d2

dξ2
− b0

d

dξ
,

L∗
1 := −b1ξ

d

dξ
+ c0,

etc. Now introduce the local expansion

vloc(ξ) =

m+1∑

µ=0

εµvµ(ξ). (1.4)

In order that vloc approximates w = u − ug, the local corrections vµ should
satisfy the boundary layer equations

L∗
0v0 = 0, (1.5a)

L∗
0vµ = −

µ∑

κ=1

L∗
κvµ−κ, for µ = 1, ..., m + 1. (1.5b)

To obtain the correct boundary condition at x = 1, one takes vκ(0) = −uκ(1)
for κ = 0, 1, . . . , m. As the differential equations (1.5) are of second order,
a further boundary condition is also needed. To ensure the local character
of the local correction, one requires that limξ→∞ vµ(ξ) = 0. With these two
boundary conditions the problem (1.5) has a unique solution, because the
characteristic equation corresponding to L∗

0 (which is a differential operator
with constant coefficients) is

−λ2 − b(1)λ = 0,

which has exactly one negative root. For example, the first-order correction is

v0(ξ) = −u0(1)e−b(1)ξ.

Remark 1.3. A critical question in this method is whether or not the equations
(1.5) for the local correction possess a number of decaying solutions that is
equal to the number of boundary conditions that are not satisfied by the global
approximation. If one cancels the wrong boundary condition when defining the
reduced problem, this can lead to boundary layer equations without decaying
solutions and the method then fails. ♣

Boundary layers are classified according to the nature of the boundary
layer equations. The simplest layers are exponential boundary layers (which
are sometimes called ordinary boundary layers), where the solutions of the
boundary layer equations are decaying exponential functions. The solution of
(1.1) usually has a layer of this type at x = 1 when b > 0 on [0, 1].

Theorem 1.4. If the coefficients and the right-hand side of the boundary
value problem (1.1) are sufficiently smooth and b(x) > β > 0 on [0, 1], then
its solution u has a matched asymptotic expansion of the form
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uas(x) =

m∑

ν=0

ενuν(x) +

m∑

µ=0

εµvµ

(
1− x

ε

)
, (1.6)

such that for any sufficiently small fixed constant ε0 one has

|u(x)− uas(x)| ≤ Cεm+1 for x ∈ [0, 1] and ε ≤ ε0.

Here C is independent of x and ε.

Proof. Consider

u∗
as(x) :=

m∑

ν=0

ενuν(x) +
m+1∑

µ=0

εµvµ

(
1− x

ε

)
,

which has an additional term for µ = m + 1 compared with (1.6). (This is a
standard trick: if the transformed problem in the local variables has a leading
term that is O(ε−l), one considers

∑m+l
µ=0 .) Our construction of the uν and vµ

yields

L(u− u∗
as) = O(εm+1),

(u− u∗
as)(0) = O(εκ), (u− u∗

as)(1) = O(εm+1),

where κ > 0 is arbitrary. Now apply the comparison principle of Lemma 1.1,
with the barrier function w(x) = Cεm+1(1+x) – this choice of w exploits the
property b ≥ b0 > 0. We get

|(u− u∗
as)(x)| ≤ |w(x)| ≤ Cεm+1 for all x ∈ [0, 1].

But |uas(x) − u∗
as(x)| = |εm+1vm+1((1 − x)/ε)| ≤ Cεm+1, so a triangle in-

equality completes the argument. ⊓⊔

A formal differentiation of (1.6) leads to the following conjecture:
If b, c and f are sufficiently smooth and b > 0 (so turning points are excluded),
the solution u of the boundary value problem (1.1) satisfies

|u(i)(x)| ≤ C

[
1 + ε−i exp

(
−b(1)

1− x

ε

)]
.

A rigorous proof of the validity of this differentiation is possible [O’M91], but
it is not simple. In Section 1.1.3 we shall prove a similar bound on u(i)(x)
without using an asymptotic expansion.

Remark 1.5. (Effect of boundary conditions on the layer) In the case b > 0,
suppose that the boundary conditions in (1.1b) are replaced by

u(0) = 0, u′(1) = 0.



16 1 The Analytical Behaviour of Solutions

Then the method of matched asymptotic expansions yields a local correction
of the type

vloc(ξ) = ε

m∑

µ=0

εµvµ(ξ)

because, for example,

− ε

b(1)
u′

0(1)e−b(1)ξ

corrects the boundary condition at x = 1. One can show that:
A Dirichlet boundary condition at x = 1 causes a boundary layer there with

u′(1) = O(ε−1) as ε → 0,

but a Neumann boundary condition at x = 1 causes a less severe boundary
layer, since then

u′(1) = O(1) and u′′(1) = O(ε−1) as ε → 0.

For example, the exact solution of

−εu′′ + u′ = 1, u(0) = 0 and u′(1) = 0

is u(x) = x− ε[e−(1−x)/ε − e−1/ε].
Under special circumstances, a different weakening of the boundary layer

can occur. If, for example, the boundary condition at x = 1 were

b(1)u′(1) + c(1)u(1) = f(1)

– which is satisfied by the reduced solution u0 of (1.3a) – then the asymptotic
expansion of u starts with u0+εu1+ε2v2 because one can choose v0 ≡ v1 ≡ 0.
In this particular case one has

u′′(1) = 0 and u′′′(1) = O(ε−1) as ε → 0,

while u(x), u′(x) and u′′(x) are all bounded uniformly on [0, 1] as ε → 0. ♣

1.1.2 The Green’s Function and Stability Estimates

Assume that b(x) ≥ β > 0 on [0, 1]. The comparison principle of Lemma 1.1
provides a simple proof of the stability estimate

‖v‖∞ ≤ C‖Lv‖∞ for all v ∈ C2[0, 1] with v(0) = v(1) = 0, (1.7)

where
‖z‖∞ := max

x∈[0,1]
|z(x)|.

To prove (1.7), use w(x) = ‖Lv‖∞(1 + x)/β as a barrier function for v.
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Note that the stability constant C in (1.7) is independent of ε. When
applied to the solution u of (1.1), inequality (1.7) yields

‖u‖∞ ≤ C‖f‖∞.

This is typical: a stability inequality implies an a priori estimate for the exact
solution. This a priori estimate tells us that u is bounded, uniformly with
respect to ε, in the maximum norm.

For the analysis of numerical methods, especially on non-equidistant
meshes and in the context of a posteriori error estimates, it is very useful
to have stronger stability results that use other norms. Let (A, ‖ · ‖A) and
(B, ‖ · ‖B) be normed linear spaces with M : A → B. Then M is said to be
uniformly (A, B)-stable if

‖v‖A ≤ C ‖Mv‖B for all v ∈ A (1.8)

with a stability constant C that is independent of ε. If A = B, we say simply
that M is A-stable.

In this section we shall derive stability results for the convection-diffusion
problem (1.1) under the hypotheses that b is continuous and does not vanish
in [0, 1]. The (L∞, L1) stability result (1.19) comes from [Gar89], while the
negative norm stability estimate (1.20) is in [And01, Kop01b]. We follow the
presentation of [Lin02a].

Consider the boundary value problem (1.1):

Lu := −εu′′ + bu′ + cu = f,

u(0) = u(1) = 0,

where b ≥ β > 0. Additionally, to simplify certain arguments, assume that

c ≥ 0 and c− b′ ≥ 0. (1.9)

Remark 1.6. Because b > 0 the conditions (1.9) can always be guaranteed
for ε smaller than some threshold value ε0 by making a change of variable
u(x) = û(x) exp(kx) with the constant k chosen appropriately. ♣

The standard Green’s function G(x, ξ) associated with L and homogeneous
Dirichlet boundary conditions is for each fixed ξ ∈ [0, 1] the solution of

(L G(·, ξ))(x) = δ(x− ξ) for x ∈ (0, 1), G(0, ξ) = G(1, ξ) = 0, (1.10)

where δ is the Dirac-δ distribution. Equivalently, to avoid introducing distri-
butions, for fixed ξ one seeks a classical solution in C2((0, 1) \ {ξ}) ∩ C[0, 1]
that satisfies

(L G(·, ξ))(x) = 0 for x ∈ (0, 1) \ {ξ}, G(0, ξ) = G(1, ξ) = 0, (1.11)

and the jump condition
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−ε[G(·, ξ)′](ξ) = 1,

where the notation [v](d) := v(d+0)− v(d− 0) denotes the jump of a discon-
tinuous function v(x) at x = d.

In terms of the adjoint operator L∗v := −εv′′ − (bv)′ + cv, for fixed x the
Green’s function G(x, ξ) satisfies

(L∗G(x, ·))(ξ) = δ(ξ − x) for ξ ∈ (0, 1), G(x, 0) = G(x, 1) = 0. (1.12)

To derive stability estimates we shall use the solution representation

v(x) =

∫ 1

0

G(x, ξ)(L v)(ξ) dξ (1.13)

which is valid for all v satisfying v(0) = v(1) = 0. Thus some bounds on G
are needed.

Similarly to the classical comparison principle of Lemma 1.1, one has: if
the functions v and w in C2((0, 1) \ {ξ}) ∩ C[0, 1] satisfy

v(0) ≤ w(0),

v(1) ≤ w(1),

Lv(x) ≤ Lw(x) in (0, 1) \ {ξ},
−ε[v′](ξ) ≤ −ε[w′](ξ),

then v(x) ≤ w(x) for all x ∈ [0, 1]. This piecewise comparison principle can
be found in [Mey98]; it is well known in the field of enclosing discretization
methods but is rarely stated explicitly in the literature. Using the comparison
principle with the barrier functions Ĝ1 ≡ 0 and

Ĝ2 =

{
(1/β) exp(−β(ξ − x)/ε) for 0 ≤ x ≤ ξ,
1/β for ξ ≤ x ≤ 1,

we get the following bounds for the Green’s function:

0 ≤ G(x, ξ) ≤ 1

β
for (x, ξ) ∈ [0, 1]× [0, 1]. (1.14)

The representation (1.13) then implies that for any function v ∈ W 2,1(0, 1)
with v(0) = v(1) = 0, the stability estimate (1.7) has been sharpened to the
(L∞, L1) estimate

‖v‖∞ ≤ 1

β
‖L v‖L1

for v ∈W 1,1
0 (0, 1) ∩W 2,1(0, 1).

Here we used the notation Wm,p(0, 1) for the Sobolev space of functions de-
fined on [0, 1] whose derivatives of order m are in Lp. Functions in W 1,p

0 (0, 1)
vanish at x = 0 and x = 1. See [Ada78] for a thorough discussion of Sobolev
spaces.
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We want to go one step further. For each v ∈ W 1,∞
0 (0, 1) let the auxiliary

function V ∈ L∞(0, 1) satisfy V ′ = L v. Then an integration by parts gives

v(x) = −
∫ 1

0

Gξ(x, ξ)V (ξ)dξ (1.15)

and

v′(x) = −
∫ 1

0

Gxξ(x, ξ)V (ξ)dξ. (1.16)

These formulas are well defined: piecewise existence of Gxξ follows from ex-
plicit representations of G in [And01] or, alternatively, from the piecewise
existence of Gxx and Gξξ.

To extract the desired stability estimates from these representations, we
need more information about the Green’s function.

Since G ≥ 0 and G satisfies the boundary conditions of (1.12), one has
Gξ(x, 0) ≥ 0 and Gξ(x, 1) ≤ 0. Rearranging (1.12) shows that v(·) := Gξ(x, ·)
satisfies

εvξ + bv = (c− bξ)G ≥ 0 for ξ ∈ (0, x) (1.17)

where we used (1.9). As v(0) ≥ 0, an integration of (1.17) yields v ≥ 0 on
[0, x], so G(x, ·) increases monotonically on [0, x]. Integrating (1.12) over [ξ, 1]
with ξ > x gives

εGξ(x, ξ)− εGξ(x, 1) + b(ξ)G(x, ξ)− b(1)G(x, 1) = −
∫ 1

ξ

c(s)G(x, s)ds.

Hence, using c ≥ 0 from (1.9),

εGξ(x, ξ) ≤ εGξ(x, 1)− b(ξ)G(x, ξ) ≤ 0 .

Thus G(x, ·) decreases monotonically on [x, 1].
One can prove similarly that Gx(x, ξ) ≥ 0 for 0 ≤ x < ξ ≤ 1 and

Gx(x, ξ) ≤ 0 for 0 ≤ ξ < x ≤ 1. Consequently

Gxξ(x, 0) ≤ 0 and Gxξ(x, 1) ≤ 0 for x ∈ (0, 1).

For ξ < x we see that w = Gxξ(x, ·) satisfies

εwξ + bw = (c− bξ)Gx ≤ 0.

It now follows from w(0) ≤ 0 that Gxξ ≤ 0 for ξ < x. For ξ > x, differentiate
the above identity:

εGxξ(x, ξ)− εGxξ(x, 1) + b(ξ)Gx(x, ξ)− b(1)Gx(x, 1) = −
∫ 1

ξ

c(s)Gx(x, s)ds.

This gives Gxξ ≤ 0 for ξ > x.
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The next step is to bound the L1 norms of Gξ and Gxξ using the above
monotonicity properties and the L∞ bound (1.14). First, we get

‖Gξ(x, ·)‖L1
=

∫ x

0

Gξ(x, ξ)dξ −
∫ 1

x

Gξ(x, ξ)dξ = 2G(x, x) ≤ 2

β
. (1.18)

A related argument shows that

‖Gxξ(x, ·)‖L1
=

2

ε
,

on taking account of the singularity caused by Gx(x, x+0)−Gx(x, x−0) = 1/ε.
These bounds can be combined with (1.15) and (1.16) to produce new stability
estimates. In summary, introducing the norm

‖v‖∗ := inf
V :V ′=v

‖V ‖∞,

the stability results we have proved in this section are the following:

Theorem 1.7. The operator L satisfies the stability estimates

‖v‖∞ ≤ 1

β
‖L v‖L1

for v ∈ W 1,1
0 (0, 1) ∩W 2,1(0, 1) (1.19)

and
β

2
‖v‖∞ +

ε

2
‖v′‖∞ ≤ ‖L v‖∗ for v ∈ W 1,∞

0 (0, 1). (1.20)

The space W−1,∞ = (W 1,1
0 )′ is isometrically isomorphic to the space of

distributions generated by integrals of L∞ functions and equipped with the
norm ‖ · ‖∗; see [Ada78, Theorem 3.10]. In this sense, the norm ‖ · ‖∗ is the
W−1,∞-norm and we say that (1.20) is a negative-norm stability estimate.

Now L1[0, 1] ⊂ W−1,∞ = (W 1,1
0 )′. Andreev [And01, Lemma 2.6] observed

that

‖f‖−1,∞ = sup
1=‖v‖

W
1,1
0

∣∣∣∣
∫ 1

0

fv dx

∣∣∣∣ = inf
C

∥∥∥∥
∫ 1

f(s) ds + C

∥∥∥∥
∞

= ‖f‖∗.

Note that since
‖v‖∗ ≤ ‖v‖L1

≤ ‖v‖∞,

the negative-norm bound is the strongest of our stability results.
In [And01] an assumption of the type (1.9) was not used, which makes

the analysis more difficult; this paper begins with a differential equation in
conservation form (assuming a different sign for the convective term)

Lv := −εv′′ − (bv)′ + cv,

then goes on to the more complicated case where the equation is not in con-
servation form.
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1.1.3 A Priori Estimates for Derivatives and Solution
Decomposition

The numerical analysis of discretization methods requires information about
higher-order derivatives of u, the solution of (1.1). Theorem 1.7 tells us that

|u(k)(x)| ≤ Cε−k for x ∈ [0, 1], k = 0, 1.

Hence, by repeated differentiation of the differential equation (1.1a), we obtain

|u(k)(x)| ≤ Cε−k forx ∈ [0, 1], k = 0, 1, . . . , q,

where q depends on the smoothness of the data.
In general, crude bounds like these are inadequate for the job of analysing

discretization methods. We now use the argument of [KT78, Lemma 2.3] to
deduce a sharper estimate directly from (1.1); no asymptotic expansion is
used.

Lemma 1.8. Assume that b(x) > β > 0 and b, c, f are sufficiently smooth.
Then for i = 1, 2, . . . , q, the solution u of (1.1) satisfies

|u(i)(x)| ≤ C

[
1 + ε−i exp

(
−β

1− x

ε

)]
for 0 ≤ x ≤ 1,

where the maximal order q depends on the smoothness of the data.

Proof. Set h = f−cu. Using an integrating factor we integrate −εu′′+bu′ = h
twice, obtaining

u(x) = up(x) + K1 + K2

∫ 1

x

exp[−ε−1(B(1)−B(t))] dt,

where

up(x) := −
∫ 1

x

z(t) dt, z(x) :=

∫ 1

x

ε−1h(t) exp[−ε−1(B(t)−B(x))] dt,

B(x) :=

∫ x

0

b(t) dt;

here the constants of integration (K1 and K2) may depend on ε.
The boundary condition u(1) = 0 implies that K1 = 0. One can also see

that u′(1) = −K2. Now u(0) = 0 gives

K2

∫ 1

0

exp[−ε−1(B(1)−B(t))] dt = −up(0). (1.21)

The bound ‖u‖∞ ≤ C implied by (1.7) leads to
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|z(x)| ≤ Cε−1

∫ 1

x

exp[−ε−1(B(t)−B(x))] dt.

Applying the inequality

exp[−ε−1(B(t)−B(x)] ≤ exp[−βε−1(t− x)] for x ≤ t,

we obtain

|z(x)| ≤ Cε−1

∫ 1

x

exp[−βε−1(t− x)] dt ≤ C.

Hence |up(0)| ≤ C. Set ‖b‖∞ = maxx∈[0,1] b(x). Then

∫ 1

0

exp[−ε−1(B(1)−B(t)] dt) ≥
∫ 1

0

exp[−‖b‖∞ε−1(1− t)] dt ≥ Cε.

It then follows from (1.21) that |K2| ≤ Cε−1.
Now

u′(x) = z(x)−K2 exp[−ε−1(B(1)−B(x))]

implies that

|u′(x)| ≤ C

[
1 + ε−1 exp

(
−β(1− x)

ε

)]
.

The bound on u(i)(x) for i > 1 follows by induction on i and repeated differ-
entiation of (1.1a). ⊓⊔

A classical asymptotic expansion like that of Theorem 1.4 decomposes the
solution u into a smooth part (i.e., a function for which certain low-order
derivatives are bounded uniformly in ε), a layer part and a remainder. We
now construct a decomposition of u into a sum of a smooth part and a layer
part, with no remainder. This type of decomposition is helpful in the analysis
of certain numerical methods.

The standard asymptotic expansion of Theorem 1.4 gives

u = u0 + εu1 + . . . + εkuk + v0 + εv1 + . . . + εkvk + εk+1R,

where R satisfies a boundary value problem similar to (1.1). Set

S∗ := u0 + εu1 + . . . + εkuk + εk+1R,

E∗ := v0 + εv1 + . . . + εkvk,

The crude estimate ‖R(m)‖∞ ≤ Cε−m yields

|S∗(l)(x)| ≤ C for l ≤ k + 1. (1.22)

For the boundary layer functions, the construction of Section 1.1 leads to

|E∗(l)(x)| ≤ Cε−l exp

(
−β(1− x)

ε

)
. (1.23)
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We call a decomposition u = S∗ + E∗ with the properties (1.22) and (1.23)
an S-type decomposition.

A minor modification of this construction yields an S-decomposition; this
splitting of u enjoys the extra property that the layer part lies in the null space
of L. Decompositions of this type were introduced by Shishkin in the analysis
of difference schemes on piecewise equidistant meshes; see Section 2.4.2. Write

u = u0 + εu1 + . . . + εkuk + εk+1u∗
k+1 + v0 + εv1 + . . . + εkvk + εk+1v∗

k+1,

where u0, . . . , uk, v0, . . . , vk are the standard terms of the asymptotic expan-
sion whereas u∗

k+1 and v∗
k+1 are defined by

Lu∗
k+1 = u′′

k , u∗
k+1(0) = u∗

k+1(1) = 0

and

Lv∗k+1 = −ε−(k+1)L(v0 + εv1 + . . . + εkvk),

v∗
k+1(0) = 0, v∗

k+1(1) = −(v0 + εv1 + . . . + εkvk)(1).

Now set

S := u0 + εu1 + . . . + εkuk + εk+1u∗
k+1,

E := v0 + εv1 + . . . + εkvk + εk+1v∗
k+1,

and putting q = k + 1 we obtain

Lemma 1.9. (S-decomposition) Let q be some positive integer. Consider
the boundary value problem (1.1) with b(x) > β > 0 and sufficiently smooth
data. Its solution u can be decomposed as u = S +E, where the smooth part S
satisfies LS = f and

|S(l)(x)| ≤ C for 0 ≤ l ≤ q,

while the layer part E satisfies LE = 0 and

|E(l)(x)| ≤ Cε−l exp

(
−β(1− x)

ε

)
for 0 ≤ l ≤ q.

Clearly Lemma 1.9 implies the bounds of Lemma 1.8. Conversely, the
S-decomposition of Lemma 1.9 can in fact be deduced from Lemma 1.8, as we
now show. Assume the bounds of Lemma 1.8. Let x∗ = 1− (qε/β) ln 1/ε. Set
S(x) = u(x) in [0, x∗]. Then Lemma 1.8 implies that

|S(l)(x)| ≤ C on [0, x∗] for 0 ≤ l ≤ q

since e−β(1−x∗)/ε = εq. Thus one can extend the definition of S to all of [0, 1]
with |S(l)(x)| ≤ 2C on [0, 1] for 0 ≤ l ≤ q.

Now consider E := u− S. Then E ≡ 0 in [0, x∗], while in (x∗, 1] one has
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|E(q)(x)| ≤ |u(q)(x)|+ |S(q)(x)| ≤ C
(
1 + ε−qe−β(1−x)/ε

)
≤ Cε−qe−β(1−x)/ε.

Integrating E(k) for k = q, q − 1, . . . , 1, we get inductively

|E(k−1)(x)| =
∣∣∣∣
∫ x

x∗

E(k)(s)ds

∣∣∣∣

≤ C

∫ x

x∗

ε−ke−β(1−s)/εds ≤ Cε−(k−1)e−β(1−x)/ε .

Thus S + E is an S-decomposition of u.
In [Lin02b] Linß shows how to construct an S-decomposition under mini-

mal regularity hypotheses.

Remark 1.10. (Reaction-Diffusion Problems) Consider the reaction-diffusion
problem

−εu′′ + c(x)u = f(x) on (0, 1)

with Dirichlet boundary conditions. Assume that c > γ > 0 on [0, 1]. Then
in general the solution u contains exponential boundary layers of the form
exp(−√γx/

√
ε) and exp(−√γ(1 − x)/

√
ε); note that these layers depend on√

ε and are present at both x = 0 and x = 1. An S-decomposition of u can be
found in [MOS96, Chapter 6].

The stability properties of the reaction-diffusion operator are very differ-
ent from those of the convection-diffusion operator. For instance, the Green’s
function of the reaction-diffusion problem with homogeneous Dirichlet condi-
tions satisfies

‖G‖∞ ≤ C√
ε

and is not bounded as ε → 0. ♣

Remark 1.11. (Two-parameter convection-diffusion-reaction problems) Con-
sider the two-parameter problem

−ε1u
′′ + ε2b(x)u′ + c(x)u = f(x)

where ε1 and ε2 are small positive parameters, b > 0 and c > 0. It is shown in
[LR04] that the nature of the solution decomposition depends on the relative
sizes of ε1 and ε2. The associated Green’s function satisfies

‖G‖∞ ≤ C√
ε1 + ε2

2

;

see [RU03]. ♣
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1.2 Linear Second-Order Turning-Point Problems

In second-order singularly perturbed differential equations, isolated points
where the coefficient of u′ vanishes are called turning points. We first look at
the case of a single turning point in the interior of the domain. For convenience,
the differential equation is posed on (−1, 1) with its turning point placed at
x = 0. That is, we consider

Lu := −εu′′ + xb(x)u′ + c(x)u = f(x) in (−1, 1), (1.24a)

u(−1) = u(1) = 0, (1.24b)

under the following hypotheses:

(i) b(x) �= 0 on [−1, 1], (1.25a)

(ii) c(x) ≥ 0, c(0) > 0. (1.25b)

The assumption c(0) > 0 simplifies the problem, as will be seen later. As in
the cancellation law of page 12, the location of any boundary layer(s) depends
on the sign of the convection term. From our previous experience, we expect
a boundary layer at x = −1 if the coefficient xb(x) of the convection term is
negative at x = −1, and a boundary layer at x = 1 if the same coefficient is
positive at x = 1.

If b(x) is positive on [−1, 1], we have xb(x)|x=−1 < 0 and xb(x)|x=1 > 0.
Consequently, if b is positive on [−1, 1], then the solution u has two boundary
layers. In this case, the reduced solution is the smooth solution of

L0u0 := xb(x)u′
0 + c(x)u0 = f(x) for − 1 < x < 1,

with no additional boundary condition! The function u0 is well defined: use
c(0) > 0 and a Taylor expansion about the singular point x = 0. Combin-
ing u0 with two boundary layer corrections, we obtain a first-order asymp-
totic expansion of u, and it is straightforward to prove a result analogous to
Theorem 1.4.

If the condition c(0) > 0 is removed, this changes the nature of the prob-
lem. In the example

−εu′′ + xu′ = x, u(−1) = u(1) = 0,

one finds that
u0(x) = x + A,

with a constant A that is not determined by the method of matched asymp-
totic expansions. This is called a resonance case. The difficulty arises because
µ1 → 0 as ε → 0, where µ1 is an eigenvalue of

−εw′′ + xw′ + µw = 0, w(−1) = w(1) = 0.

See [dG76] for details of the asymptotic behaviour in this situation.
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We return to the case c(0) > 0. Our experience in Section 1.1 leads us to
expect that if b is negative on [−1, 1], then boundary layers will not occur. In
this case the reduced solution u0 satisfies

L0u0 = f in (−1, 0), u0(−1) = 0,

and
L0u0 = f in (0, 1), u0(1) = 0.

The behaviour of u0 near the turning point x = 0 depends strongly on the
parameter λ := −c(0)/b(0) > 0. This is clearly demonstrated by the example

xbu′
0 + cu0 = bxk (constants b < 0 < c, integer k > 0),

whose solution is

u0(x) =

{
(|x|k − |x|λ)/(k − λ), if λ �= k,
xk ln |x|, if λ = k.

At x = 0 the solution has an interior layer .
Once more, we digress to the case where c(0) > 0 does not hold. If λ = 0,

then an interior shock layer in u exists, i.e., u0 is discontinuous. For example,
the solution of

−xu′
0 = x

that satisfies u0(−1) = u0(1) = 0 is

u0(x) =

{
1− x for 0 < x ≤ 1,
−1− x for − 1 ≤ x < 0.

Returning to the case λ > 0, we state without proof a result of Berger
et al. [BHK84] on the behaviour of the derivatives of u (see [CL93] for a
simpler argument in the case 0 < λ < 1).

Lemma 1.12. In the turning-point problem (1.24), assume that b(x) is neg-
ative and λ is not an integer. Assume also that b, c and f are sufficiently
smooth. Write λ = m + β, where m is a non-negative integer and 0 < β < 1.
Then the solution u of (1.24) satisfies

|u(l)(x)| ≤ C on (−1, 1) for l ≤ m, (1.26)

and for −1 < x < 1 and l = m + 1, m + 2, . . . ,q,

|u(l)(x)| ≤ C
(
1 + |x|+ ε1/2

)λ−l

on (−1, 1). (1.27)

Here the value of q depends on the smoothness of b, c and f .
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The interior layer in u is called a cusp layer because it can be modelled
approximately by the cusp-like function (x2 + ε)λ/2. If one defines the local
variable ξ in the layer by ξ := x/ε1/2, one obtains the interior layer equation

−d2v

dξ2
+ b(0)ξ

dv

dξ
+ c(0)v = 0.

The solution of this equation can be expressed in terms of parabolic cylinder
functions; see [BHK84].

The problem analysed in Lemma 1.12, where the coefficient of u′ has a
simple zero, has a simple turning point at x = 0. If the problem has a finite
number of simple turning points in (−1, 1), then the result of this lemma
is valid in a neighbourhood of each of these turning points. There are few
stability estimates for turning-point problems in the literature; see [Doe98]
for some (L∞, L∞) and (L1, L1) estimates in certain situations for simple
turning points. For multiple turning-point problems, where the coefficient of
u′ has a multiple zero, less is known; see [VF93], where such a problem is
discussed.

We close this section with a general L1-norm bound on the derivative of
the solution u of (1.1). No assumption is made on the sign of b so this result
applies also to solutions of (1.24a).

Theorem 1.13. For the boundary value problem (1.1), assume that b, c and
f are smooth and c(x) ≥ c0 > 0 for 0 ≤ x ≤ 1. Then there exists a constant
C such that ∫ 1

0

|u′(x)| dx ≤ C. (1.28)

Proof. The argument uses Lorenz’s technique [Lor82, Nii84]. First, write (1.1)
in the form

−εu′′ + (bu)′ + (c− b′)u = f

and differentiate, to get

(c− b′)u′ = εu′′′ − (bu)′′ + f ′ − (c′ − b′′)u. (1.29)

An integration by parts then yields

∫ 1

0

(c− b′)u′ dx = [εu′′ − (bu)′]10 +

∫ 1

0

[f ′ − (c′ − b′′)u] dx

= [(c− b′)u− f ]10 +

∫ 1

0

[f ′ − (c′ − b′′)u] dx.

Since c(x) ≥ c0 > 0, a comparison principle and barrier function argument
gives ‖u‖∞ ≤ ‖f‖∞/c0 = C. Hence

∣∣∣∣
∫ 1

0

(c− b′)u′ dx

∣∣∣∣ ≤ C.
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Unfortunately, this is not exactly the desired estimate and we have to
modify the simple argument presented above. Thus, before integrating (1.29),
multiply by sgn(u′), where

sgn(z) :=

⎧
⎨
⎩
−1 if z < 0,
0 if z = 0,
1 if z > 0.

This gives

∫ 1

0

(c− b′)|u′| dx = ε

∫ 1

0

u′′′sgn(u′) dx−
∫ 1

0

(bu)′′sgn(u′) dx

+

∫ 1

0

[f ′ − (c′ − b′′)u]sgn(u′) dx.

We would like to integrate by parts as before, but this is impossible because
the function sgn is not differentiable. Thus replace sgn by a differentiable
approximation sµ, where µ is a positive parameter and sµ → sgn as µ → 0+.
This is done by defining

sµ(z) =

⎧
⎪⎪⎨
⎪⎪⎩

−1 for z ≤ −µ,
−1 + (z/µ + 1)2 for − µ < z ≤ 0,
1− (z/µ− 1)2 for 0 < z < µ,

1 for z ≥ µ,

for each µ > 0. For later use, observe that

∣∣∣∣
dsµ(z)

dz

∣∣∣∣ ≤
C∗

µ
for all z ∈ (−1, 1).

Replacing s above by sµ, one obtains

∫ 1

0

(c− b′)u′sµ(u′) dx = ε

∫ 1

0

u′′′sµ(u′) dx−
∫ 1

0

(bu)′′sµ(u′) dx

+

∫ 1

0

[f ′ − (c′ − b′′)u]sµ(u′) dx.

Since ∫ 1

0

u′′′sµ(u′) dx = u′′sµ(u′)|10 −
∫ 1

0

(u′′)2
dsµ(z)

dz
|z=u′ dx

and dsµ(z)/dz ≥ 0, it follows that

∫ 1

0

u′′′sµ(u′) dx ≤ u′′sµ(u′)|10.

Now letting µ→ 0+ gives
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∫ 1

0

(c− b′)|u′| dx ≤ εu′′s(u′)|10 + lim
µ→0+

E + C (1.30)

with

E = −
∫ 1

0

(bu)′′sµ(u′) dx.

Integrating by parts, write

E = −(bu)′sµ(u′)|10 + E1 + E2, with E2 =

∫ 1

0

b′u(sµ(u′))′ dx.

By Lebesgue’s dominated convergence theorem one has

lim
µ→0+

E2 = b′us(u′)|10 −
∫ 1

0

b′|u′| dx−
∫ 1

0

b′′us(u′) dx.

We will show below that limµ→0+ E1 = 0. Assuming this for the moment, it
follows from (1.30) that

∫ 1

0

(c− b′)|u′| dx ≤ (εu′′ − bu′)s(u′)|10 −
∫ 1

0

b′|u′| dx + C,

whence ∫ 1

0

|u′| dx ≤ C,

since c(x) ≥ c0 > 0 and εu′′ − bu′ = cu− f .
To complete the proof, consider limµ→0+ E1. Now |bu′′| ≤ K, where K

may depend on ε, and |(d/dz)(sµ(z))| ≤ C∗/µ. Hence

|E1| =
∣∣∣∣∣

∫

|u′|<µ

bu′u′′ d

dz
sµ(z)|z=u′ dx

∣∣∣∣∣
≤ C∗K(ε) meas{x ∈ [0, 1] : 0 < |u′(x)| < µ},

which implies that limµ→0+ E1 = 0. ⊓⊔

Theorem 1.13 is quite powerful because it makes no assumption regarding
the location or multiplicity of turning points.

1.3 Quasilinear Problems

We now move on to the more general quasilinear boundary value problem

−εu′′(x) + b(x, u(x))u′(x) + c(x, u(x)) = 0, for x ∈ (0, 1), (1.31a)

u(0) = A, u(1) = B. (1.31b)
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Unlike the previous sections, inhomogeneous boundary conditions are assumed
here since a transformation to homogeneous boundary conditions would alter
slightly the nonlinear differential operator. In the semilinear case, i.e., when
b(x, u) = b(x), results similar to those of Sections 1.1 and 1.2 are valid.

Assume that

∂c

∂s
(x, s) ≥ µ > 0 for all x ∈ (0, 1) and all s ∈ R. (1.32)

Then Nagumo’s theory of upper and lower solutions [CH84] yields existence
of a solution u of (1.31) with

|u(x)| ≤ max

{
1

µ
max

x∈[0,1]
|c(x, 0)|, |A|, |B|

}
for all x ∈ [0, 1].

This solution is unique [O’M91].
If b(·, ·) has constant sign – say b < 0 – then, as in Section 1.1, we expect

a boundary layer at x = 0. The theory is more complicated than in the linear
case: one must include a pertinent boundary layer stability assumption, as we
describe below. For the moment assume that u has a boundary layer at x = 0.
Then the reduced solution uR is defined by

b(x, uR)u′
R + c(x, uR) = 0 on (0, 1) with uR(1) = B,

where we assume that

b(x, uR(x)) ≤ −κ < 0 for all x ∈ [0, 1] and some κ > 0.

With the aim of finding a boundary layer correction v0 at x = 0, set
ξ = x/ε. Then v0 should satisfy

−d2v0

dξ2
+ b(0, uR(0) + v0)

dv0

dξ
= 0, v0(0) = A− uR(0).

In the linear case, one can compute v0 explicitly and see that it is expo-
nentially decaying. But in the nonlinear case, the existence of exponentially
boundary layers v0 depends on |A−uR(0)|. One needs the following additional
boundary layer stability assumption [CH84, VBK95], which guarantees that
the boundary layer jump |A − uR(0)| belongs to the domain of influence of
the asymptotically stable solution v0 ≡ 0:

∫ uR(0)

η

b(0, s) ds < 0 if A < η < uR(0) (1.33a)

and

∫ η

uR(0)

b(0, s) ds < 0 if uR(0) < η < A. (1.33b)
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The necessity of the inequalities (1.33) can be deduced from the implicit rep-
resentation

ξ =

∫ A−uR(0)

v0

ds

q(s)
where q(s) = −

∫ s

0

b(0, uR(0) + t)dt.

These conditions say essentially that the jump |A − uR(0)| should not be
too large; if they are violated, then we cannot construct a boundary layer
correction at x = 0.

A rigorous analysis leads to the following classical result [O’M91], which
is due to Coddington and Levinson.

Theorem 1.14. Assume that b and c are sufficiently smooth. Define the re-
duced solution uR by

b(x, uR)u′
R + c(x, uR) = 0 on (0, 1) with uR(1) = B.

Assume that b(x, uR(x)) ≤ −κ < 0 and that the boundary layer stability
conditions (1.33) are satisfied. Then for 0 < x < 1 one has

u(x) = uR(x) + O (|A− uR(0)| exp(−κx/ε)) + O(ε),

u′(x) = u′
R(x) + O

(
ε−1 exp(−κx/ε)

)
+ O(ε).

The hypotheses of Theorem 1.14 can be weakened. In particular, one can
replace the condition b(x, uR(x)) ≤ −κ < 0 by the hypothesis that uR is glob-
ally stable, viz., that b(x, uR(x)) < 0 for 0 < x ≤ 1; see [How78, Theorem 5.5].
Analogously, if uL is defined by

b(x, uL)u′
L + c(x, uL) = 0 with uL(0) = A,

we say that uL is globally stable if b(x, uL(x)) > 0 for 0 ≤ x < 1.
One can verify that the conditions of Theorem 1.14 are satisfied in the

example

−εu′′ − euu′ +
π

2
sin

πx

2
e2u = 0, u(0) = A, u(1) = 0,

without any restriction on the boundary layer jump.
In the example

−εu′′ − uu′ + u = 0, u(0) = −2, u(1) = 1.5, (1.34)

both uR(x) = x + 0.5 and uL(x) = −2 + x are globally stable, but neither
boundary layer stability condition (the condition for uL is analogous to (1.33))
is satisfied:

∫ uR(0)=0.5

A=−2

(−s) ds �< 0 and

∫ B=1.5

uL(1)=−1

(−s) ds �> 0.
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Thus a boundary layer cannot exist at x = 0 nor at x = 1 because the
boundary layer jump is too large! That is, the solution u has an interior layer
but no boundary layer.

As with the linear turning-point problems of Section 1.2, we expect interior
layers if no boundary layer is present. In the nonlinear case the analysis can
be much more complicated than before. It is not easy to find the location(s)
of possible interior layers, and the reduced equation may have more than one
solution – then it is not clear which of these is the correct limit (as ε → 0) of
the exact solution u in a given subinterval and where a transition from one
reduced solution to another takes place. A discontinuous transition will cause
a shock layer in the solution u, and a continuous transition a corner layer.

We sketch the situation for the problem

−εu′′ + b(u)u′ + c(x, u) = 0 for x ∈ (0, 1), (1.35a)

u(0) = A, u(1) = B, (1.35b)

under the hypothesis (1.32). It is easier to handle (1.35) than (1.31) because
the convection term can be written in the conservation form

b(u)u′ = (e(u))′, with e(u) :=

∫ u

b(s)ds.

The principal approach used to find the reduced solution u0(x) := limε→0 u(x)
is a standard technique in the theory of conservation laws (see [LeV90]); these
are equations of the form ut + (e(u))′ = 0, where t is a time variable.

Introduce the entropy flux E(·) and the convex entropy function U(·),
which depend on e(·) above. These functions are related by

dE

dz
=

dU

dz

de

dz
.

A simple example is U(z) = z2/2, E(z) =
∫ z

se′(s)ds. Another important
choice is due to Kruzkov [LeV90]: set

U(z) = |z − k| and E(z) = [e(z)− e(k)] sgn(u− k),

where k is an arbitrary constant. Multiplying the differential equation (1.35a)
by U ′(u), one writes it in the form

d

dx
E(u) + U ′(u)c(x, u) = ε

d2

dx2
U(u)− εU ′′(u)

(
du

dx

)2

.

Now multiply by a smooth function ϕ, integrate by parts, and take the limit
as ε → 0. This steers us to the inequality

∫ 1

0

[−E(u0)ϕ
′ + U ′(u0)c(x, u0)ϕ] dx ≤ −E(u0)ϕ|10.
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That is, Kruzkov’s choice yields

∫ 1

0

sgn(u0 − k) [(e(u0)− e(k))ϕ′ − c(x, u0)ϕ] dx

≥
∑

i=0,1

(−1)isgn (u0(i)− k) (e(u0(i))− e(k)) ϕ(i).

If one chooses special test functions ϕ, this yields [Lor84] the following con-
venient characterization of the reduced solution u0 :

Theorem 1.15. For 0 ≤ x ≤ 1, set u0(x) = limε→0 u(x), where u is the
solution of (1.35). Then
(i) If u0 is smooth in a subinterval, it satisfies the reduced equation

b(u0)u
′
0 + c(x, u0) = 0.

(ii) At the boundaries x = 0 and x = 1, u0 satisfies

sgn
(
u0(0)−A

) ∫ u0(0)

k

b(s) ds ≤ 0 for all k between A and u0(0),

sgn
(
u0(1)−B

) ∫ u0(1)

k

b(s) ds ≥ 0 for all k between B and u0(1).

(iii) At a discontinuity x∗ ∈ (0, 1) of u0, the following jump condition is
satisfied:

sgn
(
u0(x

+
∗ )− u0(x

−
∗ )
) ∫ u0(x∗)

k

b(s) ds ≥ 0

for all k between u0(x
+
∗ ) and u0(x

−
∗ ).

Part (ii) of Theorem 1.15 is closely related to the boundary layer stability
conditions (1.33), and the characterization (iii) allows us to find the position
of interior layers.

For example, consider the case where uL and uR are globally stable but
no boundary layer exists. For convenience we assume that uL < 0 < uR. We
expect that

u0(x) =

{
uL(x) for 0 ≤ x < x∗,
uR(x) for x∗ < x ≤ 1,

but x∗ is unknown. Theorem 1.15 (iii) tells us that

J(x∗) = 0, where J(x) :=

∫ uR(x)

uL(x)

b(s) ds. (1.36)

Because no boundary layer is present,

J(0) =

∫ uR(0)

A

b(s)ds > 0 and J(1) =

∫ B

uL(1)

b(s)ds < 0.
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Furthermore, for some ζ ∈ (uL, uR),

J ′(x) = b(uR)u′
R − b(uL)u′

L = c(x, uL)− c(x, uR) = cu(x, ζ)(uL − uR)

< 0.

Hence x∗ is uniquely determined by (1.36). In example (1.34),

J(x) =

∫ x+0.5

−2+x

(−s)ds = −1

2
(5x− 3.75),

which delivers the value x∗ = 0.75.
Suppose now that we know only that b(x, uL(x)) > 0 on [0, xL) for some

xL ∈ (0, 1) (i.e., uL is stable only on [0, xL)), and b(x, uR(x)) < 0 on (xR, 1]
for some xR ∈ (xL, 1). Then one expects that

u0(x) =

⎧
⎨
⎩

uL(x) for 0 ≤ x ≤ xL,
us(x) for xL ≤ x ≤ xR,
uR(x) for xR ≤ x ≤ 1,

with us a smooth solution of the reduced equation and corner layers at xL

and xR. If example (1.34) is modified to

−εu′′ − uu′ + u = 0, u(0) = −1

2
, u(1) =

1

3
,

then one gets uL(x) = −1/2 + x with xL = 1/2, and uR(x) = x − 2/3 with
xR = 2/3. In this example, us ≡ 0 and

u0(x) =

⎧
⎨
⎩

x− 1
2 for 0 ≤ x ≤ 1

2 ,

0 for 1
2 ≤ x ≤ 2

3 ,

x− 2
3 for 2

3 ≤ x ≤ 1.

We end with a stability result from [Lor82] and an a priori bound on the
first-order derivative of the exact solution of the quasilinear problem (1.35).
Define the operator T by

Tv := −εv′′ + b(v)v′ + c(x, v).

Theorem 1.16. In the boundary value problem (1.31) assume that

∂c

∂s
(x, s) ≥ µ > 0 for all x ∈ (0, 1) and all s ∈ R.

Then for all v and w in C2(0, 1) that satisfy v(0) = w(0) and v(1) = w(1),
one has

‖v − w‖L1
≤ 1

µ
||Tv − Tw||L1

.

Furthermore, ∫ 1

0

|u′(x)|dx ≤ C.

The proof of the stability result uses the Green’s function of the linearized
problem, while the proof of the a priori bound for u′ resembles the proof of
Theorem 1.13.
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1.4 Linear Higher-Order Problems and Systems

1.4.1 Asymptotic Expansions for Higher-Order Problems

Consider the linear differential equation

Lu := εm−nu(m) +

n∑

ν=0

aν(x)u(ν) = f(x), for 0 < x < 1, (1.37)

subject to the boundary conditions

u(µi)(0) = 0, for i = 1, ..., r, (1.38a)

u(µi)(1) = 0, for i = r + 1, ..., m. (1.38b)

Here m and n are positive integers with m > n, so the order of the differential
equation decreases if one sets ε = 0. The boundary conditions are ordered so
that m > µ1 > µ2 > ... > µr ≥ 0 and m > µr+1 > µr+2 > ... > µm ≥ 0.
Furthermore, we exclude turning points by assuming that

an(x) �= 0 for all x ∈ [0, 1]. (1.39)

Applying the method of matched asymptotic expansions, the leading part
u0 of the global expansion satisfies the nth-order equation

L0u0 :=

n∑

ν=0

aν(x)u
(ν)
0 = f.

It is natural to attach n boundary conditions to this differential equation.
That is, m − n of the original m boundary conditions will be discarded and
we must decide which conditions to retain.

Introduce the local variable ξ = x/ε to investigate possible boundary layers
at x = 0 (one could similarly explore the behaviour of u near x = 1). The
leading term in the local correction is a differential equation with constant
coefficients. Its characteristic equation is

λn
(
λm−n + an(0)

)
= 0.

Suppose that σ roots of this equation have negative real part and τ roots
have positive real part. Two possible situations can occur [O’M91]: in the
nonexceptional case, σ + τ = m − n, while in the exceptional case there are
two pure imaginary roots so σ+τ = m−n−2. The corresponding cancellation
law is:

• Cancel σ boundary conditions at x = 0 and τ boundary conditions at
x = 1, choosing those with the highest-order derivatives.

• In the exceptional case, also cancel from the remaining boundary con-
ditions those two with the highest-order derivatives, provided that they
belong to the same endpoint and that the selection is without ambiguity.
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After the application of the cancellation law, the reduced solution is required
to satisfy the remaining n boundary conditions; this defines the reduced prob-
lem. If the cancellation law and reduced problem are well defined then the
method of matched asymptotic expansions works, but the cancellation law is
not well defined in all cases.

For example, consider the boundary value problem

ε2u(4) − u′′ = f(x) for x ∈ (0, 1),

subject to the boundary conditions

u′′′(0) = u(0) = u′(1) = u(1) = 0.

Here we have σ = τ = 1 and the cancellation law is well defined. The reduced
problem is

−u′′
0 = f with u0(0) = u0(1) = 0.

This has a unique solution. We find that u(x) has an asymptotic expansion
of the form

uas(x) =

m∑

ν=0

uν(x)εν + ε3

(
m∑

µ=0

vµ(ξ)εµ

)
e−x/ε

+ ε

(
m∑

µ=0

wµ(ζ)εµ

)
e−(1−x)/ε,

for arbitrary m, with ξ = x/ε and ζ = (1 − x)/ε. This expansion can be
formally differentiated to get information about derivatives of u; see [O’M91].

Little is known about higher-order problems with turning points.

1.4.2 A Stability Result

Stability is an essential property of every discretization method and to get
some insight into this property one must study the stability properties of the
given continuous problem. Furthermore, asymptotic expansions require high
smoothness of the coefficients of the problem; consequently, they may fail to
provide sufficient information about derivatives of the exact solution for the
analysis of discretization methods.

We consider the boundary value problem (1.37)–(1.38), under the assump-
tion (1.39), for the case n = m−1. That is, the order of the differential equation
decreases by one if ε = 0. We introduce the abbreviation

Bu = (B1u, B2u, ..., Bmu) = 0

for the m boundary conditions (1.38) and define the norm

‖v‖ε,m−1,∞ := max
{
‖v‖∞, ‖v′‖∞, ..., ‖v(m−2)‖∞, ε‖v(m−1)‖∞

}
.
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Remark 1.17. It is possible to replace ε‖v(m−1)‖∞ by ‖v(m−1)‖L1
. ♣

Niederdrenk and Yserentant [NY83] prove the following stability estimate
for continuous coefficients, and Gartland [Gar91] extends it to the case

am−1 ∈ L∞, a0, a1, ..., am−2 ∈ L1. (1.40)

Theorem 1.18. Assume that the boundary conditions are bounded with re-
spect to the norm ‖ · ‖ε,m−1,∞, in the sense that

|Bν(v)| ≤ C‖v‖ε,m−1,∞ for ν = 1, ..., m.

Suppose that (1.40) is satisfied. If there exists a fundamental system {φν} for
Lφ = 0 that satisfies

‖φν‖ε,m−1,∞ ≤ C,

and the m ×m matrix [Bµ(φν)] has an inverse whose norm (induced by the
discrete L1 norm) can be bounded independently of ε, then we have the stability
inequality

‖v‖ε,m−1,∞ ≤ C (‖Lv‖L1
+ |Bv|) .

The theorem is also valid for more general boundary condition functionals.
Note that for (1.38), the boundedness of the boundary conditions with respect
to the norm ‖ · ‖ε,m−1,∞ requires that

µ1 ≤ m− 2 and µr+1 ≤ m− 2;

thus the boundary conditions cannot contain the (m− 1)th derivative.
The conditions on the fundamental system and on the inverse of the matrix

[Bµ(φν)] are opposing constraints, as can be seen from a careful study of the
following example.

Example 1.19. Consider the differential operator and boundary conditions

Lu := εu(4) + u′′′, Bu := (u(0), u′′(0), u(1), u′′(1)) .

Then the fundamental system {1, x, x2, ε2e−x/ε} satisfies the conditions of
Theorem 1.18. With homogeneous boundary data, the theorem gives not only
stability but also the a priori estimate

‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ε‖u′′′‖∞ + ‖u′′′‖L1
≤ C‖f‖L1

.

If, however, the boundary conditions are

Bu := (u(0), u′(0), u(1), u′(1)) ,

then Theorem 1.18 does not apply and stability holds only in some weaker
norm. ♣

Little attention has been paid in the literature to the case n ≤ m − 2 for
m > 2. See [SS95a] for some results when n = m− 2.



38 1 The Analytical Behaviour of Solutions

1.4.3 Systems of Ordinary Differential Equations

Systems of ordinary differential equations are often discussed in books on
asymptotic expansions for singularly perturbed problems: see, e.g., [O’M91,
Chapter 3], [VB90, Chapter 2] or [Was65, Chapter 7]. Nevertheless in the past
relatively little attention was paid to their numerical solution, although the pa-
pers [Bak69] (reaction-diffusion systems) and [AKK74] (convection-diffusion
systems) are worth noting. In recent years interest in this area has grown, as
we now describe.

Consider a general system of M equations:

Lu : = −εu′′ + Bu′ + Au = f on Ω := (0, 1), (1.41a)

u(0) = g0, u(1) = g1, (1.41b)

where u = (u1, u2, . . . , uM )T is the unknown solution while f = (f1, . . . , fM )T ,
g0 and g1 are constant column vectors, and A = (aij) and B = (bij) are M×M
matrices.

The system (1.41) is said to be weakly coupled if the convection coupling
matrix B is diagonal, i.e., the ith equation of the system is

−εu′′
i + biiu

′
i +

M∑

j=1

aijuj = fi, (1.42)

so the system is coupled only through the lower-order reaction terms.
Linß [Lin07b] allows different diffusion coefficients in different equations:

ε = εi in the ith equation for i = 1, . . . , M . Assume that bii(x) ≥ βi > 0
and aii(x) ≥ α > 0 on [0, 1] for each i. (In [Lin07b] the weaker hypothesis
|bii(x)| ≥ βi > 0 is used, which permits layers in u at both ends of [0,1], but
for brevity we won’t consider this here.) Rewrite (1.42) as

−εiu
′′
i + biiu

′
i + aiiui = −

∑

j �=i

aijuj + fi, (1.43)

Then ‖ui‖∞ ≤ ‖(−∑
j �=i aijuj + fi)/aii‖∞ by a standard maximum principle

argument. Rearranging, one gets

‖ui‖∞ −
∑

j �=i

∥∥∥∥
aij

aii

∥∥∥∥
∞
‖uj‖∞ ≤

∥∥∥∥
fi

aii

∥∥∥∥
∞

for i = 1, . . . , M.

Define the M × M matrix Γ = (γij) by γii = 1, γij = −‖aij/aii‖∞ for
i �= j. Assume that Γ is inverse-monotone, i.e., that Γ−1 ≥ 0. It follows that
‖u‖∞ ≤ C‖f‖∞ for some constant C, where ‖v‖∞ = maxi ‖vi‖∞ for v =
(v1, . . . , vM )T . One can now apply the scalar-equation analysis of Lemma 1.8
to (1.43) for each i and get

|u(k)
i (x)| ≤ C

[
1 + ε−k

i e−βi(1−x)/εi

]
for x ∈ [0, 1] and k = 0, 1.
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Thus there is no strong interaction between the layers in the first-order deriv-
atives of different components ui; nevertheless the domains of these layers can
overlap and this influences the construction of numerical methods for (1.41).

The system (1.41) is said to be strongly coupled if for some i ∈ {1, . . . , M}
one has bij �= 0 for some j �= i. Such systems do not satisfy a maximum
principle of the usual type. One now gets stronger interactions between layers;
see [AKK74, Lin07a, OS, OSS]. For each i assume bii(x) ≥ βi > 0 and aii(x) ≥
0 on [0, 1]. Rewrite the ith equation as

Liu := −εu′′
i + biiu

′
i + aiiui = fi +

m∑

j=1
j �=i

[
(bijuj)

′ − (b′ij + aij)uj

]
, (1.44a)

ui(0) = ui(1) = 0. (1.44b)

For the scalar problem Liv = φ and v(0) = v(1) = 0, one has by (1.20) – see
[AK98, And02] for the case where (1.9) is not satisfied – the stability result
‖v‖∞ ≤ Ci‖φ‖W−1,∞ for a certain constant Ci that depends only on bii and
aii. Apply this result to (1.44) then, similarly to the analysis of (1.43), gather
the ‖uj‖∞ terms to the left-hand side. Define the M ×M matrix Υ = (γij)
by γii = 1, γij = −Ci[‖b′ij + aij‖L1

+ ‖bij‖∞] for i �= j. Assuming that Υ is
inverse monotone, we get an a priori bound on ‖u‖∞. Using this bound, it
is shown in [OSS] that one can decompose each component of u similarly to
(1.22) and (1.23).

For the analysis of systems of reaction-diffusion equations (i.e., B ≡ 0 in
(1.41)), see [Bak69, LM, MS03].
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Numerical Methods for Second-Order
Boundary Value Problems

2.1 Finite Difference Methods on Equidistant Meshes

2.1.1 Classical Convergence Theory for Central Differencing

This section examines linear two-point boundary value problems that are not
singularly perturbed, in order to introduce the classical terminology of finite
difference methods. Thus consider the problem

Lu := −u′′ + b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0, (2.1)

under the assumptions that b, c, f are smooth and c(x) ≥ 0.
Finite difference methods will be studied on an equidistant grid with mesh

size h = 1/N ; that is, set

xi = ih for i = 0, 1, ..., N, with x0 = 0 and xN = 1.

(We could work equally well with almost-equidistant meshes, but for simplicity
restrict ourselves to the equidistant case. See Section 2.4 for a classification
of meshes and for extensions of the theory to meshes that are not almost
equidistant.)

A finite difference method is a discretization of the differential equation
using the grid points xi, where the unknowns ui (for i = 0, . . . , N) are approx-
imations of the values u(xi). It is natural to approximate u′(x) by the central
difference

(D0u)(x) := [u(x + h)− u(x− h)]/(2h).

Composing the forward and backward differences

(D+u)(x) := [u(x + h)− u(x)]/h and (D−u)(x) := [u(x)− u(x− h)]/h,

yields the following central approximation for u′′(x):

(D+D−u)(x) := [u(x + h)− 2u(x) + u(x− h)]/h2.
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The order of accuracy of every finite difference approximation depends on the
smoothness of u. For instance, Taylor’s formula yields

u(x± h) = u(x)± hu′(x) + h2 u′′(x)

2
± h3 u′′′(x)

6
+ R4,

with

R4 =

∫ x±h

x

[u′′′(ξ)− u′′′(x)]
(x± h− ξ)2

2
dξ.

Hence ∣∣(D+D−u)(x)− u′′(x)
∣∣ ≤ Kh2 if u ∈ C4, (2.2)

– this condition can be weakened to the Lipschitz continuity of u′′′ – and we
say that D+D− is second-order accurate, which is sometimes written as O(h2)
accurate. The order decreases if u is less smooth; for example, if one only has
u ∈ C3, then D+D− is first-order accurate. Using the notation

gi = g(xi), where g can be b, c or f,

the classical central difference scheme for the boundary value problem (2.1)
is

−D+D−ui + biD
0ui + ciui = fi for i = 1, ..., N − 1, (2.3a)

u0 = uN = 0. (2.3b)

This is a tridiagonal system of linear equations:

riui−1 + siui + tiui+1 = fi for i = 1, ..., N − 1, with u0 = uN = 0, (2.4)

where

ri = − 1

h2
− 1

2h
bi, si = ci +

2

h2
, ti = − 1

h2
+

1

2h
bi. (2.5)

Two questions must now be tackled: what properties does the discrete
problem (2.3) enjoy? What can we say about the errors |u(xi)− ui| ?

Classical convergence theory for finite difference methods is based on the
complementary concepts of consistency and stability. First, formally write
(2.3) (or any difference scheme) as

Lhuh = fh, (2.6)

where Lh is a matrix,

uh := (uh(x0), uh(x1), ..., uh(xN ))T := (u0, u1, . . . , uN )T ,

and fh := (f(x0), f(x1), . . . , f(xN ))T . Functions defined on the grid, such as
uh and fh, are called grid functions. The restriction of a function v ∈ C[0, 1]
to a grid function is denoted by Rhv, viz., Rhv = (v(x0), v(x1), ..., v(xN )). We
sometimes omit Rh when the meaning is clear. The discrete maximum norm
on the space of grid functions is

‖vh‖∞,d := max
i
|vh(xi)|.



2.1 Finite Difference Methods on Equidistant Meshes 43

Definition 2.1. Consider a difference scheme of the form Lhuh = Rh(Lu),
where we incorporate the boundary conditions into the scheme by taking the
first and last rows of Lh to be identical to the first and last rows respectively
of the identity matrix, with (RhLu)0 = u0 and (RhLu)N = uN . This scheme
is consistent of order k in the discrete maximum norm if

‖LhRhu−RhLu‖∞,d ≤ Khk,

where the positive constants K and k are independent of h.

One could define consistency analogously with respect to an arbitrary norm.
As in (2.2), one can apply Taylor’s formula to prove

Lemma 2.2. Under the assumption u ∈ C4[0, 1], the central difference scheme
(2.3) is consistent of order two.

Applying the discrete operator Lh to the error at the interior grid points
yields

Lh(Rhu− uh) = LhRhu− fh = LhRhu−RhLu. (2.7)

In order to estimate Rhu − uh from (2.7) and the consistency order, it is
natural to introduce the concept of stability.

Definition 2.3. A discrete problem Lhuh = fh is stable in the discrete max-
imum norm, if there exists a constant K (the stability constant) that is inde-
pendent of h, such that

‖uh‖∞,d ≤ K‖Lhuh‖∞,d (2.8)

for all mesh functions uh.

Note that, analogously to the continuous case, one could generalize this to
(A, B) stability which is particularly important for non-equidistant meshes.
Thus, to be precise, Definition 2.3 deals with (L∞, L∞) stability.

Our final ingredient is

Definition 2.4. A difference method for (2.1) is convergent (of order k) in
the discrete maximum norm if there exist positive constants K and k that are
independent of h for which

‖uh −Rhu‖∞,d ≤ Khk.

The main result of classical convergence theory for finite difference meth-
ods now follows immediately:

Consistency + Stability =⇒ Convergence.

The investigation of the order of consistency is usually based on Taylor’s for-
mula and is straightforward. But to prove stability one needs some new tools.



44 2 Numerical Methods for Second-Order Boundary Value Problems

In classical finite difference analyses, it is standard to use the theory of M-
matrices, which is now described; see [Boh81, OR70] for further information.

The material that follows uses the natural ordering of vectors, viz., x ≤ y
if and only if xi ≤ yi for all i. Sometimes we simply write z ≥ 1 when we
mean that zi ≥ 1 for all i. For each matrix A = (aij), the inequality A ≥ 0
means that aij ≥ 0 for all i and j.

A matrix A for which A−1 exists with A−1 ≥ 0 is called inverse-monotone.

Lemma 2.5 (Discrete comparison principle). Let A be inverse-monotone.
Then Av ≤ Aw implies that v ≤ w.

Proof. The argument is simple: multiply A(v − w) = b ≤ 0 by A−1 and use
A−1 ≥ 0. ⊓⊔

The class of M-matrices is an important subset of the class of inverse-
monotone matrices.

Definition 2.6. A matrix A is an M-matrix if its entries aij satisfy aij ≤ 0
for i �= j and its inverse A−1 exists with A−1 ≥ 0.

The diagonal entries of an M-matrix satisfy aii > 0.
While the condition aij ≤ 0 is easy to check, it may be difficult to verify

directly the inequality A−1 ≥ 0. Fortunately, several equivalent but more
tractable characterizations of M-matrices are known. The following result is
frequently used in the context of discretization methods (see [Boh81] or [AK90]
for a proof).

Theorem 2.7 (M-criterion). Let the matrix A satisfy aij ≤ 0 for i �= j.
Then A is an M-matrix if and only if there exists a vector e > 0 such that
Ae > 0. Furthermore, we have

‖A−1‖∞,d ≤
‖e‖∞,d

mink(Ae)k
. (2.9)

Here the matrix norm is the norm induced by the corresponding vector norm.

In Theorem 2.7 the vector e is called a majorizing element for the ma-
trix A. This theorem allows us to verify that the coefficient matrix of a given
discretization is an M-matrix while simultaneously estimating the stability
constant from (2.9) — provided that we are able to find a majorizing element.
The following recipe for construction of this element is often successful:

• Find a function e > 0 such that Le(x) > 0 for x ∈ (0, 1) – this is a
majorizing element for the differential operator L.

• Restrict e to a grid function eh.

In general, if the first step in this method is feasible then the method will
work (at least for sufficiently small h) provided the discretization is consistent
to some positive order.

For homogeneous boundary conditions one usually eliminates the variables
u0 and uN before applying Theorem 2.7.
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Example 2.8. Consider the special case where b(x) ≡ 0 in the differential op-
erator L of (2.1). Choose e(x) := x(1− x)/2. Then

Le(x) = 1 + c(x)e(x) ≥ 1.

On setting eh := Rhe one obtains

Lheh ≥ (1, ..., 1)T .

since D+D− discretizes quadratic functions exactly at the interior grid points.
Now inequality (2.9) provides a stability constant of 1/8. ♣

In the general case of (2.1), the construction of a majorizing element is
slightly more complicated. Define e(x) to be the solution of the boundary
value problem

−w′′ + b(x)w′ = 1, w(0) = w(1) = 0.

Then e(x) > 0 for x ∈ (0, 1) and e(x) is bounded. The inequality c(x) ≥ 0
and the consistency of the discretization imply that at the interior grid points
one has

Lheh = RhLe + (Lheh −RhLe) ≥ 1/2

for all sufficiently small h, because RhLe = 1. This proves

Lemma 2.9. For all sufficiently small h, the central difference scheme for
the boundary value problem (2.1) is stable in the discrete maximum norm;
moreover, the corresponding coefficient matrix is then an M-matrix.

One can clearly combine Lemmas 2.2 (consistency) and 2.9 (stability) to
obtain a second-order convergence result.

Remark 2.10. In general, the proof of stability via M-matrices is inapplicable
to higher-order difference schemes that are based on stencils with more than
three points. It may nevertheless be possible to use the property of strong
diagonal dominance (see, e.g., [Her90]) or to factor a matrix as a product of
M-matrices [Lor75] or to use special splittings [AK90]. For a general stability
theory of difference schemes see [Gri85a]. ♣

2.1.2 Upwind Schemes

This subsection and its two successors study difference schemes for the singu-
larly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.10)

when turning points are excluded, i.e., when b(x) �= 0 for all x ∈ [0, 1]. We
also assume that c ≥ 0 on [0,1] and that the functions b, c and f are smooth.
Recall that for b > 0 there is an exponential boundary layer at x = 1, and for
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b < 0 the boundary layer is at x = 0. The conditions “b < 0” and “b > 0” are
equivalent: the change of variable x �→ 1−x transforms the problem from one
formulation to the other.

Suppose that ε > 0 is small. If u exhibits a boundary layer, this adversely
affects both consistency and stability. If instead the boundary conditions are
such that u has no layer, then the consistency error improves but stability
may still be a problem.

To begin, the central difference scheme is applied to the example

−εu′′ + u′ = 0 on (0, 1), u(0) = 0, u(1) = 1.

A transformation u(x) = x + v(x) would give homogeneous boundary con-
ditions, but one can use the scheme directly with inhomogeneous conditions.
The discrete problem is

−εD+D−ui + D0ui = 0, u0 = 0, uN = 1.

It is easy to solve this exactly:

ui =
ri − 1

rN − 1
, with r =

2ε + h

2ε− h
.

If h ≫ 2ε, then r ≈ −1 so this computed solution oscillates badly and is not
close to the true solution

u(x) =
e−(1−x)/ε − e−1/ε

1− e−1/ε
.

Figure 2.1 shows the oscillations of the central scheme on an uniform mesh
if ε is small compared with h. On the other hand if h < 2ε, then the central
difference scheme works — but from the practical point of view this assump-
tion is unsatisfactory when, for instance, ε = 10−5. A fortiori, in two or three
dimensions such a mesh restriction would lead to unacceptably large numbers
of mesh points, as for small ε the dimension of the algebraic system generated
would be too large for computer solution.

Returning to the general problem (2.10), write the central difference
scheme in the form of (2.5), viz.,

ri = − ε

h2
− 1

2h
bi, si = ci +

2ε

h2
, ti = − ε

h2
+

1

2h
bi.

This gives an M-matrix and hence stability if we assume that

h ≤ h0(ε) =
2ε

‖b‖∞
,

which generalizes the observation of the example above. Note that h0(ε) → 0
if ε → 0. This conclusion is not confined to the central difference scheme:
Classical numerical methods on equidistant grids yield satisfactory numerical
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Fig. 2.1. Oscillations of the central difference scheme

solutions for singularly perturbed boundary value problems only if one uses an
unacceptably large number of grid points. In this sense, classical methods fail.

An alternative heuristic explanation for the failure of central differencing
in the above example is that when ε ≪ h the scheme is essentially D0ui = 0,
which implies in particular that uN−2 ≈ uN = 1, so uN−2 is a poor approxi-
mation to u(xN−2) ≈ 0.

This argument also shows that we would do well to avoid any difference
approximation of u′(xN−1) that uses uN . The simplest candidate meeting this
requirement is the approximation

u′(xi) ≈
ui − ui−1

h
. (2.11)

An inspection of the signs of the matrix entries of the earlier discrete problem,
with the aim of modifying the difference scheme in order to generate an M-
matrix, also motivates (2.11).

Thus for the general case where the sign of b may be positive or negative,
consider the scheme

−εD+D−ui + biD
ℵui + ciui = fi for i = 1, ..., N − 1, (2.12a)

u0 = uN = 0, (2.12b)

with

Dℵ =

{
D+ if b < 0,
D− if b > 0.

(2.12c)
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This is the simple upwind scheme. (We saw in the Introduction that convection
dominates the problem and assigns a direction to the flow; upwind means
that the finite difference approximation of the convection term is taken on the
upstream side of each mesh point.) The numerical behaviour of the upwind
scheme is much better than the central scheme: see Figure 2.2.
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Fig. 2.2. Solution of the upwind scheme on an equidistant mesh

We now begin our analysis of the upwind scheme. Write Lh for the matrix
of the scheme after eliminating u0 and uN . In the form (2.4), the coefficients
of the discrete problem are

ri = − ε

h2
− 1

h
max{0, bi}, si = ci +

2ε

h2
+

1

h
|bi|,

ti = − ε

h2
+

1

h
min{0, bi}.

Now the off-diagonal matrix entries are non-positive, irrespective of the rela-
tive sizes of h and ε.

Lemma 2.11. Assume that b(x) �= 0 for all x ∈ [0, 1]. Then the coefficient
matrix Lh for the upwind scheme (2.12) is an M-matrix and the upwind
scheme is uniformly stable with respect to the perturbation parameter:

‖uh‖∞,d ≤ C‖Lhuh‖∞,d,

with a stability constant C that is independent of ε and h.
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Proof. For definiteness assume that b(x) ≥ β > 0. We construct a suitable
majorizing vector. Choose e(x) := x, so Le(x) ≥ β. A direct computation
yields Lheh ≥ β. By Theorem 2.7 the matrix is an M-matrix and one gets the
desired stability bound with stability constant C = 1/β. ⊓⊔

This stability result for the upwind scheme remains valid on arbitrary
meshes. Moreover, introducing mesh analogues of the norms previously seen,
one can also prove (L∞,d, L1,d) and (L∞,d, W−1,∞,d) stability results which
are useful when analysing the scheme on layer-adapted meshes, as will be seen
later.

In ensuring the stability of the upwind scheme, we have paid a certain
price in accuracy: D+ and D− are only O(h) approximations of the first-
order derivative whereas the central difference D0 is an O(h2) approximation.
The precise analysis of the consistency error and convergence behaviour of the
upwind scheme that now follows is based on [KT78] and draws on the bounds
of Lemma 1.8 on derivatives of the exact solution u.

Theorem 2.12. Assume that b > β > 0 and c ≥ 0. Then there exists a
positive constant β∗, which depends only on β, such that the error of the
simple upwind scheme (2.12) at the inner grid points {xi : i = 1, . . . , N − 1}
satisfies

|u(xi)− ui| ≤
{

Ch
[
1 + ε−1 exp(−β∗(1− xi)/ε)

]
if h ≤ ε,

Ch + C exp(−β∗(1− xi+1)/ε) if h ≥ ε.

Proof. As for the central scheme in Section 2.1.1, the consistency error is
estimated using Taylor’s formula. At each grid point xi one obtains

|τi| := |Lhu(xi)− f(xi)| ≤ C

∫ xi+1

xi−1

(
ε|u(3)(t)|+ |u(2)(t)|

)
dt. (2.13)

The crude bound |u(k)| ≤ Cε−k combined with the stability result of
Lemma 2.11 yields only |u(xi)−ui| ≤ Ch/ε2, so a more precise bound on |u(k)|
is needed. Invoking Lemma 1.8 yields the inequality

|τi| ≤ Ch + Cε−2

∫ xi+1

xi−1

exp (−β(1− t)/ε) dt

≤ Ch + Cε−1 sinh

(
βh

ε

)
exp

(
− β(1− xi)

ε

)
.

Consider first the case when h ≤ ε. Then βh/ε is bounded. Now sinh t ≤ Ct
when t is bounded, so

|τi| ≤ Ch

[
1 + ε−2 exp

(
− β(1− xi)

ε

)]
.
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At first sight, this inequality seems unable to deliver the desired power of ε
(viz., ε−1 instead of ε−2) when Lemma 2.11 is applied. But if one considers
the boundary value problem

−εw′′ + bw′ + cw = Cε−1 exp

(
− β(1− x)

ε

)
, w(0) = w(1) = 0,

then using the barrier function

w∗(x) = C exp

(
− β∗(1− x)

ε

)

where β∗ > β, the comparison principle of Lemma 1.1 yields the estimate

|w(x)| ≤ C exp

(
− β∗(1− x)

ε

)

– where w has gained a power of ε compared with Lw ! The same calculation
at the discrete level, using the discrete comparison principle of Lemma 2.5,
completes the proof of the theorem when h ≤ ε.

In the more difficult case h ≥ ε, we decompose the solution as

u(x) = −u0(1) exp

(
− b(1)(1− x)

ε

)
+ z(x).

By imitating the proof of Lemma 1.8 one finds that

|z(i)(x)| ≤ C

[
1 + ε1−i exp

(
− b(1)(1− x)

ε

)]
.

Set

v(x) = −u0(1) exp

(
− b(1)(1− x)

ε

)

and define vh and zh by

Lhvh = Lv and Lhzh = Lz,

where vh and zh agree with v and z, respectively, at x0 and xN . Then

|u(xi)− ui| = |v(xi) + z(xi)− (vi + zi)| ≤ |v(xi)− vi|+ |z(xi)− zi|.

For the consistency error associated with z, similarly to before one gets

|τi(z)| ≤ Ch + C sinh

(
βh

ε

)
exp

(
− β(1− xi)

ε

)
.

As now h ≥ ε, we use the inequality sinh t ≤ Cet. Hence

|τi(z)| ≤ Ch + C exp

(
− β(1− xi+1)

ε

)
.
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The consistency error due to v must still be bounded. The definition of v gives

|Lv(x)| ≤ Cε−1|v(x)|.

Thus

|(Lhvh)i| = |Lv(xi)| ≤ Cε−1 exp

(
− β(1− xi)

ε

)
.

Appealing again to the discrete comparison principle, one obtains

|v(xi)− vi| ≤ |v(xi)|+ |vi| ≤ C exp

(
− β(1− xi)

ε

)
.

Combining the various estimates proves the result for the case h ≥ ε. ⊓⊔

Remark 2.13. If the boundary layer is weaker, for instance if there is a Neu-
mann condition at x = 1, then a factor ε is gained in the analysis and the
conclusion is that

‖u− uh‖∞,d ≡ max
i
|u(xi)− ui| ≤ Ch.

To get O(h2) uniformly with respect to ε for some method such as central
differencing, the layer must be weaker still: not only the first-order derivative
but also the second-order derivative should be bounded uniformly with respect
to ε. ♣

Theorem 2.12 shows that outside the boundary layer (i.e., in the interval
[0, 1 − δ] for any fixed δ > 0) simple upwinding gives first-order convergence
with a convergence constant independent of ε. But inside the layer the theorem
does not prove convergence, and indeed the story here is disappointing: take
the example

−εu′′ − u′ = 0, u(0) = 0, u(1) = 1,

which has a boundary layer at x = 0. Then the simple upwind scheme yields

ui =
1− ri

1− rN
, with r =

ε

ε + h
.

Thus for h = ε one gets

u1 =
1/2

1− (1/2)N
but u(x1) =

1− e−1

1− e−1/ε
,

so the error at this mesh point is O(1). Thus one cannot expect to sharpen
significantly Theorem 2.12 at the layer. Figure 2.3 on page 58 shows the
typical error behaviour of the upwind scheme at the first interior grid point
close to the layer, as h varies while ε is fixed; as h decreases, the error increases
(because the grid point is moving from outside into the layer) and begins to
decrease only when h is sufficiently small.
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Several options are available for the construction of upwind schemes that
achieve higher-order convergence outside the layer. (Here “upwind” means
that the first-order derivative in the differential equation is approximated by
a non-centred difference approximation.)

First, taking b > 0 for convenience, the simple upwind scheme (2.12) can
be rearranged as

−
(

ε +
bih

2

)
D+D−ui + biD

0ui + ciui = fi, u0 = uN = 0. (2.14)

This resembles the central difference scheme, but the diffusion coefficient has
been modified from ε to ε+bih/2. That is, simple upwinding applied to (2.10)
is the same as central differencing applied to a modified version of (2.10). For
ε > bih/2 the dominant diffusion is O(ε), but in the more interesting case
ε < bih/2 it becomes O(bih/2). The scheme (2.14) is said to have artificial
diffusion or artificial viscosity. It is the simplest example of a general strategy:
add artificial diffusion to the given differential equation to stabilize a standard
discretization method.

Too much artificial viscosity will “smear” the computed solution (that is,
the computed layers are too wide – an unsurprising consequence since the layer
width in the original differential equation depends on the diffusion coefficient);
see also Remark 2.19. In two dimensions this effect is particularly important,
so we shall continue this discussion in Part III.

Artificial diffusion can be introduced directly by means of a fitting factor σ,
as in the following fitted upwind scheme, which generalizes (2.14):

−εσ(q(xi))D
+D−ui + biD

0ui + ciui = fi for i = 1, . . . , N − 1, (2.15a)

u0 = uN = 0, (2.15b)

with q(x) : =
b(x)h

2ε
. (2.15c)

If σ(q) = 1 + q, this becomes the simple upwind scheme (2.14).
Which choices of σ will generate good upwind schemes? As part of the

answer to this question, it’s easy to generalize Lemma 2.11 to the following
stability result.

Lemma 2.14. Assume that b(x) > β > 0, c ≥ 0, and σ(q) > q. Then the
coefficient matrix of the fitted upwind scheme (2.15) is an M-matrix and the
method is stable in the discrete maximum norm, uniformly in ε.

The next step is to investigate the consistency error τi. Now

τi = εσ
(
u′′(xi)−D+D−u(xi)

)
+ ε(1− σ)u′′(xi) + bi

(
D0u(xi)− u′(xi)

)
,

which leads to

|τi| ≤ C
{

ε|σ(qi)|h2 ‖u(4)‖∞ + ε|1− σ(qi)| ‖u(2)‖∞ + h2‖u(3)‖∞
}

.
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Assume that
|σ(q)− 1| ≤ min{q, Mq2}.

Then

|τi| ≤ C

{(
1 +

h

ε

)
εh2||u(4)||∞ + εM

(
h

ε

)2

||u(2)||∞ + h2||u(3)||∞
}

,

whence

|τi| ≤ C
h2

ε3

(
1 +

h

ε

)
max

k=2,3,4

{
εk||u(k)||∞

}
.

This implies

Lemma 2.15. Suppose that

|σ(q)− 1| ≤ min{q, Mq2}.

Then for fixed ε, the consistency error of the generalized upwind scheme (2.15)
is second order.

We emphasize that in the statement that the consistency error τi is second
order, the “constant” factor depends on ε and, moreover, tends to infinity if ε
tends to zero. When dealing with singularly perturbed problems, consistency
error for fixed ε is sometimes called formal consistency or formal accuracy.

Examples of polynomial-type fitting factors that satisfy the assumptions
of Lemmas 2.14 and 2.15 are

σ(q) = max{1, q}, σ(q) =
√

1 + q2,

σ(q) = 1 + q2/(1 + q) (which generates Samarskĭı’s upwind scheme).

A more careful analysis shows that for fitted upwind schemes of the form
(2.15), when the conditions of Lemma 2.14 and 2.15 are satisfied, then the
order of convergence is two for fixed ε but in general is only one, uniformly
in ε, in the region outside the layer ; see [KT78, Tob83]. That is, one observes
a kind of order reduction that is well known in stiff initial-value problems.

To obtain second-order convergence that is uniform in ε outside the layer,
Stoyan [Sto79] devised the scheme

−εσ(q(xi−α))D+D−ui + b(xi−α)D0ui + c(xi−α)ui = f(xi−α),

with the shifted evaluation

xi−α := (i− α)h and α = α(q) := (σ(q)− 1)/(2q),

where q satisfies the nonlinear equation

q =
h

2ε
b
(
xi − α(q)h

)
.
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Stoyan’s scheme generalizes an idea of Abrahamsson, Keller and Kreiss
[AKK74], who proposed the midpoint upwind scheme

−εD+D−ui + bi−1/2D
−ui + ci−1/2

ui + ui−1

2
= fi−1/2.

For ε = 0 this is a second-order consistent approximation of the reduced prob-
lem at xi−1/2, while the simple upwind scheme is only first-order consistent.
See also [BSC+80] for schemes that are higher-order outside the layer.

So farwe have examined three-point schemes. For these schemes,M-matrices
are a powerful stability analysis tool. Schemes with more than three points,
however, rarely yield M-matrices. This makes their stability analysis much
more difficult; cf. Remark 2.10. Furthermore, schemes with more than three
points are not in general inverse-monotone, which is sometimes more impor-
tant in practice than higher-order accuracy.

Gushchin and Shchennikov [GS74] combine the central difference scheme
with a midpoint scheme that is inverse-monotone when the central difference
scheme loses this property. When b(x) > β > 0, the Gushchin-Shchennikov
scheme for the boundary value problem (2.10) is

−ε
ui+1 − ui − ui−1 + ui−2

2h2
+bi−1/2D

−ui

+ ci−1/2
ui + ui−1

2
= fi−1/2. (2.16)

The approximation used for the second-order derivative is well known (see,
e.g., [For88] for half-point approximations of different orders for u, u′, . . . , u(4))
and is second order at xi−1/2. The consistency error at xi−1/2 is therefore
second-order. This scheme is stable when ε ≤ 2b0h because the coefficient
matrix is then an M-matrix.

This scheme and those below must be modified near the endpoints of the
interval.

An alternative approach is to use the central scheme for the second-order
derivative but higher-order one-sided approximations for the first-order deriv-
ative. For instance, the following scheme seems natural when b > 0:

−εD+D−ui +
bi

2h
(3ui − 4ui−1 + ui−2) + ciui = fi, u0 = uN = 0.

See [For88] for higher-order one-sided approximations.
A general scheme with a formally second-order consistent four-point ap-

proximation for u′ is

−εD+D−ui+
bi

h

[
(−λ + 1/2)ui+1 + 3λui − (3λ + 1/2)ui−1 + λui−2

]

+ ciui = fi, u0 = uN = 0, (2.17)

where λ is a free parameter. The choice λ = 0 reduces to the central scheme,
while λ = 1/2 uses grid points on only one side of xi. In fact, (2.17) is a special
case of the more general five-point scheme
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−εD+D−ui +
bi

h

5∑

k=1

αkui+k−3 + ciui = fi, u0 = uN = 0, (2.18)

with the following conditions enforced for formal second-order consistency:

α1 = −1

4
− 1

8
α +

3

8
β, α2 = −β, α3 =

3

4
(α + β)

α4 = −α, α5 =
1

4
+

3

8
α− 1

8
β.

One obtains (2.17) from (2.18) by taking α = λ− 1/2 and β = 3λ + 1/2; then
α5 = 0.

Some particular cases of (2.17) are associated by name in the engineering
literature with Atia (λ = 1/2), Agarwal (λ = 1/6) and Leonard (λ = 1/8); see
also the LECUSSO [Leo79b, Leo79a] and LUDS schemes [Gün88].

Little attention has been paid to a five-point scheme that was introduced
in [GF88] and worked well — even for the Navier-Stokes equations at high
Reynolds numbers. This Goncharov-Fryazinov scheme is related to our earlier
observation that the simple upwind scheme can be regarded as the central
difference scheme applied to an O(h) regularization of the second-order deriv-
ative:

ui+1 − ui

h
=

ui+1 − ui−1

2h
+

h

2

ui+1 − 2ui + ui−1

h2
.

In [GF88] an O(h3) regularization of the fourth-order derivative is used, which
leads to a five-point scheme.

Unfortunately no general mathematical theory that yields pointwise error
bounds is available for higher-order upwind schemes with more than three
points. Some proofs of stability based on inverse-monotonicity are known. In
some cases, the coefficient matrix of (2.17) or (2.18) is the product of two
M-matrices and therefore inverse-monotone. For the scheme (2.17) we have
uniform stability with respect to ε and second-order convergence in the domain
outside the layer under the assumptions ε ≤ Ch and 1/2 ≤ λ ≤ 1/2 +

√
1/3.

See [Roo86b] for the more general scheme (2.18). In [Gün88], several related
schemes (but not Goncharov-Fryazinov) are tested numerically.

In this context, it is interesting to note that recently-developed stabi-
lized finite element methods for convection-diffusion problems – such as edge
stabilization or local projection methods (see Part III) – generate five-point
difference schemes for (2.10). These methods often contain user-chosen para-
meters. One guide to determining the values of these free parameters is to
use upwinding instead of central differencing at the boundary where the layer
is located, i.e., choose the parameters in such a way that the scheme avoids
using the corresponding boundary value. See [RV07] for a detailed discussion.

Schemes like LECUSSO-C, LSUDS-C and QUICK-PLUS from [Gün88,
Leo79b, Leo79a] use some form of exponential fitting, whose basic theory will
be discussed in subsequent sections.
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Remark 2.16. (An upwind scheme for a higher-order problem) As in Sec-
tion 1.4, we consider the singularly perturbed higher-order problem

Lu := εu(m) +

m−1∑

ν=0

aν(x)u(ν) = f(x) for 0 < x < 1,

subject to the m homogeneous boundary conditions

Bu := (B1u, B2u, ..., Bmu) = 0.

Assume that the functions f and aν are sufficiently smooth and exclude turn-
ing points by the assumption that am−1(x) ≥ α > 0. Finally, assume that
the hypotheses of the basic stability result of Niederdrenk and Yserentant
(Theorem 1.18) are satisfied.

Let us introduce a (possibly nonequidistant) mesh

0 = x0 < x1 < ... < xN = 1

and the notation

hi := xi+1 − xi, h := max hi, hk(xi) :=
xi+k − xi

k
.

Define the difference operators

D0ui := ui, Dνui :=
Dν−1ui+1 −Dν−1ui

hν(xi)
for ν = 1, . . . , m− 1.

Niederdrenk and Yserentant [NY83] consider the scheme

εDmui + ah
m−1(xi)[θiD

m−1ui + (1− θi)D
m−1ui+1] +

m−2∑

ν=0

ah
ν (xi)D

νui+1

= fh(xi),

where the ah
ν are approximations of the coefficients aν , and fh approximates f .

If m = 2 and θ = 0, this scheme collapses to the simple upwind scheme. It is
thus a natural upwind approximation of the given problem, but on equidis-
tant grids no conditions are known that guarantee the stability of the scheme,
uniformly with respect to ε, in some appropriate norm.

Niederdrenk and Yserentant derive conditions equivalent to stability of
the discrete problem (cf. Theorem 1.18 in the continuous case) under the
assumption that

0 ≤ θi ≤ min

{
1

ρi
, 1

}
, where ρi :=

hm(xi)a
h
m−1(xi)

ε
.

This condition is more restrictive than is needed in practice. Gartland [Ga88]
shows that uniform stability of the discrete boundary value problem follows
from uniform stability of an associated discrete initial-value problem and uni-
form consistency of the scheme. Uniform consistency does however require
exponential fitting or a special mesh or both. ♣
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2.1.3 The Concept of Uniform Convergence

We continue our study of the singularly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x), u(0) = u(1) = 0, (2.19)

under the assumptions that b(x) > β > 0 (i.e., no turning points) and c ≥ 0. In
Section 2.1.2 we considered convergence, uniformly in ε, outside the boundary
layer; we now examine convergence on the whole interval [0,1].

A difference method is called uniformly convergent (with respect to ε) of
order γ > 0 in the discrete maximum norm ‖ · ‖∞,d, if there exists a constant
C that is independent of ε and of the mesh, such that

‖u− uh‖∞,d ≤ Chγ (2.20)

for all sufficiently small h (independently of ε). Uniform consistency is de-
fined analogously; we have already discussed finite difference stability that is
uniform in ε.

More generally, a discretization method is called uniformly convergent
(with respect to ε) of order γ > 0 in the norm ‖ · ‖, if there exists a con-
stant C that is independent of ε and of the mesh, such that for all sufficiently
small h (independently of ε), one has

‖u− uh‖ ≤ Chγ , (2.21)

where uh is the solution computed by the method.
The simple upwind scheme is not uniformly convergent in the discrete

maximum norm because of its behaviour in the layer (see Figure 2.3 and
Theorem 2.12). The same observation holds for most of the schemes discussed
in Section 2.1.2 if the given problem exhibits a typical exponential boundary
layer; on the other hand, see Remark 2.13 concerning upwinding if the layer
is weaker.

Uniformly convergent schemes are interesting not just from a theoretical
viewpoint. Consider upwind schemes that are not uniformly convergent: a
careful examination of numerical results shows that for fixed ε, the maximum
pointwise error may initially decrease, but then usually increases as the mesh
is refined because of the boundary layer – on a coarse mesh all interior mesh
points are outside the layer, but as the mesh is refined the closest interior point
approaches the layer, which makes the maximum pointwise error increase –
until the mesh parameter and the perturbation parameter have the same order
of magnitude, when the error again begins to decrease. This runs contrary to
the reasonable expectation that the error of an acceptable numerical method
should decrease when the mesh is refined; furthermore, for problems posed
in more than one dimension it is often too expensive to use an equidistant
mesh whose diameter has the same order of magnitude as the perturbation
parameter. Figure 2.3 exhibits this undesirable error behaviour at the first
interior grid point for the simple upwind scheme applied to the example
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−εu′′ − u′ = 2x, u(0) = u(1) = 0,

with ε = 10−6, where the mesh width h = 1/N . This figure also shows the
error behaviour of the uniformly convergent Il’in-Allen-Southwell scheme that
we shall meet shortly.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

u
−
u

h

 

 

Upwind

Il’in

Fig. 2.3. The error at the layer for the upwind and Il’in-Allen-Southwell methods

For uniformly convergent methods on an equidistant mesh, the error bound
for ‖u − uh‖∞,d decreases as the mesh is refined for all h ≤ h0 (where the
constant h0 is independent of ε), regardless of the ratio of the parameters h
and ε.

We now look for fitted upwind schemes that are uniformly convergent with
respect to the discrete maximum norm ‖ · ‖∞,d. These schemes take the form
of (2.15):

−εσ
(
q(xi)

)
D+D−ui + biD

0ui + ciui = fi, u0 = uN = 0,

where q(x) =
b(x)h

2ε
.

Miller [Mil76] derives necessary conditions for uniform convergence.

Theorem 2.17. Assume that the scheme (2.15) is uniformly convergent with
respect to ‖ · ‖∞,d. If n is a fixed positive integer and ρ = h/ε is fixed, then
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lim
h→0

σ(q(xN−n)) = q(1) coth q(1). (2.22)

Proof. By virtue of Theorem 1.4 with m = 0, for x ∈ [0, 1] one has

∣∣∣∣u(x)−
[
u0(x)− u0(1) exp

(
− b(1)(1− x)

ε

)]∣∣∣∣ ≤ Cε.

As ρ = h/ε is fixed, it follows that for each fixed i one gets

lim
h→0

u((N − i)h) = u0(1) [1− exp(−2q(1)i)] .

Now the uniform convergence of the scheme implies that

lim
h→0

uN−i = u0(1) [1− exp(−2q(1)i)] .

On the other hand, (2.15) yields

lim
h→0

| − σ(q(xN−1))(uN − 2uN−1 + uN−2) + q(xN−1)(uN − uN−2)| = 0.

Combining the last two equations gives (one can assume without loss of
generality that u0(1) �= 0)

σ(q(1)) [1− 2 exp(−2q(1)) + exp(−4q(1))] = q(1) [1− 4 exp(−4q(1))] .

Finally, use

1− e−4q

1− 2e−2q + e−4q
=

e2q − e−2q

e2q − 2 + e−2q
=

(eq − e−q)(eq + e−q)

(eq − e−q)2
= coth q

to obtain (2.22). ⊓⊔

While Theorem 2.17 states a necessary condition for schemes of the form
(2.15), the same argument applies to other three-point schemes. In [Sty03]
Theorem 2.17 is generalized to other schemes and other meshes.

The obvious choice

σ(q(x)) = q(x) coth q(x)

satisfies the conditions of Lemmas 2.14 and 2.15 and generates the Il’in-Allen-
Southwell scheme [AS55, Il’69]. This scheme is uniformly stable and second-
order consistent for fixed ε. Since

coth z →
{

1 as z →∞,
−1 as z → −∞,

the scheme shifts automatically to the simple upwind scheme as h/ε → ∞.
Its consistency error is
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τi = −ε[q(xi) coth q(xi)− 1]D+D−u(xi)− ε[D+D−u(xi)− u′′(xi)]+

+ bi
(
D0u(xi)− u′(xi)

)
.

Now

c1
z2

z + 1
≤ z coth z − 1 ≤ c2

z2

z + 1
and ε

(h/ε)2

h/ε+ 1
=

h2

h+ ε
,

so we expect to lose an order of convergence for small values of ε, and in fact
it turns out that the scheme is first-order uniformly convergent.

Theorem 2.18. Assume that b(x) > β > 0. Then the Il’in-Allen-Southwell
scheme is first-order uniformly convergent in the discrete maximum norm:

‖u− uh‖∞,d ≤ Ch.

Proof. The argument is like the one used for Theorem 2.12. In particular one
relies on the splitting u = v + z, where v is a boundary layer function and
the bound on |z(j)| has a factor ε1−j (which is better than the factor ε−j that
appears if we bound |u(j)|).

First consider |z(xi)− zi|. The corresponding consistency error satisfies

|τi| ≤ C
∫ xi+1

xi−1

(
ε|z(3)|+ |z(2)|

)
dt

≤ Ch+ Cε−1

∫ xi+1

xi−1

exp(−β(1− t)/ε)dt

≤ Ch+ C sinh
βh

ε
exp

(
− β(1− xi)

ε

)
.

An application of the discrete comparison principle gains a power of ε, as in
the proof of Theorem 2.12. We now have

|z(xi)− zi| ≤ Ch+ Cε sinh
βh

ε
exp

(
− β(1− xi)

ε

)
for i = 1, . . . , N − 1.

If ε ≤ h, this gives immediately |z(xi)− zi| ≤ Ch; if h ≤ ε, use the inequality
sinh t ≤ Ct for bounded t > 0 to get the desired estimate.

It is more difficult to bound |v(xi)− vi|. A direct computation gives

Lv = −b(1)

ε
[b(1)− b(x)] v + c(x)v,

and at the grid points

Lhv = −2b(x) sinh q(1) sinh [q(1)− q(x)]
h sinh q(x)

v + c(x)v.

Using the consistency error and a barrier function, some careful manipulations
[KT78, pp. 1034–1035] yield
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|v(xi)− vi| ≤ C
h2

h + ε
≤ Ch.

This completes the proof of Theorem 2.18. ⊓⊔
Remark 2.19. If c(x) ≡ 0 with b(x) and f(x) both constant, the Il’in-Allen-
Southwell scheme is exact (i.e., ui = u(xi) for all i). But even in this case the
scheme has some artificial viscosity because σ(q(x)) > 1. It is therefore false
to assert (as is sometimes claimed) that minimal artificial viscosity leads to
minimal numerical error. See Remark III.2.2 and [Tob95] for further discussion
of this point. ♣
Remark 2.20. An examination of the behaviour of the Il’in-Allen-Southwell
scheme scheme when applied to the example

−εu′′ + u′ = x, u(0) = u(1) = 0,

shows that in the region outside the layer the order of uniform convergence is
only one. ♣
Remark 2.21. If instead of from (2.15) one starts from the fitted scheme

−εσ∗iD+D−ui + biD
−ui + ciui = fi, (2.23)

then, analogously to Theorem 2.17, one obtains

lim
h→0

σ∗n = B(2q(1)) for fixed h/ε

as a necessary condition for uniform convergence, where B(z) := z/(ez − 1) is
the Bernoulli function.

Farrell [Far83, Far88] derives sufficient conditions for uniform convergence
of schemes written in the form (2.23). They show that schemes whose coeffi-
cients are close to the coefficients of the Il’in-Allen-Southwell scheme are also
uniformly convergent. Furthermore, these sufficient conditions imply that for
uniform convergence, exponential coefficients are needed only in the bound-
ary layer; compare Theorem 2.12 and the results on exponentially fitted finite
element methods in Section 2.2.5. ♣
Remark 2.22. (The Scharfetter-Gummel scheme) The drift-diffusion equa-
tions, which are used to model currents in semiconductor devices, comprise a
coupled system of three partial differential equations. In the easiest case two
of these simplify to

−(e−ψu′)′ = f

with some boundary conditions. The potential ψ can have interior layers where
its gradient is extremely large.

Scharfetter and Gummel developed a special difference scheme for this
problem which is widely used; this special scheme turns out to be merely a
natural reformulation of the Il’in-Allen-Southwell scheme for equations written
in the form above [Roo86a, Gar93]. ♣
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We now describe some alternative ways of constructing uniformly conver-
gent difference schemes.

Consider first the standard derivation (see, e.g., [Mar77, Chapter 2.1]) of
an exact scheme for the boundary value problem (2.19). Introduce the formal
adjoint operator M∗ of Mw := −εw′′ + bw′, viz.,

M∗v := −εv′′ − (bv)′.

Then for smooth v and w with v(0) = w(0) = v(1) = w(1) = 0, one has the
identity ∫ 1

0

(Mv)w dx =

∫ 1

0

v(M∗w) dx.

Let gi be the local Green’s function of M∗ with respect to the point xi, i.e.,

M∗gi = 0 in (xi−1, xi) ∪ (xi, xi+1),

gi(xi−1) = g(xi+1) = 0,

ε
[
g′i(x

−
i )− g′i(x+

i )
]

= 1.

Now ∫ xi+1

xi−1

(Mu)gi dx =

∫ xi+1

xi−1

(f − cu)gi dx,

and an integration by parts yields the identity

−εg′i(xi−1)ui−1 + ui + εg′i(xi+1)ui+1 =

∫ xi+1

xi−1

(f − cu)gi dx. (2.24)

The difference scheme whose ith equation is (2.24) is exact if c(x) ≡ 0 (or if
from the beginning we replace M by the full operator L).

In general one cannot evaluate each g′i exactly, so a further approximation
is needed to convert (2.24) to a serviceable scheme. The simplest approach is
to consider b and f as constants bi and fi on the interval (xi−1, xi+1), which
allows the explicit computation of gi, and to use the quadrature rule

∫ xi+1

xi−1

(f − cu)gi dx ≈ (fi − ciui)

∫ xi+1

xi−1

gi dx.

This generates the scheme

− eρi − 1

eρi − e−ρi
ui−1 + ui −

1− e−ρi

eρi − e−ρi
ui+1 = (fi − ciui)

h

bi

eρi − 1

eρi + 1
,

where ρi := bih/ε. One can write this in the form

αiui−1 + βiui + γiui+1 = fi,

with
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αi = −2εqi
e2qi

e2qi − 1
, βi = −(αi + γi) and γi = −2εqi

1

e2qi − 1
.

This is again the Il’in-Allen-Southwell scheme. The coefficients could also be
expressed in terms of the Bernoulli function mentioned in Remark 2.21.

Remark 2.23. The above derivation of the Il’in-Allen-Southwell scheme in-
spires two modifications that might reasonably be expected to yield superior
schemes.

First, it seems better to use separate constants on (xi−1, xi) and (xi, xi+1)
to approximate b and f . We thus define

bj := [b(xj−1) + b(xj)]/2 on (xj−1, xj) for eachj.

Using this approximation and the quadrature rule

∫ xi+1

xi−1

agi dx ≈
a(xi−1) + a(xi)

2

∫ xi

xi−1

gi dx+
a(xi) + a(xi+1)

2

∫ xi+1

xi

gi dx,

generates the El-Mistikawy-Werle scheme:

− ε

h2
(r−i ui−1 + rciui + r+i ui+1) + q−i ci−1ui−1 + qc

i ciui + q+i ci+1ui+1

= q−i fi−1 + qc
i fi + q+i fi+1,

where

r−i = ρ−i exp(−ρ−i )/[1− exp(−ρ−i )], r+i = ρ+i /[1− exp(−ρ+i )],

rci = −(r−i + r+i ), q−i = (1− r−i )/(2ρ−i ),

q+i = (r+i − 1)/(2ρ+i ), qc
i = q−i + q+i ,

ρ−i = −(bi + bi−1)h/(2ε), ρ+i = −(bi + bi+1)h/(2ε).

Second, one could start from the original differential operator L instead
of the simplified operator M , then introduce the corresponding local Green’s
function and apply a quadrature rule as before. This yields a variant of the
El-Mistikawy-Werle scheme that is a scheme with complete exponential fit-
ting , because the exponentials used depend on all terms of the differential
operator L. When only some terms of the differential operator are used — as
in the derivation of (2.24) — this is called partial exponential fitting. ♣

An alternative way of deriving uniformly convergent schemes is the exact
solution of comparison problems with frozen coefficients. Define the piecewise
constant approximation of a given continuous function d on a given grid by

d̄(x) =
d(xi−1) + d(xi)

2
for x ∈ (xi−1, xi).

Later d may be b, c or f . Consider the comparison problem



64 2 Numerical Methods for Second-Order Boundary Value Problems

L̄w := −εw′′ + b̄w′ + c̄w = f̄ , w(0) = w(1) = 0, (2.25)

for the boundary value problem (2.19). Using Green’s functions, one can see
that the solution of (2.25) is differentiable and piecewise twice differentiable.

Lemma 2.24. For all sufficiently small h (independently of ε), the boundary
value problem (2.25) has a unique solution w. Furthermore,

‖u− w‖∞ + ε‖(u− w)′‖∞ ≤ Ch. (2.26)

Proof. For sufficiently small h, one can show that Theorems 1.7 and 1.13
hold true for (2.25), as does Theorem 1.18. Consequently a unique solution w
exists. For the difference u− w, we have

L̄(u− w) = L̄u− Lu+ f − f̄ = (b̄− b)u′ + (c̄− c)u+ f − f̄ ,
(u− w)(0) = (u− w)(1) = 0.

An application of the stability estimate of Theorem 1.7 yields

‖u− w‖∞ + ε‖(u− w)′‖∞ ≤ Ch {‖u′‖L1
+ ‖u‖L1

+ 1} .

Now (2.26) follows from the a priori bounds of Theorems 1.7 and 1.13. ⊓⊔
The bound of Lemma 2.24 is valid not only at the grid points but on all

of [0, 1].
The comparison problem (2.25) is equivalent to a difference scheme, as we

now show. Define adapted spline functions (L-splines) φi and ψi for each i by

L̄ϕi = 0 on each mesh subinterval, with ϕi(xj) = δij , (2.27)

L̄ψi = 1 on (xi−1, xi), ψi(xi−1) = ψi(xi) = 0, ψi ≡ 0 off [xi−1, xi].

Thus supp ϕi = [xi−1, xi+1] and supp ψi = [xi−1, xi]. The solution w of (2.25)
can be represented as

w(x) =

N−1∑

i=1

uiϕi(x) +

N∑

i=1

fiψi(x).

Here ui := w(xi) and fi is the restriction of f̄ to the interval (xi−1, xi). The
property w′(x−i ) = w′(x+

i ) for i = 1, . . . , N − 1, expressed in terms of the
L-splines, gives the three-point difference scheme

ϕ′
i−1(x

−
i )ui−1 + [ϕ′

i(x
−
i )− ϕ′

i(x
+
i )]ui − ϕ′

i+1(x
+
i )ui+1 = (2.28)

− ψ′
i(x

−
i )fi + ψ′

i+1(x
+
i )fi+1.

If the splines ϕi are known, then it is possible to compute the ψi from

ψi(x) = [1− ϕi−1(x)− ϕi(x)]/ci for x ∈ [xi−1, xi].

An explicit computation of the L-splines and of their derivatives produces the
El-Mistikawy-Werle scheme from (2.28).
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Remark 2.25. (i) Two independent proofs in [HMO80] and [BSC81] show that
the El-Mistikawy-Werle scheme is uniformly second-order convergent in the
discrete maximum norm when c(x) ≡ 0. Both proofs use finite-difference
techniques like those in Theorem 2.18, with large amounts of detailed es-
timation. Simpler methods are used to prove the same result, without the
restriction that c(x) ≡ 0, in [OS86] (by means of finite elements) and [Gar87]
(in a HODIE framework). We present the HODIE technique in Section 2.1.4,
while the finite element approach will be discussed in Section 2.2. A slightly
different second-order scheme is presented in [HMMR95].

(ii) One might think that the second-order convergence in (i) contradicts
the well-known fact that uniform consistency of order α > 1 forbids the dif-
ference operator to be of positive type (i.e., non-positive offdiagonal entries)
– see [KT78] for the one-dimensional case, [Lu95] for the general case. But
uniform consistency in ‖ · ‖∞,d is not necessary for uniform convergence.

(iii) Starting from the comparison problem

−εw′′ + b̄w′ = f̄ − c̄w̄, w(0) = w(1) = 0,

it is possible to derive a scheme with partial exponential fitting. ♣

Remark 2.26. (Collocation with exponential splines) Exponential splines are
also useful in finite element and collocation methods. Unlike finite element
methods, collocation methods with exponential splines are typically used to
generate finite difference schemes (see [SU91], for instance). This collocation
technique seems to be restricted to problems in one-dimensional domains. ♣

Remark 2.27. (Approximation of derivatives) It is important to note that
(2.26) gives also the opportunity, by computing εw′, of obtaining a uniformly
accurate approximation of the ε-weighted derivative. In this context, observe
that on a uniform mesh the weighted derivative cannot be approximated ac-
curately using standard difference approximations based on nodal values, even
if the nodal values are exact. This is so because a linear interpolant is a poor
approximation of the layer on the interval [0, h] when ε = h. One can see this
explicitly in the example

−εu′′ − u′ = 1, u(0) = u(1) = 0,

where a direct calculation for ε = h yields

lim
h→0

ε

∣∣∣∣
u(h)− u(0)

h
− u′(0)

∣∣∣∣ = 1/e.

Later we shall discuss alternative approaches based on finite elements and the
use of layer-adapted meshes. ♣

Uniformly convergent schemes on special meshes will be examined in Sec-
tion 2.4.
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2.1.4 Uniformly Convergent Schemes of Higher Order

In the early 1980s some Russian authors [Ale81, Eme82] constructed uniformly
convergent schemes of arbitrarily high order using the exact difference scheme
of (2.24). We describe in this section an alternative way of generating high-
order schemes for the problem (2.19): the HODIE (High Order Differences
with Identity Expansion) framework of Doedel [Doe78] and Lynch and Rice
[LR80].

To begin with, we state a generalization of Lemma 2.24. Let k be a fixed
non-negative integer. Given a smooth function g, let ḡ denote a piecewise
polynomial approximation of g that satisfies

‖g − ḡ‖∞ ≤ Chk+1. (2.29)

Define the two comparison problems

L̄w =: −εw′′ + b̄w′ + c̄w = f̄ , w(0) = w(1) = 0, (2.30)

and
L̂w =: −εw′′ + b̄w′ + cw = f, w(0) = w(1) = 0. (2.31)

By imitating the proof of Lemma 2.24, one can prove the following result:

Lemma 2.28. For all sufficiently small h (independently of ε), the boundary
value problems (2.30) and (2.31) each have a unique solution. Furthermore,
for both problems one has

‖u− w‖∞ + ε‖(u− w)′‖∞ ≤ Chk+1,

where u denotes the solution of (2.19).

Doedel, Lynch and Rice construct difference approximations of the form

αi,−1ui−1 + αi,0ui + αi,1ui+1 =
J∑

j=1

βijf(ξij), u0 = uN = 0, (2.32)

for second-order boundary value problems. Such schemes are called compact
because they use three discretization points for a second-order problem (more
generally, 2m+1 points for a problem of order 2m). The points ξij are auxiliary
evaluation or HODIE points that lie between xi−1 and xi+1. In the special
case that the ξij are mesh points, such schemes are known as OCI (operator
compact implicit) schemes.

The coefficients αi,−1, αi, αi,1 and βij are chosen in non-singularly per-
turbed problems to make the scheme locally exact on (xi−1, xi+1) for polyno-
mials of degree at most n (say). That is,

αi,−1sl(xi−1) + αi,0sl(xi) + αi,1sl(xi+1) =

J∑

j=1

βij(Lsl)(ξij) (2.33)



2.1 Finite Difference Methods on Equidistant Meshes 67

for a basis {sl} of the space of polynomials of degree at most n. Together with
the normalization condition

J∑

j=1

βij = 1,

this leads to a local linear system that determines the α and β. One can show
that the consistency order is O(hn−1) and that all 2J +3 free parameters can
be determined in such a way that one obtains an O(h2J ) scheme.

For a singularly perturbed boundary value problem such as (2.19), how-
ever, it is not enough to require exactness of the scheme only for certain poly-
nomials. Gartland [Gar87] introduces exponentially fitted HODIE schemes,
which are locally exact on a collection of functions of the type

{
1, x, . . . , xp, exp

(
1

ε

∫ 1

x

b

)
, x exp

(
1

ε

∫ 1

x

b

)
, . . . , xp−1 exp

(
1

ε

∫ 1

x

b

)}
.

(2.34)

Remark 2.29. The integrals in (2.34) cannot always be evaluated exactly, but
by using the comparison problem (2.31) and applying Lemma 2.28, we can
first simplify b by approximation and then apply the HODIE technique. ♣

If one chooses J = 1 and ξi1 = xi, and requires exactness on the family
{1, x, exp(b(xi)x/ε)}, this generates the Il’in-Allen-Southwell scheme.

Remark 2.30. This idea of exactness on polynomials and exponentials can be
applied also to non-compact schemes. For instance, the schemes LECUSSO-C
and QUICK-PLUS are derived in this way [Gün88] from the four-point scheme
(2.17). But no convergence theory is available for non-compact schemes. ♣

Gartland chooses J = 2p − 1, where p is any positive integer, and works
with equally spaced auxiliary points:

ξi1 = xi for p = 1,

ξij = xi−1 +
j − 1

p− 1
h, j = 1, . . . , 2p− 1 for p = 2, 3, . . . (2.35)

One must then show that the remaining 2p + 1 parameters are uniquely de-
termined by the condition of exactness on the family (2.34). We state without
proof the main result [Gar87]:

Theorem 2.31. Let the positive integer p be given. Construct an exponen-
tially fitted HODIE scheme based on (2.32), (2.35) and exactness on the family
(2.34), where the coefficients in (2.19) are approximated by piecewise polyno-
mials of degree at most p − 1. If b, c and f are sufficiently smooth, then for
h sufficiently small (independently of ε), the finite difference scheme gener-
ated is well defined and uniformly stable, and is uniformly convergent of order
O(hp) in the discrete maximum norm.
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Example 2.32. Take p = 2. Then to invoke Theorem 2.31, one must approxi-
mate b by piecewise linears. This generates a scheme of the form

αi,−1ui−1 + αi,0ui + αi,1ui+1 = βi,1f(xi−1) + βi,2f(xi) + βi,3f(xi+1)

that is exact on the family

{
1, x, x2, exp

(
1

ε

∫ 1

x

b̄

)
, x exp

(
1

ε

∫ 1

x

b̄

)}
,

and is related to the El-Mistikawy-Werle scheme. ♣

In [CLM95] the HODIE approach is applied to generate high-order meth-
ods for the reaction-diffusion problem

−εu′′ + c(x)u = f(x), u(0) = u(1) = 0.

2.1.5 Linear Turning-Point Problems

As in Section 1.2, we begin with the case of an isolated first-order turning
point:

Lu := −εu′′ + xb(x)u′ + c(x)u = f(x) in (−1, 1), (2.36a)

u(−1) = u(1) = 0, (2.36b)

under the assumptions that

b(x) �= 0 on [−1, 1] and c(x) ≥ c0 > 0. (2.36c)

If b is positive, then u has two boundary layers and the El-Mistikawy-Werle
scheme for (2.36) is first-order uniformly convergent [BHK84, Theorem 3.2].
The proof exploits the fact that the scheme can be generated by a comparison
problem, as described in Section 2.1.3; with a suitable barrier function one can
bound the difference between u and the solution of this comparison problem
by Ch.

If b is negative, then u has an interior layer and we need a more specialized
approach. Set b∗(x) = xb(x) for all x. Let L̄ and w be as in (2.25), with b̄
replaced by b̄∗. The comparison principle yields the stability estimate

‖v‖∞ ≤ C‖L̄v‖∞

for all functions v that satisfy v(−1) = v(1) = 0. Then (2.25), (2.36a) and the
stability estimate imply that

‖u− w‖∞ ≤ C
{
‖(b∗ − b̄∗)u′‖∞ + ‖c− c̄‖∞‖u‖∞ + ‖f − f̄‖∞

}
.

Now the a priori bound of Lemma 1.12 gives
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‖u′‖∞ = O
(
ε(λ−1)/2

)
, where λ = −b(0)/c(0).

Thus when ε = h2,
‖(b∗ − b̄∗)u′‖∞ = O(hλ).

In numerical experiments, precisely this rate of convergence is observed if the
El-Mistikawy-Werle scheme is used to solve (2.36a) with ε = h2 when an
interior cusp layer is present. If λ is close to zero, the convergence is very
slow.

Remark 2.33. Farrell [Far88] studies sufficient conditions for the uniform con-
vergence of difference schemes applied to a turning-point problem with an
interior cusp layer. For schemes of the type

−ε±i D+D−ui + βib
∗
iD

±ui + γiciui = fi,

he proves that
|u(xi)− ui| ≤ Chmin{λ,1}

when

|βib
∗
i − b∗(xi)| ≤ Ch, |γici − c(xi)| ≤ Ch and |ε±i − ε| ≤ Ch.

Many schemes, including simple upwinding, Samarskĭı’s scheme, and the Il’in-
Allen-Southwell scheme satisfy these conditions. See also [CL93]. ♣

When 0 < λ < 1, the deterioration of the uniform convergence rate for
the El-Mistikawy-Werle scheme can be circumvented in the following way.
Approximate b (not b∗) using piecewise constants. Then

|(b∗ − b̄∗)(x)| = |x(b− b̄)(x)| ≤ Ch|x|,
and it follows that

‖(b∗ − b̄∗)u′‖∞ ≤ Ch max
x∈[−1,1]

{
|x| (x2 + ε)

λ−1
2

}
≤ Ch.

This proves

Lemma 2.34. Let the comparison problem for the turning-point problem
(2.36) be constructed by replacing b, c, and f by piecewise O(h) approxima-
tions. Then in the case of an interior cusp layer, the error between the solution
u of (2.36) and the solution w of the comparison problem satisfies

‖u− w‖∞ ≤ Ch.
To solve the problem

−εw′′ + xb̄w′ + c̄w = f̄ , w(−1) = w(1) = 0,

one could in theory again use L-splines, but then parabolic cylinder functions
are needed to represent the basic splines; see [FG88] for details. Alternatively,
it is possible to combine the approximation idea of Lemma 2.34 with an iter-
ative process to achieve higher-order convergence [RV93].
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Example 2.35. We have discussed b positive and b negative with the general
assumption that c(x) ≥ c0 > 0. If c ≡ 0, then some eigenvalue of the differ-
ential operator may tend to zero as ε → 0: the operator is unstable [dG76].
Consequently any standard discretization will fail. If one takes, for instance,
the boundary value problem

−εu′′ + (x− 1/2)u′ = x− 1/2, u(0) = −1/2, u(1) = 1/2,

whose exact solution is u(x) = x − 1/2, then applying the simple upwind
scheme with N = 128 and ε = 10−3, 10−4 yields two different discrete so-
lutions that are both wrong; the error at the interior meshpoints is of order
O(1) in both cases. ♣

Some authors have considered the construction of uniformly convergent
schemes for the singularly perturbed boundary value problem

−εu′′ + bu′ + cu = f, u(0) = u(1) = 0,

where c(x) ≥ c0 > 0, but without any assumption on b, so arbitrary turning
points are allowed. To ensure some kind of stability, further condition(s) are
often added.

Thus Niijima [Nii84] proposes the scheme

− ε

h2
(ζi+1ui+1 − 2ζiui + ζi−1ui−1) + ciui = fi, u0 = uN = 0, (2.37)

with qi = bih/2ε and ζi = qi coth qi. It is closely related to the Il’in-Allen-
Southwell scheme. See Section 2.1.6 for its motivation in a nonlinear setting.
Niijima assumes additionally that

c(x)− |b′(x)| ≥ δ > 0 on (0, 1).

Numerical results generated by this scheme are occasionally unconvincing.
Stynes and O’Riordan [SO87] present the scheme

− ε

h2
[θi+1ui+1 − (θi+1 + θi)ui + θiui−1] + ciui = fi, (2.38)

with ρi = bih/ε and

θi = θ(ρi), θ(x) =

{ x

1− e−x
for x �= 0,

1 for x = 0.

They assume that

c(x)− b′(x)/2 ≥ δ > 0 on (0, 1).

The scheme can be easily motivated in a finite element framework, so we
return to it in Section 2.2.

Theorem 1.13 plays a vital rôle in the convergence analysis of both schemes,
which is quite complicated, and culminates in
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Theorem 2.36. Let uh(x) be the piecewise linear function that interpolates
at each mesh point to the discrete solution computed by the scheme (2.37)
or (2.38). Then under the respective assumptions made above, one has the
L1-norm uniform convergence result

∫ 1

0

|u(x)− uh(x)|dx ≤ Ch.

No uniform convergence result is known in the discrete maximum norm
under the same hypotheses.

2.1.6 Some Nonlinear Problems

In the previous subsection we saw that precise knowledge about the asymp-
totic behaviour of the solution assists in the construction of schemes that are
uniformly convergent in the maximum norm; otherwise only weaker stabil-
ity or convergence results can be proved. This is also true of some nonlinear
problems, but the nonlinear world is more complicated.

Consider first the semilinear problem

−εu′′ + b(x)u′ = f(x, u) for x ∈ (0, 1), (2.39a)

u(0) = A, u(1) = B, (2.39b)

assuming
b(x) > β > 0, 0 < m ≤ fu ≤M.

Then estimates similar to Theorem 1.7 are valid. Using local Green’s func-
tions, which generated (2.24) in the linear case, one can construct a uniformly
convergent scheme [BS90].

Remark 2.37. (The nonexistence of uniformly convergent fitted schemes) If we
consider the semilinear problem

−εu′′ = f(x, u) for x ∈ (0, 1), u(0) = A, u(1) = B, (2.40)

then under the same assumptions for f as above, the construction of a uni-
formly convergent fitted scheme is possible [BS89]. But relatively simple ex-
amples are presented in [FMOS98] for which it is proved that in a certain class
of fitted schemes one cannot achieve uniform convergence; this is true for in-
stance if f(x, u) = u+u2. Here the use of layer-adapted meshes gives uniform
convergence in the maximum norm [FMOS01] under certain conditions. ♣

Consider now difference schemes for the quasilinear singularly perturbed
boundary value problem

−εu′′ + b(u)u′ + c(x, u) = 0 for x ∈ (0, 1), (2.41a)

u(0) = A, u(1) = B, (2.41b)
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under the hypothesis that

∂c

∂s
(x, s) ≥ µ > 0, for x ∈ (0, 1) and all s ∈ R. (2.41c)

From Section 1.3 we know that (2.41) has a unique solution. This solution u
is bounded, uniformly with respect to ε, in the maximum norm; u′ is uniformly
bounded in the L1 norm and (2.41) is uniformly L1-stable – see Theorem 1.16.

Enquist and Osher [Osh81] introduced a well-known scheme for discretiz-
ing conservation laws ([LeV90] provides a good introduction to this topic)
which turns out to be useful also for singularly perturbed boundary value
problems. Set e(u) :=

∫ u
b(s)ds. Motivated by the simple upwind idea

d

dx
e(u)|x=xi

≈
{

1
h [e(ui)− e(ui−1)] = 1

h

∫ ui

ui−1
b(s)ds if b > 0,

1
h [e(ui+1)− e(ui)] = 1

h

∫ ui+1

ui
b(s)ds if b < 0,

they set b+(s) = max{b(s), 0}, b−(s) = min{b(s), 0} and define the Enquist-
Osher scheme

− ε

h2
D+D−ui+

1

h

(∫ ui

ui−1

b+(s)ds+

∫ ui+1

ui

b−(s)ds

)

+ c(xi, ui) = 0, u0 = A, uN = B. (2.42)

This is a special case of three-point schemes in conservation form:

− ε

h2
D+D−ui +

1

h
[g(ui+1, ui)− g(ui, ui−1)] + c(xi, ui) = 0, (2.43)

where g(v, w) is the numerical flux. For the Enquist-Osher scheme,

g(v, w) =

∫ v

0

b−(s)ds+

∫ w

0

b+(s)ds. (2.44)

Another example is the well-known Lax-Friedrichs scheme, where

g(v, w) :=
1

2
[e(v) + e(w) + λ(w − v)],

with a free parameter λ.
Consistency of the scheme requires ∂1g+ ∂2g = e′, so the standard consis-

tency assumption for the general form (2.43) is that

g(v, v) = e(v). (2.45)

As in the linear case, we need additional tools to investigate stability. Let
F : Rd → Rd be a nonlinear mapping.
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Definition 2.38. (i) F is a Z-function if for each i the mapping

vj �→
(
F (v1, ..., vj−1, vj , vj+1, ..., vd)

)
i

is nonincreasing, where j �= i and v1, ..., vj−1, vj+1, ..., vM are fixed.
(ii) F is inverse-monotone if

Fv ≤ Fw implies v ≤ w.

(iii) F is an M-function if F is an inverse-monotone Z-function.

Clearly M-functions are a nonlinear generalization of M-matrices.
If F is differentiable, then F is a Z-function if and only if the Jacobian

DF of F satisfies (DFv)ij ≤ 0 for i �= j and all v. From Taylor’s formula, we
have

F (w)− F (v) =

(∫ 1

0

DF
(
v + s(w − v)

)
ds

)
(w − v).

Write this as
F (w)− F (v) = △F (w, v)(w − v),

with

△F (w, v) :=

∫ 1

0

DF (v + s(w − v))ds.

Thus if all possible matrices △F (v, w) are inverse-monotone, then F is
inverse-monotone. Also, stability estimates for the nonlinear operator can
often be derived by estimating (△F (v, w))−1, because

‖w − v‖ ≤ ‖(△F (v, w))−1‖ ‖F (w)− F (v)‖. (2.46)

Now consider again the three-point scheme (2.43). Define the nonlinear
mapping F by the left-hand side of (2.43). To ensure the Z-function property,
we require that the flux satisfy the monotonicity condition

∂1g(v, w) ≤ 0 ≤ ∂2g(v, w). (2.46)

For the Enquist-Osher scheme,

∂1g(v, w) = b−(v) ≤ 0 and ∂2g(v, w) = b+(w) ≥ 0,

so F is a Z-function. Next, the Jacobian of F for the general case (2.43) is
given by

(DF )ij =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2ε
h2 + ∂2c+ 1

h [∂2g(vi+1, vi)− ∂1g(vi, vi−1)] for j = i,

− ε
h2 − 1

h∂2g(vi, vi−1) for j = i− 1,

− ε
h2 + 1

h∂1g(vi+1, vi) for j = i+ 1,
0 in other cases.

Thus DF satisfies the conditions
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(DF )ij ≤ 0 for i �= 0, (DF )ii ≥ µ > 0.

This immediately implies that F is a Z-function. If one could prove that
the row sums of DF were bounded below by a positive constant, this would
imply stability in the discrete maximum norm based on the M-criterion and
the majorizing element (1, 1, ..., 1)T . But a close inspection reveals only that
the column sums of DF are greater or equal to µ. This leads to stability in
the discrete L1 norm, which is defined by

‖vh‖L1,d := h
∑

i

|vi|.

Theorem 2.39. If the numerical flux of the scheme (2.43) is monotone in
the sense of (2.46), then the scheme is stable, uniformly with respect to ε, in
the discrete L1 norm. In particular uh satisfies the estimate

‖uh‖L1,d ≤ C.

Remark 2.40. In [AO82] the authors use other means to prove that the vari-
ation of the discrete solution is uniformly bounded:

∑

i

|ui − ui−1| ≤ C.

One can conclude from this inequality that as h → 0, a subsequence of the
linear interpolant to the discrete solution tends in the L1(0, 1) sense to the
solution of the boundary value problem (2.41). ♣

The convergence result of Remark 2.40 is not strong. Lorenz [Lor81, Lor84]
proves more detailed convergence results in a shock layer situation where ε = 0
with

u0(x) =

{
uL(x) for 0 ≤ x < x∗,
uR(x) for x∗ < x ≤ 1;

cf. Section 1.3. Let u0
i be a solution of the discrete problem for ε = 0. Suppose

that there exists u∗ such that b(s) > 0 for s > u∗ and b(s) < 0 for s < u∗. Then
there exists a unique index j = j(h), defined by the inequality u0

j ≤ u∗ < u0
j+1,

that indicates the position of the discrete layer and satisfies

|xj − x∗| ≤ Ch. (2.47)

Lorenz also proves that

|u0
i − uL(xi)| ≤ Ch for i = 0, 1, ..., j − 1, (2.48a)

|u0
i − uR(xi)| ≤ Ch for i = j + 2, ..., N. (2.48b)

Schemes of the form (2.43) that satisfy the monotonicity condition (2.46)
have only O(h) accuracy for fixed ε (see [LeV90]). To overcome this failing,
we introduce the more general scheme
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− ε

h2
D+D−ui +

1

h
[g(ui+1, ui)− g(ui, ui−1)] + β−i ci−1 + β0

i ci + β+
i ci+1

= 0,

with cj := c(xj , uj). Define the βj here by

β−i = β
(
b(ui−1)/

√
h
)
, β+

i = β
(
−b(ui+1)/

√
h
)
,

β0
i = 1− β−i+1 −−β+

i−1,

where β(ρ) := B(pρ); the parameter p is not yet specified and

B(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if r < 0,
r2 if 0 ≤ r ≤ 1/2,
1/2− (1− r)2 if 1/2 ≤ r ≤ 1,
1/2, if r > 1.

The choice p = 0 gives the original scheme (2.43). From the consistency point
of view (to obtain a second-order scheme for the reduced problem), one wants
to choose p as large as possible, but a computation shows that the nonlinear
mapping associated with the discrete problem is no longer an M-function if
p is too large. Under some restrictive assumptions, Lorenz [Lor84] gives rules
for choosing p and improves the estimate (2.48).

Aiming for uniform convergence, we introduce the fitted scheme

− ε

h2
(σi+1ui+1− 2σiui +σi−1ui−1) +

1

2h

∫ ui+1

ui−1

b(s) ds+ c(xi, ui) = 0. (2.49)

If σi = σ(ui), then the Jacobian of the corresponding nonlinear mapping is

(DF )ij =

⎧
⎪⎨
⎪⎩

2ε
h2 (σu)′i + ∂2c for j = i,

− ε
h2 (σu)′i−1 − b(ui−1)

2h for j = i− 1,

− ε
h2 (σu)′i+1 + b(ui+1)

2h for j = i+ 1.

Thus one needs

(σu)′ ≥ h

2ε
|b(u)|.

Guided by this condition and by the Il’in-Allen-Southwell scheme, choose

(σu)′ = ζ

(
b(u)h

2ε

)
, where ζ(z) = z coth z. (2.50)

Theorem 2.41. With the choice (2.50), the fitted scheme (2.49) is stable,
uniformly with respect to ε, in the discrete L1 norm.

When written in the form (2.43), an investigation of the numerical flux
shows that the scheme is not monotone in the sense of (2.46). Niijima [Nii86]
proves that the scheme is first-order convergent in the L1 norm, uniformly in ε,
under the assumption b(u) ≥ b0 > 0. For Burgers’ equation (i.e., b(u) ≡ u),
O’Reilly [O’R86] demonstrates that the scheme cannot be uniformly conver-
gent for any positive order in the discrete maximum norm.
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2.2 Finite Element Methods on Standard Meshes

2.2.1 Basic Results for Standard Finite Element Methods

This Section presents the fundamental ideas and notation used in finite el-
ement methods for classical (non-singularly perturbed) two-point boundary
value problems. Our approach is standard; see, e.g., [Cia02, GRS07].

Let V be a Hilbert space with norm ‖·‖V (but we shall often omit the sub-
script V to simplify the notation) and scalar product (·, ·). In the discretization
of second-order differential equations with domain Ω, one generally chooses
V as a subset of the Sobolev space H1(Ω). Consider the following abstract
variational problem:

Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V, (2.51)

where a(·, ·) is a given bilinear form on V × V and f(·) a given continuous
linear functional on V . We say that a(·, ·) is continuous on V ×V if there exists
a constant β, which is independent of v and w, such that |a(v, w)| ≤ β ‖v‖ ‖w‖
for all v and w in V . The bilinear form a(·, ·) is V -elliptic or coercive if

a(v, v) ≥ α ‖v‖2 ∀v ∈ V, (2.52)

where α is a positive constant that is independent of v.

Example 2.42. For the boundary value problem

−u′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.53)

we choose V = H1
0 (0, 1) so that the homogeneous Dirichlet boundary condi-

tions are automatically satisfied and set

a(v, w) :=

∫ 1

0

[v′w′ + (bv′ + cv)w], f(v) :=

∫ 1

0

fv.

Then (2.51) is the standard variational formulation of (2.53). ♣

The Lax-Milgram lemma furnishes sufficient conditions for the existence
and uniqueness of solutions of the variational problem (2.51):

Theorem 2.43. Assume that the bilinear form a(·, ·) is continuous and V -
elliptic. Then for each continuous linear functional f(·), the problem (2.51)
has a unique solution.

In general, the space V is infinite-dimensional. We therefore approxi-
mate V by means of finite-dimensional spaces Vh and pose the variational
problem in Vh. Then solving this problem in Vh is equivalent to solving a
finite-dimensional system of linear equations.
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Assume that the method is conforming – that is, that Vh ⊂ V . Then the
discrete problem that corresponds to (2.51) is:

Find uh ∈ Vh such that

a(uh, vh) = f(vh) ∀vh ∈ Vh. (2.54)

This is the Ritz-Galerkin method. The Lax-Milgram lemma implies that

• the discrete problem has a unique solution
• the discrete problem is stable (viz., ‖uh‖ ≤ (β/α)‖f‖∗, where ‖ · ‖∗ is the

norm on the dual space V ∗).

Let {wi : i = 1, ..., N} be a basis for Vh, where N = N(h) is the dimension
of Vh. Then

uh =

N∑

i=1

uiwi,

where the unknowns ui satisfy the linear system

AU = b (2.55)

with Aij := a(wj , wi), Ui := ui, and bi := f(wi). If a(·, ·) is symmetric and
coercive, then the matrix A is symmetric and positive definite.

The discretization error can now be estimated in terms of the approxima-
tion error by means of the Cea lemma:

Theorem 2.44. Assume that the hypotheses of the Lax-Milgram lemma are
satisfied. Let u and uh denote the solutions of the continuous problem (2.51)
and the discrete problem (2.54), respectively. Then one has the quasi-optimal
error estimate

‖u− uh‖ ≤
β

α
inf

vh∈Vh

‖u− vh‖. (2.56)

Proof. This argument is standard in every finite element course. Nevertheless,
it is given here because we shall want to modify it later.

Equations (2.51) and (2.54) imply the Galerkin orthogonality property

a(u− uh, vh) = 0 ∀vh ∈ Vh.

This property and the coercivity and continuity of a(·, ·) imply that the error
e := u− uh satisfies the inequality

α‖e‖2 ≤ a(e, u− uh) = a(e, u− vh) ≤ β‖e‖ ‖v − vh‖ ∀vh ∈ Vh.

Hence

‖u− uh‖ ≤
β

α
‖u− vh‖ for all vh ∈ Vh. (2.57)

The desired result follows. �
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Remark 2.45. If a(·, ·) is a coercive symmetric bilinear form, then we introduce
the energy product and the related energy norm

(v, w)E := a(v, w) and ‖v‖2E := (v, v)E .

Using this norm in the proof of Theorem 2.44 gives α = 1 and β = 1 in (2.57)
so that

‖u− uh‖E = inf
vh∈Vh

‖u− vh‖E . (2.58)

Thus in the symmetric case, the Ritz-Galerkin technique is optimal in the
sense that, measured in the energy norm, the discretization error equals the
best approximation error from the underlying discrete space. In the general
asymmetric case, the Ritz-Galerkin technique is quasi-optimal in the sense of
(2.56). ♣

A finite element method is a Ritz-Galerkin method where Vh is a spline
space that is called the finite element space. The next step in finding a general
error estimate for finite element methods is the replacement of the approxi-
mation error by an interpolation error. Here we assume that it is possible to
define an interpolant uI from Vh to u. Our description so far does not depend
on the dimension of the discrete problem, but for the interpolation theory
estimates, the precise choice of Vh and its dimension come into the game.

Consider the one-dimensional case. On a given grid

0 = x0 < x1 < ... < xN−1 < xN = 1,

let Sk be the space of continuous splines that are polynomials of degree k ≥ 1
on each subinterval. Then the interpolant uI ∈ Sk to a continuous function
is determined uniquely by the correct number of interpolation conditions at
suitably chosen interpolation points. Interpolation theory in Sobolev spaces
[Cia02] tells us that, with hi = xi − xi−1 and h = maxhi,

‖u− uI‖W l,q(0,1) ≤ Ch1/q−1/phk+1−l|u|W k+1,p(0,1), (2.59)

for all u ∈W k+1,p(0, 1), where l ≤ k + 1, 1/p+ 1/q = 1 and 1 ≤ p ≤ ∞.

Example 2.46. Let us assume for the boundary value problem (2.53) that
c − b′/2 ≥ ω > 0. Then the hypotheses of Theorems 2.43 and 2.44 are ful-
filled. Thus a Ritz-Galerkin discretization, with continuous splines of degree k,
results in

‖u− uh‖1 ≤ Chk|u|k+1 if u ∈ Hk+1(0, 1).

In fact, it is well known that

|u− uh|0 + h|u− uh|1 ≤ Chk+1|u|k+1 if u ∈ Hk+1(0, 1)

where the higher-order L2(0, 1) estimate can be derived by a duality argument
[Cia02, GRS07]. If one wishes to estimate the L∞ error of u− uh, this can be
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done via a Green’s function. For fixed ξ ∈ (0, 1), define the Green’s function
G(·, ξ) ∈ H1

0 (0, 1) by

a(w,G) = w(ξ) ∀w ∈ H1
0 (0, 1).

In the current one-dimensional case, one has H1(0, 1) continuously embedded
in C[0, 1], and consequently the linear functional f(·) defined by f(w) = w(ξ)
satisfies

|f(w)| = |w(ξ)| ≤ ‖w‖C[0,1] ≤ C ‖w‖H1(0,1),

which shows that f(·) is continuous. Hence G(·, ξ) ∈ H1
0 (0, 1) is well defined

by the Lax-Milgram lemma. Now

(u− uh)(ξ) = a(u− uh, G) = a(u− uh, G− vh) ∀v ∈ Vh,

so
|(u− uh)(ξ)| ≤ β ‖u− uh‖1 inf

vh∈Vh

‖G(·, ξ)− vh)‖1. (2.60)

It is clear that the discontinuity of the derivative of G(x, ξ) at x = ξ may in
general cause some difficulty if we try to proceed further. But if ξ is a grid
point, this problem disappears and one obtains the superconvergence result

|(u− uh)(xi)| ≤ Kh2k,

where K is some constant; see [DD74] for details. If ξ is not a grid point, then
a direct application of (2.60) and G ∈ H1 yields only

‖u− uh‖∞ = o(hk).

A more ingenious approach [Whe73] results in the optimal estimate

‖u− uh‖∞ = O(hk+1),

provided that u is sufficiently smooth. ♣

2.2.2 Upwind Finite Elements

We now move on to the singularly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0. (2.61a)

As is usual in finite element analyses, assume that

c(x)− b′(x)/2 ≥ ω > 0 for all x ∈ [0, 1]. (2.61b)

We discuss discretizations on an equidistant grid with mesh size h. Set

a(v, w) := ε(v′, w′) + (bv′ + cv, w),
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where (·, ·) is the L2(0, 1) inner product. Then an analogue of (2.54),

a(uh, vh) = (f, vh) for all vh ∈ Vh,

is the starting point when constructing discretizations.
Choose Vh to be the space of piecewise linear functions and approximate

the integrals using the trapezoidal rule. This generates the central difference
scheme

−εD+D−ui + biD
0ui + ciui = fi,

so our experience with classical finite difference methods tells us that for
singularly perturbed boundary value problems, standard finite element methods
are usually unsatisfactory.

Some theoretical support for this statement will now be given. The as-
sumption (2.61b) implies the coercivity of a(·, ·) on H1

0 (Ω) with respect to
the ε-dependent norm

‖v‖2ε := ε|v|21 + ‖v‖20, (2.62)

which is related to the energy norm for the symmetric case considered in
Remark 2.45. Indeed, there is a positive constant α = min{ω, 1}, which is
independent of ε, such that

a(v, v) ≥ α‖v‖2ε ∀v ∈ V. (2.63)

Furthermore, there is a positive constant β independent of ε such that

|a(v, w)| ≤ β‖v‖ε‖w‖1 ∀(v, w) ∈ V ×W, (2.64)

but one does not have

|a(v, w)| ≤ γ‖v‖ε‖w‖ε ∀(v, w) ∈ V ×W (2.65)

with a constant γ that is independent of ε. Using (2.63) and (2.64), the stan-
dard analysis yields

‖u− uh‖ε ≤ C inf
vh∈Vh

‖u− vh‖1. (2.66)

But in the presence of a boundary layer, if Vh is a polynomial finite element
space, then for fixed h one can show that

inf
vh∈Vh

‖u− vh‖1 →∞ as ε→ 0,

and in fact, one does not have

‖u− uh‖ε → 0 uniformly in ε, as h→ 0.

See also [KS97], which uses the theory of n-widths to prove that when the
smoothness of the right-hand side f is specified and any numerical method is
applied to the problem (2.61), then in practice the optimal convergence rate
attainable in L2 is inferior to that achieved in classical problems.
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Remark 2.47. (Higher-degree polynomial finite element spaces) In numerical
experiments it has been observed that finite element methods with continuous,
piecewise polynomials of degree k ≥ 2 behave much better than their piecewise
linear counterparts; see, e.g., [BR94]. The theoretical analysis above applies
to all finite element spaces and does not explain this particular phenomenon.
But in the one-dimensional case one can prove for all k ≥ 2 that there is a
positive constant α > 0, independent of the mesh size h, such that

α|||vh|||ε ≤ sup
wh∈Vh

a(vh, wh)

|||wh|||ε
∀vh ∈ Vh,

with a norm ||| · |||ε that is stronger than the energy norm ‖ · ‖ε; one has
‖wh‖ε ≤ |||wh|||ε for all wh ∈ Vh. In addition, for the subspace Sk−1 of
continuous piecewise polynomials of degree k−1 there is a positive constant C
such that

‖wh‖2ε + C
N∑

i=1

hi

∫ xi

xi−1

(bw′
h)2 dx ≤ |||wh|||2ε ∀wh ∈ Sk−1.

This means that on the subspace Sk−1, as ε → 0 one has control not only
over the L2 norm but also over a mesh-dependent H1 seminorm. Hence, for
the solution uh ∈ Vh of the discrete problem, one gets the improved stability
estimate

|||uh|||ε ≤
1

α
sup

wh∈Vh

(f, wh)

|||wh|||ε
≤ 1

α
sup

wh∈Vh

(f, wh)

‖wh‖ε

whereas the standard approach based on the usual coercivity of the bilinear
form gives only

‖uh‖ε ≤
1

α
sup

wh∈Vh

(f, wh)

‖wh‖ε
.

For details we refer to [KT08] where the multi-dimensional case has also been
investigated. ♣

Remark 2.48. (The influence of different boundary conditions) Let us consider
(2.61) with b > 0 but with the boundary conditions

u(0) = 0 and u′(1) = 0.

Suppose that Vh consists of piecewise polynomials of degree k. Let u0 be the
solution of the reduced problem. Adjoining a triangle inequality to the analysis
above gives

‖u− uh‖ε ≤ C
(
‖u− u0‖1 + inf

vh∈Vh

‖u0 − vh‖1
)
≤ C(ε1/2 + hk),

as u0 is smooth (see Remark 1.5). Thus for the boundary condition u′(1) = 0
– which we recall induces a weaker layer – when ε is close to zero, the error
behaves better than in the Dirichlet case u(1) = 0. ♣
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In the late 1970s, researchers began to apply Petrov-Galerkin methods
to convection-diffusion problems; see [CGMZ76, Hem77, HHZM77, HZ77]. A
Petrov-Galerkin method is characterized by the use of distinct trial and test
spaces, Sh and Th respectively (with dim Sh = dim Th), and the discretization:

Find uh ∈ Sh such that

a(uh, vh) = f(vh) ∀vh ∈ Th. (2.67)

Consider first the simple differential equation

−εu′′ + bu′ = 0

with constant non-zero b. The finite element spaces are piecewise linear trial
and piecewise quadratic test functions. Define the splines

ϕi(x) =

⎧
⎨
⎩

(x− xi−1)/h if x ∈ [xi−1, xi],
(xi+1 − x)/h if x ∈ [xi, xi+1],
0 otherwise,

σi− 1
2

=

{
4(x− xi−1)(xi − x)/h2 if x ∈ [xi−1, xi],
0 otherwise.

The test functions are given by

ψi(x) = ϕi(x) +
3

2
κ
[
σi− 1

2
(x)− σi+ 1

2
(x)

]
,

where κ is a user-chosen upwind parameter. This generates the scheme

−εD+D−ui + b

[(
1

2
− κ

)
D+ui +

(
1

2
+ κ

)
D−ui

]
= 0.

The choice κ = (sgn b)/2 produces the simple upwind finite difference scheme.
In early papers on upwind schemes, the parameter κ was chosen to exclude all
oscillations from the solution of the difference equation that was generated.
Now for b > 0, one obtains an M -matrix if

bh

ε

(
1

2
− κ

)
< 1

– a condition which is fulfilled for the simple upwind scheme. An “optimal”
choice of the upwind parameter κ is got by requiring the difference scheme
to yield the exact solution of the differential equation; it then generates the
Il’in-Allen-Southwell scheme of Section 2.1.3.

For the more general problem (2.61), each test function ψi is formed by
combining a linear trial function with a quadratic function using an upwind
parameter κi− 1

2
, as follows:

ψi(x) = ϕi(x) + κi− 1
2
[σi− 1

2
(x)− σi+ 1

2
(x)].
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Now the midpoint quadrature rule generates the scheme

−εD+D−ui + (b̄i+ 1
2
D+ui+b̄i− 1

2
D−ui) + (cu)i+ 1

2
+ (cu)i− 1

2

= (f̄i+ 1
2

+ f̄i− 1
2
).

Here q̄i±1/2 := (1/2∓ κi±1/2)qi±1/2, where q may be b, cu or f . This scheme
can be rewritten (modulo higher-order terms) in the fitted form (2.15). Thus
some fitted upwind schemes can be generated in a Petrov-Galerkin framework,
using linear trial functions and quadratic test functions.

As with finite difference schemes, one could introduce artificial diffusion
into the original differential equation then apply a standard approach based,
e.g., on linear elements. Other combinations of polynomial test and trial func-
tions have been proposed in the literature; for example, see the combination
of quadratic trial and cubic test functions in [Hei80].

An abstract mathematical theory of Petrov-Galerkin finite element meth-
ods was developed by the early 1970s, but is nevertheless not as well known
as the results mentioned in Section 2.2.1. The following generalization of The-
orem 2.44 comes from [BA72, GRS07]:

Theorem 2.49. Assume that the trial space Sh ⊂ H1
0 and the test space

Th ⊂ H1
0 satisfy the two conditions

inf
‖vh‖ε=1

sup
‖wh‖ε=1

|a(vh, wh)| ≥ αh > 0 (2.68)

and
sup

vh∈Sh

|a(vh, wh)| > 0 for each wh ∈ Th with wh �= 0. (2.69)

Then the discrete problem (2.67) has a unique solution uh which satisfies

‖u− uh‖ε ≤
(

1 +
β

αh

)
inf

vh∈Sh

‖u− vh‖1. (2.70)

Remark 2.50. The quasi-optimal bound (2.70) can be found in many text-
books. A careful investigation [XZ03] shows that in fact the multiplicative
factor 1 + β/αh can be replaced by β/αh. ♣

If one applies Theorem 2.49 to Petrov-Galerkin methods based on poly-
nomial finite element spaces, the results are unconvincing. For instance, for
linear trial and quadratic test functions one finds that

αh =
1√

1 + 6max
i
κ2

i

and inf
vh∈Sh

‖u− vh‖1 ≤ Ch|u|2,

where the κi are upwind parameters and |u|2 = O(ε−3/2); see [GL78, Kun86].
Since (2.70) corresponds to the bound (2.66) for the standard Galerkin ap-
proach, the best we can hope for when applying a polynomial-based Petrov-
Galerkin finite element method is that this will improve the stability properties
of the discrete problem.
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Morton and his coworkers [BM80, MMS92, MS85] developed a theory of
“optimal ” Petrov-Galerkin methods. The basic idea is quite elegant: as seen in
Section 2.2.1, for symmetric problems the Ritz-Galerkin technique is optimal
with respect to the energy norm, so one tries to find test functions that yield
a symmetric (or nearly symmetric) discrete problem. That is, one looks for a
surjective mapping Φ : Sh → Th such that

Bs(v, w) := a(v, Φ(w))

is a symmetric bilinear form. For one-dimensional problems this method works
well, but it is difficult to generalize it to higher-dimensional problems, so it
will not be discussed further.

Instead of trial and test functions that are linear within each mesh subin-
terval, O’Riordan [O’R84] proposes the use of hinged elements; these are only
piecewise linear in each mesh subinterval, thus enabling better approximation
of layers. One constructs them by introducing in each subinterval an additional
mesh point whose position depends on a local Reynolds number. Recently, in
the context of enriching the finite element space by bubble functions, a method
using two additional mesh points in each subinterval is proposed in [BHMS03].
This can be considered as an extension of [O’R84] to handle the whole range
of convection-diffusion to reaction-diffusion equations.

In recent years many other finite element methods of upwind type such as

• streamline diffusion method (SDFEM)
• variational multiscale method (VMS)
• differentiated residual method (DRM)
• continuous interior penalty approach (CIP)
• Galerkin least squares techniques (GLS)
• local projection stabilization (LPS)
• discontinuous Galerkin methods (dGFEM)
• combined finite volume – finite element approaches (CFVFE)

have been developed. To give the reader some impression of how higher-order
finite element methods can be designed and analysed, the first three methods
of this list will be considered in the next subsections; the others are deferred
to Parts II and III.

2.2.3 Stabilized Higher-Order Methods

Consider as in Section 2.2.2 the singularly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.71a)

under the assumption that

c(x)− b′(x)/2 ≥ ω > 0 for all x ∈ [0, 1]. (2.71b)
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Our aim is to create a method that is more stable than the Galerkin approach
and can be used for finite elements of any order. The improved stability prop-
erty will be expressed in terms of a norm stronger than the standard energy
norm.

The first idea is to add weighted residuals to the usual Galerkin finite
element method. The method is called the streamline-diffusion finite element
method (SDFEM); the reason for its name will become clear in the multi-
dimensional case – see the interpretation following Remark III.3.28. Multiply
the differential equation (2.71) by bv′, integrate over each subinterval (xi−1, xi)
for i = 1, . . . , N , and add this weighted sum to the standard Galerkin method;
one gets the following discrete problem:

Find uh ∈ Vh such that

ah(uh, vh) = fh(vh) for all vh ∈ Vh, (2.72)

where

ah(v, w) := ε(v′, w′) + (bv′ + cv, w) +

N∑

i=1

∫ xi

xi−1

δi(−εv′′ + bv′ + cv)bw′ dx,

fh(w) := (f, w) +

N∑

i=1

∫ xi

xi−1

δif bw
′ dx.

Here, (·, ·) denotes the inner product in L2(0, 1), δi is a user chosen parameter,
called the SD parameter, which is usually constant on Ii. Note that since
v ∈ Vh, in general v′′ in ah(v, w) is defined only piecewise. Nevertheless, for a
smooth solution u ∈ H2(0, 1) of (2.71) we have

ah(u, vh) = fh(vh) for all vh ∈ Vh. (2.73)

A finite element method (2.72) that satisfies (2.73) for a sufficiently smooth
solution of (2.71) is said to be consistent. This is not the same as consistency of
a finite difference scheme, which was discussed in Section 2.1.1. Furthermore,
finite element consistency implies Galerkin orthogonality, viz.,

ah(u− uh, vh) = 0 for all vh ∈ Vh.

As regards coercivity of the discrete bilinear form ah(·, ·), one has

ah(vh, vh) = ε|vh|21 +

∫ 1

0

(c− b′/2) v2h dx

+

N∑

i=1

‖
√
δibv

′‖20,Ii
+

N∑

i=1

∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx

≥ |||vh|||2SD +

N∑

i=1

∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx,
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where Ii = (xi−1, xi) and ‖.‖0,Ii
denote the ith subinterval and the L2(Ii)

norm. Furthermore, the streamline diffusion norm ||| · |||SD has been intro-
duced:

|||vh|||SD :=

(
ε|vh|21 + ω‖vh‖20 +

N∑

i=1

‖
√
δibv

′‖20,Ii

)1/2

.

Let hi = xi − xi−1 be the length of Ii. Using the inverse inequality

‖v′′h‖0,Ii
≤ cinv h

−1
i ‖v′h‖0,Ii

and imposing the requirement on the SD parameter that

0 < δi ≤
1

2
min

{
h2

i

εc2inv

,
ω

‖c‖2∞

}
, (2.74)

we estimate∣∣∣∣
∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx

∣∣∣∣

≤
(√

ε

2

hi

cinv
‖v′′h‖0,Ii

+

√
ω

2
‖vh‖0,Ii

)
‖
√
δibv

′
h‖0,Ii

≤ ε

2
‖v′h‖0,Ii

+
ω

2
‖vh‖20,Ii

+
1

2
‖
√
δibv

′
h‖20,Ii

.

In the case of piecewise linear elements one has v′′h|Ii
= 0 for i = 1, . . . , N and

this inequality is still valid when (2.74) is replaced by the weaker assumption

0 < δi ≤
ω

‖c‖2∞
. (2.75)

The above computation proves the following lemma:

Lemma 2.51. Assume that (2.74) is satisfied. Then the SDFEM discrete bi-
linear form is coercive, viz.,

ah(vh, vh) ≥ 1

2
|||vh|||2SD for all vh ∈ Vh.

For piecewise linear elements the assumption (2.74) can be replaced by (2.75).

Remark 2.52. Lemma 2.51 implies stability of the SDFEM with respect to the
norm ||| · |||SD. Now all vh ∈ Vh satisfy

|||vh|||SD ≥ min{1, ω} ‖vh‖ε.

Thus the stability of the SDFEM in the norm ||| · |||SD is stronger than the
stability of the standard Galerkin method in the norm ‖·‖ε. Furthermore, the
quantity

N∑

i=1

‖
√
δibu

′
h‖20,Ii

is bounded for the solution uh of the SDFEM but in general this is not the
case for the solution of the Galerkin method. ♣
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Take Vh to be the space of piecewise linear functions on an equidistant
mesh (hi = h for i = 1, . . . , N). Assume that b, c, f , and δi = δ for i = 1, . . . , N
are all constant. Then the SDFEM reduces to the scheme

−(ε+ b2δ)D+D−ui + bD0ui + cui = f,

i.e., the fitted scheme (2.15) with σ(q) = 1+b2δ/ε, q = bh/(2ε). Recall that for
σ(q) = q coth q one gets the Il’in-Allen-Southwell scheme, which corresponds
to choosing the SD parameter to be

δ(q) =
h

2b

(
coth q − 1

q

)
.

Since

coth q− 1

q
=
q

3
+O(q3) as q → 0 and coth q− 1

q
= 1+O

(
1

q

)
as q →∞,

the asymptotic limits h → 0 for fixed ε, and ε → 0 for fixed h, motivate the
following choices of δ:

δ(q) =

{
h2/(12ε) if 0 < q ≪ 1,
h/(2b) if q ≫ 1.

(2.76)

The choice δ(q) = h/(2b) for q ∈ (0,∞) generates the simple upwind scheme.
We now study the convergence properties of the SDFEM in the case where

Vh ⊂ H1
0 (0, 1) is the finite element space of piecewise polynomials of degree

k ≥ 1. For the nodal interpolant uI ∈ Vh, one has the estimates

|uI − u|l ≤ Chk+1−l|u|k+1 for l = 0, . . . , k + 1.

Theorem 2.53. Let the SD parameter be specified by

δi =

{
C0 h

2
i /ε if hi < ε,

C0 hi if ε < hi,
(2.77)

where the constant C0 is small enough to satisfy (2.74) if k ≥ 2 and (2.75)
if k = 1. Then using piecewise polynomials of degree k, the solution uh of the
SDFEM satisfies the error estimate

|||u− uh|||SD ≤ C(ε1/2hk + hk+1/2) |u|k+1.

Proof. The coercivity of ah (Lemma 2.51) and Galerkin orthogonality yield

1

2
|||uI − uh|||2SD ≤ ah(uI − uh, u

I − uh) = ah(uI − u, uI − uh).

Each term in ah(uI−u, uI−uh) will be estimated separately. Set wh = uI−uh.
First,
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∣∣ε((uI − u)′, w′
h)
∣∣ ≤ Cε1/2hk|u|k+1 |||wh|||SD,∣∣(c(uI − u), wh)
∣∣ ≤ Chk+1|u|k+1 |||wh|||SD.

Then, using εδi ≤ C0 h
2
i and δi ≤ C0 hi we obtain

∣∣∣∣∣
N∑

i=1

(−ε(uI − u)′′, δibw′
h)Ii

∣∣∣∣∣ ≤ C
N∑

i=1

ε1/2hi ‖(uI − u)′′‖0,Ii
‖
√
δibw

′
h‖0,Ii

≤ Cε1/2hk|u|k+1 |||wh|||SD,∣∣∣∣∣
N∑

i=1

(b(uI − u)′ + c(uI − u), δibw′
h)Ii

∣∣∣∣∣ ≤ C(hk+1/2 + hk+3/2) |u|k+1 |||wh|||SD

It remains to estimate the convection term. The standard estimate would be

|(b(uI − u)′, wh)| ≤ Chk‖wh‖0 ≤ Chk|u|k+1|||wh|||SD

but thanks to the additional term
∑N

i=1 ‖
√
δibv

′‖20,Ii
in the norm ||| · |||SD,

this estimate can be improved. To this end, one integrates by parts to get

|(b(uI − u)′, wh)| ≤ |((uI − u), bw′
h)|+ |((uI − u), b′wh)|

Here the second term is estimated in a standard way:

|((uI − u), b′wh)| ≤ Chk+1|u|k+1‖wh‖0 ≤ Chk+1|u|k+1|||wh|||SD.

The bound on the first term depends on ε ≤ hi or ε > hi:

∣∣∣∣∣
N∑

i=1

((uI − u), bw′
h)Ii

∣∣∣∣∣ ≤ C
∑

ε≤hi

δ
−1/2
i hk+1

i |u|k+1,Ii
‖
√
δibw

′
h‖0,Ii

+ C
∑

ε>hi

h
k+1/2
i |u|k+1,Ii

ε1/2|wh|1

≤ Chk+1/2|u|k+1|||wh|||SD.

Collecting all these estimates completes the proof of the theorem. ⊓⊔

The Cea lemma, Theorem 2.44, gives a quasi-optimal error estimate whose
constant multiplier depends on the data of the problem. It says that the
error is, up to a constant factor, less than or equal to the approximation
error. Such an error estimate is highly desirable since it reduces the question
of constructing a good solution to the corresponding task in approximation
theory. In Section 2.2.2 the error u−uh has been measured in the energy norm
‖·‖ε = (ε| · |21+ | · |20)1/2, which forms part of the SD norm. But recalling (2.66),
we have no uniform quasi-optimal error estimate in the norm ‖ · ‖ε. Before
considering the question of finding an appropriate norm in which a uniform
quasi-optimal error estimate can be given, we demonstrate why the standard
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H1 norm ‖ · ‖1 and the energy norm ‖ · ‖ε seem unsuited to our singularly
perturbed problem.

Under the hypothesis (2.71b), the operator Lε : H1
0 (0, 1) → H−1(0, 1)

defined by
〈Lεv, w〉 = a(v, w) for all v, w ∈ H1

0 (0, 1)

is for each ε > 0 an isomorphism fromH1
0 (0, 1) ontoH−1(0, 1). Let us consider

two norms ‖ · ‖S and ‖ · ‖T on H1
0 (0, 1) that are equivalent for fixed ε and are

such that the continuity and inf-sup conditions

|a(v, w)| ≤ β‖v‖S ‖w‖T for all v, w ∈ H1
0 (0, 1), (2.78)

inf
v∈H1

0 (0,1)
sup

w∈H1
0 (0,1)

a(v, w)

‖v‖S ‖w‖T
≥ α > 0, (2.79)

hold true. From these inequalities one can deduce immediately that

‖L−1
ε ‖ := sup

f∈H−1(0,1)

‖L−1
ε f‖S

‖f‖∗,T
= sup

v∈H1
0 (0,1)

‖v‖S

‖Lεv‖∗,T
≤ 1

α
,

‖Lε‖ := sup
v∈H1

0 (0,1)

‖Lεv‖∗,T

‖v‖S
= sup

v∈H1
0 (0,1)

sup
w∈H1

0 (0,1)

〈Lεv, w〉
‖v‖S‖w‖T

≤ β,

where ‖ · ‖∗,T denotes the dual norm in H−1(0, 1) defined by

‖f‖∗,T := sup
w∈H1

0 (0,1)

〈f, w〉
‖w‖T

.

If α and β are independent of ε, then one can consider the norms ‖v‖S and
‖w‖T as natural for Lε because for a given source term f and a perturbed
source term f + δf the relative perturbation in the solution is uniformly
bounded by the relative perturbation of the source term. Indeed, if u and
u+ δu denote the corresponding solutions, then

‖δu‖S

‖u‖S
=
‖L−1

ε δf‖S

‖u‖S
≤ β

α

‖δf‖∗,T

‖Lεu‖∗,T
=
β

α

‖δf‖∗,T

‖f‖∗,T
.

If however ‖ · ‖S = ‖ · ‖T = ‖ · ‖1, then (2.78) and (2.79) hold true only with
constants α and β that depend on ε; this implies that

‖L−1
ε ‖ ≤ 1

α
= O

(
1

ε

)
, ‖Lε‖ ≤ β = O(1).

On the other hand, for ‖ · ‖S = ‖ · ‖T = ‖ · ‖ε one obtains

‖L−1
ε ‖ ≤ 1

α
= O(1), ‖Lε‖ ≤ β = O

(
1

ε

)
.
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Suppose that we have appropriate norms ‖ · ‖S and ‖ · ‖T such that (2.78)
and (2.79) hold with constants α and β that are independent of ε. Then one
might hope that these inequalities yield a uniform quasi-optimal convergence
result with respect to ‖v‖S , similarly to the Cea lemma, Theorem 2.44 – but
this is not true. The reason is that the inf-sup condition (2.79) is weaker than
the coercivity condition (2.52): imitating the proof of Theorem 2.44 one gets

‖u− uh‖S ≤ ‖u− vh‖S + ‖vh − uh‖S

≤ ‖u− vh‖S +
1

α
sup

w∈H1
0 (0,1)

a(vh − uh, w)

‖w‖T

but after using Galerkin orthogonality to replace a(vh−uh, w) by a(vh−u,w),
we are unable to take an infimum of the right-hand side over H1

0 (0, 1) – we
can take the infimum only over the finite element space Vh where vh lies.
To surmount this obstacle, one needs an additional inf-sup condition on the
discrete spaces Sh and Th:

inf
vh∈Sh

sup
wh∈Th

a(vh, wh)

‖vh‖S ‖wh‖T
≥ α1 > 0. (2.80)

Then one can argue that

‖vh − uh‖S ≤
1

α1
sup

wh∈Th

a(vh − uh, wh)

‖wh‖T
=

1

α1
sup

wh∈Th

a(vh − u,wh)

‖wh‖T

≤ β

α1
‖vh − u‖S

and use a triangle inequality to get the uniform quasi-optimal estimate

‖u− uh‖S ≤
(

1 +
β

α1

)
inf

vh∈Sh

‖u− vh‖S .

An investigation of norms ‖ · ‖S and ‖ · ‖T such that (2.78)–(2.80) are
satisfied has been carried out by Sangalli [San05, San08].

Following [San05], we consider the simple model problem in which b = 1
and c = 0. Thus the bilinear form a(·, ·) becomes

a(v, w) := ε(v′, w′) + (w′, v) for all v, w ∈ H1
0 (0, 1).

Let L2
0(0, 1) denote the subset of L2(0, 1) comprising functions of zero mean

value. Let Π0 : L2(0, 1) → L2
0(0, 1) be the L2 projection onto L2

0(0, 1) such
that (Π0w−w, v) = 0 for all v ∈ L2

0(0, 1) and w = Π0w+w where w denotes
the mean value of w. The convection term (v′, w) can be estimated via

|(v′, w)| = |((Π0v)
′, w)| = | − (Π0v, w

′)| ≤ ‖Π0v‖0 |w|1

or equivalently, integrating by parts,
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|(v′, w)| = | − (v, w′)| = | − (v, (Π0w)′)| = |(v′, Π0w)| ≤ |v|1 ‖Π0w‖0,
which results in two continuity estimates of the form (2.78):

|a(v, w)| ≤ (ε|v|1 + ‖Π0v‖0) |w|1,
|a(v, w)| ≤ |v|1 (ε|w|1 + ‖Π0v‖0).

Thus we shall consider ε| · |1 +‖Π0(·)‖0 and | · |1 – or vice versa – as candidates
for ‖ · ‖S and ‖ · ‖T . The coercivity of a(·, ·) gives

ε|v|1 ≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
for all v ∈ H1

0 (0, 1).

In order to show also that

‖Π0v‖0 ≤ C sup
w∈H1

0 (0,1)

a(v, w)

|w|1
for all v ∈ H1

0 (0, 1),

one uses the norm relationships ‖Π0v‖0 ≤ C ‖v′‖−1 and

‖v′‖−1 = sup
w∈H1

0 (0,1)

(v′, w)

|w|1
= sup

w∈H1
0 (0,1)

a(v, w)− ε(v′, w′)

|w|1

≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
+ ε|v|1 ≤ 2 sup

w∈H1
0 (0,1)

a(v, w)

|w|1
.

Hence

α(ε|v|1 + ‖Π0v‖0) ≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
where α is independent of ε. A duality argument delivers the other estimate

α |v|1 ≤ sup
w∈H1

0 (0,1)

a(v, w)

ε|w|1 + ‖Π0w‖0
.

Thus, in agreement with our earlier discussion, the norms

v �→ ε|v|1 + ‖Π0v‖0 and v �→ |v|1
are suitable for this model problem.

In [San05] Sangalli proved a discrete inf-sup condition of type (2.80) from
which uniform quasi-optimality with respect to the two norms follows.

Lemma 2.54. Consider the bilinear form ah(·, ·) of the SDFEM (2.72) with
b = 1 and c = 0. Let Vh be the space of piecewise linear functions on an
equidistant mesh. Then there is a constant α1, which is independent of ε,
such that

α1(ε|vh|1 + ‖Π0vh‖0) ≤ sup
wh∈Vh

ah(vh, wh)

|wh|1
∀vh ∈ Vh,

α |vh|1 ≤ sup
wh∈Vh

ah(vh, wh)

ε|wh|1 + ‖Π0wh‖0
∀vh ∈ Vh.
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Proof. See [San05, Lemma 3.1]. �

Lemma 2.54 is the basis for using interpolation theory to construct a family
of norms in which the SDFEM yields uniform quasi-optimal estimates; see
[San05]. Note that the analysis given in [San05] is restricted to the model
problem (b = 1 and c = 0) in one space dimension.

Next, following [CX08, CX05], we show that a variant of the SDFEM for
continuous piecewise linear finite elements on an arbitrary family of meshes
yields a solution uh that is quasi-optimal with respect to the L∞ norm, viz.,

‖u− uh‖∞ ≤ C inf
vh∈Vh

‖u− vh‖∞.

To concentrate on the main ideas, consider the simple model problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

where b is a positive constant and f a given function. For a positive integer N ,
let TN = {xi : 0 = x0 < x1 < · · · < xN = 1} be an arbitrary grid with
hi = xi− xi−1 the local mesh size and {ϕi} the standard piecewise linear hat
functions that satisfy ϕi(xj) = δij for i, j = 0, 1, . . . , N . Let the finite element
space be

Vh := span{ϕ1, . . . , ϕN−1} ⊂ H1
0 (0, 1).

The SDFEM (2.72) can be written in the form

Find uh ∈ Vh such that ah(uh, vh) = fh(vh) for all vh ∈ Vh

where

ah(v, w) := ε(v′, w′) + (bv′, w) +
N∑

i=1

∫ xi

xi−1

δi(−εv′′ + bv′)bw′ dx,

fh(w) := (f, w) +

N∑

i=1

∫ xi

xi−1

δif bw
′ dx.

Unlike the usual choice of a piecewise-constant SD parameter, here we take

δi :=
3hi

b
min{1, qi}ϕi−1(x)ϕi(x), qi =

bhi

2ε
. (2.81)

Nevertheless the maximum of δi has the asymptotic behaviour (2.77) in the
diffusion-dominated and convection-dominated regimes.

Let A = (ah(ϕj , ϕi)), for i, j = 1, . . . , N − 1, be the coefficient matrix of
the corresponding algebraic system. For ui = uh(xi) a direct calculation gives

−
(
ε+ δib

2

hi
+
b

2

)
ui−1 +

(
ε+ δib

2

hi
+
ε+ δi+1b

2

hi+1

)
ui (2.82)

−
(
ε+ δi+1b

2

hi+1
− b

2

)
ui+1 = fh(ϕi)
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where

δi :=
1

hi

∫ xi

xi−1

δi(x) dx =
hi

2b
min{1, qi}.

Observe that

ε+ δi+1b
2

bhi+1
=

1 + qi+1 min(1, qi+1)

2qi+1
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 + q2i+1

2qi+1
> 1 for 0 < qi+1 < 1,

1 + qi+1

2qi+1
>

1

2
for qi+1 ≥ 1,

so the matrix A of (2.82) is an M-matrix. The following uniform stability result
is established in [CX05] by studying the properties of the discrete Green’s
function (compare Section 1.1.2 for the continuous analogue):

Lemma 2.55. Define δi by (2.81). Then the SDFEM is uniformly (l∞, w−1,∞)
stable, i.e.,

‖vh‖∞,d ≤
2

b
max

j=1,...,N−1

∣∣∣∣∣∣

N−1∑

k=j

(Avh)k

∣∣∣∣∣∣
∀vh ∈ Vh,

where the right-hand side defines the discrete analogue of the norm W−1,∞.

Now consider the error eh = uI−uh ∈ Vh where uI is the nodal interpolant.
The consistency property ah(u, vh) = fh(vh) for all vh ∈ Vh implies that
(provided the solution u is sufficiently smooth) the error eh is the solution of
the problem

Find eh ∈ Vh such that ah(eh, vh) = ah(uI − u, vh) for all vh ∈ Vh.

Using (uI−u)(xi) = 0 for i = 0, . . . , N and integration by parts, one sees that

(Aeh)k = ah(eh, ϕk) = ah(uI − u, ϕk) = rk − rk+1

where

rk :=
b

hk

[
−
∫ xk

xk−1

(uI − u)(x) dx+

∫ xk

xk−1

δk(x)εu′′(x) dx

+

∫ xk

xk−1

bδk(x)(uI − u)′(x) dx.
]

Since the SD parameter δi vanishes at the mesh points, one can show by means
of integration by parts that
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∣∣∣∣∣
b

hk

∫ xk

xk−1

(uI − u)(x) dx

∣∣∣∣∣ ≤ b‖u− uI‖∞,

∣∣∣∣∣
b

hk

∫ xk

xk−1

δk(x)εu′′(x) dx

∣∣∣∣∣ =
b

hk

∣∣∣∣∣

∫ xk

xk−1

δ′′k (x)ε(u− uI)(x) dx

∣∣∣∣∣

≤ 3b

qk
min(1, qk)‖u− uI‖∞ ≤ 3b‖u− uI‖∞,

∣∣∣∣∣
b

hk

∫ xk

xk−1

bδk(x)(uI − u)′(x) dx
∣∣∣∣∣ =

b2

hk

∣∣∣∣∣

∫ xk

xk−1

δ′k(x)(uI − u)(x) dx
∣∣∣∣∣

≤ 3b‖u− uI‖∞.
Gathering all these bounds gives

|rk| ≤ 7b‖u− uI‖∞. (2.83)

The discretization error can now be estimated using the interpolation error.

Lemma 2.56. Let uh be the solution of the SDFEM with δi given by (2.81).
Then there is a positive constant C, independent of ε and the mesh, such that

‖u− uh‖∞ ≤ C‖u− uI‖∞.
Proof. By Lemma 2.55 and (2.83),

‖uI − uh‖∞ ≤ 2

b
max

j=1,...,N−1

∣∣∣∣∣∣

N−1∑

k=j

(Aeh)k

∣∣∣∣∣∣
=

2

b
max

j=1,...,N−1
|rj − rN |

≤ 28‖u− uI‖∞
and the desired estimate follows from the triangle inequality. �

Theorem 2.57. Let uh be the solution of the SDFEM with δi given by (2.81).
Then there is a positive constant C, independent of ε and the mesh, such that

‖u− uh‖∞ ≤ C inf
vh∈Vh

‖u− vh‖∞.

That is, the SDFEM is quasi-optimal in the L∞ norm.

Proof. Let Ph : H1
0 (0, 1) → Vh denote the solution operator of the SDFEM,

i.e., Phu := uh. From Lemma 2.56 we infer that

‖u− uh‖∞ ≤ C‖u− uI‖∞ ≤ C(‖u‖∞ + ‖uI‖∞) ≤ C‖u‖∞.
Thus the operator Ph is L∞ stable since

‖Phu‖∞ = ‖uh‖∞ ≤ ‖u‖∞ + ‖u− uh‖∞ ≤ C‖u‖∞.
But P 2

h = Ph, so for any vh ∈ Vh one has

‖u− uh‖∞ = ‖(I − Ph)(u− vh)‖∞ ≤ C‖u− vh‖∞.
The proof is then finished by taking the infimum over all vh ∈ Vh. �
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Remark 2.58. The quasi-optimality result of Lemma 2.56 reduces the ques-
tion of L∞-norm convergence of the SDFEM to a problem in approximation.
Thus if layer-adapted meshes are used, convergence can be established in the
L∞ norm uniformly with respect to ε. Of course a detailed knowledge of the
analytical structure of the solution u is needed in order to create a layer-
adapted mesh. ♣

Remark 2.59. A quasi-optimality result in an Lp-type norm (where 1 ≤ p ≤ ∞
is arbitrary) for a Petrov-Galerkin finite element method is given in [SB84].
This result could also be used to get a uniform convergence result on a suitable
layer-adapted mesh. Moreover, [SB84] contains an asymptotically exact error
estimator; such estimators will be the main topic of Section III.3.6. ♣

2.2.4 Variational Multiscale and Differentiated Residual Methods

The variational multiscale method (VMS) [HFMQ98, Hug95, HS07] was in-
troduced to provide a framework for a better understanding of fine-to-coarse
scale effects and as a platform for the development of new numerical methods.

We derive the method for the two-point boundary value problem

−εu′′ + b(x)u′ + c(x)u = f(x) in (0, 1), u(0) = u(1) = 0, (2.84)

with sufficiently smooth functions b, c and f , where the parameter ε satisfies
0 < ε≪ 1. Assume that

c(x)− 1

2
b′(x) ≥ ω > 0 for x ∈ [0, 1], (2.85)

which guarantees the unique solvability of the problem.
The weak formulation of (2.84) is given by:

Find u ∈ V := H1
0 (0, 1) such that for all v ∈ V one has

a(u, v) := ε(u′, v′) + (bu′ + cu, v) = (f, v) . (2.86)

The basic idea of the VMS approach is to split the solution space V into
resolvable and unresolvable scales. This is done by choosing a finite element
space Vh that represents the resolvable scales and a projection operator P :
V → Vh such that

V = Vh ⊕ V ⋄, so u = Pu+ (I − P )u = uh + u⋄.

Now the weak formulation (2.86) can be restated as:

Find uh ∈ Vh and u⋄ ∈ V ⋄ such that

a(uh + u⋄, vh) = (f, vh) ∀vh ∈ Vh, (2.87a)

a(uh + u⋄, v⋄) = (f, v⋄) ∀v⋄ ∈ V ⋄. (2.87b)
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To remove the unresolvable scales, define M(uh) and F (f) as follows:

Find M(uh) ∈ V ⋄ and F (f) ∈ V ⋄ such that

a(M(uh), v⋄) = −a(uh, v⋄) and a(F (f), v⋄) = (f, v⋄) ∀v⋄ ∈ V ⋄. (2.88)

Then, the solution of (2.87b) is u⋄ = M(uh) + F (f) and its elimination from
(2.87a) yields the VMS stabilized method:

Find uh ∈ Vh such that for all vh ∈ Vh one has

a(uh + M(uh), vh) = (f, vh)− a(F (f), vh). (2.89)

Remark 2.60. The variational multiscale approach is not restricted to the one-
dimensional case; it can also be used for an arbitrary variational problem
defined by a coercive, continuous bilinear form on a Hilbert space V . ♣

Remark 2.61. (Residual-free bubble method) The VMS method can be consid-
ered as a generalization of the residual-free bubble (RFB) method, which will
be discussed in Section III.3.2.2. In the RFB method, the finite element space
Vh is enriched by a space V ⋄ consisting of (bubble) functions that vanish at
the element boundaries. Choosing the projection P : V → Vh appropriately,
the functions from V ⋄ in the variational multiscale method here will also van-
ish at the element boundaries, but they do not have this attribute in the
multi-dimensional case. ♣

Remark 2.62. The problem (2.89) is finite-dimensional but is based on the
solution of the infinite-dimensional problems (2.88). Thus in practice one has
to approximate the mappings M and F [ARS04, BMR98, BMR05]. In special
situations (e.g., the one-dimensional case with piecewise constant coefficients)
one can obtain explicit representations for these mappings. ♣

Let 0 = x0 < x1 < · · · < xN = 1 be a partition Th of [0, 1]. Denote an
arbitrary mesh interval (xi−1, xi) by K, its length by hK = xi − xi−1, and
set h = maxK∈Th

hK . We consider two examples of the variational multiscale
approach. First, let Vh be the space of piecewise linear finite elements and let
P : V → Vh be the H1

0 (0, 1)-projection defined by

((Pv)′, w′
h) = (v′, w′

h) ∀w ∈ Vh.

Later it will turn out that (Pv)(xi) = v(xi) for i = 0, . . . , N , i.e., P is
the piecewise linear nodal interpolant. Consequently V ⋄ becomes the bub-
ble space:

V ⋄ =
⊕

K∈Th

H1
0 (K)

and the problems (2.88) can be solved locally on each mesh interval K. If one
also has c = 0 and the functions b and f are piecewise constant, then explicit
representations of the operators M and F can be found. The VMS stabilized
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method (2.89) is then identical to the following SDFEM:

Find uh ∈ Vh such that for all vh ∈ Vh one has

a(uh, vh) +
∑

K∈Th

τK(bu′h, bv
′
h)K = (f, vh) +

∑

K∈Th

τK(f, bv′h)K

with the SD parameter

τK =
hK

2b

(
coth qK −

1

qK

)
, qK =

bhK

2ε
.

In the second example, let Vh be the space of piecewise quadratic finite
elements and let P : V → Vh be the H1

0 (0, 1)-projection. Later we shall see
that

(Pv)(xi) = v(xi), i = 0, . . . , N and

∫ xi

xi−1

(Pv−v)(x) dx = 0, i = 1, . . . , N.

Because the quadratic bubble function x �→ (xi − x)(x − xi−1) belongs to
H1

0 (xi−1, xi), the space of unresolvable scales is no longer the entire bubble
space; instead it is the constrained bubble space

V ⋄ :=

{
v⋄ ∈

⊕

K∈Th

H1
0 (K) : Pv⋄ = 0

}
.

Using the method of Lagrange multipliers, (2.87b) can be reformulated as the
mixed problem

Find (u⋄, ξ) ∈
⊕

K∈Th

H1
0 (K)× R

N such that

a(u⋄, v)−
∑

K∈Th

ξK(1, v)K = (f, v)− a(uh, v) ∀v ∈
⊕

K∈Th

H1
0 (K),

∑

K∈Th

ηK(1, u⋄)K = 0 ∀η = (ηK) ∈ R
N .

Assuming that c = 0 and b, f are piecewise constant functions, one can find
an explicit expression for the solution (u⋄, ξ). The VMS stabilized method
described by (2.89) becomes

Find uh ∈ Vh such that for all vh ∈ Vh one has

a(uh, vh) +
∑

K∈Th

τK(bu′′h, bv
′′
h)K = (f, vh) (2.90)

with the VMS parameter

τK =
h3

K

72b

(
qK

qK coth qK − 1
− 3

qK

)
, qK =

bhK

2ε
.
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Note that the mapping Φ given by

Φ(q) :=
qK

qK coth qK − 1
− 3

qK

is strictly monotone on [0,∞) with Φ(0) = 0 and lim
q→+∞

Φ(q) = 1.

Now let us return to the general case in which b, c, and f are smooth
functions that satisfy (2.85). Our aim is to design a method that uses piece-
wise polynomials of degree m ∈ N and is related to the VMS method in the
piecewise constant coefficient case. The finite element space is given by

Vh := {vh ∈ V : v
∣∣
K
∈ Pm(K), vh(0) = vh(1) = 0}

where Pm(K) denotes the space of polynomials of degree at most m.
Assume that the solution of (2.84) belongs piecewise to Hk+1(K). Then

(k − 1) differentiations of the equation (2.84) gives

(−εu′′ + bu′ + cu)(k−1) = f (k−1) in L2(K) for all K ∈ Th. (2.91)

Multiplying this equation by a user-chosen non-negative function τK , testing
against (bv′h)(k−1), summing over K and adding this to the weak formulation
(2.86), one sees that the solution of (2.86) satisfies

ah(u, vh) = lh(vh) for all vh ∈ Vh (2.92)

where

ah(u, v) := a(u, v) +
∑

K∈Th

(
τK(−εu′′ + bu′ + cu)(k−1), (bv′)(k−1)

)
K
,

lh(v) := (f, v) +
∑

K∈Th

(
τKf

(k−1), (bv′)(k−1)
)

K
.

Thus the method is consistent. The associated discrete problem is:

Find uh ∈ Vh such that ah(uh, vh) = lh(vh) for all vh ∈ Vh. (2.93)

The above derivation inspires us to call (2.93) the differentiated residual
method (DRM). In the case k = 1 it is the same as the SDFEM, which was
analysed in Section 2.2.3 both for piecewise linear elements (m = 1) and for
higher-order elements (m ≥ 2). In what follows only the case k = m ∈ N is
considered; this coincides with the SDFEM form = 1 but differs if m ≥ 2. For
constant functions b and f , c = 0 andm = 2, the method coincides with (2.90)
and indeed was first derived [HS07] via a variational multiscale approach.
Define the mesh-dependent DRM norm related to the discrete bilinear form
ah(·, ·) by

|||v|||DRM :=

(
ε|v|21 + ω‖v‖20 +

∑

K∈Th

‖τ1/2
K (bv′)(k−1)‖20,K

)1/2

. (2.94)
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Now we turn to the convergence properties of the method on an arbitrary
mesh. The smoothness of c and inverse inequalities guarantee the existence of
a general constant cmax such that

‖(cvh)(k−1)‖0,K ≤ C

k−1∑

l=0

‖vh‖l,K ≤ cmax h
−(k−1)
K ‖vh‖0,K . (2.95)

The constant cmax depends on the polynomial degree k, but to simplify the
notation this will not be indicated. In what follows we assume that the user-
chosen DRM parameter τK satisfies

0 ≤ τK(x) ≤ ω

c2max

h2k−2
K ∀x ∈ K, K ∈ Th . (2.96)

For k = 1 this recovers the choice (2.75) of the SDFEM for piecewise linear
elements.

Lemma 2.63. Let (2.96) be satisfied. Then the bilinear form ah is coercive
on Vh:

ah(vh, vh) ≥ 1

2
|||vh|||2DRM ∀vh ∈ Vh. (2.97)

Proof. Start from the definition of the bilinear form ah. Integrating by parts,
using (2.85) and vh|K ∈ Pk(K), one gets

ah(vh, vh) = ε|vh|21 + (bv′h + cvh, vh)

+
∑

K∈Th

(
τK(bv′h + cvh)(k−1), (bv′h)(k−1)

)
K

≥ |||vh|||2DRM +
∑

K∈Th

(
τK(cvh)(k−1), (bv′h)(k−1)

)
K
.

The second term here can be absorbed into |||vh|||2DRM , as (2.96) and (2.95)
give

∣∣∣
∑

K∈Th

(
τ

1/2
K (cvh)(k−1), τ

1/2
K (bv′h)(k−1)

)
K

∣∣∣

≤
∑

K∈Th

(ω)1/2h
k−1
K

cmax
‖(cvh)(k−1)‖0,K‖τ1/2

K (bv′h)(k−1)‖0,K

≤ ω

2

∑

K∈Th

‖vh‖20,K +
1

2

∑

K∈Th

‖τ1/2
K (bv′h)(k−1)‖20,K .

Combining these estimates yields the conclusion of the lemma. �

Next we introduce a special interpolant that will be useful later. On each
K ∈ Th with K = (xi−1, xi), define k + 1 nodal functionals Nl by
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N0(v) = v(xi−1), Nk(v) = v(xi),

Nl(v) = h−l
K

∫ xi

xi−1

(x− xi−1)
l−1v(x) dx for l = 1, . . . , k − 1.

Lemma 2.64. The set of nodal functionals {Nl : l = 0, . . . , k} is Pk(K)
unisolvent.

Proof. As dim Pk = k + 1, one need only show that if any polynomial
p ∈ Pk(K) satisfies Nl(p) = 0 for l = 0, . . . , k, then p is identically zero.
Let Ll denote the Legendre polynomial of degree l defined on (−1,+1) and
normalized by setting Ll(1) = 1. Transforming K = (xi−1, xi) onto (−1,+1),
one can write the polynomial p in the form

p(x) =
k∑

l=0

plLl

(
2x− xi−1 − xi

xi − xi−1

)
.

Now Nl(p) = 0 for l = 1, . . . , k − 1 and the orthogonality property of the
Legendre polynomials imply that pl = 0 for l = 0, 1, . . . , k − 2. Then the
two remaining conditions N0(p) = Nk(p) = 0 are equivalent to the algebraic
system

0 = pk−1Lk−1(−1) + pkLk(−1) = (−1)k−1 (pk−1 − pk) ,

0 = pk−1Lk−1(+1) + pkLk(+1) = (pk−1 + pk) ,

with the unique solution pk−1 = pk = 0. �

Thus a local interpolant πv|K ∈ Pk(K) can be defined by Nl(πv − v) = 0
for l = 0, . . . , k. This can be extended to a continuous global interpolant
πv ∈ Vh.

Next, we need the following property.

Lemma 2.65. Let ψ : [xi−1, xi] → R be a continuous function with Nl(ψ) = 0
for l = 1, . . . , k − 1 where k ≥ 2. Then there exists F ∈ Ck−1[xi−1, xi] such
that

F (l)(xi−1) = F (l)(xi) = 0 for l = 0, . . . , k − 2,

F (k−1)(x) = ψ(x), ‖F‖0,K ≤
(
hK√

2

)k−1

‖ψ‖0,K .

Proof. Use induction on k. For k = 2 define F ∈ C1[xi−1, xi] by

F (x) :=

∫ x

xi−1

ψ(t) dt.

Clearly F (xi−1) = 0 and F ′(x) = ψ(x). Furthermore, F (xi) = N1(ψ) = 0.
The Cauchy-Schwarz inequality gives |F (x)| ≤

√
(x− xi−1)‖ψ‖0,K , so
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‖F‖0,K ≤ hK√
2
‖ψ‖0,K .

Next, assume that the lemma holds true for some k ≥ 2. We shall de-
duce that it is valid for k + 1. By our inductive hypothesis, there exists a
function F ∈ Ck−1[xi−1, xi] with the properties stated in the lemma. Define
F̃ : [xi−1, xi] → R by

F̃ (x) :=

∫ x

xi−1

F (t) dt.

Then F̃ ∈ Ck[xi−1, xi] and F̃ (k)(x) = F (k−1)(x) = ψ(x). Moreover,

F̃ (l)(xi−1) = F (l−1)(xi−1) = 0 for l = 1, . . . , k − 1,

F̃ (l)(xi) = F (l−1)(xi) = 0 for l = 1, . . . , k − 1,

and

‖F̃‖0,K ≤ hK√
2
‖F‖0,K ≤

(
hK√

2

)k

‖ψ‖0,K .

It remains to show that F̃ (xi−1) = 0 and F̃ (xi) = 0. The first equation is
true by definition of F̃ . To verify the second equation, one integrates by parts
k − 1 times using F (l)(xi−1) = F (l)(xi) = 0 for l = 0, . . . , k − 2, then recalls
that F (k−1)(x) = ψ(x). That is,

F̃ (xi) =

∫ xi

xi−1

F (t) dt = (−1)k−1

∫ xi

xi−1

(x− xi−1)
k−1F (k−1)(t) dt

= (−1)k−1hk
KNk(ψ) = 0.

�

Some properties of our special interpolant will now be derived.

Lemma 2.66. The special interpolant πu has the following properties:

((u− πu)′, v′h)K = 0 ∀vh ∈ Vh , (2.98a)

|u− πu|l,K ≤ C hk+1−l
K |u|k+1,K ∀u ∈ Hk+1(K), (2.98b)

‖u− πu‖0,∞,K ≤ C hk+1
K |u|k+1,∞,K ∀u ∈W k+1,∞(K), (2.98c)

for l = 0, . . . , k + 1 and any K ∈ Th.

Proof. We have u(xi) = (πu)(xi) for i = 0, 1, . . . , N and the orthogonality
property (u− πu,w)K = 0 for all w ∈ Pk−2(K), so integration by parts gives

((u− πu)′, v′h)K = −(u− πu, v′′h)K = 0 for all vh ∈ Pk(K).
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To prove (2.98b), observe first that for l = 0, . . . , k + 1 the mapping
Φ : Hk+1(K) → H l(K) defined by Φ(u) = u − πu is linear and continu-
ous. Moreover, Φ(p) = 0 for all polynomials p ∈ Pk(K). Using the Bramble-
Hilbert Lemma and the scaling properties of the transformation between K
and a reference domain, one gets (2.98b). Finally, (2.98c) is proved similarly
by regarding Φ(u) as a mapping from W k+1,∞(K) to L∞(K). �

Remark 2.67. The property (2.98a) is an equivalent definition of the inter-
polant π. The projection Rh : H1

0 (0, 1) → Vh with respect to the H1
0 (Ω)

inner product is also defined by (u′ − (Rhu)
′, v′h) = 0 for all vh ∈ Vh; thus

Rh = π. This explains [HS07] why the H1
0 (0, 1) projection works well in the

VMS framework, unlike the L2 projection. ♣

Lemma 2.68. In the DRM, assume that for all K ∈ Th one has

0 < τK = min

{
1,
hK

ε

}
h2k−1

K . (2.99)

Let the solution u of (2.84) belong to Hk+1(0, 1). Then

|ah(u− πu, vh)| ≤ C
(
ε1/2hk + hk+1/2

)
|u|k+1 |||vh|||DRM (2.100)

for all vh ∈ Vh and all hK ≤ h0, where h0 is some threshold value that is
independent of ε.

Proof. The choice of τK implies that τK ≤ h2k−1
K , so (2.96) is true provided

that hK ≤ h0, where h0 is some fixed threshold value. We estimate separately
each term in ah(u−πu, vh). By Lemma 2.66 the first term vanishes. Integrating
by parts, the convection term is split as

(b(u− πu)′, vh) = −(u− πu, bv′h)− (b′(u− πu), vh).

For the first part of the convection term, Lemma 2.65 with ψ = u− πu yields

−((u− πu), bv′h) = −
∑

K∈Th

(F (k−1), bv′h)K = (−1)k
∑

K∈Th

(F, (bv′h)(k−1))K .

Lemma 2.65 also gives ‖F‖0,K ≤ C hk−1
K ‖u− πu‖0,K ≤ C h2k

K |u|k+1,K , which
leads to

|((u− πu), bv′h)| ≤
∑

K∈Th

τ
−1/2
K ‖F‖0,K‖τ1/2

K (bv′h)(k−1)‖0,K

≤ C
( ∑

K∈Th

h4k
K

τK
|u|2k+1,K

)1/2

|||vh|||DRM .

The second part of the convection term is put with the reaction term:
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∣∣((c− b′)(u− πu), vh

)∣∣ ≤ C

( ∑

K∈Th

h2k+2
K |u|2k+1,K

)1/2

|||vh|||DRM .

This brings us to the stabilizing terms. Here

ST =
∑

K∈Th

τK

(
−ε(u− πu)(k+1)

+(b(u− πu)′ + c(u− πu))(k−1), (bv′h)(k−1)
)

K

so

|ST | ≤
[
2
∑

K∈Th

τK
(
ε2|u|2k+1,K + |b(u− πu)′ + c(u− πu)|2k−1,K

)
]1/2

× |||vh|||DRM

From (2.99) one has ετK ≤ Ch2k
K , and the interpolation estimate (2.98b) yields

|ST | ≤ C
[ ∑

K∈Th

(
εh2k

K + τKh
2
K

)
|u|2k+1,K

]1/2

|||vh|||DRM .

Collecting all the bounds we obtain

|ah(u− πu, vh)|

≤ C
[ ∑

K∈Th

(
εh2k

K + τKh
2
K + τ−1

K h4k
K + h2k+2

K

)
|u|2k+1,K

]1/2

|||vh|||DRM .

Now use (2.99) to complete the proof. �

Lemmas 2.63 and 2.68 together give

Theorem 2.69. Let the coefficients of the differential equation (2.84) satisfy
(2.85). Assume that the solution u lies in Hk+1(0, 1). Let τK be defined by
(2.99). Then one has the error estimate

|||u− uh|||DRM ≤ C
(
ε1/2hk + hk+1/2

)
|u|k+1.

Proof. The triangle inequality gives

|||u− uh|||DRM ≤ |||u− πu|||DRM + |||πu− uh|||DRM .

To estimate the interpolation error, use (2.98b) and τK ≤ C h2k−1
K ; one gets

|||u− πu|||DRM ≤ C
(
ε1/2hk + hk+1/2

)
|u|k+1.
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The remaining term can be bounded using the coercivity of the bilinear form
(Lemma 2.63), Galerkin orthogonality (which follows from (2.92) and (2.93)),
and the estimate (2.100) of Lemma 2.68:

1

2
|||uh − πu|||2DRM ≤ ah(uh − πu, uh − πu) = ah(u− πu, uh − πu)

≤ C
(
ε1/2hk + hk+1/2

)
|u|k+1 |||uh − πu|||DRM .

This completes the argument. �

In [Tob06] the DRM method is studied on layer-adapted meshes, which
will be discussed later.

2.2.5 Uniformly Convergent Finite Element Methods

Uniformly convergent finite element methods have been derived by operator-
fitted and mesh-fitted approaches. In this subsection, we discuss exponentially-
fitted finite element methods which turn out to be uniformly convergent (note
that the definition of uniform convergence in (2.21) can be applied to finite
element methods as well as finite difference methods). Layer-adapted meshes
for finite difference methods will be studied in Section 2.4, while mesh-fitted
finite element methods will be deferred to the multi-dimensional case in Sec-
tion III.3.5.2.

Consider again the singularly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.101a)

under the assumptions

(i) b(x) ≥ b0 > 0, (ii) c(x)− 1

2
b′(x) ≥ ω > 0. (2.101b)

The constants b0 and ω are independent of ε. The assumption (ii) is not a
restriction, because if we assume only (i), then the transformation u �→ eσxv,
for a suitably chosen σ that is bounded uniformly in ε, yields a problem in v
like (2.101a) for which (i) and (ii) hold.

Discretizations on an equidistant grid with mesh size h are examined here.
For simplicity, suppose first that b is constant with c ≡ 0. The solution u

of (2.101) has an exponential boundary layer. To get a good approximation
to u it is reasonable to use exponential functions related to this layer. Thus
as in Section 2.1.3 define L-splines (exponentially-fitted splines) ϕi, where
i = 1, . . . , N − 1, by

−εϕ′′
i + bϕ′

i = 0 on every open mesh subinterval,

ϕi(xj) = δij .
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Let Vh be the finite element space spanned by the ϕi. Then the discrete
problem is:

Find uh ∈ Vh such that a(uh, vh) = (f, vh) ∀vh ∈ Vh, (2.102)

where a(·, ·) is as in Section 2.2.2. This is a Ritz-Galerkin finite element method
with exponentially-fitted splines.

For the error analysis, let uI be the nodal interpolant from Vh to the exact
solution u of the given problem (2.101); that is,

uI(xi) = u(xi) and uI ∈ Vh.

As α in (2.63) is independent of ε, we say that the bilinear form a(·, ·) is
uniformly V -elliptic. Now (2.63) yields

α‖u−uh‖2ε ≤ a(u−uh, u−uh) = a(u−uh, u−uI)+a(u−uh, u
I−uh). (2.103)

But (2.101a) and (2.102) imply the Galerkin orthogonality property

a(u− uh, u
I − uh) = 0,

so we need only estimate a(u− uh, u− uI). For this,

|ε(∇(u− uh),∇(u− uI))| ≤ ε1/2‖u− uh‖1 ε1/2‖u− uI‖1
≤ γ1ε‖u− uh‖21 + C(γ1)‖u− uI‖2ε, (2.104)

where γ1 is a constant that is chosen later, the norm ‖ · ‖ε was defined in
(2.62), and the generalized arithmetic-geometric mean inequality has been
used in the calculation:

yz ≤ γy2 +
z2

4γ
, (2.105)

for all γ > 0 and all y, z ∈ R.
Before moving on to the convection term in a(u−uh, u−uI), some control

of the interpolation error is required.

Lemma 2.70. Let uI be the interpolant to u in the space Vh of exponentially-
fitted splines. Then the interpolation error u− uI satisfies the bounds

‖u− uI‖∞ ≤ Ch and ‖u− uI‖ε ≤ Ch1/2. (2.106)

Proof. Set Mz := −εz′′ + bz′. On each interval (xi−1, xi), one has

M(u− uI) = f, (u− uI)(xi−1) = 0, (u− uI)(xi) = 0.

Apply the comparison principle of Lemma 1.1 on each [xi−1, xi], with w(x) =
C∗(x− xi−1) for some suitable positive constant C∗; this gives

|(u− uI)(x)| ≤ Ch ∀x ∈ [0, 1].
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For the other bound on u− uI , observe that

α‖u− uI‖2ε ≤ a(u− uI , u− uI)

=
∑

i

∫ xi

xi−1

[−ε(u− uI)′′ + b(u− uI)′](u− uI)dx .

But −ε(u− uI)′′ + b(u− uI)′ = f on each (xi−1, xi), so using the estimate on
‖u− uI‖∞ above yields the desired result. �

We now return to the convection term in a(u− uh, u− uI). Since

(b(u− uI)′, u− uI) = 0,

one obtains

|(b(u− uh)′, u− uI)| = |(b(uI − uh)′, u− uI)|
≤ C‖(uI − uh)′‖L1

‖u− uI‖∞.

As uI−uh lies in Vh, the following paraphrase of a lemma from [OS91a, OS91b]
allows us an economical replacement of the L1 norm by the L2 norm:

Lemma 2.71. Let Vh be the space of L-splines. For each vh ∈ Vh, one has

‖v′h‖L1
≤ Ch−1/2ε1/2‖v′h‖L2

.

Applying Lemmas 2.70 and 2.71 to the previous inequality gives

|(b(u− uh)′, u− uI)| ≤ Ch h−1/2ε1/2‖(uI − uh)′‖L2

≤ Ch1/2ε1/2(|u− uh|1 + |uI − u|1)
≤ γ2ε|u− uh|21 + C(γ2)h+ Ch, (2.107)

by (2.106) and (2.105). Now choose γ1 = γ2 = α/4 and combine (2.103),
(2.104) and (2.107) to prove:

Lemma 2.72. In the case of constant b and c ≡ 0, the error of the Ritz-
Galerkin L-spline finite element method satisfies the (uniform in ε) estimate

‖u− uh‖ε ≤ Ch1/2. (2.108)

Remark 2.73. (Optimality of convergence rate) In the norm ‖ · ‖ε, the order
of convergence (uniformly in ε) that was proved in (2.108) is in fact optimal.
For consider the solution of

−εz′′ + z′ = 1, z(0) = z(1) = 0.

A direct computation gives

ε1/2|z − zI |1 = ε1/2

[
h

2ε
coth

(
h

2ε

)
− 1

]1/2

,

where zI is the L-spline interpolant. If ε = h, then ‖z−zI‖ε = O(h1/2), which
shows that, uniformly in ε, no higher order is possible. ♣
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When b is not constant and c �≡ 0, we approximate b, c and f by piecewise
constants as in Section 2.1.3; that is, we set

b̄ := [b(xi−1) + b(xi)]/2 on each mesh subinterval (xi−1, xi),

with similar formulas for c and f . The space of exponential splines (L̄-splines)
is now spanned by the basis functions ϕi that satisfy

−εϕ′′
i + b̄ϕ′

i + c̄ϕi = 0 on every open mesh subinterval, (2.109)

ϕi(xj) = δij .

A typical L̄-spline (for the case c̄ = 0) is drawn in the first diagram of Fig-
ure 2.4 on page 109. The associated modified bilinear form is defined by

ah(v, w) := ε(v′, w′) + (b̄v′, w) + (c̄v, w). (2.110)

Instead of using complete exponential fitting based on the splines (2.109), we
use partial exponential fitting with the simpler splines ϕi defined by

−εϕ′′
i + b̄ϕ′

i = 0 on every open subinterval, (2.111)

ϕi(xj) = δij .

Furthermore, a lumping process is used to simplify the three-point difference
approximation for the term cu− f . Thus one replaces (2.110) by the discrete
bilinear form

āh(v, w) := ε(v′, w′) + (b̄v′, w) + h
∑

i

(cvw)(xi), (2.112)

and, using the splines (2.111), one arrives at the following discrete problem:

Find uh ∈ Vh such that ah(uh, vh) = h
∑

i

(fvh)(xi) ∀vh ∈ Vh. (2.113)

To analyse this method, it is natural in the ε-weighted H1 norm ‖ · ‖ε to
replace the L2 part |v|0 by its discrete analogue |v|0,d, so we set

‖v‖2ε,d := ε|v|21 + |v|20,d with |v|20,d := h
∑

i

v2(xi). (2.114)

Then the bilinear form āh(·, ·) turns out to be uniformly Vh-elliptic with re-
spect to ‖ · ‖ε,d and the interpolation result ‖u− uI‖ε,d ≤ Ch1/2 (cf. (2.106))
holds true. One can prove (see [SO91])

Theorem 2.74. Let uh be the solution of the lumped finite element discretiza-
tion (2.113), where Vh is the space of partially exponentially-fitted L-splines.
Then the error u− uh satisfies the uniform estimate

‖u− uh‖ε,d ≤ Ch1/2. (2.115)
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Remark 2.75. The continuous and discrete L2 norms are equivalent, uniformly
in ε, on the space of exponentially-fitted L̄-splines. Using this equivalence, the
norm ‖ · ‖ε,d in Theorem 2.74 can be replaced by the norm ‖ · ‖ε. ♣

Next we consider pointwise error estimates in finite element methods for
(2.101). Let the trial space Vh be arbitrary; its basis functions ϕi are required
to satisfy only

suppϕi = [xi−1, xi+1] and ϕi(xj) = δij . (2.116)

Petrov-Galerkin discretizations will be investigated where the test space Th

is, for the moment, arbitrary:

Find uh ∈ Vh such that ah(uh, vh) = (f̄ , vh) ∀vh ∈ Th, (2.117)

where ah(·, ·) is as in (2.110). Recall the representation for the pointwise error
(in terms of a Green’s function) that lead to (2.60). Hemker [Hem77] points
out that the test space of a Petrov-Galerkin method should be related to the
Green’s function of the problem. We describe a test space that permits good
approximation of the Green’s function and give a simple derivation of uniform
pointwise error estimates.

Let xj be a given grid point. One would like to define a discrete Green’s
function Gh(x, xj) by

ah(w,Gh) = w(xj) ∀w ∈ H1
0 (0, 1).

Equivalently, Gj(·) := Gh(·, xj) is characterized by the conditions

(i) in each open mesh subinterval, Gj(·) satisfies the equation

−εG′′
j − b̄G′

j + c̄Gj = 0;

(ii) Gj(·) is continuous, with Gj(0) = Gj(1) = 0;
(iii) Gj satisfies the following jump condition at each inner grid point:

lim
x→xi−0

(εG′
j + b̄Gj)− lim

x→xi+0
(εG′

j + b̄Gj) = δij .

Using (i), (ii) and (iii), one can show that Gj is uniquely determined [SO86].
The weak maximum principle shows that Gj is uniformly bounded with re-
spect to ε in the maximum norm.

Assuming that Gj belongs to our testspace Th, one has the following rep-
resentation for the pointwise error:

(u− uh)(xj) = ah(u− uh, Gj)

= (ah − a)(u,Gj) + (f − f̄ , Gj). (2.118)

To ensure that Gj ∈ Th, define Th to be the span of the basis functions ψk,
for k = 1, ..., N − 1, where
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−εψ′′
k − b̄ψ′

k + c̄ψk = 0 on every open mesh subinterval, (2.119)

ψk(xj) = δkj for j = 0, ..., N.

Functions belonging to Th are called L̄∗-splines, where L∗ denotes the formal
adjoint of L. See the second diagram of Figure 2.4 for a typical example.

0.0

0.5

1.0

xk−1 xk xk+1

0.0

0.5

1.0

xk−1 xk xk+1

Fig. 2.4. L̄-splines and L̄∗-splines for b̄ = 1, c̄ = 0, and ε/h = 0.2

Theorem 2.76. Let b̄, c̄ and f̄ be O(h)-approximations of b, c and f respec-
tively. If arbitrary trial functions and L̄∗-spline test functions are used in the
Petrov-Galerkin method (2.117), then the error satisfies

‖u− uh‖∞,d ≤ Ch. (2.120)

Proof. From (2.118) one has

(u− uh)(xi) = (f − f̄ , Gi) + (u′, (b̄− b)Gi) + (u, (c̄− c)Gi).

Since ‖u‖∞ ≤ C, ‖Gi‖∞ ≤ C and ‖u′‖L1
≤ C, we get immediately the desired

uniform convergence result. �

Which discrete problem is generated by this method? The Petrov-Galerkin
method produces a tridiagonal system of equations in the unknowns ui, where
we set uh(x) =

∑N−1
i=1 uiϕi(x) and ui = uh(xi). This system can be written

in the form
α−1,kuk−1 + α0,kuk + α1,kuk+1 = f∗k , (2.121)

where, for instance,

α−1,k =

∫ xk

xk−1

[εϕ′
k−1ψ

′
k + (bkϕ

′
k−1 + ckϕk−1)ψk]

= εϕk−1ψ
′
k|xk

xk−1
+ bkϕk−1ψk|xk

xk−1

+

∫ xk

xk−1

[−εψ′′
k − bkψ′

k + ckψk]ϕk−1

= −εψ′
k(xk−1). (2.122)

From (2.122) and the corresponding formulas for α0,k and α1,k, one easily
derives
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Lemma 2.77. The difference scheme generated by the Petrov-Galerkin dis-
cretization (2.117) with L̄∗-splines as test functions is independent of the
choice of the trial functions.

Remark 2.78. A comparison of (2.122) with the formulas in Remark 2.23
shows that the scheme generated is closely related to the Il’in-Allen-Southwell
scheme or to the El-Mistikawy-Werle scheme, depending on the choice of b̄, c̄
and f̄ . For the latter scheme, one can use (2.118) to show [SO86] that the
error at the grid points is in fact O(h2). ♣

Lemma 2.77 has the following analogue: the difference scheme generated by
the Petrov-Galerkin discretization (2.117) with L̄-spline trial functions is in-
dependent of the choice of the test functions. From this result and Lemma 2.77
we make the following deduction: if L̄∗-splines are used in both the trial and
the test space, the resulting difference scheme would coincide with that ob-
tained using L̄-splines in both the trial and the test space. Similarly, if one
takes piecewise linear trial functions and L̄∗-spline test functions, the result-
ing difference scheme coincides with that generated by L̄-spline trial functions
and piecewise linear test functions. (But changes of this type do affect the dis-
cretization of f .) As a consequence we get

Corollary 2.79. Let b̄, c̄ and f̄ be O(h) approximations of b, c and f respec-
tively. If L̄-splines are used as both trial and test functions in the finite element
discretization (2.113), then the error satisfies

‖u− uh‖∞,d ≤ Ch.

Theorem 2.76 and Corollary 2.79 analyse the error in the discrete max-
imum norm. If one desires uniform L∞[0, 1] estimates, one should choose
L̄-splines as trial functions and deduce the continuous L∞ bound from the
discrete L∞ bound.

Corollary 2.80. Assume that uh ∈ Vh, where Vh is the space of L̄-splines
with basis functions specified by (2.109). If

‖u− uh‖∞,d ≤ Ch

then

‖u− uh‖∞ ≤ Ch.

Proof. We establish this result on each mesh subinterval. Set

L̄w := −εw′′ + b̄w′ + c̄w on (xi−1, xi).

For the error e := u− uh, one has

L̄e = (b̄− b)u′ + (c̄− c)u on (xi−1, xi)
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and
|e(xi−1)| ≤ Ch, |e(xi)| ≤ Ch.

Now apply the comparison principle, using an exponential barrier function as
in the proof of Theorem 1.8, to obtain the desired result. �

As the boundary layer is contained in a neighbourhood of x = 1, is expo-
nential fitting needed on all of [0,1]? Let us make the mild assumption that
ε satisfies 4ε ln(1/ε) < b0, and set

M = max

{
i : xi ≤ 1− 2ε

b0
ln

1

ε

}
.

Then Lemma 1.8 implies that

|u′| ≤ C and |u′′| ≤ C on (0, xM ).

Call [xM , 1] the layer region. Outside [xM , 1], let us now use piecewise linear
functions in both trial and the test spaces. For i = M,M + 1, . . . , N − 1,
we rely on our usual partially-fitted L̄-splines as basis functions for the trial
space. Thus the trial space Sh consists of linear trials on [0, xM ] and L̄-splines
on [xM , 1]; in particular, ϕM is a hybrid linear/L̄-spline.

Lemma 2.81. Let uI ∈ Sh interpolate to the exact solution of the boundary
value problem (2.101) at each node. Then for x ∈ [xi−1, xi],

|(u− uI)(x)| ≤ Ch2 if 1 ≤ i ≤M,
|(u− uI)(x)| ≤ Ch(1− e−βh/ε) if M < i ≤ N,

where the constant β > 0 is independent of ε.

This precise interpolation result from [SO91] gives some hope that if ex-
ponential fitting is used only in the layer region, it will work satisfactorily.
Lemma 2.81 enables one to prove that a combination of L̄-spline trials and
L̄∗-spline tests in the layer region, with piecewise linear trials and tests else-
where, leads to uniform convergence in an energy norm [SO91].

Remark 2.82. Petrov-Galerkin finite element methods can be reformulated as
mixed finite element methods. For consider the Petrov-Galerkin method based
on (2.110) with a trial space Sh of partially-fitted L̄-splines and a test space Th

of partially-fitted L̄∗-splines. To explain the new approach, define lh(·, ·) by

lh(v, w) = ε(v′, w′) + (b̄v′, w)

and introduce the bilinear form

η(v, q) = h
N−1∑

i=1

qiv(xi) on H1
0 × R

N−1.
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Then the function φh is in Sh if and only if some multiplier ph ∈ Q := RN−1

satisfies
lh(φh, w) + η(w, ph) = 0 ∀w ∈ V := H1

0 (0, 1). (2.123)

This follows easily from an integration by parts:

lh(φh, w) =

N∑

i=1

∫ xi

xi−1

(−εφ′′h + b̄φ′h)wdx−
N−1∑

i=1

ε[φ′h(x+
i )− φ′h(x−i )]w(xi).

One can analogously characterize partially-fitted L̄∗-splines vh by

lh(w, vh) + η(w, p∗h) = 0 ∀w ∈ V (2.124)

for some p∗h ∈ Q.
Now, instead of defining uh ∈ Sh by

ah(uh, vh) = (f̄ , vh) ∀vh ∈ Th,

we pose the discrete problem in the following way:
Find uh and wh ∈ V , and ph ∈ Q, such that

ah(uh, v) + lh(wh, v) = (f̄ , v) ∀v ∈ V, (2.125a)

η(wh, q) = 0 ∀q ∈ Q, (2.125b)

lh(uh, v) + η(v, ph) = 0 ∀v ∈ V. (2.125c)

As (2.125c) is identical to (2.123), it implies uh ∈ Sh. Next, if vh ∈ Th, then
by (2.124) one has a multiplier p∗h with lh(wh, vh) = −η(wh, p

∗
h) = 0, using

(2.125b). Therefore (2.125) produces the standard Petrov-Galerkin formula-
tion

ah(uh, vh) = (f̄ , vh) ∀vh ∈ Th.

The main advantage of (2.125) over the standard formulation is that (2.125)
holds true over V and Q and not over subspaces. This opens the door to
a new straightforward error analysis [Fel94] that yields a result similar to
Theorem 2.74. ♣

The construction of uniformly convergent finite element approximations of
higher order on standard meshes is an open problem. On an equidistant mesh,
one could use trial and test spaces enriched by additional polynomial or ex-
ponential functions or both (compare the HODIE technique of Section 2.1.4).

For small values of the parameter ε, de Groen and Hemker [dG81,
dGH79] construct exponentially-fitted higher-order methods. They use finite-
dimensional spaces spanned by polynomials of degree k and L̄-splines or L̄∗-
splines, which we denote by Eh

k and Fh
k respectively. In the case where Eh

k is
both trial and test space, they show that

‖u− uh‖ε ≤ C(ε+ hk), ‖u− uh‖∞,d ≤ C(ε+ hk),
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while if Eh
k is the trial space and Fh

k the test space and h + ε/h ≤ C, then

‖u− uh‖ε ≤ C(ε+ hk), ‖u− uh‖∞,d ≤ C(ε2 + h2k).

We wrap up this section with some remarks on the semilinear problem

−εu′′ + b(x)u′ + c(x, u) = 0 for x ∈ (0, 1), (2.126a)

u(0) = A, u(1) = B, (2.126b)

under the assumption that cs(x, s) ≥ δ > 0 on [0, 1] × R. Recall from Sec-
tion 1.3 that the theory of upper and lower solutions shows that this problem
has a unique solution u(x), and that

‖u‖∞ ≤ C and

∫ 1

0

|u′(x)| dx ≤ C.

To discretize (2.126), let us apply a Petrov-Galerkin finite element method
with lumping, based on a trial space Vh that need satisfy only (2.116), with
partially-fitted L̄∗-splines as test functions. The discrete problem is:

Find uh ∈ Vh such that

ε(u′h, ψ
′
i) + (b̄u′h, ψi) + h c(xi, uh(xi)) = 0 for i = 1, ..., N − 1,

uh(0) = A, uh(1) = B,

where ψi satisfies
−εψ′′

i − b̄ψ′
i = 0, ψi(xj) = δij .

The system of equations that this generates in the unknowns uh(xi) = ui is
independent of the actual trial space (cf. Lemma 2.77). It takes the form

− ε

h2
(θi+1ui+1 − (θi+1 + θi)ui + θiui−1) + c(xi, ui) = 0, (2.127a)

u0 = A, uN = B, (2.127b)

with ρi = bih/ε and

θi = θ(ρi), θ(x) =

{ x

1− e−x
for x �= 0,

1 for x = 0.

We have already met this scheme (for linear problems) in (2.38). A detailed
analysis [SO87] shows that:

− The piecewise linear function Uh that interpolates to the computed solu-
tion u0, u1, ..., uN satisfies ‖u− Uh‖L1

≤ Ch.
− In the case b(x) ≥ b0 > 0 (i.e., no turning points), the maximum nodal

error of the scheme is bounded by Ch.
− In the case of an interior turning point with a cusp layer, the maximum

nodal error is bounded by Chλ (in the notation of Section 2.1.5).

At present the literature contains few results dealing with fitted finite element
methods on standard meshes for nonlinear singular perturbation problems; on
layer-adapted meshes the situation is different.
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2.3 Finite Volume Methods

Finite volume methods stem from an integral balance equation over a control
volume. Such an equation can often be interpreted as a conservation law for
some physical unknown. If the conservation law is a natural description of the
process under consideration – e.g., in certain fluid dynamics problems – then
finite volume methods are often highly successful in computing approximate
solutions, partly because they preserve this property on the discrete level.

The essential idea of all finite volume methods is to partition the domain
into small regions called control volumes or cells or boxes, integrate the dif-
ferential equation over each cell separately, then use the Gauss divergence
theorem to convert each cell integral of the derivatives into an integral over
the surface of that cell. The numerical analyst then chooses a suitable approx-
imation of these surface integrals, thereby obtaining a difference scheme.

Consider a singularly perturbed boundary value problem in conservation
form:

−εu′′ + (b(x)u)′ + c(x)u = f(x) for 0 < x < 1, u(0) = u(1) = 0, (2.128)

with b(x) ≥ β > 0 (i.e., no turning points) and with c(x) ≥ 0. Suppose we
have an arbitrary mesh

0 = x0 < x1 < ... < xN−1 < xN = 1.

Set xi+1/2 = (xi + xi−1)/2 for i = 0, . . . , N − 1. Then

0 < x1/2 < x3/2 < ... < xN−1/2 < 1

is a secondary grid. It defines the cells (0, x1/2), (x1/2, x3/2), . . . , (xN−1/2, 1).
Integrating the differential equation over a typical cell gives the balance equa-
tion

−εu′
∣∣xi+1/2

xi−1/2
+ (bu)(xi+1/2)− (bu)(xi−1/2) +

∫ xi+1/2

xi−1/2

cu dx =

∫ xi+1/2

xi−1/2

f dx.

(2.129)
Let uN

i be the computed approximation of u(xi) for i = 0, . . . , N . In the
discretization step that we now discuss, the integrals in the balance equation
(2.129) are approximated in a standard way and the values of u′ at each
secondary mesh point are expressed in terms of the uN

i using finite differences.
Suppose for simplicity that the original (primary) mesh is equidistant, i.e.,

xi = ih for i = 0, . . . , N with h = 1/N .
Then one can choose the approximations

u′(xi+1/2) ≈
uN

i+1 − uN
i

h
, u′(xi−1/2) ≈

uN
i − uN

i−1

h
,

g(xi±1/2) ≈
g(xi) + g(xi±1)

2
,

∫ xi+1/2

xi−1/2

g(x) dx ≈ g(xi) · h,
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with some reasonable variant for u′(0) and u′(1). In the case of constant b(·),
this leads to the central difference scheme

−εu
N
i+1 − 2uN

i + uN
i−1

h2
+ b

uN
i+1 − uN

i−1

2h
+ ciu

N
i = fi,

where ci = c(xi) and fi = f(xi), which we know to be unsuitable for singularly
perturbed problems.

To obtain a more stable scheme, one must give an upwind approximation of
the convection terms (bu)(xi±1/2) in (2.129). Thus consider the approximation

(bu)(xi+1/2) ≈ b(xi+1/2)
[
λiu

N
i+1 + (1− λi)u

N
i

]

with 0 ≤ λi ≤ 1/2. If λi = 1/2, one has again the central difference scheme,
while the choice λi = 0 yields the simple upwind scheme.

Values of λi between 0 and 1/2 allow us to vary the amount of upwinding.
For constant b(·), one can in this way generate the the class of fitted schemes
(2.14) of Section 2.1.2, where the fitting parameter σ and the weighting para-
meter λ are related by

σi = 1 +
h

2ε
b(1− 2λi).

Hence each result for a fitted scheme yields a corresponding result for a finite
volume scheme.

Remark 2.83. Finite volume methods that use secondary grids to define the
integration cells are called cell-centered methods. One could instead use the
cells defined by the original grid, and finite volume methods of this type are
called cell-vertex methods. Cell-vertex methods are much less popular, owing
to their lack of stability [BS97]; Morton [Mor96] gives a detailed account of
their theory and practice. ♣

Finally, we show how to generate the Il’in-Allen-Southwell scheme of Sec-
tion 2.1.3 by means of a cell-centered finite volume method. For simplicity,
set c ≡ 0 and take b to be constant. Then (2.128) can be written in the form

−ε(e−bx/εu′)′ = e−bx/εf,

Integration over a cell yields

−ε(e−bx/εu′)|xi+1/2
xi−1/2

=

∫ xi+1/2

xi−1/2

e−bx/ε f(x) dx.

Taking ∫ xi+1/2

xi−1/2

e−bx/ε f(x) dx ≈ fi

∫ xi+1/2

xi−1/2

e−bx/εdx

produces the scheme
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−εe−bxi+1/2/εu
N
i+1 − uN

i

h
+εe−bxi−1/2/εu

N
i − uN

i−1

h
=

− fiε

b

(
e−bxi+1/2/ε − e−bxi−1/2/ε

)
,

and this can be rewritten as the Il’in-Allen-Southwell scheme.

Remark 2.84. This derivation is routine in the field of semiconductor de-
vice modelling, where the Il’in-Allen-Southwell scheme is usually called the
Scharfetter-Gummel scheme, which appeared already in Remark 2.22. See
[Gar93] for a detailed proof of the uniform convergence of the scheme when
applied to the basic equations of semiconductor physics in the one-dimensional
case, or [Sel84] for a general introduction to this topic which includes finite
volume discretizations. ♣

In [LMV96] various upwind discretizations of convection-diffusion prob-
lems are analysed and references to the literature are given.

The exposition of finite volume methods in this short section may give the
impression that they are merely a variant of finite difference methods, but
this is misleading: in multi-dimensional problems, finite volume methods are
quite distinct from finite difference methods, as we shall see in later chapters.

2.4 Finite Difference Methods on Layer-adapted Grids

Solutions of singularly perturbed boundary value problems change abruptly
in layers. Consequently discretization methods on equidistant meshes have
difficulty in representing these solutions, and only elaborate schemes based
on exponential fitting yield nodal convergence that is uniform with respect
to the perturbation parameter; see Theorem 2.17. An alternative strategy
to follow when computing boundary and interior layers is the use of highly
nonequidistant grids. There are two main classes of such grids: one may a
priori choose a special mesh based on knowledge of the behaviour of the
exact solution, or one may begin with some unexceptional mesh, compute
an approximate solution there, then use information from this computation
to adapt the grid a posteriori, thereby obtaining a mesh more suited to the
nature of the problem. The present section is devoted to the former approach
while the latter will be presented in the following section.

Consider an arbitrary grid

0 = x0 < x1 < ... < xN−1 < xN = 1.

Set hi = xi − xi−1 for each i. Define the mesh diameter by h := maxi hi.
A family S of grids is called quasi-equidistant if there exists some constant

K such that for each grid in S one has

h ≤ Kmin
i
hi,
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where K is independent of the grid. A family S of grids is said to be locally
quasi-equidistant if for each grid in S we have

hi ≤ Khj for |i− j| ≤ 1, (2.130)

where K is independent of the grid. Most analyses of finite difference and
finite volume methods are carried out on quasi-equidistant or locally quasi-
equidistant grids.

It is sometimes convenient if |hi+1 − hi| ≤ Kh2 for each i. This condition
is satisfied on locally almost equidistant grids, which are defined by

hi ≤ hj(1 + Khj) for |i− j| ≤ 1.

Set �i = (hi + hi+1)/2 for each i. Write ui for u(xi). For first-order deriv-
atives, u′(xi) ≈ D−ui := (ui − ui−1)/hi is the backward divided difference
approximation; u′(xi) ≈ D+ui := (ui+1−ui)/hi+1 is the forward difference ap-
proximation; and the central difference approximation of u′(xi) is the weighted
average

D0ui :=
1

2�i
(hiD+ui + hi+1D−ui). (2.131)

The standard finite difference approximation of the second-order derivative is

u′′(xi) ≈ δ2ui :=
1

�i
(D+ui−D−ui) =

1

�i

(
ui+1 − ui

hi+1
− ui − ui−1

hi

)
. (2.132)

For classical problems where the derivatives of u are bounded, (2.131) is
second-order consistent on any mesh (i.e., |u′(xi) − D0ui| = O(�2

i )), just as
on equidistant meshes. The same is not true of (2.132): one has

u′′(xi)− δ2ui =
hi − hi+1

3
+O(�2

i ),

which is only first-order on arbitrary meshes. (In fact u′′(x̄i)− δ2ui = O(�2
i ),

where x̄i = (xi−1 + xi + xi+1)/3; see [Mat02] for a list of references that ex-
ploit this property.) Nevertheless, when the central difference scheme based
on (2.131) and (2.132) is applied to non-singularly perturbed second-order
two-point boundary value problems on arbitrary meshes, its order of conver-
gence is still two! This enhancement of performance is called supraconvergence
by Kreiss et al. [KMS+86], but was known much earlier [TS62]. The proof of
second-order convergence is easy on locally almost equidistant grids, but be-
comes more difficult for arbitrary grids.

Special meshes can be constructed a priori in essentially three ways:

• A mesh generating function λ : [0, 1] → [0, 1] is a continuous and strictly
increasing function with λ(0) = 0 and λ(1) = 1. It induces a mesh on [0, 1]
containing N + 1 points explicitly defined by
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xi = λ(i/N) for i = 0, 1..., N.

If λ has additional smoothness properties, this ensures that the induced
grid has special properties. For example, if |λ′′(x)| ≤ K on [0,1] then the
grid is locally almost equidistant.
Meshes generated in this way will be studied in Sections 2.4.1 and 2.4.2.

• A monitor function M(x) is an arbitrary non-negative function defined on
[0, 1]. It induces a mesh {xi}N

i=1 that is implicitly defined by the equidis-
tribution property

∫ xi

xi−1

M(x) dx =
1

N

∫ 1

0

M(x) dx for i = 1, . . . , N.

This approach also underpins the adaptive strategy discussed in Sec-
tion 2.5.

• The mesh can be defined implicitly by a recursive formula. For example,
to deal with an exponential boundary layer at x = 0, in [DL06] one finds
the recipe

⎧
⎨
⎩
xi = iσhε for 0 ≤ i ≤ 1 + (σh)−1,
xi+1 = (1 + σh)xi for 1 + (σh)−1 ≤ i ≤ N − 2,
xN = 1,

where N is such that xN−1 < 1 ≤ (1 + σh)xN−1; here h and σ are user-
chosen positive parameters. See also [Gar88].

We now examine the construction of meshes suitable for convection-
diffusion problems. Consider the usual two-point boundary value problem

−εu′′ + b(x)u′ + c(x)u = f(x) for 0 < x < 1, u(0) = u(1) = 0, (2.133)

with b(·) > β > 0 and c(·) ≥ 0. The following two subsections present the
two main classes of meshes in current use: graded meshes, which become
gradually finer as one moves further into the boundary layer, and piecewise
uniform meshes, where the change from coarse to fine mesh is sudden.

Our aim in these subsections will be to construct and analyse methods
that are uniformly convergent in the discrete maximum norm; that is, the
computed solution {uN

i }N
i=0 satisfies

‖u− uN‖∞,d := max
i=0,...,N

|ui − uN
i | ≤ CN−α (2.134)

for some positive constants C and α that are independent of ε and of N .
A power of N is a suitable measure of the error u − uN for the particular
families of meshes that are discussed in Section 2.4, but a bound of this type
is inappropriate for an arbitrary family of meshes; see [SW96].
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2.4.1 Graded Meshes

Bakhvalov [Bak69] was the first person to use a special grid to solve a singu-
larly perturbed boundary value problem. His mesh was designed for reaction-
diffusion problems like those of Remark 1.10, but the technique is easily mod-
ified to suit convection-diffusion problems.

Assume that we have an exponential boundary layer at x = 1, so the
boundary layer function is y = exp(−γ(1 − x)/ε) for some fixed γ > 0. The
idea of [Bak69] is to use an equidistant y-grid near y = 1 (which corresponds
to x = 1), then to map this grid back to the x-axis by means of the boundary
layer function. That is, gridpoints xi near x = 1 are defined by

exp

(
−γ(1− xi)

ε

)
=
i

N
.

This is equivalent to

xi = 1 +
ε

γ
ln

(
i

N

)
.

Moving away from the layer, this definition of xi will be modified to ensure
that x0 = 0.

The Bakhvalov mesh generating function for (2.133) is

λ(t) =

⎧
⎨
⎩
ψ(t) := 1 +Aε ln

(
1− 1− t

q

)
for t ∈ [1− τ, 1],

π(t) := ψ(1− τ) + (t− 1 + τ)ψ′(1− τ) for t ∈ [0, 1− τ ].
(2.135)

If 1− τ is a mesh point, then this mesh is coarse and equidistant on [0, 1− τ ],
and graded (i.e., hi ≥ hi+1 for all i) on [1 − τ, 1] where it changes gradually
from coarse to fine. Following standard practice for layer-adapted meshes, we
now write H for the mesh diameter. The parameters A > 0 and q ∈ (0, 1) are
user-chosen; the mesh grading is affected by A (which could for example be
taken equal to β) and the fraction of mesh points used to resolve the layer
is 1 − q, up to a term that is exponentially small in ε. (We have made the
reasonable assumption that ε ≤ q/A; if this is not true, then an equidistant
mesh should be used on [0, 1].) The transition point 1− τ must satisfy

ψ(1− τ) + (−1 + τ)ψ′(1− τ) = 0 (2.136)

so that λ(0) = 0. Geometrically, (2.136) means that the point (0, 0) lies on the
tangent π to (t, ψ(t)) at the point (1− τ, ψ(1− τ)). The construction ensures
that λ is not just a continuous function but lies in C1[0, 1].

If the boundary layer were at x = 0, one would redefine λ by means of
λ(t) �→ 1− λ(1− t).

The Bakhvalov mesh can also be generated [Lin01b] using the monitor
function

MBa(x) = max

{
1,
Kγ

ε
e−γ(1−x)/(σε)

}
,
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1 − q
ψ(t)

π(t)

t = 1

x = 1

� t = 1 − τ

x = ψ(1 − τ)
�

λ(t)

t = 1

x = 1

Fig. 2.5. Bakhvalov mesh generating function (left) and the mesh generated (right)

where K > 0 and σ ≥ 1.
A drawback of Bakhvalov’s original mesh is that the nonlinear equation

(2.136) cannot be solved exactly for τ . The iteration

τ (0) = 0, τ (i+1) = q − Aε(1− τ (i))

1 +Aε ln(1− τ (i)/q)
for i = 0, 1, . . . (2.137)

is proved in [Bak69] to converge to τ , with 0 ≤ τ (i) < τ (i+1) < τ for all i. One
can see that

q − C ′ε ≤ τ ≤ q − C ′ε (2.138)

for some constant C ′. Here the left-hand inequality implies that |λ′(t)| ≤ C
for all t and consequently H ≤ CN−1, while the right-hand inequality yields
the approximation properties of the mesh. Bakhvalov meshes are not locally
quasi-equidistant, uniformly in ε: for if 1 − τ is the mesh point xm = λ(tm)
say, then

hm

hm+1
= 1− xm+1 − 2xm + xm−1

xm+1 − xm
≈ 1− N

−2ψ′′(tm)

N−1ψ′(tm)
= 1 +O(ε−1N−1),

by (2.138).
Because the precise value of τ is not explicitly known, various authors

have devised Bakhvalov-type meshes that approximate the original Bakhvalov
mesh and are more easily computed.

For example, Kopteva [Kop99, Kop01b, Kop03] uses (2.135) but simply
takes τ = q − Aε, which is the value of the first iterate τ (1) in (2.137) and
satisfies (2.138). The C1[0, 1] property of the mesh generating function is
lost, but this is not crucial: one still has a graded mesh with satisfactory
approximation properties and H ≤ CN−1.

A related construction appears in [Bog84], where Boglaev considers a
reaction-diffusion problem −ε2u′′ + c(x)u = f with c(x) ≥ γ2 > 0 and takes
τ = (2/γ)ε| ln ε| then constructs the mesh using a variant of (2.135). This
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choice appears also in the A-mesh of Remarks III.2.12 and III.3.122. It en-
sures that the layer component of u is small on the coarse part of the mesh,
but it introduces a factor | ln ε| into the final error estimate for convection-
diffusion problems.

Vulanović [Vul83, Vul86, Vul89, Vul91] considers various singularly per-
turbed problems and uses mesh generating functions such as

λ(t) =

⎧
⎨
⎩
ψ(t) := 1 +Aε

1− t
q − (1− t) for t ∈ [1− τ, 1],

π(t) := ψ(1− τ) + (t− 1 + τ)ψ′(1− τ) for t ∈ [0, 1− τ ].

Then instead of (2.136) we get a quadratic equation in τ that can be solved.
Convergence analyses are given in these papers.

In several papers (see [LP89] and its references) Liseikin examines the
convergence of finite difference methods when using mesh generating functions
λ(t) of the given independent variable that satisfy |λ′(t)| ≤ C for all t ∈ [0, 1].
This approach generates a graded grid of Bakhvalov type. His book [Lis99]
develops a general theory of grid generation. The analysis in these sources
is written in terms of “layer-resolving transformations”; their relationship to
mesh generating functions in a singular perturbation context is discussed in
[Vul07].

A locally quasi-equidistant graded mesh is constructed in [Gar88] and a
thorough analysis of the stability and convergence of various finite difference
schemes on this mesh is given, but the number of meshpoints increases slowly
as ε→ 0.

Remark 2.85. If simple upwinding applied to (2.133) is uniformly convergent
in the sense of (2.134) for some constant α > 0, and the mesh is locally
quasi-equidistant (uniformly in ε), then the number N of mesh intervals must
increase as ε→ 0. To see this, observe that the arguments of [Sty03] are still
valid when slightly modified by considering a limit asN →∞ with ε ≥ h1 and
i = 1; one then arrives at the conclusion of that paper that h1 = o(ε). (There
are some minor extra mesh assumptions such as existence of limN→∞ h1/h2

and limN→∞ h2/h1.) But the mesh diameter is at least 1/N , so the locally
quasi-equidistant property implies that εKN ≥ 1/N , where K is the constant
of (2.130). Hence NKN ≥ 1/ε, so N ≈ logK(1/ε). ♣

We now consider the analysis of difference schemes on Bakhvalov and
Bakhvalov-type meshes, using the example of simple upwinding. Thus our
difference scheme is

LNuN
i := −εδ2uN

i + biD−uN
i + ciu

N
i = fi for i = 1, . . . , N − 1,

uN
0 = uN

N = 0,
(2.139)

where zi := z(xi) for each function z ∈ C[0, 1] and the mesh is given by
(2.135). Using Theorem 2.7, it is straightforward to check that the matrix LN
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associated with (2.139) is an M-matrix. To analyse the convergence of the
scheme, recall the Shishkin decomposition u = S + E of Lemma 1.9 and split
the discrete solution {uN

i } in an analogous manner: define {SN
i } and {EN

i }
by

LNSN
i = (LS)i for i = 1, . . . , N − 1, SN

0 = S(0), SN
N = S(1),

LNEN
i = (LE)i = 0 for i = 1, . . . , N − 1, EN

0 = E(0), EN
N = E(1).

Then uN
i = SN

i + EN
i for all i, and

|ui − uN
i | = |(S + E)i − (SN

i + EN
i )| ≤ |Si − SN

i |+ |Ei − EN
i |. (2.140)

We shall bound each difference in (2.140) separately.

Lemma 2.86. There exists a constant C0 such that

|Si − SN
i | ≤ C0N

−1 for i = 0, . . . , N.

Proof. As the derivatives of S are bounded, a standard consistency error
analysis shows that

|LN (Si − SN
i )| = |LNSi − (LS)i|

≤ 2ε

∫ xi+1

xi−1

|S′′′(x)| dx+ bi

∫ xi

xi−1

|S′′(x)| dx

≤ C(xi+1 − xi−1)

≤ CN−1 (2.141)

for i = 1, . . . , N − 1. Set wi = C0N
−1xi for all i, where the positive constant

C0 will be chosen so that {wN
i } is a discrete barrier function (cf. Lemma 1.1)

for {Si − SN
i }. Now

LNwi = biC0N
−1 + ciwi > βC0N

−1 ≥ |LNSi − (LS)i|

by (2.141), provided that C0 is a sufficiently large constant. Clearly w0 = 0 =
|S0 − S0

0 | and wN = C0N
−1 ≥ 0 = |SN − SN

N |. By a discrete comparison
principle we get |Si − SN

i | ≤ wi ≤ C0N
−1 for all i. ⊓⊔

The difference |Ei − EN
i | must now be bounded for all i. Unsurprisingly,

this is more difficult. We begin with a useful technical lemma. For i = 0, . . . , N ,
define the mesh function

Zi =

i∏

j=1

(
1 +

βhj

2ε

)

(with the usual convention that if i = 0, then Z0 = 1).
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Lemma 2.87. There exists a positive constant C such that

LN (Zi) ≥
C

max{ε, hi}
Zi for i = 1, . . . , N − 1.

Proof. Clearly

D+Zi =
β

2ε
Zi and D−Zi =

β

2ε+ βhi
Zi.

Hence

εδ2Zi = − ε
�i
{D+Zi −D−Zi} = − β2hi

2�i(2ε+ βhi)
Zi.

Thus

LN (Zi) =

[
− β2hi

2�i(2ε+ βhi)
+

biβ

2ε+ βhi
+ ci

]
Zi

≥ β(2bi�i − βhi)

2�i(2ε+ βhi)
Zi

>
β(bi − β)

2ε+ βhi
Zi

≥ C

max{ε, hi}
Zi,

where we used ci ≥ 0, hi < 2�i and bi > β. ⊓⊔

Discrete Green’s functions will be used to prove that the operator LN of
(2.139) is (‖ · ‖∞,d, ‖ · ‖1,d)-stable, where ‖ · ‖∞,d and ‖ · ‖1,d are the discrete
analogues of the L∞[0, 1] and L1[0, 1] norms defined by

‖vN‖∞,d = max
j=1,...,N−1

|vj | and ‖vN‖1,d =

N−1∑

j=1

�j |vj |.

The discrete Green’s function Gij = G(xi, ξj) associated with the operator
LN of (2.139) and the mesh point ξj ∈ {x0, x1, . . . , xN} is defined by

LNGij = δij/�j for i = 1, . . . , N − 1, with G0j = GNj = 0, (2.142)

where LN is applied to the first variable in G(·, ·) and δij is the Kronecker
delta. Define V to be the space of grid functions v with v0 = vN = 0. For any
v ∈ V, one has

vi =

N−1∑

j=1

�jGij [L
Nv]j for i = 0, . . . , N. (2.143)

We now study properties of the discrete Green’s function that are ana-
logues of those given for the continuous Green’s function in Section 1.1.2.
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Lemma 2.88. For all i and j one has

0 ≤ Gij ≤ 2/β.

Proof. Fix j ∈ {0, . . . , N}. To obtain a discrete barrier function for Gij , define
the mesh function w(j) by

w
(j)
i =

{
(2/β)

∏j
k=i+1(1 + βhk/(2ε))

−1, for i = 0, . . . , j − 1,

2/β, for i = j, . . . , N.
(2.144)

The argument divides naturally into three cases.
When 0 < i < j, one has

(LNw(j))i = (2/β)

j∏

k=1

(
1 +

βhk

2ε

)−1

LN (Zi) > 0,

by Lemma 2.87.

When i = j, then D+w
(j)
j = 0 and

D−w
(j)
j =

2

βhj

(
1− 1

1 + βhj/(2ε)

)
=

2

2ε+ βhj
,

so

(LNw(j))j =

(
ε

�j
+ bj

)
D−w

(j)
j + cjw

(j)
j ≥ 2(ε+ bj�j)

�j(2ε+ βhj)
≥ 1

�j
.

Finally, when j < i < N , clearly (LNw(j))i = ciw
(j)
i ≥ 0.

These calculations and (2.142) show that

LNw
(j)
i ≥ LNGij ≥ 0 for i = 1, . . . , N − 1,

and of course w
(j)
0 = G0j = 0, w

(j)
N = GNj = 0. As LN is an M-matrix, from

a discrete comparison principle and (2.144) it follows that

0 ≤ Gij ≤ w(j)
i ≤ 2/β,

as desired. ⊓⊔

This bound on the discrete Green’s function is tantamount to the following
(‖ · ‖∞,d, ‖ · ‖1,d) stability result.

Lemma 2.89. Let v ∈ V. Then

‖v‖∞,d ≤
2

β
‖LNv‖1,d.

Proof. This is immediate from (2.143) and Lemma 2.88. ⊓⊔
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Lemma 2.89 is the discrete analogue of (1.19) for simple upwinding. It
implies that

‖E − EN‖∞,d ≤ (2/β)‖LN (E − EN )‖1,d,

i.e., the pointwise error is bounded by the norm ‖ · ‖1,d of the consistency
error. To finish the analysis one should bound ‖LN (E − EN )‖1,d by CN−1

and deduce that ‖E − EN‖∞,d ≤ CN−1, but we do not give the details here
as a related calculation is given in full for Shishkin meshes in Section 2.4.2; see
also [AK96, AK98, AS95, KLS, LRV00, ST98]. Putting this bound together
with (2.140) and Lemma 2.86, the final result obtained is

Theorem 2.90. The simple upwind scheme (2.139) applied to (2.133) on a
Bakhvalov or Bakhvalov-type mesh is first-order uniformly convergent with
respect to the singular perturbation parameter:

‖u− uN‖∞,d ≤ CN−1

for some constant C.

In the convergence analysis of simple upwinding and other upwinded meth-
ods on Bakhvalov and Bakhvalov-type meshes, the (‖ · ‖∞,d, ‖ · ‖1,d) stability
result of Lemma 2.89 is a radical departure from the numerical analysis of
classical (i.e., non-singularly perturbed) two-point boundary value problems
on equidistant meshes, where one typically uses (‖ · ‖∞,d, ‖ · ‖∞,d) stabil-
ity. This classical stability bound is evidently weaker, and is useless in the
convection-diffusion context because the norm ‖ · ‖∞,d of the truncation error
is not bounded uniformly in ε.

When the convective term bu′ is approximated by simple upwinding, the
analysis is often facilitated if the standard approximation of u′′(xi) given by
δ2ui in (2.132) is replaced by

u′′(xi) ≈ δ2−ui :=
1

hi
(D+ui −D−ui).

After making this change in (2.139), one can simplify the proofs of Lem-
mas 2.87 and 2.88 by replacing the factor 2ε by ε in the functions Zi and w(j)

and changing �j to hj in the definition of Gij . We then get 0 ≤ Gij ≤ 1/β for
all i and j.

Furthermore, the operator LN now enjoys the following stability property,
first shown in [AK98], which is even stronger than the (‖·‖∞,d, ‖·‖1,d) stability
of Lemma 2.89.

Lemma 2.91. Let v ∈ V. Then

‖v‖∞,d ≤
2

β
‖LNv‖−1,∞,d, (2.145)

where

‖v‖−1,∞,d := max
j=1,...,N−1

∣∣∣∣∣

j∑

k=1

hkvk

∣∣∣∣∣ . (2.146)
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Proof. Sum by parts the identity (2.143), while observing that �j has be-
come hj ; this yields

|vi| =

∣∣∣∣∣∣

N−1∑

j=1

[Gij −Gi,j+1]

j∑

k=1

hk[LNv]k

∣∣∣∣∣∣

≤

⎛
⎝

N−1∑

j=1

∣∣Gij −Gi,j+1

∣∣
⎞
⎠ ‖LNv‖−1,∞,d

for i = 1, . . . , N − 1. It can be shown [And01, Lin02a] that for each fixed i
the function j �→ Gij is monotonically increasing for j ≤ i and monotonically
decreasing for j ≥ i. As we know already that 0 ≤ Gii ≤ 1/β, inequality
(2.145) follows immediately. ⊓⊔

The norm ‖ · ‖−1,∞,d is a discrete analogue of the Sobolev norm in W−1,∞

that was discussed in Section 1.1.2. Clearly ‖v‖−1,∞,d ≤ ‖v‖1,d for all v ∈ V.
The absence of absolute values inside the sum in (2.146) permits an error

analysis that is simpler than our earlier analysis based on the (‖ ·‖∞,d, ‖ ·‖1,d)
stability of Lemma 2.89. For, taking b(x) to be constant for simplicity, (2.145)
implies that

|u(xi)− uN
i | ≤

2

β
max

j=1,...,N−1

∣∣∣∣∣

j∑

k=1

hk(LNu− f)k

∣∣∣∣∣

=
2

β
max

j=1,...,N−1

∣∣∣∣(−εD+uj + buj)− (−εD+u0 + bu0)

+

j∑

k=1

hk(cku
N
k − fk)

∣∣∣∣.

But on integrating (2.133) from 0 to xj we have

−ε[u′(xj)− u′(0)] + b(uj − u0) +

∫ xj

0

(cu− f)(x) dx = 0.

Thus

|u(xi)− uN
i | ≤

2

β
max

j=1,...,N−1

∣∣∣∣− ε[D+uj − u′(xj)] + ε[D+u0 − u′(0)]

+

j∑

k=1

hk(cku
N
k − fk)−

∫ xj

0

(cu− f)(x) dx
∣∣∣∣.

This estimate shows that we need consider only the consistency error in
approximating the first-order derivative of u, unlike our previous analysis,
which leads to the consistency error incurred in approximating u′′. It follows
that less regularity of u is required.
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A Taylor expansion shows that
∣∣∣∣∣

j∑

k=1

hk(ckuN
k − fk)−

∫ xj

0

(cu− f)(x) dx

∣∣∣∣∣ ≤
j∑

k=1

hk

∫ xk

xk−1

|(cu− f)′(x)| dx

≤ max
k=1,...,j

∫ xk

xk−1

|(cu− f)′(x)| dx;

also, for each j one has

ε|D+uj − u′(xj)| ≤ ε
∫ xj+1

xj

|u′′(x)| dx ≤ C
∫ xj+1

xj

[1 + |u′(x)|] dx,

where the second inequality is immediate from (2.133). Hence the error in the
simple upwinding solution uN satisfies

‖u− uN‖∞,d ≤ C max
k=1,...,N

∫ xk

xk−1

[1 + |u′(x)|] dx. (2.147)

The convergence result of Theorem 2.90 follows from this bound [AK98], and
it is noteworthy that no decomposition of u from Section 1.1.3 is needed at
any stage of the entire argument.

Unfortunately this approach appears to have restricted applicability: the
(‖ · ‖∞,d, ‖ · ‖−1,∞,d) stability property of Lemma 2.91 seems to be peculiar to
problems posed in one dimension. On the other hand (‖·‖∞,d, ‖·‖1,d) stability
does have a two-dimensional analogue, as we shall see in Section III.2.2.

Further results for Bakhvalov-type meshes will be given in Section 2.4.2,
and they also appear in Section 2.5.

2.4.2 Piecewise Equidistant Meshes

The Bakhvalov mesh of Section 2.4.1 is intuitively a reasonable construction
when dealing with problems whose solutions exhibit layer behaviour. Perhaps
surprisingly, one can also prove uniform convergence results on an alternative
class of special meshes whose construction is much simpler: Shishkin meshes.
These are piecewise equidistant meshes that have been popular since the mid
1990s. The Shishkin mesh is discussed at length in [MOS96] and [FHM+00];
the former is concerned with the analysis of finite difference methods on this
mesh for convection-diffusion and reaction-diffusion problems, while the main
thrust of the latter is the presentation of detailed numerical results on Shishkin
meshes for a variety of problems in one and two dimensions, together with
some theoretical results.

We now describe the Shishkin mesh for the convection-diffusion problem
(2.133). Set σ = min{1/2, (2/β)ε lnN}. In fact we shall assume that σ =
(2/β)ε lnN as the case σ = 1/2 occurs only when N is exponentially large
relative to ε, which is rare in practice. Then the mesh transition point is
defined to be 1−σ. Let N be an even integer. Subdivide each of [0, 1−σ] and
[1− σ, 1] by an equidistant mesh with N/2 subintervals; see Figure 2.6.
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Fig. 2.6. Shishkin mesh generating function (left) and the mesh generated (right)

Remark 2.92. It is not vital that one has exactly the same number of subinter-
vals in [0, 1−σ] and [1−σ, 1]. All that the theory demands is that as N →∞
the number of subintervals in each of these two intervals is bounded below by
CN for some constant C > 0. ♣

The coarse part of this Shishkin mesh has spacing H = 2(1 − σ)/N , so
N−1 ≤ H ≤ 2N−1. The fine part has spacing h = 2σ/N = (4/β)εN−1 lnN ,
so h≪ ε. Thus there is a very abrupt change in mesh size as one passes from
the coarse part to the fine part. The mesh is not locally quasi-equidistant,
uniformly in ε.

On the mesh, xi = iH for i = 0, . . . , N/2 and xi = 1 − (N − i)h for
i = N/2 + 1, . . . , N .

Remark 2.93. (A key property of the Shishkin mesh) Nonequidistant meshes
for convection-diffusion problems are sometimes described as “layer-resolving”
meshes. One might infer from this terminology that wherever the derivatives
of u are large, the mesh is chosen so fine that the truncation error of the
difference scheme is controlled. But the Shishkin mesh does not fully resolve
the layer: for

|u′(x)| ≈ Cε−1 exp(−b(1)(1− x)/ε),
so

|u′(1− σ)| ≈ Cε−1 exp(−2 lnN) = Cε−1N−2,

which in general is large since typically ε≪ N−1. That is, |u′(x)| is still large
on part of the first coarse-mesh interval [xN/2−1, xN/2].

At first sight this incomplete resolution of the boundary layer seems like
a flaw, but it is in fact the key property of the mesh! Shishkin’s insight was
that one could achieve satisfactory theoretical and numerical results without
resolving all of the layer and as a consequence his mesh permits us to use
a fixed number of mesh points that is independent of ε. If one set out to
“repair” the Shishkin mesh by constructing a two-stage piecewise-equidistant
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mesh as we have done, but with the additional requirement that the mesh be
fine enough to control the local truncation error wherever the derivatives of u
are very large, then the number of mesh points required would have to grow
like | ln ε| as ε→ 0. See [Wes96] and [FHM+00, Section 3.6].

Although the number of mesh points is fixed independently of ε, never-
theless numerical analysis on Shishkin meshes does pay a price for the nature
of the construction: typically the trickiest part of the domain to handle is the
first coarse mesh interval – because the derivatives of u are large there. ♣

Consider now the numerical solution of (2.133) by the simple upwind
scheme (2.139) on the Shishkin mesh described above. As in the analysis
of Section 2.4.1, split the computed solution into its smooth and layer com-
ponents, viz., uN

i = SN
i + EN

i for all i, and we have again (2.140):

|ui − uN
i | = |(S + E)i − (SN

i + EN
i )| ≤ |Si − SN

i |+ |Ei − EN
i |.

It is easy to see that Lemma 2.86 is still valid, so it remains to bound |Ei−EN
i |.

For this estimate, the approach is of necessity less direct than for |Si−SN
i |

because E(x) has large derivatives on part of the coarse mesh (see Remark
2.93), resulting in an intractably large truncation error there. Thus we show
first that |Ei| and |EN

i | are small on [0, 1−σ] because they decay rapidly away
from x = 1, then on [1 − σ, 1] the mesh is so fine that an error analysis like
that of Lemma 2.86 will work.

From Lemma 1.9,

|Ei| ≤ Ce−β[1−(1−σ)]/ε = CN−2 ≤ CN−1 for i = 0, . . . , N/2. (2.148)

In the next Lemma a discrete barrier function is used to show that, like
|Ei|, the mesh function |EN

i | is small when i ≤ N/2.

Lemma 2.94. There exists a constant C such that

|EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. Recall the function Zi of Section 2.4.1. Now et ≥ 1 + t for all t ≥ 0, so

Zi

ZN
=

N∏

j=i+1

(
1 +

βhj

2ε

)−1

≥
N∏

j=i+1

e−βhj/(2ε) = e−β(1−xi)/(2ε). (2.149)

Set Yi = C2Zi/ZN for i = 0, . . . , N . Then LNYi = (C2/ZN )LNZi ≥ 0 =
|LNEN

i | for i = 1, . . . , N − 1, by Lemma 2.87 and the definition of {EN
i }.

Also YN = C2 ≥ |E(1)| = |EN
N | if the constant C2 is chosen sufficiently large,

by the bound on |E(x)| in Lemma 1.9. Finally, (2.149) and Lemma 1.9 imply
that

Y0 =
C2Z0

ZN
≥ C2e

−β/(2ε) ≥ C2e
−β/ε ≥ |E(0)| = |EN

0 |
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provided that the constant C2 is chosen sufficiently large. Thus we can
choose C2 so that {Yi} is a discrete barrier function for {EN

i }, and it fol-
lows (cf. Lemma 1.1) that

|EN
i | ≤ Yi =

C2Zi

ZN
for all i. (2.150)

For i = 0, . . . , N/2,

Zi

ZN
≤ ZN/2

ZN
=

N∏

j=1+N/2

(
1 +

βh

2ε

)−1

=
(
1 + 2N−1 lnN

)−N/2
.

But ln(1 + t) ≥ t− t2/2 for t ≥ 0, so

−N
2

ln
(
1 + 2N−1 lnN

)
≤ −N

2

[
2N−1 lnN − (2N−1 lnN)2/2

]

= − lnN +N−1 ln2N.

Taking exponentials, one gets

Zi

ZN
≤ N−1e(ln

2 N)/N ≤ CN−1

for some constant C. Combining this inequality with (2.150), the proof is
complete. ⊓⊔

Corollary 2.95. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 for i = 0, . . . , N/2.

Proof. This is immediate from (2.148) and Lemma 2.94. ⊓⊔

It remains only to bound |Ei − EN
i | for i > N/2.

Lemma 2.96. There exists a constant C such that

|Ei − EN
i | ≤ CN−1 lnN for i = N/2 + 1, . . . , N.

Proof. We shall apply a discrete barrier function argument at the nodes
{xi}N

i=N/2 by considering the discretization of a two-point boundary value

problem on the interval [1− σ, 1]. Observe that when LN is restricted to the
interior nodes of this interval it still yields an M-matrix.

Recalling the bounds on |E(j)(x)| in Lemma 1.9, a standard consistency
error analysis shows that for i = N/2 + 1, . . . , N − 1,
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|LN (Ei − EN
i )| = |LNEi − (LE)i|

≤ 2ε

∫ xi+1

xi−1

|E′′′(x)| dx+ bi

∫ xi

xi−1

|E′′(x)| dx

≤ C
∫ xi+1

xi−1

ε−2e−β(1−x)/ε dx

= Cε−1e−β(1−xi)/ε sinh(βh/ε)

≤ Cε−1N−1(lnN)e−β(1−xi)/ε,

since sinh(βh/ε) = sinh(4N−1 lnN) ≤ CN−1 lnN for all N ≥ 2.
Set φi = C3N

−1(lnN)(1+Zi/ZN ) for i = N/2, . . . , N , where the constant
C3 will be chosen later. By Lemma 2.87 and (2.149),

LNφi ≥ C3N
−1(lnN)(LNZi)/ZN

≥ C3C1ε
−1N−1(lnN)Zi/ZN

≥ C3C1ε
−1N−1(lnN)e−β(1−xi)/(2ε)

for i = N/2 + 1, . . . , N . Consequently LNφi ≥ |LN (Ei −EN
i )| if the constant

C3 is sufficiently large. Furthermore, we can choose C3 such that

φN/2 = C3N
−1(lnN)(1 + ZN/2/ZN ) ≥ C3N

−1(lnN) ≥ |EN/2 − EN
N/2|

by Corollary 2.95, and φN = 2C3N
−1(lnN) > 0 = |EN − EN

N |.
Thus {φi} is a discrete barrier function for {Ei − EN

i }, and it follows
(cf. Lemma 1.1) that for i = N/2, . . . , N , we have |Ei − EN

i | ≤ φi ≤
2C3N

−1 lnN . ⊓⊔

The final convergence result for simple upwinding on a Shishkin mesh can
now be stated.

Theorem 2.97. Let u be the solution of the convection-diffusion problem
(2.133). There exists a constant C such that the solution {uN

i } of (2.139)
satisfies

‖u− uN‖∞,d ≤ CN−1 lnN.

Proof. Combine (2.140), Lemma 2.86, Corollary 2.95 and Lemma 2.96. ⊓⊔

Remark 2.98. (Alternative proof of Theorem 2.97) The argument above is typ-
ical of many papers dealing with Shishkin meshes, but alternatively Theo-
rem 2.97 could have been proved in the (‖ · ‖∞,d, ‖ · ‖1,d) framework of Section
2.4.1, as we now outline. Again use the splitting uN

i = SN
i +EN

i . The analysis
of |Si − SN

i | is straightforward. The proof of Lemma 2.96 demonstrates that

|LN (Ei − EN
i )| ≤ Cε−2

�ie
−β(1−xi+1)/ε

for each i. This bound turns out to be unsuitable when i = N/2 − 1 and
i = N/2, where one uses the simpler bound
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|LN (Ei − EN
i )| = |LNEi| ≤ C�

−1
i e−β(1−xi+1)/ε,

which follows from the definition of LN and the bounds on |E(x)| and |E′(x)|
given in Lemma 1.9. Now (‖ · ‖∞,d, ‖ · ‖1,d) stability implies that

‖E − EN‖∞,d ≤ C

[ ∑

i<N/2−1

ε−2H2e(−σ−H)/ε + e−σ/ε + e(−σ+h)/ε

+
∑

i>N/2

ε−2h2e−β(1−xi+1)/ε

]

≤ CN−1 lnN,

as ε−2H2e−H/ε ≤ C, e(−σ+h)/ε ≤ Ce−σ/ε ≤ CN−2 and the geometric series∑
i>N/2 e

−β(1−xi+1)/ε is bounded by CN/(lnN). ♣
The condition number of the discrete linear system associated with the

scheme (2.139) on a Shishkin mesh is O(ε−2N2 ln−2N), which is bad when
ε is small, but [Roo96] an easy preconditioning by diagonal scaling (approxi-
mate equilibration) reduces this condition number toO(N2 ln−1N). An exten-
sive discussion of the iterative solution of the linear systems generated when
convection-diffusion problems are discretized is given in [ESW05, Chapter 4].

Remark 2.99. (Choice of transition point) The precise choice of mesh transi-
tion point 1−σ in the Shishkin mesh is of both theoretical and computational
interest. A careful examination of the proof of Theorem 2.97 reveals that σ
should have the form (k/β)εφ(N), where φ(N) → ∞ but N−1φ(N) → 0 as
N → ∞, and k is some constant. The simplest choice for φ(N) is lnN . A
statement of necessary conditions on σ is given in [FHM+00, Section 3.6] (the
detailed analysis appears in [Shi92b, pp.207–8]); see also [Wes96]. The earliest
appearance of this transition point is in a remarkable paper by van Veldhuizen
[vV78], who chooses σ = Cε lnN with a logarithmically graded mesh in the
layer region and an equidistant mesh on the rest of the interval — this is a
member of the class of Bakhvalov-Shishkin meshes that are discussed later
in this section. See also [Seg82], where Segal proposes a piecewise equidistant
mesh resembling Shishkin’s but with σ = Cε.

The choice k = 2 used in our definition of σ subtly enters the proof of
Lemma 2.94 during the final chain of inequalities that bound Zi/ZN . How to
choose k in an optimal way is discussed in [ST98] and, using an argument
resembling the proof above of Theorem 2.97, it is shown that for a variant of
simple upwinding one has

‖u− uN‖∞,d ≤ Cmax{N−k, kN−1 lnN} for i = 0, . . . , N. (2.151)

The sharpness of this bound is confirmed by numerical experiments. Conse-
quently choosing k larger than 1 diminishes the numerical accuracy of the
method but does not affect the numerical rate of convergence, while choosing
k smaller than 1 causes a noticeable deterioration in this rate.

Alternatively, one can check [Lin01a] that the argument leading to (2.147)
remains valid on a Shishkin mesh and reproduces (2.151). ♣
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The result of Theorem 2.97 can be extended to more general forms of up-
winding and to other layer-adapted meshes that are designed for convection-
diffusion problems. For a clear and comprehensive survey of such generaliza-
tions for problems in one and two dimensions, see [Lin03a]; we shall present
some of this material in the remainder of this section.

In [Kop96] a second-order upwind 4-point scheme is examined on a
Shishkin mesh and the bound ‖u − uN‖∞,d ≤ CN−2 ln2 N is proved. This
result is extended to more general meshes in [Kop01b].

Remark 2.100. (Robin boundary conditions) Consider again the convection-
diffusion problem −εu′′ + b(x)u′ + c(x)u = f(x) of (2.133) but with the more
general Robin boundary conditions

γ1u(0)− γ2u′(0) = A, β1u(1) + β2εu
′(1) = B,

where γ1, γ2, β1, β2, A and B are given constants.
Simple upwinding on a Shishkin mesh is applied in [FHM+00], where the

case of Neumann boundary conditions (γ1 = β1 = 0, γ2 = β2 = 1) is consid-
ered. This result is generalized in [AH03] to the case of full Robin boundary
conditions (with c(·) ≡ 0): γ1 > 0, γ2 ≥ 0, β1 ≥ 0, β2 ≥ 0 and β1 + β2 > 0.
The solution u is shown to have properties similar to those given in Lemma 1.9
and a bound like that of Theorem 2.97 is obtained.

The case γ2 = 0 is considered in [AS96], where it is shown that a modifi-
cation of Samarskĭı’s monotone scheme (see Section 2.1.2) on a Shishkin mesh
yields ‖u− uN‖∞,d ≤ CN−2 ln2N . ♣

Remark 2.101. (Conservation form) In [AK98] a convection-diffusion problem
in conservation form is examined:

−ε
(
p(x)u′(x)

)′ −
(
r(x)u(x)

)′
= f(x) for 0 < x < 1, u(0) = u0, u(1) = u1,

where p(·) ≥ p0 > 0, r(·) ≥ r0 > 0. The solution u(x) has in general an
exponential boundary layer at x = 0. Let the user-chosen parameter σi lie
in [1/2, 1] for i = 1, . . . , N − 1. On an arbitrary mesh, consider the family of
difference schemes

−Dσ

(
εp̄iD−u

N
i + σiriu

N
i + (1− σi)ri−1u

N
i−1

)
= f̃i for i = 1, . . . , N − 1,

with uN
0 = u0, u

N
N = u1. Here

Dσvi :=
vi+1 − vi

hi(1− σ) + hi+1σi+1
for all mesh functions vi

and p̄i := p(xi−1/2), ri := r(xi), f̃i := [f(xi−hi(1−σi))+f(xi+hi+1σi+1)]/2.
If σi = 1/2 for all i then this is a central difference scheme, while σi ≡ 1
delivers a form of simple upwinding.

Choose the weight σi ∈ [1/2, 1] to satisfy



134 2 Numerical Methods for Second-Order Boundary Value Problems

1− εp̄i

hiri−1
≤ σi ≤

1

2
+
C0hi

ε
,

where C0 is some arbitrary but fixed constant. Here the left-hand inequality
ensures that the matrix associated with the scheme is an M-matrix and the
right-hand inequality guarantees formal second-order consistency on smooth
grids. Then it is shown that

‖u− uN‖∞,d ≤ C
{

max
i
h2

i + max
i

[
min

i
{1, (hi/ε)

2} exp(−γxi−1/ε)
]}
,

(2.152)
where γ < r(0)/p(0) is an arbitrary constant.

This revealing bound gives precise information on how small hi has to
be relative to exp(−γxi−1/ε) inside the layer (i.e., where exp(−γxi−1/ε) has
not yet decayed) if one is to get second-order convergence. That is, (2.152)
quantifies the crucial property that a good layer-adapted mesh should have.
It follows [AK98] from (2.152) that ‖u − uN‖∞,d ≤ CN−2 on a Bakhvalov
mesh and ‖u−uN‖∞,d ≤ CN−2 ln2N on a Shishkin mesh. A related analysis
in [Kop01b] derives similar results for a 4-point discretization of this problem.

The analogue of (2.152) for first-order convergence is

‖u− uN‖∞,d ≤ C
{

max
i
hi + max

i

[
min

i
{1, hi/ε} exp(−γxi−1/ε)

]}
,

which is proved in [AK98, Theorem 3]. ♣

Remark 2.102. Error estimates in various norms for numerical methods on
Shishkin meshes usually include a multiplicative factor lnγ N for some γ > 0.
This factor is unimportant relative to the main convergence factorN−k, where
k > 0. On Bakhvalov meshes the lnN factor disappears, so these meshes yield
a higher rate of convergence, but they are more complicated to construct.

Table 2.1 shows the rates of convergence N−α observed when the actual
rate is N−2 ln2N .

Table 2.1. Observed convergence rates N−α with actual rate of N−2 ln2 N

N 32 64 128 256 512 1024 2048 4096
α 1.3561 1.4739 1.5552 1.6147 1.6601 1.6960 1.7250 1.7489

In [Xen03] the optimality of the lnγ N factor in error estimates on Shishkin
meshes is discussed in the context of reaction-diffusion problems. See also
[Shi08] where n-widths are used to address this question. ♣

Several authors have studied variants of the original Shishkin mesh that use
a transition point σ = (k/β)ε lnN for some positive constant k, are equidis-
tant (or at least quasi-equidistant) on [0, 1−σ] and are graded in some way on
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[1−σ, 1]. We shall refer to these as Shishkin-type meshes. Thus Shishkin-type
meshes have a mesh generating function

λ(t) =

⎧
⎨
⎩

2t(1− σ) for t ∈ [0, 1/2],

1− kε
β
λ̃(1− t) for t ∈ [1/2, 1],

where λ̃ : [0, 1/2] → [0, lnN ] is strictly increasing. (Once again we have placed
half the mesh points in each of the intervals [0, 1− σ] and [1− σ, 1], but this
can be varied as in Remark 2.92.)

Now, following [RL99], define the mesh-characterizing function

ψ = exp(−λ̃) : [0, 1/2] → [1, 1/N ].

This function is strictly decreasing. In the case of a standard Shishkin mesh
one has ψ(t) = exp(−2t lnN). Then an analysis like that of Theorem 2.97
yields the following result:

Theorem 2.103. Consider the solution {uN
i } of (2.133) using the simple up-

wind scheme on a Shishkin-type mesh. Assume that k ≥ 2, that λ̃ is piecewise
differentiable, and that

max
t∈[0,1/2]

λ̃′(t) ≤ C0N and

∫ 1/2

0

[
λ̃′(t)

]2
dt ≤ C0N

for some constant C0. Then there exists a constant C such that

|ui − uN
i | ≤

{
C(H +N−1) for i = 0, . . . , N/2− 1,
C(H +N−1 maxt∈[0,1/2] |ψ′(t)|) for i = N/2, . . . , N.

This result is more general than Theorem 2.97, since for the standard
Shishkin mesh one has H ≤ 2N−1 and maxt∈[0,1/2] |ψ′(t)| = 2 lnN . For ex-
ample, it encompasses Bakhvalov-Shishkin meshes [Lin99, Lin00a], where the
mesh on [1 − σ, 1] is graded as for a standard Bakhvalov mesh; with these
meshes ψ(t) = 1− 2t(1−N−1) and maxt∈[0,1/2] |ψ′(t)| = 2(1−N−1) ≤ 2, so
Theorem 2.103 yields ‖u − uN‖∞,d ≤ C(H + N−1) ≤ C(ε + N−1), since in
general on these meshes one has H = O(ε).

Simple upwinding yields at best first-order convergence, irrespective of
the mesh used. Several papers have constructed other difference schemes on
Shishkin-type meshes that achieve a higher order of convergence on some or
all of the domain. Before describing these, we caution the reader that the
construction of stable difference schemes attaining higher-order convergence
is much easier for ordinary differential equations than for partial differential
equations.

For central differencing on a Shishkin mesh, it is shown in [AK96] that the
computed solution {uN

i } satisfies

‖u− uN‖∞,d ≤ CN−2 ln2N. (2.153)
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The proof, which uses discrete Green’s functions, is difficult as the scheme
does not satisfy a discrete maximum principle. A generalization of this result
is applied to Bakhvalov meshes in [Kop99].

In Figure 2.7 we show the computed solution for a typical problem using
central differencing on a Shishkin mesh, with the computed nodal values joined
by straight line segments. The left-hand diagram shows the solution on the
coarse mesh; in the right-hand diagram the x-axis is rescaled to show the
computed solution on the fine mesh.
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Fig. 2.7. Solution computed by central differencing on a Shishkin mesh

Although the graph of Figure 2.7 seems satisfactory, nevertheless this com-
puted solution has small oscillations on the coarse mesh. This unwelcome fact
is implied by Figure 2.8, which displays the error in the computed solution of
Figure 2.7, with once again the fine mesh rescaled in order to show the data
more clearly.

Despite the oscillations in the computed solution, if one selects alternate
points in this solution (i.e., those corresponding to {x2i}, or those correspond-
ing to {x2i+1}) then one obtains a non-oscillatory solution. This idea dates
back to [AC85] but was first analysed in [Len00a], where the bound (2.153)
is proved. In a later paper [Len00b] the technique is applied to a piecewise-
quadratic Galerkin finite element method and it is shown that the computed
solution satisfies ‖u− uN‖∞,d ≤ CN−4 ln4 N .
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Fig. 2.8. Error in solution computed by central differencing on a Shishkin mesh

Another unorthodox way of extracting useful information from the oscil-
latory central difference solution is described and analysed in [SYZ07]. Us-
ing central differencing, solve (2.133) on an equidistant mesh {xi}N

0 , then
add an extra grid point in the mesh interval (xN−1, 1) and solve the prob-
lem again; for each of these two (oscillatory) computed solutions join the
nodal values by straight lines (i.e., construct the piecewise linear finite el-
ement solution); finally, find the points (x̂i, ŷi) where these two piecewise
linear solutions intersect. Then one has xi−1 ≤ x̂i ≤ xi for all i and
max0≤i≤N−1 |u(x̂i)− ŷi| ≤ CN−2.

Numerical experience with central differencing on Shishkin meshes for two-
dimensional problems [LS01b] reveals that despite the theoretical accuracy of
the method it is computationally expensive to solve the discrete linear system,
so we shall not pursue this approach.

The central difference approximation of u′ can be used where the mesh is
fine without destroying the M-matrix property, while on the coarse mesh a
midpoint upwind approximation also has the correct sign pattern and is for-
mally second-order consistent. These observations are the basis for the meth-
ods of [SR97, ST98], where (under the simplifying assumption c(·) ≡ 0) it is
proved that

|ui − uN
i | ≤

{
CN−1(ε+N−1) for i = 0, . . . , N/2− 1,

CN−2 ln2N for i = N/2, . . . , N.
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In Remark 2.101 we described an inverse-monotone scheme that, like cen-
tral differencing, yields (2.153) on a Shishkin mesh and ‖u−uN‖∞,d ≤ CN−2

on a Bakhvalov mesh. A related inverse-monotone scheme in [Lin01a] achieves
the same orders of convergence on these meshes; see also [Lin01b] for Shishkin-
type meshes. The bound (2.153) is derived in [AS95] for a modified version of
Samarskĭı’s monotone scheme on a Shishkin mesh.

The HODIE technique of Section 2.1.4 is used in [CG04, CGL99] to gen-
erate two schemes on Shishkin meshes for which one obtains ‖u− uN‖∞,d ≤
C(N−1 lnN)k for k = 2, 3 respectively. It is not clear if this approach can be
extended to elliptic convection-diffusion problems in two dimensions.

High-order pointwise convergence results can be deduced from the hp finite
element methods of Melenk and Schwab [MS99a, MS99b], but the construction
of such methods in a finite difference framework remains an open problem.

Remark 2.104. On Shishkin-type meshes with transition point 1 − σ, where
σ = (k/β)ε lnN , the analyses in papers such as [ST98] disclose a relation-
ship between the user-chosen constant k and the order of convergence: if the
method is expected to produce convergence of order (N−1 lnN)m, then one
should choose k ≥ m. ♣

Instead of seeking a difference scheme that yields a solution achieving a
high order of accuracy, one can take an easily-implemented low-order scheme
such as simple upwinding and apply some postprocessing technique to the
computed solution to improve its accuracy. Here we discuss two such tech-
niques: Richardson extrapolation and defect correction.

Richardson extrapolation is applied in [NS03] to the solution obtained from
simple winding on a Shishkin mesh. Two solutions are computed initially:
{vN

i } on a standard Shishkin mesh S and {ṽ2N
i } on a mesh obtained by

bisecting each subinterval in S. Thus ṽ2N
2i lies at the same mesh point as vN

i

for i = 0, . . . , N . Apply the extrapolation formula

uN
i := 2ṽ2N

2i − vN
i for i = 0, . . . , N.

It is shown in [NS03] that the extrapolated solution {uN
i } satisfies the error

bound (2.153). An analogue of this result is valid for problems in two di-
mensions [Kop03], but the analysis is more delicate in this setting. Iterated
extrapolation – to improve the order of accuracy still further – is described
but not analysed in [NS03].

Defect correction has been applied to many non-singularly perturbed prob-
lems [BR84]. Its philosophy is to generate a stable higher-order scheme by
combining a stable low-order scheme such as simple upwinding with a higher-
order but possibly unstable scheme such as central differencing on the same
mesh. Thus, on a Shishkin mesh let ûN be the simple upwind solution, i.e.,
LN

upû
N = fN , where Lup is the discrete operator corresponding to simple

upwinding. Compute the “defect” σN := fN − LN
c û

N where LN
c is the cen-

tral difference operator. Then compute the “defect correction” δN by solving
LN

upδ
N = σN . Finally, set uN := ûN + δN .
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This method avoids computational difficulties by solving only discrete sys-
tems that involve the stable upwind operator LN

up, yet it aims to attain the

higher-order convergence associated with the operator LN
c . For convection-

diffusion problems, [FLR01] gives an analysis showing that the solution uN

does indeed satisfy (2.153). Auspicious numerical results for defect correction
applied to a convection-diffusion problem in two dimensions appear in [LS01a].

Although defect correction is superficially different from Richardson ex-
trapolation, the two are nevertheless related, and Linß [Lin04] furnishes a
unified error analysis that is applicable to both methods.

Remark 2.105. (Derivative approximation) Sometimes when solving (2.133),
one wishes to compute the derivative u′. We know that |u′(1)| = O(ε−1),
so at the boundary x = 1 it is more reasonable to estimate the computed
approximation of εu′(x) than the approximation of u′(x).

Consider the problem −ε(p(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x), with
p(·) > 0, b(·) > 0, c(·) ≥ 0 and Dirichlet boundary conditions. Its solution u
has properties similar to the solution of (2.133). Let uN be the approximate
solution obtained using a modified Samarskĭı scheme on a Shishkin mesh.
Then [AS96] a weighted divided difference ΓuN computed from uN satisfies
| − εp(1)u′(1)− ΓuN | ≤ CN−2 ln2N .

When simple upwinding is applied on a Shishkin mesh to solve (2.133)
for either Dirichlet or Neumann boundary conditions at x = 1, the computed
solution uN is proved in [FHM+00, Theorem 3.17] to satisfy

max
i
|ε(D−u

N
i − u′(xi))| ≤ CN−1 lnN. (2.154)

A bound like (2.154) is reasonable near x = 1, but away from this boundary
the ε weighting is too strong. For i = 0, . . . , N/2− 1 the bound can be sharp-
ened [KS01b] to |D−uN

i − u′(xi)| ≤ CN−1 lnN . The analysis in this paper is
also applicable to other layer-adapted meshes.

For the central difference scheme on Shishkin-type meshes, one has [RL01a]

max
i
|ε(D−u

N
i − u′(xi−1/2))| ≤ C(H +N−1 max |ψ′|)2,

where H is the mesh diameter and ψ the mesh-characterizing function. ♣

Remark 2.106. (Reaction-diffusion) Consider the reaction-diffusion problem
of Remark 1.10:

−ε2u′′ + c(x)u = f(x) for 0 < x < 1, u(0) = u(1) = 0, (2.155)

with c(·) ≥ γ > 0. The solution u(x) typically has layers at x = 0 and x = 1.
To construct a Shishkin mesh for the this problem, let N be a positive integer
that is divisible by 3. Set τ = (2/γ)ε lnN . Then the Shishkin meshpoints
divide each of the intervals [0, τ ], [τ, 1−τ ] and [1−τ, 1] into N/3 equal subin-
tervals. (As in Remark 2.92, it’s not necessary to distribute the meshpoints
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in exactly this way: it suffices to partition each of the above three intervals
by a number of equal subintervals that is bounded below by a fixed fraction
of N .) Now apply the difference scheme

LNuN
i := −εδ2uN

i + ciu
N
i = fi for i = 1, . . . , N − 1, uN

0 = uN
N = 0.

The condition number of the associated discrete linear system is shown in
[Roo96] to be O(N2 ln−2N).

Savin [Sav95] proves that there exists a constant C such that

‖u− uN‖∞,d ≤ CN−2 ln2N. (2.156)

The proof of (2.156) is along the lines of Remark 2.98; cf. [LM03] where a
system of reaction-diffusion equations is analysed. A nonlinear generalization
of (2.155)–(2.156) is discussed in [KS04].

A problem whose diffusive and convective terms are each multiplied by a
small parameter is examined in [RU03]. Here one is in a convection-diffusion or
reaction-diffusion regime, depending on the relative sizes of these parameters.
Discrete Green’s functions are used to prove the bound (2.156) for the solution
of a difference scheme on a Shishkin mesh.

Non-upwinded finite element methods (which give rise to schemes of
central-difference type) on Shishkin meshes for higher-order differential equa-
tion of both convection-diffusion and reaction-diffusion type are considered
in [SS95a, SS95b], where uniform convergence results are proved in the ε-
weighted energy norm of (2.62). This analysis is extended in [LX05, LX06]
and applied to other meshes. ♣

Remark 2.107. (Turning point problems) In [LV01] Linß and Vulanović inves-
tigate the boundary turning point problem

−εu′′(x)− xb(x) + xc(x, u(x)) = 0 for 0 < x < 1, u(0) = u(1) = 0,

where b(x) > 0, c(0, u(0)) = 0 and cu(x, u) ≥ 0. The solution uN of an upwind
scheme on a Shishkin mesh is shown to satisfy ‖u − uN‖∞,d ≤ CN−1 ln2N .
(A generalization of this problem is considered in [Lin03b].) Liseikin [Lis90]
transforms the problem to one whose second-order derivatives are bounded,
so simple upwinding on a uniform mesh can be used to generate a solution uN

for which ‖u− uN‖∞,d ≤ CN−1.
In [SS94] a finite element method on a generalized Shishkin mesh is applied

to a problem with interior turning points and convergence results, uniform in
ε, are proved in weighted energy norms. ♣

Remark 2.108. (Nonlinear problems) A quasilinear analogue of (2.133) is

−εu′′ + b(x, u)′ + c(x, u) = f(x) for 0 < x < 1, u(0) = u(1) = 0, (2.157)

with bu(·, ·) ≥ β > 0 and cu(·, ·) ≥ 0. This problem has a unique solution u
for which the a priori bounds of Lemma 1.8 hold true – see [Vul89]. Many
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of the earlier convergence results for (2.133) are also valid for (2.157); one
can derive them by linearizing (2.157) about the solution u (cf. the proof
of Lemma 2.111 below) then applying our previous analysis. We shall not
give details here, but merely refer the reader to the papers [FOMS01, KL01,
Kop01a, KS01b, Lin01c, Lin01a, LRV00, Shi92a, Vul01].

For singularly perturbed nonlinear problems that do not have unique so-
lutions, it can be tricky to compute reliably accurate numerical solutions. In
the case of the nonlinear reaction-diffusion problem considered in [KS07b] it
is found that if one takes a Shishkin mesh suited to the asymptotic structure
of the interior layer that appears in a true solution, and centres this mesh at
any point in (0, 1), then the numerical solution obtained will have an interior
layer at that point! ♣

Remark 2.109. (Systems) Systems of convection-diffusion problems are solved
numerically in [Lin07b, OSS] using forms of upwinding on Shishkin meshes
and the bound ‖u − uN‖∞,d ≤ CN−1 lnN is proved. An adaptive approach
for these problems is followed in [Lin07a].

The numerical solution of systems of reaction-diffusion problems on layer-
adapted meshes is handled using finite difference techniques in [LM]. A related
finite element method is analysed in [Lin08a].

2.5 Adaptive Strategies Based on Finite Differences

In the previous section we discussed special meshes that were chosen a priori
for the solution of convection-diffusion and reaction-diffusion problems. There
is a growing interest in the construction of meshes suitable for these problems
by means of an alternative methodology: adaptive mesh generation, where
information extracted from the computed solution on the current mesh is
used to form a new mesh that is more appropriate for the problem, and this
process is repeated iteratively until some stopping criterion is met.

Adaptive mesh generation using finite element methods will be discussed in
the context of multi-dimensional problems in later chapters, since the theory
is no different for one-dimensional problems and most numerical experimen-
tation has been for partial differential equations.

Thus in the current section we confine ourselves to adaptive techniques
based on finite difference methods. Our aim is to develop an adaptive mesh
algorithm that, starting from some ordinary coarse mesh, will eventually gen-
erate a problem-fitted mesh on which the computed solution is guaranteed to
be an accurate approximation of the solution to a convection-diffusion two-
point boundary value problem.

This aspiration is not new. An early attempt to generate satisfactory
meshes based on computational data is found in [KNB86], where systems
of convection-diffusion problems comprising both turning point problems (see
Section 1.2) and non-turning point problems are considered, and numerical
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results are presented. More recently, [LG97] contains an adaptive algorithm
that is based on reformulating the two-point boundary value problem as an
integral equation; plausible numerical results are obtained for a variety of dif-
ficult singular perturbation problems, but no rigorous analysis is given of the
dependence of the algorithm on the singular perturbation parameter.

To devise a rigorous analysis of any adaptive algorithm, the first ingredient
one needs is an a posteriori bound on the error in the computed solution; that
is, an error bound that is expressed entirely in terms of local data of the current
computed solution. Such estimates give implicit guidance for improvement
of the mesh. Bounds such as (2.147), although they depend on the current
mesh, are not full a posteriori bounds since they involve the (unknown) true
solution u.

As we are dealing with finite difference methods, it is natural to seek an
a posteriori bound for ‖u − uN‖∞,d, where {uN

i }N
i=1 is the computed solu-

tion. The only published bound of this type is by Kopteva [Kop01a], and her
exposition is followed here.

Consider a quasilinear two-point boundary value problem in conservation
form:

Tu(x) := −εu′′(x) + b(x, u(x))′ = f(x) for x ∈ (0, 1), u(0) = u(1) = 0,
(2.158)

where a prime denotes differentiation with respect to x. It is assumed that
b ∈ C1

(
[0, 1]× R), f ∈ C

(
[0, 1]

)
and

0 < β ≤ bu(x, u) ≤ β̄ for all x ∈ [0, 1] and all u ∈ R, (2.159)

for some constants β and β̄. Then (2.158) has a unique solution u ∈ C2[0, 1]
that has an exponential boundary layer at x = 1; see [Vul89].

Set
Av(x) = −εv′(x) + b(x, v(x)) (2.160)

for all v ∈ C2[0, 1]. Clearly (2.158) can be written as (Au)′ = f .
Consider an arbitrary mesh ω̄ := {x0, x1, . . . , xN}, where the discretization

parameter N is a positive integer and 0 = x0 < x1 < · · · < xN = 1. We use the
notation hi, �i,H,D−vi, etc. from Section 2.4. No assumption can be made
that the mesh satisfies H ≤ CN−1 for some constant C; such a property must
be shown to hold true for the meshes generated by any adaptive algorithm.

Define the discrete operator AN for any mesh function {vi} by

ANvi = −εD+vi + b(xi, vi).

To solve (2.158) we shall examine the conservation-form upwind scheme of
[Kop01a, LRV00, Vul01]:

TNuN
i := D−(ANuN

i ) = fi for i = 1, . . . , N − 1, uN
0 = 0, uN

N = 0. (2.161)

Here {uN
i } is the solution computed on the mesh {xi}.
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Recall from Section 1.1.2 the norm

∥∥v(x)
∥∥
∗ = min

V :V ′=v

∥∥V (x)
∥∥
∞ (2.162)

on the Sobolev space W−1,∞.
First consider the linear case of (2.158):

Lu ≡ −εu′′ + (p(x)u)′ = f(x), for x ∈ (0, 1), u(0) = u(1) = 0, (2.163)

where p ∈ C[0, 1], and in accordance with (2.159),

0 < β ≤ p(·) ≤ β̄. (2.164)

In the subsequent analysis the function f in (2.163) will often have the form
f(x) = F ′(x), where F (x) is a bounded piecewise continuous function, so
f may have isolated singularities similar to the Dirac delta distribution and
problem (2.163) is to be understood in the sense of distributions. In the next
lemma, u ∈ C0,1[0, 1] ⊂ H1(0, 1) ⊂ C[0, 1], where C0,1[0, 1] and H1(0, 1) are
the standard Hölder space and Sobolev space.

Lemma 2.110. Suppose that f(x) = F ′(x), where F (x) is a bounded piece-
wise continuous function. Then (2.163) has a unique solution u ∈ C[0, 1] and

‖u‖∞ ≤ (2/β)‖Lu‖∗.

Proof. By integration one can see that (2.163) has the unique continuous
solution u(x) = W (x)−W (0)V (x)/V (0), where

W (x) =

∫ 1

x

1

ε
F (s) exp

{
−1

ε

∫ s

x

p(t) dt
}
ds,

V (x) =

∫ 1

x

1

ε
exp

{
−1

ε

∫ s

x

p(t) dt
}
ds.

Now |W (x)| ≤ ‖F‖∞V (x), and (2.164) easily yields 0 ≤ V (x) ≤ β−1. Hence
|u(x)| ≤ 2‖F‖∞V (x) ≤ (2/β)‖F‖∞, and the desired result follows. ⊓⊔

This result can be regarded as an extension of the bound on ‖u‖∞ given by
(1.20) to a larger class of f in (2.163). We now generalize it to the quasilinear
operator T using a standard linearization technique.

Lemma 2.111. Let v, w ∈ H1(0, 1) with v(0) = w(0), v(1) = w(1) and

Tv(x)− Tw(x) = F ′(x),

where F (x) is a bounded piecewise continuous function. Then

‖v − w‖∞ ≤ (2/β)‖Tv − Tw‖∗.
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Proof. Now Tv(x)− Tw(x) = L[v(x)− w(x)], where the operator L is linear
and defined by (2.163) with

p(x) :=

∫ 1

0

bu

(
x, w(x) + s[v(x)− w(x)]

)
ds.

Then (2.159) implies that the condition (2.164) is satisfied, and the argument
is completed by invoking Lemma 2.110. ⊓⊔

Define uN (x) to be the piecewise linear interpolant through the knots
(xi, u

N
i ) given by the computed solution. The desired a posteriori error esti-

mate can now be stated.

Theorem 2.112. Suppose that f(x) ∈ C1[0, 1]. Then there exists a con-
stant C such that

‖uN − u‖∞ ≤ (2/β)
[
β̄max

i
|uN

i − uN
i−1|+ CH

]
.

Proof. By Lemma 2.111, it suffices to prove that

∥∥TuN (x)− Tu(x)
∥∥
∗ ≤ β̄max

i
|uN

i − uN
i−1|+ CH. (2.165)

It follows from (2.158) and (2.160) that

TuN (x)− Tu(x) = TuN (x)− f(x) =
(
AuN (x)− F (x)− a

)′
, (2.166)

where F (x) :=
∫ x

0
f(x) dx and a is any constant. Set FN

i =
∑i

j=1 hjfj for
i = 1, . . . , N . By (2.161),

ANuN
i − FN

i = ANuN
0 for i = 1, 2, . . . , N − 1.

Taking a = ANuN
0 in (2.166) yields TuN (x)−Tu(x) = η′(x) for x ∈ (xi−1, xi)

and i = 1, 2, . . . , N , where η(x) = η̄(x) + η̃(x) with η̄(x) = AuN (x) − ANuN
i

and η̃(x) = FN
i − F (x). It is easy to check that |η̃(x)| ≤ CH; thus (2.162)

gives
‖TuN (x)− Tu(x)‖∗ ≤ ‖η(x)‖∞ ≤ ‖η̄(x)‖∞ + CH. (2.167)

Now for x ∈ (xi−1, xi), we have

sup
x∈(xi−1,xi)

|η̄(x)| = sup
x∈(xi−1,xi)

∣∣b(xi, u
N
i )− b(x, uN (x))

∣∣

= sup
x∈(xi−1,xi)

∣∣∣
∫ xi

x

d

dx
b(x, uN (x))dx

∣∣∣

≤
∫ xi

xi−1

∣∣∣ d
dx
b(x, uN (x))

∣∣∣dx

≤ hi sup
x∈(xi−1,xi)

∣∣bx(x, uN (x))
∣∣+ β̄|uN

i − uN
i−1|,
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since
[
uN (x)

]′
= (uN

i −uN
i−1)/hi. But the linearization of TN around 0 yields

an M-matrix, so a modification of [Lin01b, Lemma 1] shows that

‖uN‖∞ ≤ 2

β
(‖b(x, 0)‖∞ + ‖f‖∞). (2.168)

Consequently the above bound on η̄ and b ∈ C1
(
[0, 1]× R) imply that

‖η̄‖∞ ≤ CH + β̄max
i
|uN

i − uN
i−1|.

Recalling (2.167), we have verified (2.165) and the proof is complete. ⊓⊔

Remark 2.113. Theorem 2.112 is a first-order estimate because at best one
can deduce O(H) convergence from it. It is shown in [Kop01a] to hold true
also for certain difference schemes other than (2.161), and for some of these
schemes a second-order a posteriori estimate is derived.

In [Kop05] a second-order a posteriori estimate is proved for a reaction-
diffusion problem. ♣

The bound of Theorem 2.112 is, up to a constant factor, equivalent to

‖uN − u‖∞ ≤ Cmax
i
hi

√
1 + (D−uN

i )2 .

The right-hand side here measures the length of the longest line segment from
(xi−1, u

N
i−1) to (xi, u

N
i ) in the piecewise linear function uN (x). To obtain an ac-

curate approximate solution, we should strive to make maxi hi

√
1 + (D−uN

i )2

as small as possible. Observations such as this have led many authors (e.g.,
[BM00, HRR94, Kop01a, KS01c, Lin01b, Mac99, RL99, QS99, QST00]) to
focus on the twin ideas of monitor functions, which were defined on page 118,
and equidistribution.

A mesh {xi}N
i=1 is said to equidistribute a monitor function M(·) if

∫ xi

xi−1

M(x) dx =
1

N

∫ 1

0

M(x) dx for i = 1, . . . , N.

Most authors choose M in their algorithms to be some discrete analogue of
the standard arc-length function

Marc(x) =
√

1 + (u′(x))2. (2.169)

While many published papers use monitor functions, only [KS01c] gives a
full and rigorous analysis of an adaptive mesh algorithm based on them. The
results of this paper are described in the remainder of this section.

Our adaptive mesh algorithm differs from one proposed by de Boor [dB74]
only in its choice of stopping criterion. The algorithm solves (2.158) by means
of the difference scheme (2.161), using equidistribution with the monitor func-
tion MN (x) :=

√
1 + ((uN )′(x))2, which is a discrete analogue of (2.169).
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Thus, setting Mi :=
√

1 + (D−uN
i )2 for i = 1, . . . , N , we are concerned with

the following equidistribution problem: find {(xi, u
N
i )}, with the {uN

i } com-
puted from the {xi} by means of (2.161), such that

hiMi =
1

N

N∑

j=1

hjMj for i = 1, 2, . . . , N. (2.170)

Note here that both {xi} and {uN
i } are a priori unknown. Consequently, even

if (2.158) is linear, the equidistribution problem is nonlinear because it requires
the simultaneous solution of (2.161) and (2.170). This nonlinearity is a serious
obstacle to the analysis of adaptive algorithms based on equidistribution.

To give a sense of the issues involved in analysing an adaptive algorithm,
four fundamental questions will be addressed:

1. Does the equidistribution problem have a solution?
2. If {(xi, u

N
i )} is a solution of the equidistribution problem, will uN (x) be

an accurate approximation of u(x) on [0, 1]?
3. Is there an easily-implemented algorithm that can be proved to yield an

accurate solution to the equidistribution problem when it terminates?
4. Can one prove that such an algorithm yields an accurate approximate

solution after a predetermined number of iterations?

In order to answer these questions, we introduce our algorithm. The num-
ber N of mesh intervals is fixed throughout.

Adaptive Mesh Algorithm:

1. Initialize mesh: The initial mesh {0, 1/N, 2/N, . . . , 1} is equidistant.

2. For k = 0, 1, . . ., given the mesh {x(k)
i }, compute the discrete solution

{u(k)
i } satisfying

T (k)u(k) = f (k) on {x(k)
i }, with u

(k)
0 = u

(k)
N = 0,

where f (k) = {fi}. Let h
(k)
i = x

(k)
i − x

(k)
i−1 for each i. Let

ℓ
(k)
i = h

(k)
i

√
1 + (D−u

(k)
i )2 =

√
(u

(k)
i − u

(k)
i−1)

2 + (h
(k)
i )2

be the arc-length between the points (x
(k)
i−1, u

(k)
i−1) and (x

(k)
i , u

(k)
i ) in the

piecewise linear computed solution u(k)(x). Then the total arc-length of
the solution curve u(k)(x) is

L(k) :=

N∑

i=1

ℓ
(k)
i =

N∑

i=1

h
(k)
i

√
1 + (D−u

(k)
i )2

=

N∑

i=1

√
(u

(k)
i − u

(k)
i−1)

2 + (h
(k)
i )2.
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3. Test mesh: Let C0 be a user-chosen constant with C0 > 1 (see Remark
2.114). If

maxi ℓ
(k)
i

L(k)
≤ C0

N
, (2.171)

then go to Step 5. Otherwise, continue to Step 4.
4. Generate a new mesh by equidistributing the arc-length of the cur-

rent computed solution: Choose points 0 = x
(k+1)
0 < x

(k+1)
1 < · · · <

x
(k+1)
N = 1 such that for each i the distance from (x

(k+1)
i−1 , u(k)(x

(k+1)
i−1 ))

to (x
(k+1)
i , u(k)(x

(k+1)
i )}, measured along the polygonal solution curve

u(k)(x), equals L(k)/N . (This clearly determines the x
(k+1)
i uniquely.) Our

new mesh is then defined to be {x(k+1)
i }. Return to Step 2.

5. Set {x∗
0, x

∗
1, . . . , x

∗
N} = {x(k)

i } and u∗ = u(k) then stop.

Remark 2.114. In (2.171) we can choose any constant C0 that satisfies C0 > 1.
The larger C0 is, the fewer iterations needed by the algorithm, but the constant
factor in the final error bound of Theorem 2.118 increases with C0. If we set
C0 = 1, then the algorithm is attempting to compute a fixed point of Theorem
2.116, so when C0 ≈ 1, we expect that the computed solution lies near such
a fixed point. ♣

First, we prove a preliminary result.

Lemma 2.115. Let {uN
i } be the solution of (2.161) on an arbitrary mesh

{xi}. There exists a constant C1 such that |D−uN
i | ≤ C1(N + ε−1) for i =

1, 2, . . . , N .

Proof. From (2.168) we have |uN
i | ≤ C for all i. As the mesh has N subinter-

vals, hm ≥ N−1 for some m. These inequalities imply that |D−uN
m| ≤ CN .

Let i ∈ {1, 2, . . . , N} be arbitrary. Assume that i ≤ m, as the other case
is similar. Now

ANuN
m −ANuN

i =

m−1∑

j=i

(
ANuN

j+1 −ANuN
j

)
= −

m−1∑

j=i

hj+1fj ,

by (2.161). Hence |ANuN
i | ≤ ε|D−uN

m| + |b(xm, u
N
m)| + ‖f‖∞ ≤ C(εN + 1).

Consequently ε|D−uN
i | ≤ C(εN + 1) + |b(xi, u

N
i )|, and the result follows. ⊓⊔

The following existence result answers Question 1 of page 146.

Theorem 2.116. The equidistribution problem has a solution, i.e., there ex-
ists a mesh that equidistributes the arc-length monitor function along the piece-
wise linear interpolant to the solution of (2.161).
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Proof. One can regard Steps 2 and 4 of the Adaptive Mesh Algorithm as a
mapping Φ : (h1, h2, . . . , hN ) �→ (h̃1, h̃2, . . . , h̃N ), where the hi and h̃i are the
mesh-widths before and after regridding.

We claim that Φ : SQ → SQ, where

SQ =
{

(h1, h2, . . . , hN ) ∈ R
N : hi ≥ Q for i = 1, . . . , N,

N∑

i=1

hi = 1
}

and Q = Q(ε,N) satisfies 0 < Q < 1/N . Note that these bounds on Q imply
that SQ is nonempty.

To prove this claim, let {uN
i } be the solution to (2.161) computed on the

mesh with mesh-widths h1, h2, . . . , hN . Set ℓi = hi

√
1 + |D−uN

i |2 for each i.
By Lemma 2.115 the slope of each segment of uN (x) is at most C1(N + ε−1),
so for each i the total arc-length of uN (x) on an interval of length h̃i is at

most
√
h̃2

i + C1h̃2
i (N + ε−1)2. Hence when Step 4 of the regridding algorithm

is applied to partition the piecewise linear function uN (x) into N pieces, we
have √

h̃2
i + C1h̃2

i (N + ε−1)2 ≥ 1

N

∑

i

ℓi ≥
1

N

∑

i

hi =
1

N
,

which implies that

h̃i ≥ Q :=
1

N
√

1 + C1(N + ε−1)2
for all i.

Hence 0 < Q < 1/N and we see that Φ maps SQ into itself.
The set SQ is a nonempty convex compact subset of RN , and Φ is clearly

continuous. By the Brouwer fixed-point theorem [Sma74], the function Φ has
a fixed point in S. That is, there is a mesh on which the computed solution
satisfies ℓi = ℓj for all i and j. ⊓⊔

Let {uN
i } be the solution of (2.161) on an arbitrary mesh {xi}. Let L be

the total arc-length along the solution curve uN (x). Then it can be shown
[KS01c] that

1 ≤ L ≤ C2, (2.172)

where C2 = 1 + 2‖f − TN0‖∞/β.
We claim that on the meshes generated by the algorithm, for all i we have

h
(k)
i ≤ C2N

−1. (2.173)

Inequality (2.173) clearly holds true when k = 0 since C2 ≥ 1, so assume

that k > 0. By Step 4 of the algorithm, the distance from (x
(k)
i−1, u

(k−1)(x
(k)
i−1))

to (x
(k)
i , u(k−1)(x

(k)
i )), measured along the solution curve u(k−1)(x), equals

L(k−1)/N . Hence h
(k)
i = x

(k)
i − x(k)

i−1 ≤ L(k−1)/N ≤ C2/N , by (2.172).
Question 2 can now be answered by the next theorem: any solution to the

equidistribution problem is an accurate approximation of the true solution u.
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Theorem 2.117. Let {uN
i } be the solution to (2.161) computed on a mesh

{xi} that satisfies (2.170). Then

‖u− uN‖∞ ≤ CN−1 for some constant C, (2.174)

and ℓi = L/N for i = 1, . . . , N , where ℓi =
√

(xi − xi−1)2 + (uN
i − uN

i−1)
2

is the local arc-length and the total arc-length of the solution curve is L =∑N
i=1 ℓi.

Proof. This result essentially appears in [Kop01a, Section 6]. First, ℓi = L/N
for all i since (2.170) is true. To prove (2.174), observe that by (2.172) we have
ℓi = L/N ≤ C2/N for all i. Now Theorem 2.112 and (2.173) yield (2.174). ⊓⊔

The next result deals with Question 3 by showing that the final solution
generated by our algorithm is an accurate approximation of u; for its proof,
Theorem 2.112 is needed again.

Theorem 2.118. Suppose that the Adaptive Mesh Algorithm reaches its stop-
ping criterion and halts. Let the final mesh generated be {x∗

i }. Let {u∗
i } be the

discrete solution computed on this mesh, and let u∗(x) be the piecewise linear
interpolant of {(x∗

i , u
∗
i )}. Then there exists a constant C such that

‖u− u∗‖∞ ≤ CN−1.

Proof. Let ℓ∗i =
√

(u∗
i − u∗

i−1)
2 + (x∗

i − x∗
i−1)

2 denote the arc-length between

successive knots in the polygonal computed solution on the final mesh. In-
equalities (2.172) and (2.171) imply that ℓ∗i ≤ C0C2/N for all i. The result
now follows from Theorem 2.112 and (2.173). ⊓⊔

Our final result gives a precise answer to Question 4 in the case where
(2.158) is linear. The proof is much more difficult than the arguments pre-
sented thus far; for it we refer the reader to [KS01c].

Theorem 2.119. Assume that the two-point boundary value problem (2.158)
is linear. Let N be sufficiently large, independently of ε. Assume that ε ≤ N−1.
Then there exists a positive integer K, with K ≤ C3| ln ε|/(lnN), such that
‖e(K)‖∞ ≤ C4N

−1, where e(k) is the error in the kth solution computed by the
algorithm. Here C3 and C4 are constants that are independent of N, ε and
the meshes generated.

Numerical results presented in [KS01c] show that in practice the number
of iterations taken by the algorithm (with C0 = 2) is indeed O(| ln ε|/(lnN)).

Remark 2.120. Experimental evidence shows that the final mesh computed
by the algorithm is strikingly close to a Bakhvalov mesh inside the bound-
ary layer; see [KS01c, Fig. 2]. In contrast, most adaptive algorithms will not
generate a mesh resembling a Shishkin mesh. ♣



Part II

Parabolic Initial-Boundary Value Problems in
One Space Dimension



In Part II we leave two-point boundary value problems and move on to
time-dependent (i.e., unsteady) problems. Only problems posed in one space
dimension are examined here; this enables us to make full use of the experi-
ence gained in Part I. These time-dependent problems are more difficult than
two-point boundary value problems but less demanding than elliptic (steady)
problems in two space dimensions.

The second-order differential equations that will be discussed in Part II
encompass a wealth of applications, as Chapter 1 will reveal. Our presenta-
tion concentrates on the motivation and analysis of numerical methods; for
detailed numerical results we recommend [HV03, VK93]. The classical theory
of parabolic partial differential equations is presented in [Fri64, LSU67].

Unsteady problems in more than one space dimension will be discussed in
Chapter III.4.



1

Introduction

In Part II we shall work with parabolic partial differential equations on the
rectangle (0, 1)× (0, T ] in the space-time domain, where T is some fixed posi-
tive time. It is not essential to have a rectangle; one can transform many other
domains to rectangular form.

Thus, consider the initial-boundary value problem

ut(x, t)− εuxx(x, t) + b(x, t)ux(x, t) + d(x, t)u(x, t) = f(x, t) (1.1a)

where (x, t) ∈ Q := (0, 1)× (0, T ], and

u(x, 0) = s(x) on Sx := {(x, 0) : 0 ≤ x ≤ 1}, (1.1b)

u(0, t) = q0(t) on S0 := {(0, t) : 0 < t ≤ T}, (1.1c)

u(1, t) = q1(t) on S1 := {(1, t) : 0 < t ≤ T}. (1.1d)

As in Part I, the notation L is used for the differential operator. That is,

Lu := ut − εuxx + bux + du

throughout Part II.
Here, as in Part I, ε is a parameter satisfying 0 < ε≪ 1. The functions b

and c are assumed to be smooth on Q̄ := [0, 1] × [0, T ], the closure of Q; the
data s of the initial condition (1.1b) and the data q0 and q1 of the boundary
conditions (1.1b) and (1.1c) are usually assumed to be smooth on the closures
of their respective domains. For the present we take f to be in L2(Q), but
more smoothness of this function will sometimes be needed. Full hypotheses
will be stated for each theoretical result.

Without loss of generality, one may assume that d(x, t) ≥ γ > 0 on Q̄ for
some constant γ, since this property can be ensured by the change of variable
u(x, t) = v(x, t)eCt with some suitable constant C.

When b is not identically zero, L is a convection-diffusion operator: −εuxx

models diffusion while the combined first-order terms ut + bux represent con-
vection. To see this clearly in the case where b is constant and c ≡ f ≡ 0, set
x′ = x− bt and w(x′, t) = u(x′ + bt, t). Then wt = bux + ut and wx′x′ = uxx.
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Consequently w satisfies the heat equation wt = εwx′x′ . Restating these facts
in terms of the original variables, we see that u is convected along lines of
the form x = bt + C at unit speed relative to a coordinate system moving
with speed b in the positive x direction, and is also subject to diffusion of
magnitude ε.

Returning to the solution of the general problem (1.1), the convection (or
flow, as it is often called) travels in the direction of propagation of the first-
order differential operator w �→ wt + bwx. The direction of propagation is
often called the direction of flow. Continuing in this vein, a point A ∈ Q̄ is
said to be upstream of a point B ∈ Q̄ if the curve of flow through A (that
is, the characteristic curve of wt + bwx that passes through A) also passes
through B, with the direction of propagation along this curve pointing from
A to B. Equivalently, one can say that B is downstream of A.

We shall concentrate on the case where b > 0 on Q̄, much as we did in
Part I. Once again, the mapping x �→ 1− x transforms the case b < 0 to the
case b > 0.

The case when b ≡ 0 will also be mentioned occasionally. In this situation,
the ut term may again be interpreted as a convective term, but now the zero-
order term du plays a significant role. Consequently this case is commonly
referred to as being of reaction-diffusion type. See in particular Remark 2.11
and Section 3.4.3.

When all the data b, d, f, s, q0, q1 are smooth and b > 0, the solution u of
(1.1) will be smooth on most of Q. Near the boundary x = 1 of Q, the solution
will in general exhibit a boundary layer. For each fixed value of t > 0, the
dependence of this layer on x is exactly the same as in the boundary layer
of Section I.1.1. Thus once again we are dealing with a singularly perturbed
problem. If we replace the Dirichlet condition (1.1d) by a Neumann condition,
then as in Remark I.1.5 the solution has a less severe boundary layer at x = 1.

The solution u may also have one or more interior layers. Such layers have
no exact counterpart in the solutions of ordinary differential equations. They
can be caused by discontinuities in s or q0, by insufficient compatibility of the
initial-boundary data at the corner (0,0) of Q, or by singularities in f . The
layer generated lies downstream of the discontinuity or singularity at which
it is triggered. For example, if b ≡ 2, d ≡ 0, f ≡ 0, s(x) ≡ 0 and q0(t) ≡ 1,
then the discontinuity in the initial-boundary conditions at (0,0) propagates
along the line x = 2t as a layer in u; roughly speaking,

u(x, t) ≈
{

1 if x < 2t,
0 if x > 2t,

and the continuous function u changes rapidly as (x, t) crosses the line x = 2t.
We discuss this phenomenon more rigorously immediately after Theorem 2.6.

Applications involving (1.1) arise for example in the linearized Navier-
Stokes equations of fluid dynamics [Hir88, KL04], simulation of oil extraction
from underground reservoirs [Ewi83], convective heat transport problems with
large Péclet numbers [Jak59], electromagnetic field problems in moving media
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[HBS87], miscible and multiphase flows [EW01], semiconductor device mod-
elling [MRS90], and meteorology [Sal98]. Biological and chemical applications
appear in [HV03]. A problem closely related to (1.1), where one of the bound-
ary conditions is at x = ∞, appears in the study of unsteady hydromagnetic
flow over a continuous moving flat surface for large suction Reynolds number
[VR90].

If one tries to solve (1.1) using standard numerical methods for partial
differential equations, then very inaccurate solutions are obtained unless the
mesh discretization used is extremely fine (see [HBS87] for an example). That
is, the situation is just as for the singularly perturbed ordinary differential
equations of Part I: in order to get inexpensive but accurate numerical results,
it will be necessary to devise methods that can cope with boundary and
interior layers.



2

Analytical Behaviour of Solutions

2.1 Existence, Uniqueness, Comparison Principle

For a general discussion of the properties enjoyed by solutions of parabolic
differential equations, the standard reference books are Friedman [Fri64] and
Ladyženskaja et al. [LSU67]. The broad analysis presented there is classical
in nature, dealing with solutions lying in Hölder spaces. Here we shall state
only those fundamental results from [Fri64] that are necessary to provide a
basis for our later work.

First, some notation and definitions. Let α ∈ (0, 1). A function w : Q→ R
is said to be Hölder continuous on Q with exponent α if

|w|Qα := sup
(x,t),(x′,t′)∈Q

|w(x, t)− w(x′, t′)|[
dist((x, t), (x′, t′))

]α <∞,

where we set dist((x, t), (x′, t′)) =
(
(x−x′)2+|t−t′|

)1/2
. For such a function w,

let
‖w‖Q

α := |w|Qα + sup
(x,t)∈Q

|w(x, t)|.

For all sufficiently smooth functions w, set

‖w‖Q
2+α := ‖w‖Q

α + ‖∂w/∂x‖Q
α + ‖∂2w/∂x2‖Q

α + ‖∂w/∂t‖Q
α .

Now define the space

C2+α(Q) := {w ∈ C(Q) : ‖w‖Q
2+α <∞}.

From [Fr64, p. 65], one gets

Theorem 2.1. Let α ∈ (0, 1). Let s ∈ C2[0, 1], q0 ∈ C1[0, T ] and q1 ∈ C1[0, T ]
with q0(0) = s(0) and q1(0) = s(1). Set

Ψ(x, t) = s(x) + (1− x)[q0(t)− q0(0)] + x[q1(t)− q1(0)],
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so that Ψ interpolates to the initial-boundary conditions. Assume that
Ψ ∈ C2+α(Q). Assume also that

q′0(0)− εs′′(0) + b(0, 0)s′(0) + d(0, 0)s(0) = f(0, 0), (2.1a)

q′1(0)− εs′′(1) + b(1, 0)s′(1) + d(1, 0)s(1) = f(1, 0). (2.1b)

Let b, d and f be Hölder continuous on Q with exponent α. Then (1.1) has
exactly one solution in C2+α(Q).

In this theorem, the equations q0(0) = s(0), q1(0) = s(1) and (2.1) are
called compatibility conditions. When the data b, d, f, s, q0 and q1 of (1.1) are
sufficiently differentiable, the solution u will be pointwise differentiable to any
desired degree on the region Q. But if differentiability on the closed region Q̄
is required, then regularity of the data alone does not suffice: one also needs a
sufficient amount of compatibility of that data at the corners (0, 0) and (1, 0).

Theorem 2.1 conforms to this statement, as it shows that ‖u‖Q
2+α is bounded;

when regularity of u is lost at a point on the boundary ∂Q, one expects the
relevant norm of u to blow up as one approaches that point from inside Q. If
the above compatibility conditions were not satisfied while the data b, d and f
remained Hölder continuous on Q, then a unique classical solution u of (1.1)
would still exist but its regularity would not be guaranteed on all of ∂Q.

For a discussion of the relationship between compatibility conditions and
the regularity of solutions to general parabolic differential equations see [Fri64,
Sections 3.3 and 3.5]. These ideas are applied to (1.1) in [SO89]. We shall also
mention some effects of compatibility conditions in Section 2.2.

Continuing with our examination of classical solutions to (1.1), one has
the following comparison principle, which is equivalent [PW67] to the usual
maximum principle for the operator L. (A more general weak comparison
principle can be found in [GFL+83] – cf. [GT83] for the elliptic case.)

Theorem 2.2. Let b and c be bounded functions. Let v, w ∈ C(Q̄). Assume
that v and w are twice differentiable in x and once in t on Q. Suppose that

|Lv(x, t)| ≤ Lw(x, t) for all (x, t) ∈ Q,
|v(x, t)| ≤ w(x, t) on Sx ∪ S0 ∪ S1.

Then
|v(x, t)| ≤ w(x, t) for all (x, t) ∈ Q̄.

Proof. See Friedman [Fri64]. ⊓⊔

This theorem, and its discrete analogue that will appear in Lemma 3.12,
are very useful in the analysis of asymptotic expansions and numerical meth-
ods for (1.1). As in Part I, the function v above will be the error in the
asymptotic expansion or numerical solution and w will be chosen carefully to
act as a barrier function for v.
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2.2 Asymptotic Expansions and Bounds on Derivatives

Assume throughout Section 2.2 that in (1.1) one has b > β > 0 on Q̄ for
some constant β, so this is a convection-diffusion problem. Assume also that
this problem has a unique solution u. Chapter 1 sketched the behaviour of u.
We now elucidate this behaviour by showing how to construct an asymptotic
expansion of u and by examining bounds on the derivatives of u.

For the asymptotic expansion, we shall follow the approach of Bobisud
[Bob67]. (See [GFL+83] for a more general approach by means of a weak
maximum principle.) Not all of the details are given here, as our main aims
are to impart a sense of the methods used and an understanding of the nature
of the solution of (1.1).

Lemma 2.3. Assume in (1.1) that b, d and f are bounded on Q. Assume also
that s ∈ C2[0, 1], q0 ∈ C1[0, T ] and q1 ∈ C1[0, T ], with s(0) = q0(0) and
s(1) = q1(0). Then there exists a constant C, which is independent of x, t
and ε, such that the bounds

|u(x, t)− s(x)| ≤ Ct, (2.2)

|u(x, t)− q0(t)| ≤ Cx (2.3)

hold true for all (x, t) ∈ Q̄.

Proof. Set v(x, t) = u(x, t)− s(x). Then

Lv(x, t) = f(x, t) + εs′′(x)− b(x, t)s′(x)− d(x, t)s(x),
v(x, 0) = 0 for 0 < x < 1,

v(0, t) = q0(t)− s(0) and v(1, t) = q1(t)− s(1) for 0 ≤ t ≤ 1.

In particular our hypotheses imply that for 0 ≤ t ≤ 1 one has

|v(0, t)| = |q0(t)− q0(0)| ≤Mt and |v(1, t)| ≤M ′t

for some constants M and M ′.
On the other hand, setting w(x, t) = Ct for any constant C, clearly

Lw(x, t) = C + Ctd(x, t),

w(x, 0) = 0 for 0 < x < 1,

w(0, t) = w(1, t) = Ct for 0 ≤ t ≤ 1.

Using the hypotheses on the data of the problem, we can easily verify that,
provided C is chosen sufficiently large, Theorem 2.2 applies to v and w. This
proves (2.2). The proof of (2.3) is similar. ⊓⊔

Remark 2.4. Lemma 2.3 shows that the solution u of (1.1) does not have a
layer near the sides x = 0 and t = 0 of Q̄. For if u ∈ C1(Q̄), then (2.2) and
(2.3) imply that |ut(x, 0)| ≤ C and |ux(0, t)| ≤ C respectively.
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In general any attempt at a similar argument will fail to prove that

|u(x, t)− q1(t)| ≤ C(1− t) ∀(x, t) ∈ Q. (2.4)

The inequality (2.4), if true, would imply that u had no boundary layer at
the side x = 1 of Q̄.

Note how the compatibility conditions s(0) = q0(0) and s(1) = q1(0) are
central to the proof of Lemma 2.3. This hints that, without such assumptions,
the solution u may not be so well behaved. This is indeed the case: for exam-
ple, s(0) �= q0(0) causes an interior layer in the solution, as we described in
Chapter 1. ♣

We now construct an asymptotic expansion for the solution u of (1.1).
The basic approach is a natural generalization of the technique used in Sec-
tion I.1.1. Nevertheless, the nonsmoothness of the boundary ∂Q of Q at the
point (0,0) causes particular difficulties that require special treatment.

Definition 2.5. The reduced problem associated with (1.1) when b > 0 on Q̄
is defined by

(u0)t + b(u0)x + du0 = f on Q, (2.5a)

u0(x, 0) = s(x) on Sx, (2.5b)

u0(0, t) = q0(t) on S0. (2.5c)

Since b > 0 on Q̄, this first-order problem has a unique solution, which we
denote by u0(x, t) and call the reduced solution. Analogously to Section I.1.1,
the reduced problem is obtained from (1.1) by formally setting ε = 0 in the
differential equation and discarding the boundary condition from the side of
Q where u has a boundary layer.

Theorem 2.6. Let b, d, f ∈ C2(Q̄), s ∈ C4[0, 1] and q0, q1 ∈ C3[0, T ]. Assume
that s(0) = q0(0) and s(1) = q1(0). Then the solution u of (1.1) has the
asymptotic expansion

u(x, t) = u0(x, t) + v(x, t) + w(x, t), (2.6)

where u0 is the solution of the reduced problem (2.5), v(x, t) is a boundary
layer function (defined in (2.12) below) that decays exponentially as one moves
away from x = 1, and |w(x, t)| ≤ C√ε.

Proof. A simplified version of the argument in [Bob67] will be presented.
First, we show that it is sufficient to consider the case of homogeneous initial-
boundary conditions. Set

p(x, t) = s(x) + (1− x)[q0(t)− q0(0)] + x[q1(t)− q1(0)],

so p = u on Sx ∪ S0 ∪ S1. Let v = u− p. Then
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Lv = f − pt + εpxx − bpx − dp (2.7)

with v ≡ 0 on Sx ∪ S0 ∪ S1.
This is almost what we want; it is not quite perfect because the right-hand

side of (2.7) depends on ε. To remedy this defect, set v = v1 + εv2, where v2
is the solution of the problem

Lv2 = pxx on Q,

v2 = 0 on Sx ∪ S0 ∪ S1.

It is easy to verify that |v2| ≤ ‖pxx‖L∞(Q)/γ on Q̄, using Theorem 2.2. Hence
|εv2| ≤ Cε on Q̄, so εv2 can be absorbed into w in (2.6). This leaves v1, which
satisfies Lv1 = f−pt−bpx−dp with homogeneous initial-boundary conditions.

During the rest of the proof, suppose that s ≡ q0 ≡ q1 ≡ 0 in (1.1). Then
the reduced solution u0 will not in general be C1 across the characteristic
curve of (2.5a) that passes through (0,0). This lack of smoothness hinders our
later arguments, so we shall show that u0 can be approximated to order

√
ε

by a C2 function ũ0 that is the solution of a problem closely related to (2.5).
Integrating (2.5) along its characteristic curves, one can check that u0 lies

in C2(Q̄) if and only if f, fx and ft satisfy a certain compatibility condition
at (0,0); the details of this computation are in [Bob67]. For the present ho-
mogeneous initial-boundary data, the compatibility condition holds true if
f(0, 0) = fx(0, 0) = ft(0, 0) = 0. This observation motivates the construction
of ũ0 below, where we introduce a cut-off function that is tantamount to f
being identically zero in a neighbourhood of (0,0).

Let z : [0,∞) → [0, 1] be C∞, with z(y) = 1 for 0 ≤ y ≤ 1 and z(y) = 0
for y ≥ 2. Then u0 = ũ0 + û0, where these new functions are defined by

(
(ũ0)t + b(ũ0)x + dũ0

)
(x, t) =

[
1− z(t/√ε )

]
f(x, t) on Q, (2.8)

ũ0 = 0 on Sx ∪ S0,(
(û0)t + b(û0)x + dû0

)
(x, t) = z(t/

√
ε )f(x, t) on Q, (2.9)

û0 = 0 on Sx ∪ S0.

Now ũ0 ∈ C2(Q̄), since [1− z(t/√ε )]f(x, t) satisfies the compatibility condi-
tions mentioned earlier. Also, integrating (2.9) along its characteristic curves
easily yields |û0| ≤ C

√
ε on Q̄. The term û0 will later be absorbed into w

in (2.6).
Next, the boundary layer term v(x, t) of (2.6) is constructed. Lemma 2.3

implies that a boundary layer can occur only near the side x = 1 of Q̄. Thus
define a local variable by ξ := (x−1)/ε and, setting v∗(ξ, t) := v(x, t), rewrite
the homogeneous differential equation Lv = 0 in terms of ξ:

v∗t − ε−1v∗ξξ + ε−1bv∗ξ + dv∗ = 0. (2.10)

We wish to choose v∗ to satisfy (2.10) up to O(ε−1), with v∗(0, t) = −ũ0(1, t)
for 0 ≤ t ≤ T , and limε→0 v

∗(ξ, t) = 0 for each fixed x < 1 and t ∈ [0, T ].
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Fix t ∈ [0, T ]. For 0 ≤ x ≤ 1, one has ε−1b(x, t) = ε−1b(1, t) + O(ξ).
Substituting this into (2.10) and equating the coefficients of ε−1 to zero yields

−v∗ξξ + b(1, t)v∗ξ = 0. (2.11)

Now define v∗ by requiring it to satisfy (2.11), v∗(0, t) = −ũ0(1, t) and
limε→0 v

∗(ξ, t) = 0 for each fixed x < 1. This forces the choice

v∗(ξ, t) = −ũ0(1, t)e
ξb(1,t)

for ξ < 0 and 0 ≤ t ≤ T . That is,

v(x, t) = −ũ0(1, t)e
−b(1,t)(1−x)/ε (2.12)

for (x, t) ∈ Q̄.
To complete the proof, we need to show that |u−(u0 +v)| is O(

√
ε ). Since

u0 = ũ0 + û0 and û0 is O(
√
ε ), it is sufficient to bound |u− (ũ0 + v)| by C

√
ε.

This will be done by means of the comparison principle of Theorem 2.2.
Set η = u− (ũ0 + v). Since ũ0 ∈ C2(Q̄) one can apply the operator L to η.

Furthermore, writing down an explicit formula for ũ0 (see [Bob67]) shows that
on Q̄ one has

|ũ0| = O(1), |(ũ0)t| = O(1), |(ũ0)xx| = O(ε−1/2). (2.13)

Now by (1.1a), (2.8) and (2.13),

|Lη(x, t)| = |f(x, t) + ε(ũ0)xx(x, t)− (1− z(t/√ε))f(x, t) (2.14)

− (vt − εvxx + bvx + dv)(x, t)|
≤ z(t/√ε)|f(x, t)|+ C√ε

+ |(b(1, t)− b(x, t))vx(x, t)− (vt + dv)(x, t)|
≤ z(t/√ε)|f(x, t)|+ C√ε+ Ce−b(1,t)(1−x)/2ε (2.15)

for (x, t) ∈ Q, where we used (2.12) and the inequality

ε−1(1− x)e−b(1,t)(1−x)/2ε ≤ C for x ≤ 1.

Hence

|Lη(x, t)| ≤ C
[√
ε+ e−β(1−x)/2ε + z(t/

√
ε)
]

for (x, t) ∈ Q. (2.16)

Furthermore, η = 0 on Sx ∪ S1 and |η| is exponentially small on S0.
Consider the function θ(x, t) = M

√
εet/

√
ε, where the constant M will be

chosen later. We show that θ is a barrier function for η. Clearly any value of
M satisfying M ≥ 1 will yield |η| ≤ θ on Sx ∪ S0 ∪ S1. Also,

(Lθ)(x, t) = M(1 + d
√
ε)et/

√
ε for (x, t) ∈ Q.
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From (2.16) it is clear that the constant M can be chosen (independently of ε)
so that θ is a barrier function for η.

Of course θ is quite large on most of Q and consequently useless there.
Nevertheless, it does show that

|η(x, t)| ≤Me2√ε ≤ C√ε for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 2
√
ε. (2.17)

The significance of this bound is that it estimates |η| in a satisfactory way on
that part of Q where there is a contribution to (2.16) from z(t/

√
ε).

Observe next that the comparison principle of Theorem 2.2 holds true
also on the (x, t)-domain Q′ := (0, 1)× (2

√
ε, T ], when one makes appropriate

superficial changes in the statement of this Lemma. This will be used to
bound |η| on Q′.

From (2.17) and our previous comments regarding η on S0 and S1, the
initial-boundary data for η on Q′ satisfies

|η| ≤ C√ε. (2.18)

For (x, t) ∈ Q′, (2.16) becomes

|Lη(x, t)| ≤ C(
√
ε+ e−β(1−x)/2ε). (2.19)

Let φ(x, t) = M ′(
√
ε + εe−β(1−x)/2ε) be our barrier function, where the

constant M ′ will be chosen in a moment. Any choice of M ′ ≥ C, where C is
as in (2.18), gives |η| ≤ φ for the initial-boundary data on Q′. Now

Lφ(x, t) = M ′{√ε d(x, t) + [b(x, t)β/2− β2/4 + d(x, t)]e−β(1−x)/2ε}.

Hence, using d ≥ γ > 0 and b > β on Q̄ and (2.19), one can choose an M ′

that is bounded independently of ε to yield Lφ(x, t) ≥ |Lη(x, t)| on Q′.
The comparison principle now gives |η| ≤ φ ≤ C√ε on Q′. Combining this

with (2.17) gives finally |η| ≤ C√ε on Q.
Recalling our earlier remarks in the proof, we have shown that

|u− (u0 + v)| ≤ C√ε on Q.

Set w = u− (u0 + v) to complete the argument. ⊓⊔

Theorem 2.6 gives us a good understanding of the structure of the solu-
tion u. In particular it says that the boundary layer along x = 1 is, for each
fixed value of t, of the same form as we encountered in Part I; compare (2.12)
and the term v0((1− x)/ε) of (I.1.6).

The theorem also indicates the effect of any discontinuity in the initial-
boundary data on Sx ∪ S0. For then the reduced solution u0 will clearly be
discontinuous along the characteristic curve of (2.5a) that passes through the
point of discontinuity in Sx ∪ S0. But u ∈ C1(Q) and, away from x = 1, we
have |u − u0| ≤ C

√
ε by (2.6). Hence u must have an interior layer that lies

along this characteristic curve.
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The characteristic curves of (2.5a) appear frequently in our exploration of
numerical methods for (1.1). We shall in future refer to these curves as the
subcharacteristics of (1.1a).

Remark 2.7. Suppose that for homogeneous initial-boundary data the com-
patibility conditions 0 = f(0, 0) = fx(0, 0) = ft(0, 0) are satisfied, in addition
to the hypotheses assumed in Theorem 2.6. Then the bound on w in Theo-
rem 2.6 can be strengthened to |w| ≤ Cε; see [Bob67]. ♣

In several papers [Shi96a, Shi01, GS04] Shih constructs asymptotic expan-
sions for the solutions of problems related to (1.1), and in [Shi07a] discusses
an asymptotic expansion for a pure initial-value problem with a discontinuity
in the initial data. Hirsch [Hir90, Section 22.4] also considers this initial-value
problem, assuming b is constant and d ≡ f ≡ 0. His initial conditions are
u ≡ u1 for x > 0 and u ≡ u2 for x < 0, where the ui are constants, with the
boundary conditions u ≡ u1 as x → ∞ and u ≡ u2 as x → −∞. Then the
exact solution is

u(x, t) =
u2 + u1

2
− u2 − u1

2
erfc

(
x− bt
2
√
εt

)
,

where erfc(·) is the usual complementary error function. From this explicit
formula and standard properties of erfc(·), one can see that u has an interior
layer as described above.

Remark 2.8. Suppose that in (1.1) we have homogeneous initial-boundary
data. Assume that b, d and f are sufficiently smooth and that the following
compatibility conditions are satisfied: f(1, 0) = 0 and

∣∣∣∣
∂k+mf(0, 0)

∂xk∂tm

∣∣∣∣ = 0 for k + 2m ≤ 3.

Then one can obtain pointwise estimates for low-order derivatives of u, viz.,

∣∣∣∣
∂k+mu(x, t)

∂xk∂tm

∣∣∣∣ ≤ C(1 + ε−ke−β(1−x)/ε), (2.20)

for (x, t) ∈ Q, k = 0, 1 and k + m ≤ 2. Details of this work are in [SO89].
Inequality (2.20) implies that no interior layer is present. By making further
compatibility assumptions and differentiating (1.1a) with respect to t one or
more times, the bounds of (2.20) are easily extended to larger values of k
and m. ♣

Remark 2.9. In Section I.1.1.3 an S-decomposition of the solution of a two-
point boundary value problem was constructed. An analogue for (1.1) appears
in [Shi92b, p.221] and [Shi]: assume that the solution u has no interior layers
(equivalently, assume that a sufficient number of compatibility conditions are
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satisfied at the corners (0, 0) and (1, 0)). Then u(x, t) = U(x, t) + V (x, t) for
(x, t) ∈ Q, with LU = f, LV = 0,

∣∣∣∣
∂k+mU(x, t)

∂xk∂tm

∣∣∣∣ ≤ C and

∣∣∣∣
∂k+mV (x, t)

∂xk∂tm

∣∣∣∣ ≤ Cε−ke−β(1−x)/ε, (2.21)

for 0 ≤ k,m ≤ 3 and some constant C.
Starting from (2.20), one can deduce the existence of a decomposition

u = U+V satisfying (2.21) by means of the same argument that was presented
for two-point boundary value problems in Section I.1.1.3, but the properties
LU = f and LV = 0 are then not guaranteed. ♣

Example 2.10. Suppose that the problem (1.1) were posed on [0, 1] × [0,∞)
instead of [0, 1]× [0, T ]. Suppose also that the data b, d and f of the problem
are constants and that the qi(t) are continuous with limt→∞ qi(t) = q̄i for
i = 1, 2, where the q̄i are constants. What happens to the solution u(x, t) as
t→∞?

Let ū(x) denote the solution of the two-point boundary value problem

−εū′′ + bū′ + dū = f for 0 < x < 1,

ū(0) = q̄0 and ū(1) = q̄1.

Problems of this type are quite familiar from Part I.
Then, by a repeated use of comparison principles, it is not difficult to show

that max0≤x≤1 |u(x, t) − ū(x)| is arbitrarily small for all sufficiently large t.
That is, ū is the steady-state solution of (1.1). ♣

In [VR90] the authors give an asymptotic expansion for a problem like
(1.1) except that the boundary condition at x = 0 is replaced by a decay
condition as t→∞ and one has initial data for u(x, 0) for −∞ < x < 1.

Remark 2.11. In the case of the reaction-diffusion problem obtained by taking
b ≡ 0 in (1.1), the asymptotic nature of the solution u is quite different
from the convection-diffusion case: now u will have boundary layers along
both x = 0 and x = 1. Each of these layers contributes a leading term to
the asymptotic expansion of u that is the solution w of the parabolic partial
differential equation Lw = 0 on Q, subject to certain boundary conditions.
Thus they are called parabolic boundary layers. They have a more complicated
asymptotic structure than the exponential boundary layers we have met up to
now, and have no analogue in the solutions of ordinary differential equations.
We discuss this type of layer in more detail in Part III.

In the reaction-diffusion case the reduced problem is defined by formally
setting ε = 0 in (1.1a) and using only the boundary data (1.1b). Parabolic
boundary layers arise where the flow (i.e., the direction of propagation of the
reduced problem) is parallel to the boundaries x = 0 and x = 1 of Q, which are
also subcharacteristics of (1.1a). For this reason, parabolic boundary layers
are also known as characteristic boundary layers.
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An S-decomposition of the solution u of a reaction-diffusion problem is
given in [HSS00, Appendix A.1]. After making precise assumptions about the
regularity of the data and the compatibility conditions that are satisfied at
the corners (0, 0) and (1, 0) of Q, it is shown that

u(x, t) = U(x, t) + W1(x, t) + W2(x, t) for (x, t) ∈ Q,

with LU = f, LW1 = 0, LW2 = 0 and

∣∣∣∣
∂k+mU(x, t)

∂xk∂tm

∣∣∣∣ ≤ C, (2.22a)

∣∣∣∣
∂k+mW1(x, t)

∂xk∂tm

∣∣∣∣ ≤ Cε−k/2e−βx/
√

ε, (2.22b)

∣∣∣∣
∂k+mW2(x, t)

∂xk∂tm

∣∣∣∣ ≤ Cε−k/2e−β(1−x)/
√

ε, (2.22c)

for some constant C and values of k and m that depend on the compatibility
assumptions. Note how each extra x-derivative introduces a factor ε−1/2 into
(2.22b) and (2.22c), unlike the corresponding factor ε−1 that appears in (2.21)
for convection-diffusion problems. ♣



3

Finite Difference Methods

3.1 First-Order Problems

Assume that b(x, t) > β > 0 on Q̄. Then the solution u of (1.1) has in general
a boundary layer along the side x = 1 of Q̄. Away from this layer and from
any interior layers – i.e., on almost all of Q – one expects that u is very close
to the solution u0 of the reduced problem

L0u0 := (u0)t + b(u0)x + du0 = f on Q, (3.1a)

u0(x, 0) = s(x) on Sx, (3.1b)

u0(0, t) = q0(t) on S0. (3.1c)

Consequently any method that computes an accurate numerical approxima-
tion of umust be closely related to a method that yields an accurate numerical
solution of the first-order problem (3.1). We therefore begin our investigation
by considering finite difference methods that are applicable to (3.1).

Several concepts that are frequently used in the analysis of finite difference
methods for first-order problems are presented and explained below. For a
more complete discussion see [Str04].

Let M and N be positive integers. When working on Q̄, we use a rectan-
gular grid Qh,τ whose nodes are (xi, tj) for i = 0, . . . ,M and j = 0, . . . , N .
Here 0 = x0 < x1 < · · · < xM = 1 and 0 = t0 < t1 < · · · < tN = T . Such grids
are also known as tensor-product grids. Given any function v that is defined
on the grid, set vj

i = v(xi, tj).
For simplicity throughout Section 3.1 only equidistant grids are considered,

viz., xi − xi−1 = h (say) for i = 1, . . . ,M and tj − tj−1 = τ (say) for j =
1, . . . , N .

3.1.1 Consistency

A basic theoretical concept is consistency. Essentially, a scheme for (3.1) is
consistent if it provides a good approximation to (3.1) when the mesh is
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sufficiently fine. This does not imply that the solution of the scheme must be
a good approximation of the solution of (3.1).

To state this idea more precisely, let the scheme be L0
h,τuh,τ = f̃ , where

uh,τ and f̃ are column vectors and L0
h,τ is a matrix. The matrix L0

h,τ approx-

imates L0 by means of difference quotients. The vector f̃ approximates the
values of f at the gridpoints (xi, tj). The grid function uh,τ interpolates to
s(x) on Sx and to q0 on S0; this initial-boundary information may also be
incorporated into L0

h,τuh,τ = f̃ .

When discussing the solution u(x, t) we set uj
i := uh,τ (xi, tj) for all i and j.

Discrete operators such as L0
h,τ are often applied to functions v defined on

all of Q̄ by first restricting v to {vj
i }. To describe this precisely one should

introduce a restriction operator Rh as in Section I.2.1.1, but we do not bother
with this here and simply write L0

h,τv.

If w ∈ C(Q̄) or w is defined on the grid Qh,τ , then define the discrete
maximum norm of w by ‖w‖∞,d = max{|w(xi, tj)| : (xi, tj) ∈ Qh,τ}.

Definition 3.1. Similarly to Part I, the scheme L0
h,τuh,τ = f̃ is said to be

consistent with (3.1) with respect to ‖ · ‖∞,d if one has

‖L0u0 − L0
h,τu0‖∞,d + ‖f − f̃‖∞,d → 0 as h, τ → 0.

In general, consistency is easy to check by a Taylor expansion of the func-
tions u0 and f about each mesh point (xi, tj). If a scheme is consistent, it does
not automatically follow that it yields an accurate numerical approximation
to the solution of (3.1). The next example illustrates this important point and
introduces a scheme that we shall encounter frequently later.

Example 3.2. Take b ≡ 1 and d ≡ f ≡ 0 in (3.1a), so the differential equation
becomes (u0)t + (u0)x = 0. Let the initial-boundary data be u0(x, 0) = 0 on
Sx and u0(0, t) = t3 on S0. The solution to this problem is

u0(x, t) =

{
(t− x)3 if t ≥ x,
0 otherwise,

(3.2)

for all (x, t) ∈ Q̄.
Approximate this differential equation by the scheme

(L0
h,τuh,τ )j

i :=
uj

i − uj
i−1

h
+
uj+1

i − uj
i

τ
= 0

for i = 1, . . . ,M and j = 0, . . . , N − 1. The discrete solution uh,τ interpolates
to the initial-boundary data of the original problem, i.e., we set u0

i = 0 for

all i and uj
0 = t3j for all j.

This scheme is commonly called the simple upwind scheme. It is straight-
forward to verify that it is consistent. One can rewrite it as
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uj+1
i = (1− τ/h)uj

i + (τ/h)uj
i−1, (3.3)

which is a more convenient form for computation.
Since u0

i = 0 for all i (from the initial data), taking j = 0 in (3.3) yields
u1

i = 0 for i = 1, . . . ,M . Repeating this argument for j = 1, . . . , N − 1, we

conclude that the computed solution uh,τ satisfies uj
i = 0 for i ≥ j. That is,

uh,τ = 0 at those nodes (xi, tj) that lie in {(x, t) ∈ Q̄ : τx/h ≥ t}. If, say,
τ = 2h, then the computed solution will be zero at all nodes of Qh,τ that
lie below the line t = 2x. This is clearly a very poor approximation to u0 on
much of Q̄. ♣

3.1.2 Stability

We have just seen that consistency alone fails to ensure that the solution
of a difference scheme is accurate. A more subtle additional attribute called
stability is needed to guarantee accuracy. It essentially says that the discrete
operator L0

h,τ has an inverse that is bounded, uniformly in h and τ , in some
norm, but the material below is not presented from this viewpoint.

One can define various forms of stability; see [GKO95, RM94] for a discus-
sion of the issues involved. Here we confine our attention to the most standard
form.

Suppose that the difference scheme, including boundary conditions, can
be written in matrix-vector form as

uj = Auj−1 + wj−1 for j = 1, . . . , N, (3.4)

where uj := (uj
0, . . . , u

j
M )T , A is an (M + 1) × (M + 1) matrix, and wj−1 is

a vector that depends only on f , the initial-boundary data, and the mesh.
Consequently

uj = Aju0 +

j∑

k=1

Aj−kwk−1. (3.5)

In the case where q0 ≡ f ≡ 0, the solution u0(·, t) of (3.1) will be bounded
in Lp(0, 1) for each t ∈ [0, T ] and 1 ≤ p ≤ ∞.

In general, a difference scheme is stable if its solution has a certain bound-
edness property that is already enjoyed by the solution of the differential
equation that it models; thus we are led by (3.5) to the next definition.

Definition 3.3. The scheme (3.4) is stable with respect to the discrete Lp

norm ‖ · ‖p,d over a family F of meshes if

‖Aj‖p,d ≤ K for all j, (3.6)

where K is some constant that is fixed for all meshes in F and ‖Aj‖p,d is the
matrix norm induced on Aj by the discrete Lp norm of v ∈ RM+1, which is
defined by
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‖v‖p,d =

{(
h
∑K

i=0 |vi|p
)1/p

when 1 ≤ p < ∞,

maxi |vi| when p =∞.

This definition is known as the matrix criterion for stability analysis. The
family F of meshes may be defined, for instance, as those meshes satisfying
τ ≤ h ≤ h0 where the constant h0 depends on the data b and d. We emphasize
that the constantK in (3.6) must be independent of the mesh; an examination
of the eigenvalues of A may show that for each fixed mesh ‖Aj‖2,d is bounded
for all j, but this does not prove (3.6). For further discussion of this point,
which is sometimes incorrectly presented in the literature, see [Str04, Section
11.5].

Setting q0 ≡ f ≡ 0, as we did earlier, means that wj−1 = 0 in (3.4) except
for a finite number of j. Then stability implies that ‖uj‖p,d is bounded for all
j, just as the solution of the differential equation was bounded.

In principle, the matrix criterion provides necessary and sufficient condi-
tions for the stability, with respect to any vector norm, of any scheme of the
form (3.4). In practice, however, it is often quite difficult to obtain a satisfac-
tory analysis of (3.6). For an example see [Str04, Section 11.5]. This drawback
prompts us to use the simpler L2-stability test that we now describe.

For first-order problems like (3.1) and parabolic problems such as (1.1),
one can decompose the stability analysis into two separate parts. One part
examines the difference scheme when it is applied to a pure initial-value prob-
lem, with initial data on the entire x-axis. The other analyses the interaction
between the scheme and the boundary condition(s) imposed in the scheme.
This separation is not necessary for a theoretical investigation – recall the
matrix criterion above – but it is frequently convenient.

We shall describe the analysis of the initial-value problem but refer to
[GKO95, Str04] for theory and examples that deal with the boundary condi-
tions, because a full description of stability for initial-boundary value problems
is technical and lengthy.

Suppose therefore that (3.1) is altered to a pure initial-value problem.
That is, (3.1a) becomes

wt + bwx + dw = f on Q̂ := (−∞,∞)× [0, T ] (3.7)

and (3.1b) and (3.1c) are replaced by w(x, 0) = ŝ(x) on (−∞,∞), where
the function ŝ is given. The functions b, d and f are taken to be defined
on Q̂. Assume that ŝ, b, d and f are continuous and bounded on Q̂, with
b(x, t) > β > 0 and d(x, t) ≥ γ > 0. Also assume that ŝ(x) → 0 as |x| → ∞,
with ŝ ∈ L2(−∞,∞).

The above assumptions are designed to remove the effects of boundary
conditions, but otherwise alter the original problem (3.1) as little as possible.

The following stability analysis assumes that f ≡ 0. This is not a restric-
tion. It turns out [Str04, Section 9.3] that the stability of a scheme depends
only on the difference approximation to L0 and on the boundary conditions
present.
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Place an equidistant tensor-product mesh (xi, tj) on Q̂, where x0 = 0,
xi = ih for −∞ < i < ∞, and t0 = 0, tj = jτ for j = 0, . . . N . The difference
scheme “matrix” (it is now infinite-dimensional) is still written as L0

h,τ .

Assume that f ≡ 0. Then the scheme is: L0
h,τu

j
i = 0 for −∞ < i <∞ and

j = 0, . . . N − 1. This scheme is L2 stable if and only if there exists a fixed
non-negative integer J and a constant K such that for each j ∈ {0, . . . , N},

‖uh,τ (·, tj)‖22,d := h

∞∑

i=−∞
|uj

i |2 ≤ Kh
J∑

k=0

∞∑

i=−∞
|uk

i |2 = K

J∑

k=0

‖uh,τ (·, tk)‖22,d

(3.8)
for all h and τ sufficiently small (with perhaps some restriction on the relative
sizes of h and τ such as τ ≤ 2h).

The left-hand side of (3.8) is the square of the usual discrete L2(−∞,∞)
norm, while the right-hand side is a sum of J+1 such squares. The inequality
is reasonable: it says that the discrete L2 norm of the solution at any time
level is bounded by a constant times a discrete L2 norm near t = 0.

The value of J in (3.8) depends on how the scheme makes use of the initial
data, as we now describe.

A one-step scheme is a difference scheme where the computation of uj+1
i

for each i and j does not depend on un
(·) for any n < j. The simple upwind

scheme of Example 3.2 is a one-step scheme. A scheme such as

uj+1
i − uj−1

i

2τ
+
uj

i+1 − uj
i−1

2h
= 0

(which is consistent with the equation wt +wx = 0) is not a one-step scheme.
Schemes that are not one-step are called multi-step schemes.

For L2-stable one-step schemes, one always has J = 0. For multi-step
schemes, unlike one-step schemes, it is obvious that we need initial data on
more than one time level in order to commence iterating. This extra initial
data may come from the original problem (in which case one must take J > 0
in (3.8) in order to include all externally supplied initial data in the right-hand
side), or it may be generated by using a one-step method that needs only the
initial data from t = 0 (and one then takes J = 0).

Example 3.4. Consider the L2 stability of the simple upwind scheme

(L0
h,τu)

j
i :=

uj+1
i − uj

i

τ
+ b

uj
i − uj

i−1

h
= 0,

for −∞ < i < ∞ and j = 0, . . . , N − 1. This scheme is consistent with the
differential equation wt + bwx = 0, where b is constant.

For each j ≥ 1, the inequality 2|uj
iu

j
i−1| ≤ |uj

i |2 + |uj
i−1|2 yields
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∞∑

i=−∞
|uj+1

i |2 =

∞∑

i=−∞
|(1− bτ/h)uj

i + (bτ/h)uj
i−1|2

≤
∞∑

i=−∞
{[(1− bτ/h)2 + (bτ/h)|1− bτ/h|]|uj

i |2

+ [(bτ/h)2 + (bτ/h)|1− bτ/h|]|uj
i−1|2}

=

∞∑

i=−∞
[|1− bτ/h|+ (bτ/h)]2|uj

i |2.

If |1− bτ/h|+ (bτ/h) ≤ 1, then

∞∑

i=−∞
|uj+1

i |2 ≤
∞∑

i=−∞
|uj

i |2 ≤
∞∑

i=−∞
|uj−1

i |2 ≤ · · · ≤
∞∑

i=−∞
|u0

i |2,

i.e., the scheme is L2 stable. The sufficient condition |1− bτ/h|+ (bτ/h) ≤ 1
is equivalent to the inequality bτ ≤ h.

When this sufficient condition is violated, it does not follow from our
calculation that the scheme is L2 unstable. Nevertheless Example 3.2 shows
that when bτ > h the computed solution is unsatisfactory; this poor behaviour
will be examined from another viewpoint after Theorem 3.7. ♣

To prove L2 stability sometimes entails algebraic manipulations that are
more ingenious than those of Example 3.4; see [GKO95, RM94].

If the coefficients in the scheme are variable (as will usually be the case
when either b or d is not constant), then to prove L2 stability one begins
by “freezing” each coefficient. This means that one replaces each variable
coefficient by its value at some arbitrary point in the domain of definition of
the differential equation. Thus the variable coefficient scheme is replaced by
one with constant coefficients, but these constant coefficients are not known
precisely; one can say only that they lie in the range of values of the original
coefficients. If one can prove that this frozen coefficient scheme is L2 stable,
then under certain conditions it follows that the original variable coefficient
scheme is also L2 stable. For a discussion of this topic see [Str04].

3.1.3 Convergence in L2

Now that consistency and stability have been defined, we can address the
issue of deciding which schemes yield “good” approximations of the solution
of (3.7). (Strictly speaking consistency was defined only for (3.1) and for the
norm ‖ · ‖∞,d, but it is easy to see how to adapt this definition to fit (3.7) and
‖ · ‖2,d.) We again work in a framework of L2 norms.

Definition 3.5. (Convergence in the discrete L2 norm) Let w be the solution
of (3.7) with w(x, 0) = ŝ(x) on (−∞,∞). Let uh,τ be the solution of the
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scheme L0
h,τuh,τ = f̃ with some initial conditions, where all meshes considered

come from some family F . We say that uh,τ converges to w if

max
tj∈[0,T ]

h

∞∑

i=−∞
|w(xi, tj)− uj

i |2 → 0 as h, τ → 0,

where in this limit we consider only values of τ such that t/τ is an integer. ♣

All of these concepts come together in the following celebrated result,
which is proved in, e.g., [GKO95, Str04].

Theorem 3.6 (Lax-Richtmyer theorem). An L2-consistent finite differ-
ence scheme for (3.7) is L2-convergent for a family of meshes F if and only
if it is L2 stable for F .

This theorem tells us that we should concentrate on schemes that are
both consistent and stable. In general schemes that seem intuitively to be
reasonable approximations of (3.7) are consistent. It is less obvious which
schemes are L2 stable; one must carefully verify the condition of the definition.
We now give a simple necessary condition for L2 stability that enables us to
exclude many plausible but inaccurate schemes from consideration.

A difference scheme for (3.7), with f = 0, is said to be explicit if for each i
and j it can be written in the form

uj
i =

∑
αn

(·)u
n
(·)

where the αn
(·) depend only on b, d and the grid, the sum has a fixed finite

number of terms and each n satisfies n < j. That is, each uj
i can easily be

calculated from the previously computed solution at earlier time levels without
having to solve a linear system of equations.

Theorem 3.7. Consider

wt + bwx + dw = 0 on Q̂, (3.9)

with initial data on the x-axis. Assume that b is a positive constant. Ap-
proximate (3.9) on an equidistant tensor-product grid by the explicit one-step
scheme

uj
i = αj−1

i−1u
j−1
i−1 + αj−1

i uj−1
i + αj−1

i+1u
j−1
i+1 ,

where the coefficients α are constants depending on h, τ, b and d. Assume
that this scheme is consistent with (3.9). Then a necessary condition for L2

stability is the Courant-Friedrichs-Lewy (CFL) condition

bτ

h
≤ 1.
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Proof. The form of the scheme implies that uj
i is computed using only those

initial values u0
k for which i− j ≤ k ≤ i + j. That is, the only data used from

the x-axis lies in the interval [xi − jh, xi + jh].
Suppose that the scheme violates the CFL condition. Then [xi−jh, xi+jh]

is contained in the interior of the interval [xi − bjk, xi + bjk].
Now the characteristic curve of (3.9) that passes through (xi, tj) intersects

the x-axis at the point x = xi − bjk. Thus the value of wj
i depends on the

initial data at (xi − bjk, 0), but we have just seen that data from this point
is not used to compute uj

i . As (xi, tj) was an arbitrary mesh point, we infer
that uh,τ cannot in general converge to w. The Lax-Richtmyer theorem now
implies that the scheme is not L2 stable. ⊓⊔

The quantity bτ/h is called the Courant number. Theorem 3.7 can easily
be modified so that its argument and conclusion apply to any explicit scheme.

The CFL condition is extremely useful because of its simplicity and wide-
spread applicability. For instance, it complements the analysis of Example 3.4,
where the simple upwind scheme was shown to be stable when bτ ≤ h. The
CFL condition implies that the scheme is unstable when bτ > h, which agrees
with the conclusion of Example 3.2.

Explicit schemes have the desirable property that solutions can be com-
puted cheaply as one moves from each time level to the next. Nevertheless, for
any explicit scheme, the CFL condition places a restriction on the maximum
permissible time step. Thus if the mesh in the x-direction is fine (a situation
that might arise at a boundary layer), then large time steps will not be per-
mitted and consequently an excess of computational effort may be needed to
reach t = T .

All the schemes we have seen so far are explicit, but implicit (i.e., non-
explicit) schemes are quite common. More work per time step is needed when
one uses an implicit scheme. This may be offset by the fact that implicit
schemes generally have much less restrictive conditions (or perhaps none at
all) on the maximum permissible value of τ ; see, e.g., Example 3.8.

Theorem 3.7 cannot be applied to implicit schemes. We now describe an
alternative method for L2-stability analysis, devised by von Neumann and
based on Fourier transforms, which can be used with any one-step or multi-
step scheme.

Given a constant coefficient difference scheme for (3.7), where the mesh
is equidistant, replace uj

m by ξjeımθ for each m and j, and set f ≡ 0. Here
ı =

√
−1, ξ ∈ C and θ ∈ R. Solve this equation for the amplification factor ξ.

Then the scheme is L2 stable if and only if the von Neumann condition

|ξ(θ, h, τ)| ≤ 1 +Kτ

holds true for all θ and all sufficiently small h and τ , where K is some fixed
positive constant. If d ≡ 0 in (3.7), then [RM94] the above von Neumann
condition should be replaced by

|ξ(θ, h, τ)| ≤ 1.
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Example 3.8. Here, for the first time, we meet one of the most commonly used
schemes in the literature. It is often called the (Keller) box scheme, since it
is analysed in [Kel71] and is derived by integrating the differential equation
over each rectangular box formed by the grid, but the earliest description of
the scheme appears to be that of Wendroff [Wen60] and indeed it also travels
under the name of Wendroff’s implicit scheme.

The box scheme for (3.7), when b is constant and d ≡ 0, is

b

2h
[(uj

m+1 + uj+1
m+1)− (uj

m + uj+1
m )] +

1

2τ
[(uj+1

m + uj+1
m+1)− (uj

m + uj
m+1)]

= f j
m, (3.10)

for −∞ < m <∞ and j = 0, . . . ,M − 1.
For a pure initial-value problem such as (3.7) this scheme is implicit, but

for the initial-boundary value problem (3.1) one can sequentially compute
uj+1

1 , uj+1
2 , . . . , uj+1

M at successive time levels tj+1 without solving linear sys-
tems of equations.

It is easy to check that (3.10) is consistent with (3.7). Following the von
Neumann procedure with f ≡ 0, a calculation yields

ξ(θ, h, τ) =
1 + ν + (1− ν)eiθ
1− ν + (1 + ν)eiθ

,

where we have set ν = bτ/h. It then follows that |ξ(θ, h, τ)| = 1 for all values
of θ, h and τ . That is, the box scheme satisfies the von Neumann condition
on every equidistant mesh. ♣

Example 3.9. If one applies the von Neumann analysis to the simple upwind
scheme of Example 3.4, then ξ = 1 − ν(1 − e−iθ) with ν = bτ/h, so |ξ|2 =
1+2ν(ν− 1)(1− cos θ). Consequently the von Neumann condition is satisfied
if and only if ν ≤ 1. This conclusion resembles our earlier stability results for
this scheme. ♣

Further examples of the von Neumann stability analysis can be found
in [Hir88, Str04]. Like the CFL condition, the von Neumann condition is a
necessary but not a sufficient L2-stability condition for the initial-boundary
value problem (3.1). In practice, however, this pair of necessary conditions –
when taken together – often turn out to be also sufficient for L2 stability.

3.2 Convection-Diffusion Problems

Consider once again the parabolic convection-diffusion problem (1.1):
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ut(x, t)− εuxx(x, t) + b(x, t)ux(x, t) + d(x, t)u(x, t) = f(x, t)

where (x, t) ∈ Q := (0, 1)× (0, T ], and

u(x, 0) = s(x) on Sx := {(x, 0) : 0 ≤ x ≤ 1},
u(0, t) = q0(t) on S0 := {(0, t) : 0 < t ≤ T},
u(1, t) = q1(t) on S1 := {(1, t) : 0 < t ≤ T}.

Assume that d(x, t) ≥ γ > 0 and b(x, t) > β > 0.
The ideas and techniques that we encountered in Section 3.1 will apply

(for the most part) to finite difference schemes for (1.1) after making some
minor changes in notation. Again place the equidistant rectangular grid

Qh,τ := {(xi, tj) : i = 0, . . . ,M and j = 0, . . . , N}

on Q̄, with h = xi − xi−1 for all i and τ = tj − tj−1 for all j. The difference

scheme is written as Lh,τuh,τ = f̃ on Qh,τ , where uh,τ interpolates to the

initial-boundary data. As before, uj
i stands for uh,τ (xi, tj).

3.2.1 Consistency and Stability

Assume that all our meshes come from some family F . Consistency of the
scheme Lh,τuh,τ = f̃ with respect to the discrete maximum norm is defined
analogously to Definition 3.1.

The scheme Lh,τuh,τ = 0 is L2 stable on F with respect to the initial-
boundary data if there exists a constant K such that for each j ∈ {0, . . . , N},

‖uh,τ (·, tj)‖22,d := h

M∑

i=0

|uj
i |2

≤ K
[
h

M∑

i=0

|u0
i |2 + τ

j∑

k=1

(|uk
0 |2 + |uk

M |2)
]

= K
[
‖s‖22,d + ‖q0‖22,d;[0,tj ]

+ ‖q1‖22,d;[0,tj ]

]
(3.11)

for all h and τ sufficiently small, where ‖qk‖2,d;[0,tj ] denotes the discrete L2

norm of qk(t)|t∈[0,tj ].
The von Neumann condition of Section 3.1.3 can be applied to any differ-

ence scheme for (1.1). This gives a necessary condition for L2 stability. One
can also use the matrix criterion to get necessary and sufficient conditions for
L2 and L∞ stability.

Example 3.10. Hirsch [Hir88, Section 10.4] compares these two approaches in
giving a detailed L2-stability analysis of the scheme

uj+1
i − uj

i

τ
− εu

j
i+1 − 2uj

i + uj
i−1

h2
+ b

uj
i+1 − uj

i−1

2h
= 0, (3.12)
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which uses central differences in space to approximate (1.1a). Here b is con-
stant and d ≡ f ≡ 0. In particular he shows from a von Neumann analysis
that

τ ≤ 2ε

b2
and

τ

h2
≤ 1

2ε

are necessary for L2 stability. Thus the scheme has little practical value be-
cause the condition τ ≤ 2ε/b2 is very restrictive. It should be noted that
for the cell Reynolds number bh/ε, the L2-stability analysis requires only the
upper bound 2h/(bτ). Thus even for large cell Reynolds numbers one can
achieve L2 stability for nonupwinded schemes for time-dependent problems.
Nevertheless a simple barrier function argument based on Theorem 2.2 shows
that

max
(x,t)∈Q̄

|u(x, t)| ≤ max{|u(x, t)| : (x, t) ∈ Sx ∪ S0 ∪ S1},

and requiring that the discrete solution obey the same bound (this is the L∞-
stability condition (3.15) with K = 1) forces the cell Reynolds number to be
bounded by 1 – see [Str04, Section 6.4]. ♣

Example 3.11. Suppose that we attempt to stabilize the central difference in
space scheme by taking a backward difference in time. That is, approximate
(1.1a), with b ≡ r ≡ 1 and d ≡ f ≡ 0 for convenience, by

uj
i − uj−1

i

τ
− εu

j
i+1 − 2uj

i + uj
i−1

h2
+
uj

i+1 − uj
i−1

2h
= 0, (3.13)

for i = 1, . . . ,M−1 and j = 1, . . . , N . A von Neumann analysis of this scheme
shows that it is L2 stable for all choices of h and τ . Nevertheless it is in general
an unsatisfactory scheme for (1.1), as we now show heuristically.

Suppose that the data of the problem are such that the solution u has no
interior layers but a boundary layer at x = 1. Assume that ε is much smaller
than h and τ , as is usually the case in practice. Then all interior nodes lie
outside the boundary layer and the ε/h2 term in (3.13) can be ignored. Assume
also that h ≤ τ .

Take i = M − 1 in (3.13) for each j, giving

uj
M−2 = uj

M +
2h(uj

M−1 − uj−1
M−1)

τ
.

But if the computed solution is accurate outside the layer, then uj
M−1−uj−1

M−1

is small. It follows that uj
M−2 ≈ uj

M , which is not true of the analytical
solution u(x, t) because of the boundary layer. ♣

Example 3.11 shows that one must be careful when interpreting the results
obtained from an L2-stability analysis. Discussions of this issue and of the
effect of boundary conditions are given in [HGG84, Hir88, Mor80, Str04].
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For difference schemes for general parabolic differential equations, the CFL
condition for L2 stability is inapplicable. Nevertheless – recall the first para-
graph of Section 3.1 – for a convection-dominated problem such as (1.1), if
setting ε = 0 in our difference scheme yields an explicit scheme for the reduced
problem, then in practice the CFL condition for this “reduced” scheme is a
necessary condition for L2 stability of the original scheme.

A further way of analysing stability is the following. The difference oper-
ator Lh,τ satisfies a discrete maximum principle (cf. the discrete comparison
principle of Section I.2.1.1) if

Lh,τuh,τ ≤ 0 and uh,τ |Sx∪S0∪S1
≤ 0 together imply that uh,τ ≤ 0 on Qh,τ .

By Theorem 2.2 the differential operator satisfies a comparison principle,
which is equivalent to a maximum principle. We now describe a discrete ana-
logue of this result. In this lemma, all vector and matrix inequalities hold
componentwise.

Lemma 3.12. Suppose that the difference scheme (excluding initial-boundary
conditions) can be written in the form

(Lh,τuh,τ )
j+1

:= Aûj+1 −Buj = wj for j = 0, . . . , N − 1, (3.14)

where uj = (uj
0, . . . , u

j
M )T , ûj+1 = (uj+1

1 , . . . , uj+1
M−1)

T , wj is a vector that
depends only on f and the mesh, and A and B are matrices. Suppose also
that A is an M-matrix and B ≥ 0.

Let y and z be functions defined on the mesh. Set yj = (yj
0, . . . , y

j
M )T and

zj = (zj
0, . . . , z

j
M )T for each j. Assume that

∣∣∣(Lh,τy)
j+1

∣∣∣ ≤ (Lh,τz)
j+1

for j = 0, . . . , N − 1,

|y| ≤ z on Sx ∪ S0 ∪ S1.

Then |y| ≤ z on Qh,τ .

Proof. Use induction on j to show that |yj | ≤ zj for each j. First, |y0| ≤ z0
by hypothesis.

Suppose that |yj | ≤ zj for some j ∈ {0, . . . , N − 1}. Then

A(ẑj+1 − ŷj+1) = B(zj − yj) + (Lh,τz)
j+1 − (Lh,τy)

j+1 ≥ 0,

since B ≥ 0, zj − yj ≥ 0 and (Lh,τz)
j+1 ≥ (Lh,τy)

j+1
. But A is an M-matrix,

so A−1 ≥ 0 and it follows that ẑj+1 − ŷj+1 ≥ 0. One can show similarly
that ẑj+1 + ŷj+1 ≥ 0. Hence |ŷj+1| ≤ ẑj+1. As |y| ≤ z on S0 ∪ S1, we have
|yj+1| ≤ zj+1. This completes the induction and the proof. ⊓⊔

It is easy to see that essentially the same argument demonstrates that, un-
der the hypotheses of the lemma, Lh,τ satisfies a discrete maximum principle.
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For all meshes in some family F , the scheme Lh,τuh,τ = f̃ is L∞ stable
with respect to the data of the problem if there exists a constant K such that

‖uh,τ‖∞,d ≤ K
[
‖f̃‖∞,d + max{|uj

i | : (xi, tj) ∈ Sx ∪ S0 ∪ S1}
]
. (3.15)

If a difference scheme satisfies the hypotheses of Lemma 3.12, then it usually
satisfies (3.15). To make this deduction we take y = uh,τ and z = K max{|uj

i | :
(xi, tj) ∈ Sx ∪ S0 ∪ S1}, then try to choose K to satisfy the hypotheses of the
lemma. Here for any positive constant mesh function ζ one needs to know that
(Lh,τζ)

j+1
> 0 for each j. This inequality holds true (for sufficiently small h

and τ) for most reasonable schemes that approximate (1.1), since d > 0.
The method of Example 3.11 fails to satisfy the hypotheses of Lemma 3.12,

because of the central difference used to approximate ux.

Example 3.13. Take b and d to be constant and f ≡ 0 in (1.1). We modify
the simple upwind scheme of Example 3.4 by introducing an extra difference
quotient to approximate the diffusion term −εuxx of (1.1). Thus the simple
upwind scheme for this convection-diffusion problem is

(Lh,τuh,τ )
j
i : =

uj+1
i − uj

i

τ
− εu

j
i+1 − 2uj

i + uj
i−1

h2
+ b

uj
i − uj

i−1

h
+ duj

i

= 0,

for i = 1, . . . ,M and j = 0, . . . , N − 1. It is a generalization of the scheme
(I.2.12) for two-point boundary value problems.

Rewrite the simple upwind scheme as

uj+1
i −

[(
bτ

h
+
ετ

h2

)
uj

i−1 +

(
1− dτ − bτ

h
− 2ετ

h2

)
uj

i +
ετ

h2
uj

i+1

]
= 0.

This is in the form (3.14), with A an M-matrix and B ≥ 0, provided that

dτ +
bτ

h
+

2ετ

h2
≤ 1. (3.16)

Thus the scheme satisfies a discrete maximum principle if (3.16) holds true.
Note that for ε ≤ h2 and τ ≪ 1, condition (3.16) is almost identical to the
CFL condition bτ/h ≤ 1 that was shown in Section 3.1.1 to pertain to the
simple upwind scheme for the reduced problem. ♣

Example 3.14. One can modify the box scheme (3.10) by adding a term that
approximates −εuxx, analogously to the modification of the simple upwind
scheme in Example 3.13. Nevertheless, irrespective of how one chooses this
difference approximation of −εuxx, it is impossible to satisfy the hypotheses
of Lemma 3.12. For when ε is very small relative to h and τ , the scheme is
essentially (3.10):

b

2h
[(uj

i+1 + uj+1
i+1 )− (uj

i + uj+1
i )] +

1

2τ
[(uj+1

i + uj+1
i+1 )− (uj

i + uj
i+1)] = f j

i ,
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for i = 0, . . . , M − 1 and j = 0, . . . , M − 1 (here b in (3.10) is taken to be
constant, with d ≡ 0). This is not of the form (3.14), with A an M-matrix
and B ≥ 0, except for the special case when bτ = h. The box scheme does
not in general satisfy a discrete maximum principle, and as a consequence its
computed solutions often exhibit oscillations. ♣

3.2.2 Convergence

Let u be the solution of (1.1) and uh,τ = {uj
i} the solution of a difference

scheme that approximates (1.1), where all meshes considered come from some
family F . We say that uh,τ converges to u in the Lp sense if

max
tj∈[0,T ]

‖u(·, tj)− uh,τ (·, tj)‖p,d → 0 as h, τ → 0, (3.17)

where for any mesh function v = (v0, . . . , vM ) the discrete norms are defined
by

‖v‖p,d =

{(
h
∑M

i=0 |vi|p
)1/p

when 1 ≤ p <∞,
maxi |vi| when p = ∞.

This definition generalizes the L2 convergence property of Section 3.1.3.
It is often described as “convergence in L∞(Lp)”, where L∞ refers to the
maxtj∈[0,T ] operator in (3.17), but as our analysis always uses L∞ in the time
variable we can discard this part of that notation.

Suppose that the scheme Lh,τuh,τ = f̃ is consistent with (1.1). If the
scheme is L2 stable, then the Lax-Richtmyer theorem shows that (3.17) holds
true with p = 2. If the scheme is L∞ stable, then (3.17) holds true with p =∞.

For non-singularly perturbed problems (i.e., problems whose solutions u
do not have layers), satisfactory convergence results can be obtained using the
arguments of the previous paragraph. One shows that

|(Lu− Lh,τu)
j
i |+ |(f − f̃)j

i | ≤ g(h, τ), (3.18)

for some function g(h, τ) that satisfies g(h, τ) → 0 as h, τ → 0. If the scheme
is L2 stable, it follows that (for h and τ sufficiently small)

{
h

M∑

i=0

|u(xi, tj)− uj
i |2
}1/2

≤ Kg(h, τ) (3.19)

for each j, where the value of K depends on the initial-boundary data. If
instead the scheme is L∞ stable, then

max{|u(xi, yj)− uj
i | : (xi, tj) ∈ Qh,τ} ≤ Kg(h, τ). (3.20)

For a convection-diffusion problem such as (1.1), however, a sharp analysis
usually shows that
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|(Lu− Lh,τu)j
i |+ |(f − f̃)j

i | ≤ σ(ε, h, τ), (3.21)

where, when ε is fixed, σ(ε, h, τ) → 0 as h, τ → 0, but if ε → 0 with h and τ
fixed, then σ(ε, h, τ) →∞. As we are interested in robust schemes that work
well even when ε is near 0, it is misleading to claim that a method has good
convergence properties on the basis that its error (in L2 or L∞) is bounded
by Kσ(ε, h, τ) for some constant K. Nevertheless, one frequently encounters
this line of argument, which is equivalent to treating ε as a medium-sized
constant!

Remark 3.15. While the argument we have just discussed does not give satis-
factory theoretical error bounds, it often has some practical value. For suppose
that we can prove L2 stability or L∞ stability for all ε ∈ (0, 1], with possibly
some restriction on the mesh. Suppose also that in the consistency analysis
we pretend that ε is bounded away from zero, and obtain

|(Lu− Lh,τu)
j
i |+ |(f − f̃)j

i | ≤ K(hα1 + τα2)

for some positive constants α1 and α2. Such a bound on the consistency error
is often described as “formal consistency of O(hα1 +τα2)”. We cannot deduce
for all values of ε that ‖u−uh,τ‖d ≤ K(hα1 + τα2), where ‖ · ‖d is the discrete
norm (L2 or L∞) that corresponds to the stability result proved. In practice,
however, this order of convergence in the computed solution is often observed
on those parts of Q that are not “near” the location of any layer in the analytic
solution u. ♣
Example 3.16. The simple upwind scheme of Example 3.13 is often called
“first-order upwinding”. It is indeed formally first-order consistent, that is,
formally consistent of O(h+ τ).

Suppose that (3.16) holds true. Then the scheme is L∞ stable, as we saw
in Example 3.13. Nevertheless, the nodal errors in the solution computed by
this scheme cannot be described as “first-order”, even in the simpler case
of a two-point boundary value problem: consider the sharp error bounds of
Theorem I.2.12 for the upwind scheme (I.2.12). ♣

To obtain an error bound for a difference scheme, one begins by estab-
lishing a consistency error bound such as (3.18), then a comparison principle
is used in tandem with a careful choice of barrier function to complete the
analysis. If the barrier function is sufficiently well behaved, then the scheme
satisfies an error bound that is independent of ε. We already witnessed an
illustration of this approach in the proof of Theorem I.2.18. Further pertinent
examples occur later in this chapter.

3.3 Polynomial Schemes

In this section we continue to use the rectangular equidistant grid of Sec-
tion 3.2 and examine schemes whose coefficients are polynomial or rational
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functions of the differential equation coefficients and of h and τ . Such schemes
can be motivated and derived in several ways. The simplest approach is to use
Taylor expansions of the analytical solution u, just as for non-singularly per-
turbed differential equations. (See Section I.2.1.) But if no form of upwinding
nor of artificial diffusion is incorporated into the scheme, then stability analy-
ses for singularly perturbed problems will in general lead to excessively strin-
gent conditions on the mesh. (For (1.1), “upwinding” means taking backward
differences in space, as in Examples 3.2 and 3.8.) One such mesh restriction
appeared already in Example 3.10, where the condition τ < 2ε/b2 was needed
to ensure the L2 stability of the scheme (3.12), which used central differences
in space and no artificial diffusion.

To construct a difference scheme that approximates (1.1), we ignore the
initial-boundary conditions. If necessary, one can later adjust the scheme near
Sx ∪ S0 ∪ S1 to take account of the data there.

The derivation of various schemes using the Taylor expansion idea is stan-
dard material in basic numerical analysis courses. In particular it is thoroughly
covered in [Hir88] and [Str04]. We shall describe an alternative approach (see,
e.g., [MS93]) that shows that many schemes can be derived from an integral
representation of the solution of an initial-value problem associated with (1.1).

Consider

wt(x, t)− εwxx(x, t) + bwx(x, t) = 0, (3.22a)

where (x, t) ∈ Q̂ := (−∞,∞)× (0, T ], with

w(x, 0) = ŝ(x) on (−∞,∞), (3.22b)

and ŝ ∈ L2(−∞,∞) is given. For simplicity we have taken b constant and
d ≡ f ≡ 0. The advantage of (3.22) over (1.1) is that the solution of (3.22)
has the well-known integral representation

w(x, t) =
1√
π

∫ ∞

−∞
ŝ(x− bt+ 2y

√
εt) e−y2

dy for −∞ < x <∞. (3.23)

Place an equidistant tensor-product mesh (xi, tj) on Q̂, where x0 = 0,
xi = ih for −∞ < i <∞, and t0 = 0, tj = jτ for j = 0, . . . , N .

Apply (3.23) to the strip (−∞,∞) × [tj , T ], with initial data w(·, tj). On
setting t = tj+1 and recalling that tj+1 − tj = τ , this gives

w(x, tj+1) =
1√
π

∫ ∞

−∞
w(x− bτ + 2y

√
ετ , tj)e

−y2

dy (3.24)

for −∞ < x <∞.
We then use (3.24) to generate difference schemes for (3.22). For example,

one can use a low-degree polynomial to interpolate to w(x, tj) for x near xi,
then compute from (3.24) the evolution of this polynomial at time tj+1. This
yields a difference scheme that relates nodal values at time tj+1 to nodal
values at time tj .
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Example 3.17. Fix an integer i. Let w̃(x, tj) denote the quadratic polynomial

in x that interpolates to wj
k for k = i− 1, i and i + 1. That is,

w̃(x, tj) = wj
i +

wj
i+1 − wj

i−1

2h
(x− xi) +

wj
i+1 − 2wj

i + wj
i−1

2h2
(x− xi)

2.

Replace w in the right-hand side of (3.24) by w̃, then evaluate the integral
exactly, using

1√
π

∫ ∞

−∞
yme−y2

dy =

⎧
⎨
⎩

1 if m = 0,
0 if m = 1,
1/2 if m = 2.

This yields

w(x, tj+1) = wi
j +

wj
i+1 − wj

i−1

2h
(x− bτ − xi)

+
wj

i+1 − 2wj
i + wj

i−1

2h2
[2ετ + (x− bτ − xi)

2].

Set x = xi here. We obtain

uj+1
i = uj

i −
bτ

2h
(uj

i+1 − uj
i−1) +

(
ετ

h2
+
b2τ2

2h2

)
(uj

i+1 − 2uj
i + uj

i−1). (3.25)

This explicit one-step scheme is the well-known Lax-Wendroff scheme for
(1.1). Evidently it can also be derived by applying a central difference in space
and a forward difference in time to the differential equation

w̃t(x, t)−
(
ε+

b2τ

2

)
w̃xx(x, t) + bw̃x(x, t) = 0. (3.26)

We see from Lemma 3.12 that the scheme satisfies a discrete maximum
principle if 2ν ≤ ν2 + 2µ ≤ 1, where ν = bτ/h and µ = ετ/h2. These in-
equalities imply that ν ≤ 1/2 and ν ≤ 4µ/3. That is, 3bh ≤ 4ε, which is too
restrictive in practice.

A von Neumann stability analysis of (3.25) yields

ξ = 1− (ν2 + 2µ)(1− cos θ)−
√
−1 ν sin θ.

Hence
|ξ|2 = 1− 2µ sin2 θ − 4(ν2 + 2µ)(1− ν2 − 2µ) sin4(θ/2).

Consequently the Lax-Wendroff scheme is L2 stable if ν2 + 2µ ≤ 1. When
ε ≪ 1, this condition is not a serious restriction on the mesh. We observe
from (3.26) that (3.25) has in effect achieved L2 stability by adding artificial
diffusion of magnitude b2τ/2 to (3.22a); compare the scheme (2.14) of Part I.

An analysis of the consistency error shows that the Lax-Wendroff scheme
is formally consistent of O(τ + h2). ♣
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If in Example 3.17 the quadratic interpolant is replaced by a linear inter-
polant to wj

i−1 and wj
i , this reproduces the simple upwind scheme of Exam-

ple 3.4. If instead we use a linear interpolant to wj
i−1 and wj

i+1, this generates
the Lax-Friedrichs scheme

uj+1
i =

uj
i+1 + uj

i−1

2
− bτ

2h
(uj

i+1 − uj
i−1).

No term corresponding to −εuxx appears in these two schemes because if the
initial data in (3.22b) is a linear function, then the solution of (3.22a) is also
linear, so −εwxx = 0.

If the quadratic interpolant of Example 3.17 is replaced by a cubic inter-
polant to wj

k for k = i− 2, i− 1, i and i+ 1, one gets the QUICKEST scheme
of [Leo79a]:

uj+1
i = uj

i −
ν

2
(uj

i+1 − uj
i−1) +

(
ν2

2
+ µ

)
(uj

i+1 − 2uj
i + uj

i−1)

+
ν

6

(
1− ν2 − 6µ

)
(uj

i+1 − 3uj
i + 3uj

i−1 − uj
i−2),

where ν and µ are as in Example 3.17. This scheme is explicit and formally
consistent of O(τ + h3). It is L2 stable if

ν2 +
6µ(1− 2ν)

3− 2ν
≤ 1.

Clearly we could choose other types of approximation to w(·, tj). A piece-
wise polynomial finite element approach is also considered in [MS93], but in
this case the integral in (3.24) cannot be evaluated exactly and further ap-
proximations must be introduced.

An error analysis of any scheme that is derived from (3.24) can in prin-
ciple be deduced from the approximations introduced during the derivation;
see [MS93].

Remark 3.18. Many stable schemes for (1.1) can be generated by Taylor ex-
pansions of u and a careful choice of the difference quotient coefficients. For
example, an implicit one-step scheme that is formally consistent of O(τ2+h4)
is given in [BSC+80]. This scheme is compact, that is, it uses three grid points
on each of two time levels to obtain optimal fourth-order formal consistency in
the x-direction. The derivation of the scheme is based on the HODIE approach
of Section I.2.1.4.

In [DRH98], Donea et al. systematically consider various ways of con-
structing finite difference methods for (1.1) that are high-order accurate in
time: Taylor-Galerkin methods, multistage methods based on Padé approxi-
mation of the exponential function, Runge-Kutta methods, and implicit meth-
ods based on Newton-Cotes quadrature approximation of the integrated time
derivative. The accuracy and stability of each method is analysed. ♣
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3.4 Uniformly Convergent Methods

Uniformly convergent methods for ordinary differential equations were intro-
duced in Section I.2.1.3. We now extend this idea to time-dependent problems.
Methods of this type are constructed with the aim of computing an accurate
approximation of the solution of (1.1) at all mesh points (recall Remark 3.15).

On a family of rectangular equidistant grids as in Section 3.2, a scheme is
said to be uniformly convergent in the discrete maximum norm if its solution
{uj

i} satisfies

|u(xi, tj)− uj
i | ≤ C(hα1 + τα2) for all i and j, (3.27)

where α1 and α2 are positive constants that are independent of ε and of the
mesh, and u is the solution of (1.1).

Analogously to Theorem I.2.17, the coefficients of uniformly convergent
difference schemes on an equidistant mesh must satisfy a special condition.
This result is stated precisely in the next theorem, whose proof is similar to
that of Theorem I.2.17 and can be found in [Guo93].

Theorem 3.19. Let b be a positive constant and set d ≡ 0 in (1.1). Take
s ≡ q0 ≡ q1 ≡ 0 and assume that f ∈ C2(Q̄). Take h = τ . Assume that the
difference scheme can be written in the form

1∑

n=0

1∑

m=−1

αm,nu
j+n
i+m = hf̃ j

i (3.28)

for i = 1, . . . ,M − 1 and j = 0, . . . , N − 1, where the coefficients αm,n depend

only on m,n and the ratio h/ε, and |f̃ j
i | ≤ C for all i and j as M and N

vary.
If the scheme is uniformly convergent in the discrete maximum norm, then

1∑

n=0

1∑

m=−1

αm,n = 0, (3.29a)

1∑

n=0

1∑

m=−1

αm,n exp(−bmh/ε) = 0. (3.29b)

Remark 3.20. Condition (3.29a) is mild and is satisfied by any reasonable
scheme, but (3.29b) shows that, just as in Theorem I.2.17, only those schemes
that possess a certain exponential character can be uniformly convergent.

The hypotheses of Theorem 3.19 are reasonable. Any scheme that claims
to solve (1.1) accurately on all of Q̄ should be able to handle the special case
of (1.1) considered in the theorem. The assumption that the scheme can be
written in the form (3.28), with each αm,n depending only on m,n and h/ε,
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is satisfied by all schemes of which we are aware, whether or not they are
uniformly convergent.

The theorem can easily be generalized to multi-step schemes and to meth-
ods that use more than three nodes on each time level. ♣

3.4.1 Exponential Fitting in Space

In Section I.2.1 we discussed various forms of exponential fitting for second-
order ordinary differential equations. Some of these yielded uniformly conver-
gent difference schemes. It is infeasible to follow exactly the same approach
for (1.1) because the solution of a partial differential equation with constant
coefficients cannot in general be expressed in terms of functions that are easily
evaluated. One can compromise by using exponential fitting only for the space
derivatives then approximating the ut term by a polynomial difference, and
in this section we describe two methods of this type. In recent years, interest
in using this approach to solve (1.1) has diminished, since, inter alia, it is
difficult to generalize satisfactorily to time-dependent problems in more than
one space dimension.

Titov and Shishkin [TS76] use an equidistant tensor-product mesh. They
begin with a backward Euler scheme for the time derivative, then apply com-
plete exponential fitting to the singularly perturbed two-point boundary value
problem generated at each time level. The solution is computed at successive
time levels.

To describe their scheme, assume for simplicity that d is constant. Suppose
that the uj−1

i , for i = 0, . . . , M , are known. Then the uj
i , for i = 0, . . . , M ,

are computed from

−γj
1,i

uj
i+1 − 2uj

i + uj
i−1

h2
+ γj

2,i

uj
i+1 − uj

i−1

2h
+ uj

i =
1

1 + dτ
(τf j

i + uj−1
i ),

where

γj
1,i = −h

2

4

[
coth

(
λj

1,ih

2

)
coth

(
λj

2,ih

2

)
+ 1

]

and

γj
2,i =

h

2

[
coth

(
λj

1,ih

2

)
+ coth

(
λj

2,ih

2

)]

are the roots of the equation

− ετ

1 + dτ
λ2 +

bji τ

1 + dτ
λ+ 1 = 0.

The following result is proved in [TS76] without making compatibility as-
sumptions on the data, unlike the vast majority of papers dealing with uniform
convergence results for (1.1).
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Theorem 3.21. Assume that all the data of (1.1) are C3. Then there exists a
constant C such that the solution {uj

i} of the Titov-Shishkin scheme satisfies

|u(xi, tj)− uj
i | ≤ C(hατ−1 + τ1/3)

for all i and j, where α ∈ (0, 2/5) is a certain positive constant.

A particularly ingenious example of exponential fitting in space is due to
Stoyan [Sto82], whose scheme is designed to suit various types of problem
including convection-diffusion. The scheme modifies its coefficients in a con-
tinuous manner as ε, h, τ and the given functions in (1.1a) vary. In its general
form on nonequidistant tensor-product meshes, it includes a variable coeffi-
cient r(x, t) of ut in (1.1), permits ε or r (but not both) to vanish and can
handle Dirichlet, Neumann and Robin boundary conditions.

Stoyan begins by constructing the exact three-point difference scheme
(cf. Section I.2.1.3) for the constant coefficient ordinary differential equation
−εy′′(x)+ by′(x) = g(x), where g is an arbitrary linear function. He simplifies
this scheme slightly, generalizes it in a simple and obvious way for variable b,
then moves to the parabolic problem by formally replacing y(x) by u(x, t)
and g(x) by f(x, t)− (rut)(x, t). Finally, an analysis of stability motivates the
introduction of a weighting parameter in the coefficients of the scheme.

For the details we refer the reader to [Sto82], where there is a lengthy
discussion of the choice of free parameters in the method. Although no uniform
convergence result has been proved for this scheme, it is included here as it is
in the spirit of this section.

Section 4.1.2 will discuss some uniformly convergent finite element schemes
that are exponentially fitted in space.

3.4.2 Layer-Adapted Tensor-Product Meshes

Assume that b > 0 and that problem (1.1) has smooth data that are com-
patible at the corners (0, 0) and (0, 1). Then the only layer in the solution u
is an exponential boundary layer along the side x = 1 of Q̄, as we learned
in Section 2.2. To obtain a uniformly convergent finite difference method, an
alternative to exponential fitting is (as in Section I.2.4) to construct a mesh
that becomes very fine in the x-direction as x nears 1, together with a simple
polynomial scheme.

In this section we consider tensor-product meshes that are equidistant
in the t-direction, with spacing τ . In the x-direction, these meshes are non-
equidistant with N subintervals; they may for example be piecewise equidis-
tant Shishkin meshes as in Section I.2.4.2 or graded Bakhvalov-type meshes
as in Section I.2.4.1.

Thus in the case of a Shishkin mesh, given an even positive integer N , set

σ = 1− (kε/β) lnN,
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where one typically takes k ≥ 2 (see Remarks I.2.99 and I.2.104), then divide
each of [0, σ] and [σ, 1] into N/2 equal intervals. The resulting mesh on Q̄
is coarse on [0, σ] × [0, T ] and fine in the x-direction on [σ, 1] × [0, T ]. The
Bakhvalov-type tensor-product mesh is defined similarly, invoking a formula
such as (2.135) from Section I.2.4.1 to define the mesh in the x-direction.

If one uses a tensor-product mesh that is a Shishkin mesh in the x-direction,
then approximates −εuxx + bux + du by one-dimensional upwind differenc-
ing and ut by backward differencing, this implicit scheme satisfies a discrete
maximum principle; if one has sufficient smoothness and compatibility of
the data of the problem, then a consistency and barrier function argument
[Kop97, Shi92b] shows that the solution {uj

i} of the scheme satisfies

|u(xi, tj)− uj
i | ≤ C(N−1 lnN + τ) (3.30)

for all i and j and some constant C. Boglaev [Bog01, Bog06] analyses a
parallelizable domain decomposition algorithm for this method; see [MOS96,
Chapter 10] for a related study in the steady-state case.

A similar method on a similar mesh is considered in [HSS03]. Defect cor-
rection is then applied in both space and time to enhance the accuracy of the
computed solution. The final computed solution {uj

i} satisfies

|u(xi, tj)− uj
i | ≤ C(N−2 ln2N + τ3)

for all i and j and some constant C, provided that certain smoothness and
compatibility conditions are satisfied by the data of the problem.

An alternative improvement of (3.30) is given in [Shi08], where it is shown
in an n-width setting that, for the same number of degrees of freedom as in
(3.30), one can obtain the optimal bound

|u(xi, tj)− uj
i | ≤ CN−1 ln1/2N for all i and j

by using O(N ln1/2N) points in space and O(N ln−1/2N) points in time in
the tensor-product mesh.

On the same mesh, Kopteva [Kop97] defines the discrete approximation
LN

x u
j
i of (−εuxx + bux + du)(xi, tj) using central differencing to approxi-

mate bux, then investigates the scheme

uj+1
i − uj

i

τ
+ θLN

x u
j+1
i + (1− θ)LN

x u
j
i = θf j+1

i + (1− θ)f j
i ,

where θ ∈ [0.5, 1] is a user-chosen parameter (θ = 1 yields the backward Euler
method, θ = 0.5 produces Crank-Nicolson). Under the assumption that one
has the S-decomposition of Remark 2.9, it is shown that for the solution {uj

i}
of the scheme one has

|u(xi, tj)− uj
i | ≤ C(N−2 ln2N + τ) if θ > 0.5

and

∣∣∣∣∣u
(
xi, tj +

τ

2

)
− u

j+1
i + uj

i

2

∣∣∣∣∣ ≤ C(N−2 ln2N + τ2) if θ = 0.5,
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for all i and j and some constant C.
In [Kop01b], the problem (1.1) is considered in the conservation form

ut − εuxx + (bu)x = f . A four-point conservative discrete approximation of
−εuxx + (bu)x from [GP69] is used on a class of nonequidistant meshes in
the x-direction that includes both Shishkin and Bakhvalov-type meshes, and
a backward difference approximates ut. The four-point space difference op-
erator has only non-oscillatory solutions, but it does not yield an M-matrix
and this increases the complexity of the analysis. The inequality (I.2.145) is
proved for the space difference operator and a related stability inequality is
deduced for the full scheme on the (x, t) mesh. It is finally shown that the
solution {uj

i} of the scheme satisfies

|u(xi, tj)− uj
i | ≤ C(N−2 lnkN + τ)

for all i and j and some constant C, with k = 0 on a Bakhvalov-type mesh
and k = 2 on a Shishkin mesh.

Clavero et al. [CGJ05] construct a HODIE difference scheme (see Section
I.2.1.4) to discretize the space derivatives on a Shishkin mesh and approximate
the time derivative by the classical Crank-Nicolson approximation. Under the
assumption that N−q ≤ Cτ3/2 for some C and some constant q ∈ (0, 1), they
prove that the solution {uj

i} of the scheme satisfies

|u(xi, tj)− uj
i | ≤ C ′(N−2+q ln2N + τ3/2)

for all i and j and some constant C ′.
The approximation of first-order derivatives of u, using simple upwinding

on a Shishkin mesh to approximate ux together with backward differencing
of ut, is discussed at length in [Shi04a].

We know of no paper that explicitly proves uniform convergence of a nu-
merical method for (1.1) when an interior layer caused by incompatibility of
the data emanates from the corner (0,1), though related problems are analysed
in [FHS96c, HS93, Shi88, Shi03]. A variant of (1.1), where Q̄ is decomposed
into two subdomains and the functions b, c and f are discontinuous across the
interface, is examined in [SSH04]; a numerical method that handles the interior
layer lying along the interface is constructed via a coordinate transformation
and almost uniform convergence of the computed solution is proved.

3.4.3 Reaction-Diffusion Problems

Recall that one has a reaction-diffusion problem when b ≡ 0 in (1.1). That is,
again setting Q = (0, 1)× (0, T ],

ut(x, t)− εuxx(x, t) + d(x, t)u(x, t) = f(x, t) for (x, t) ∈ Q, (3.31a)

u(x, 0) = s(x) on Sx := {(x, 0) : 0 ≤ x ≤ 1}, (3.31b)

u(0, t) = q0(t) on S0 := {(0, t) : 0 < t ≤ T}, (3.31c)

u(1, t) = q1(t) on S1 := {(1, t) : 0 < t ≤ T}. (3.31d)
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The solution u of (3.31) has in general parabolic boundary layers along the
sides x = 0 and x = 1 of Q̄; see Remark 2.11. The presence of these layers
engenders the following remarkable result that alerts us to a fundamental dif-
ference between parabolic boundary layers and exponential boundary layers.

Remark 3.22. (Shishkin’s obstacle result for parabolic layers) Suppose that the
grid is equidistant in both x and t. Consider an arbitrary difference scheme
that uses a fixed number of grid points in the space direction on each of a
fixed number of time levels, satisfies a discrete maximum principle, and whose
coefficients may depend on the coefficients of the differential operator, but
must not depend on the boundary data. (This final hypothesis regarding the
coefficients of the scheme is perfectly natural.) Then it is impossible to achieve
uniform convergence in the discrete maximum norm for the class of reaction-
diffusion problems, i.e., there are no positive α1 and α2 for which inequality
(3.27) holds true as u ranges over a class of problems. This extraordinary
conclusion was reached by Shishkin [Shi89]; see [MOS96, Chapter 14], [GRS07,
pp.405–6] and [Shi97b] for detailed discussions that include, inter alia, the fact
that the discrete maximum principle hypothesis can be discarded.

The essential reason for this negative result is that (cf. Example III.1.16)
the behaviour of the solution u inside a parabolic boundary layer is influenced
by all the boundary data along that side of Q (i.e., x = 0 or x = 1), and
this data can be taken from the infinite set of functions S := {t, t2, t3, . . . };
by a difficult extension of the proof of Theorem I.2.17, on equidistant meshes
each function from S imposes a different condition on the coefficients of any
uniformly convergent difference scheme. No difference scheme with a fixed
stencil can satisfy all these conditions. ♣

For the convection-diffusion problem (1.1) with b > 0, where boundary
layers are exponential, methods that are uniformly convergent in the max-
imum norm on equidistant meshes certainly exist: see, e.g., Theorems 3.21
and 4.4. On the other hand, for reaction-diffusion problems where b ≡ 0, Re-
mark 3.22 warns us that nonequidistant grids should be used if one is to attain
uniform convergence in the maximum norm. In the remainder of this section
we consider tensor-product meshes that are equidistant in the t-direction with
spacing τ , while in the x-direction these meshes are nonequidistant with N
subintervals. (It isn’t necessary to modify the mesh spacing in the t-direction
to achieve the desired uniform convergence.) Each of the bounds stated below
assumes regularity of the data and some compatibility at the corners (0,0)
and (1,0).

In [Shi83], the reaction-diffusion problem is solved using a tensor-product
grid that is equidistant in the t-direction and of Bakhvalov type in the x-
direction, so that the mesh becomes fine for x near 0 and x near 1, with
the standard difference approximation (2.132) of uxx and a backward differ-
ence approximation of ut. The resulting implicit one-step scheme satisfies a
discrete maximum principle, as can be seen from Lemma 3.12. Then, assum-
ing sufficient smoothness of the solution u away from the boundary layers, a
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consistency and barrier function argument yields

|u(xi, tj)− uj
i | ≤ C(N−1 + τ) for all i and j,

where {uj
i} is the computed solution. Shishkin returns to this scheme in [Shi84]

and shows that Richardson extrapolation can be used to accelerate the con-
vergence.

To choose a Shishkin mesh in the x-direction for our reaction-diffusion
problem, one follows the recipe of Remark I.2.106, with perhaps a modi-
fied constant multiplier in the formula for the transition points – recall Re-
mark I.2.104. The remaining schemes discussed in this section, except those
of [LM07], use Shishkin meshes.

Using the standard approximation of uxx and a backward difference ap-
proximation of ut, a consistency error and barrier function argument shows
[MOSS98] that

|u(xi, tj)− uj
i | ≤ C(N−2 ln2N + τ) for all i and j,

where as usual {uj
i} is the computed solution. (In [LM07] a transparent analy-

sis on general layer-adapted meshes includes this result as a special case.) This
scheme is modified in [HSS00] by means of a defect correction technique that
improves the difference approximation of ut; two schemes are constructed for
which

|u(xi, tj)− uj
i | ≤ C(N−2 ln2N + τk) for all i and j,

with k = 2 and 3 respectively. If instead one applies defect correction to
enhance the difference approximation of uxx, a scheme is obtained [Shi96b]
for which

|u(xi, tj)− uj
i | ≤ C(N−6 ln6N + τ) for all i and j.

In [CG05] a HODIE difference scheme (see Section I.2.1.4) is used to dis-
cretize −εuxx + cu while a third-order two-stage SDIRK method is applied to
the time derivative; for the resulting method one has

|u(xi, tj)− uj
i | ≤ C(N−3 + τ3) for all i and j.

A system of two reaction-diffusion equations, coupled through their zero-
order reaction terms, is solved in [GL07] using central differencing on a
Shishkin mesh and an error bound is derived. A more incisive analysis of
the same problem and method in [Lin08b] gives the sharp error bound

|u(xi, tj)− uj
i | ≤ C(N−2 ln2N + τ) for all i and j.

Remark 3.23. If the initial data s(x) has a discontinuity at (say) x = x̂, this
will cause a parabolic interior layer in Q along the line x = x̂. Although this
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layer is asymptotically similar to a parabolic boundary layer, nevertheless the
negative result of Remark 3.22 no longer applies: one can construct a fitted
scheme on an equidistant mesh that yields a uniformly convergent solution.
This is done in [HS93], where it is shown that

|u(xi, tj)− uj
i | ≤ C(h2/3 + τ1/3) for all i and j,

provided that h ≥ C ′τ7/6 for some constant C ′; here h is the mesh diameter in
the x-direction. See also [FHS96c]. The essential difference from Remark 3.22
is that here the only piece of boundary data that influences the parabolic
interior layer is the multiplier effect of the magnitude of the jump in s(x) at
x = x̂, and consequently the scheme is no longer required to satisfy infinitely
many conditions. ♣

In [Shi04b] the difficult problem of a concentrated source on a moving
boundary x = φ(t) between two subdomains of [0,1] is considered; the so-
lution u has an interior layer along the curve x = φ(t), and the theory of
Kolmogorov n-widths is employed to show that the orientation of this curve
must be taken into account when constructing a uniformly convergent method.



4

Finite Element Methods

From Part I we know that standard Galerkin finite element methods on
equidistant meshes yield inaccurate approximate solutions of singularly per-
turbed two-point boundary value problems unless a large number of mesh
points are used. The same disappointing behaviour occurs arises when deal-
ing with parabolic convection-diffusion problems, because such methods have
no built-in upwinding. Finite element methods will now be developed specif-
ically for the convection-diffusion situation, either by choosing special basis
functions or by working on meshes designed for these problems.

The problem considered in Chapter 4 is

ut(x, t)− εuxx(x, t) + b(x, t)ux(x, t) + d(x, t)u(x, t) = f(x, t) (4.1a)

where (x, t) ∈ Q := (0, 1)× (0, T ], and

u(x, 0) = s(x) on Sx := {(x, 0) : 0 ≤ x ≤ 1}, (4.1b)

u(0, t) = 0 on S0 := {(0, t) : 0 < t ≤ T}, (4.1c)

u(1, t) = 0 on S1 := {(1, t) : 0 < t ≤ T}. (4.1d)

Again assume that d(x, t) ≥ γ > 0 and b(x, t) > β > 0. Unlike (1.1) homo-
geneous boundary conditions are used here, which is equivalent to solving (1.1)
for the unknown function

u(x, t)− (1− x)q0(t)− xq1(t),

so there is no loss of generality. By changing the dependent variable in (4.1a)
as in Section I.2.2.5, one can also assume that

d(x, t)− 1

2
bx(x, t) ≥ ω > 0 on Q. (4.2)

Some of the above assumptions will not hold true in certain examples
below, but in each case the reader will see that nevertheless the integrity of
the argument is preserved.
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We concentrate on equidistant meshes. The simplest finite element ap-
proach handles the space derivatives using ideas from Section I.2.2, and ap-
proximates ut by finite differences; see Section 4.1. The alternative possibility
of treating separately the diffusive (−εuxx) and convective (ut+bux) operators
is discussed in Section 4.2. A layer-adapted mesh is examined on page 210.

4.1 Space-Based Methods

Although Q is a two-dimensional domain, when solving the initial-boundary
value problem (4.1) it’s common to use finite element methods whose trial
and test functions depend only on the single variable x, leaving until later
the discretization of the time derivative. This technique is an example of the
method of lines. For a lengthy discussion of this method, with many examples
and much analysis, see [HV03].

Partition [0,1] by the equidistant grid {xi}, where xi = i/M = ih for
i = 0, . . . ,M . Then choose a basis {φi : i = 1, . . . ,M − 1} of finite element
functions for an (M − 1)-dimensional subspace of the Sobolev space H1

0 (0, 1).
For example, each φi may be the standard piecewise linear “hat” function
that satisfies φi(xj) = δij for all i and j.

We seek an approximate solution uh(x, t) of (4.1) in the form

uh(x, t) =
M−1∑

i=1

ui(t)φi(x), (4.3)

where the ui are at present unknown functions.
Next, choose a basis {ψi(x) : i = 1, . . . ,M − 1} of finite element functions

for an (M − 1)-dimensional test space. One often takes ψi = φi for all i in
problems that are not convection-dominated, but for (4.1) the ψi are usually
upwinded versions of the φi. Since the trial and test functions are not identical,
this is a Petrov-Galerkin finite element method.

Armed with our ψi, we write down a semidiscrete form of (4.1a):

(
ε(uh)x, ψ

′
i

)
+
(
(uh)t +b(uh)x+duh, ψi

)
= (f, ψi), for each t ∈ (0, T ], (4.4)

where i = 1, . . . ,M − 1, and (·, ·) denotes the L2(0, 1) inner product. The
initial condition (4.1b) is usually approximated either by interpolation, i.e.,

uh(xi, 0) = s(xi) for i = 0, . . . ,M,

or by L2 projection, viz.

∫ 1

x=0

[uh(x, 0)− s(x)]ψi(x) dx = 0 for i = 1, . . . ,M − 1,

or by some other projection.
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Integrating (4.4), we obtain a system of first-order ordinary differential
equations in the unknowns ui(t), where i = 1, . . . , M − 1. The approximation
of (4.1b) yields initial data for this problem. One arrives at a fully discrete
approximation of (4.1) by discretizing the system (4.4) with respect to t.

Alternatively, one might discretize first in time, which yields a family of
steady-state problems that must in turn be discretized. This is known as
Rothe’s method or the horizontal method of lines. See [AAS07] for a compar-
ison of this approach with the method of lines that we consider here.

In Section 4.1.1, stable methods are generated by using polynomials to
upwind the ψi. Section 4.1.2 examines upwinding using exponentials, in order
to obtain uniformly convergent methods. Finally, Section 4.1.3 gives local con-
vergence results that make minimal assumptions on the data of the problem.

4.1.1 Polynomial Upwinding

Suppose that the φi are piecewise polynomials. Then the ψi can be generated
by adding a suitable piecewise polynomial of higher degree to each φi.

Example 4.1. Take each φi to be the standard piecewise linear “hat” function
centred on xi, with

ψi = φi + αvi, (4.5)

where α is a real parameter and vi is piecewise quadratic, as in Section I.2.2.2.
Mitchell and Griffiths [MG79] discuss such a method, with

vi(x) =

⎧
⎨
⎩

3(x− xi−1)(xi − x)/h2 if xi−1 ≤ x ≤ xi,
−3(x− xi)(xi+1 − x)/h2 if xi ≤ x ≤ xi+1,
0 if |x− xi| > h.

For the case where b is constant and d ≡ f ≡ 0, the semidiscrete form (4.4)
becomes the system of equations

−εSUh + h2M
∂Uh

∂t
= 0.

Here Uh := [u1(t), . . . , uM−1(t)]
T , S := (1 +αR)A−RB, where R := bh/(2ε)

is the cell Reynolds number, and the matrices M,A and B are given by

M =
1

6

⎛
⎜⎝

4 1− 3α/2 0 0 · · ·
1 + 3α/2 4 1− 3α/2 0 · · ·

0
. . .

. . .
. . .

. . .

⎞
⎟⎠ ,

A =

⎛
⎜⎝
−2 1 0 0 · · ·
1 −2 1 0 · · ·
0

. . .
. . .

. . .
. . .

⎞
⎟⎠ ,

and
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B =

⎛
⎜⎝

0 1 0 0 · · ·
1 0 1 0 · · ·
0

. . .
. . .

. . .
. . .

⎞
⎟⎠ .

The matrix M , which is the (scaled) coefficient of ∂Uh/∂t, is known as the
mass matrix.

For two-point boundary value problems where the differential equation has
constant coefficients, α can be chosen in the analogue of this method so as
to get the exact solution at every node [MG80]. For (4.1), no value of α will
guarantee an exact nodal solution; various choices are investigated in [MG79],
but no recommendation for an “optimal” α is made. ♣

Westerink and Shea [WS89] consider piecewise linear φi and

ψi = φi + αvi + σwi, (4.6)

where α and σ are real parameters, vi is piecewise quadratic and wi piecewise
cubic. This permits better control of truncation error than when (4.5) is used.
Furthermore, a Fourier analysis [WS89] indicates that the choice (4.6) controls
phase errors without excessive damping of the solution, whereas (4.5) cannot
simultaneously achieve both these aims.

An alternative is to use a piecewise quadratic φi with ψi = φi+σ1wi+σ2qi,
where σ1 and σ2 are real parameters, wi is piecewise cubic and qi piecewise
quartic.

Numerical results in [WS89], for the case of the constant coefficient re-
duced problem (i.e., ε = 0) with a Gaussian pulse as initial data, bear out
the above theoretical results for the linear/cubic schemes and show that the
quadratic/quartic scheme is more accurate for this problem. Nevertheless, it
is unclear how well these schemes would perform in the presence of an outflow
boundary layer.

Yu and Heinrich [YH86] analyse a related approach with space-time finite
elements for a problem where d ≡ f ≡ 0 and b is constant. They use a tensor-
product uniform grid {(xi, tj) : i = 0, . . . ,M, j = 0, . . . , N}, with piecewise
bilinear trial functions wij(x, t) satisfying wij(xk, tn) = δikδjn for each node
(xk, tn). Their test functions have the form

σij + σ1
∂σij

∂x
+ σ2

∂2σij

∂x∂t
, (4.7)

where σ1 and σ2 are real parameters. To discretize (4.1a), they use the weak
form
∫ tn

t=tn−1

{∫ 1

x=0

[
ε(uh)xwx +

(
(uh)t + b(uh)x

)
w
]
dx− ε(uh)xw|1x=0

}
dt = 0

(4.8)
for n = 1, . . . , N , where uh is the computed solution and w is an arbitrary
test function. This scheme satisfies the von Neumann stability condition on
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every equidistant grid. It is formally consistent of O(h3 + τ), where τ is the
grid spacing in the t-direction.

To obtain better formal consistency, one can replace the bilinear trial func-
tions here by functions that are linear in space and quadratic in time. The
resulting scheme is formally consistent ofO(h3+τ2), and satisfies the von Neu-
mann condition if the Courant number bτ/h is less than one. In fact [YH86]
there is an optimal choice of bτ/h that yields formal consistency of O(h4+τ2).

Several numerical experiments in [YH86] deal with the convection and
diffusion of a Gaussian pulse, but outflow boundary layers are not present.

Remark 4.2. (SDFEM in space) The streamline diffusion method (SDFEM)
for two-point boundary value problems was already discussed in Section I.2.2.3.
To discretize (4.1), one could combine the SDFEM in space with a subsequent
time discretization; see Remark III.4.3. ♣

4.1.2 Uniformly Convergent Schemes

Theorem 3.19 implies that none of the schemes encountered so far in Sec-
tion 4.1 is uniformly convergent. Since the condition (3.29b) of Theorem 3.19
resembles strongly the corresponding condition (2.19) of Part I for two-point
boundary value problems, one can hope to generate uniformly convergent
schemes for (4.1) by combining a uniformly convergent finite element method
from Section I.2.2.5 with a simple approximation of ut.

Place the usual equidistant tensor-product grid on Q̄. The nodes are
(xi, tj), where xi = i/M = ih for i = 0, . . . ,M and tj = j T/N = jτ for
j = 0, . . . , N .

Example 4.3. We begin by defining trial and test functions on each line seg-
ment [0, 1]× {tj}. The trial basis functions {φij(x, tj) : i = 1, . . . ,M − 1} are

standard piecewise linears that satisfy φij(xk, tj) = δjk. Set wj
i = w(xi, tj) for

all w ∈ C(Q̄). Define the piecewise constant approximation w̄(·, tj) of w(·, tj)
by

w̄(x, tj) =

{
wj

i if xi−1 < x < xi for i = 1, . . . ,M,
0 otherwise.

The test functions {ψij(x, tj) : i = 1, . . . ,M − 1} satisfy

−εψij
xx(x, tj)− b̄(x, tj)ψij

x (x, tj) = 0 for x ∈ ∪M
i=1(xi−1, xi), (4.9a)

ψij(xk, tj) = δik for k = 0, . . . ,M. (4.9b)

Each ψij(·, tj) has support [xi−1, xi+1]. These functions are similar to the
L∗-splines of Section I.2.2.5.

We introduce a parameter θ whose value determines the approximation
of yt. The values θ = 0 / 0.5 / 1 correspond to forward Euler / Crank-Nicolson
/ backward Euler differencing respectively.

Set
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(y, z)j =

∫ 1

x=0

y(x, tj)z(x, tj) dx

for all piecewise continuous y(·, tj) and z(·, tj). Our approximation of (4.1) is

(1− θ){h−1[ε((uh,τ )x, ψ
ij
x )j + (b̄j(uh,τ )x, ψ

ij)j ]− dj
iu

j
i}

+ θ{h−1[ε((uh,τ )x, ψ
i,j+1
x )j+1 + (b̄j+1(uh,τ )x, ψ

i,j+1)j+1]− dj+1
i uj+1

i }
+ (uj+1

i − uj
i )/τ = (1− θ)f j

i + θf j+1
i , (4.10)

for i = 1, . . . ,M − 1 and j = 0, . . . , N − 1, where (·, ·)n is the L2(0, 1) inner
product for t = tn, and the computed solution

uh,τ (x, tj) =

M−1∑

i=0

uj
iφ

ij(x, tj) for j = 0, . . . , N

is required to interpolate to the initial condition (4.1b).
The one-step difference scheme equivalent to (4.10) is given explicitly in

[NSOS88, SO89]. The nodal values uj+1
i at each time level tj+1 are computed

cheaply from the solution at time tj by simple tridiagonal Gaussian decom-
position (in fact when θ = 0, the scheme is explicit).

If

τ(1− θ)
{

4‖b‖L∞(Q)

h(1− e−βh/ε)
+ ‖d‖L∞(Q)

}
≤ 1, (4.11)

then the scheme satisfies the hypotheses of Lemma 3.12 and hence a discrete
maximum principle. Inequality (4.11) is a generalized CFL condition. ♣

Theorem 4.4. Suppose that (4.11) holds true. Assume also that, for k ≤ 1
and k +m ≤ 2,

∣∣∣∣
∂k+mu(x, t)

∂xk∂tm

∣∣∣∣ ≤ C(1 + ε−ke−β(1−x)/ε) for all (x, t) ∈ Q. (4.12)

Then for all i and j, the solution uh,τ of (4.10) satisfies

|u(xi, tj)− uj
i | ≤ C(h+ τ). (4.13)

If θ = 1/2 and (4.12) also holds true for higher-order derivatives of u, then
one can improve (4.13) to

|u(xi, tj)− uj
i | ≤ C(h+ τ2).

Proof. A consistency and stability argument of finite difference flavour [SO89]
establishes the result. ⊓⊔

If the data of (4.1) are smooth and compatible, then by Remark 2.8 in-
equality (4.12) will hold true – so interior layers are excluded – and Theo-
rem 4.4 now guarantees that (4.10) is a uniformly convergent method.
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Example 4.5. (A nonlumped scheme) Consider now a semidiscrete formula-
tion, as described in Section 4.1, with piecewise linear trial functions φi and
test functions ψi that are defined essentially by (4.9). Replacing terms of the
form (uh)t(x, tj) by

uh(x, tj+1)− uh(x, tj)

τ
,

and applying the quadrature rule

(uh, ψi)m ≈ uh(xi, t
m)(1, ψi)m = hum

i (4.14)

for each i and m, we can derive (4.10).
The simplification (4.14) is called mass lumping. In [NSOS88] the left-hand

side of (4.14) is retained, producing a nonlumped scheme that is a variant of
(4.10), and an error bound like (4.13) is proved for this scheme under the
hypotheses that θ = 1, bτ/h ≥ 1 and (4.12) all hold true. ♣

The remaining examples are uniformly convergent in the sense of L2 or
energy norms, unlike the L∞ setting of (3.27).

Example 4.6. (L2 convergence) In [GS93] two lumped schemes for (4.1) are
examined on fairly general tensor-product meshes. If b is constant and the
mesh is equidistant, then these schemes are identical to (4.10) with θ = 1,
and the computed solution {uj

i} satisfies

{
h

M−1∑

i=1

(
u(xi, tj)− uj

i

)2
}1/2

≤ Ch1/2

{
τ

N∑

n=1

(∫ 1

s=0

(
|ux(s, tn)|+ |(f − ut − bu)x(s, tn)|

)
ds

)2
}1/2

+ Cτ1/2

⎧
⎨
⎩h

M−1∑

i=1

(∫ T

y=0

|utt(xi, y)| dy
)2

⎫
⎬
⎭

1/2

(4.15)

for j = 1, . . . , N . For each j, this is a discrete L2-norm error estimate. So far,
unlike Theorem 4.4, no assumptions have been made regarding the behaviour
of u.

In practice each integral in (4.15) may be bounded, uniformly in ε, by a
fixed constant. Then we get the uniform L2 convergence bound

{
h

M−1∑

i=1

(
u(xi, tj)− uj

i

)2
}1/2

≤ C(h1/2 + τ1/2) (4.16)

for j = 1, . . . , N . If we assume that (4.12) holds true, then the right-hand side
of (4.16) can be sharpened [GS93] to C(h+ τ), for j = 1, . . . , N .

A variant of the nonlumped scheme of Example 4.5 is analysed in [GS94]
and L2-convergence results similar to those just described are proved. ♣
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For all w ∈ H1
0 (0, 1), define the energy norm

‖w‖1,ε =

{∫ 1

x=0

[ε(w′(x))2 + w2(x)] dx

}1/2

.

Example 4.7. (Energy norm convergence) In (4.1) suppose that b = b(x), d =
d(x), f = f(x) and s ≡ 0. We generate a semidiscrete solution of the form
(4.3) by means of a Galerkin approach where the trial space is “enriched”
[HK82] by the insertion of a boundary layer function.

Let φi(x) be the usual piecewise linear function, with φi(xj) = δij , for
i = 1, . . . ,M − 1 and j = 0, . . . ,M . Also define

φM (x) = e−b(1)(1−x)/ε − 1− (1− x)(e−b(1)/ε − 1) (4.17)

for x ∈ [0, 1]. All these φi(x) vanish at x = 0 and x = 1. Define the trial space
V to be the span of {φi : i = 0, . . . ,M} and choose the test space to be V
also. Then the semidiscrete solution

uh(x, t) =
M∑

i=1

ui(t)φi(x)

is required to satisfy (4.4): for each t ∈ (0, T ], and i = 1, . . . ,M ,

(ε(uh)x, φ
′
i) + ((uh)t + b(uh)x + duh, φi) = 0. (4.18)

Set ζ = u− uh. Now (4.1) and (4.18) imply that

(εζx, φ
′) + (ζt + bζx + dζ, φ) = 0

for all φ ∈ V . Hence

(ζt, ζ) + (εζx, ζx) + (bζx + dζ, ζ)

= (εζx, (ζ − φ)x) + (bζx + dζ + ζt, ζ − φ). (4.19)

But an integration by parts and (4.2) yield

(εζx, ζx) + (bζx + dζ, ζ) ≥ min{1, ω}‖ζ(·, t)‖21,ε (4.20)

for each t ∈ (0, T ]. Substitute (4.20) into (4.19), then integrate in time to get

∫ 1

x=0

1

2
ζ2(x, t) dx+ min{1, ω}

∫ t

s=0

‖ζ(·, t)‖21,ε ds

≤
∫ t

s=0

|(εζx, (ζ − φ)x) + (bζx + dζ + ζt, ζ − φ)| ds (4.21)

for 0 ≤ t ≤ T , where each inner product is evaluated at time s, and φ ∈ V is
arbitrary.
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To deduce an energy norm error bound from (4.21), one needs adequate
approximation theory estimates for the difference ζ−φ. In [HK82] smoothness
and compatibility conditions are assumed for the data and the solution u is
decomposed in an asymptotic expansion. This leads to the bound

∫ 1

x=0

1

2
ζ2(x, t) dx+ min{1, ω}

∫ t

s=0

‖ζ(·, t)‖21,ε ≤ Ch3/2, (4.22)

which is uniform in ε. ♣

In [YJS99] the bounds (2.20) are assumed and an arbitrary tensor prod-
uct grid is used with nodes (xi, tj) for i = 0, . . . ,M and j = 0, . . . , N . Set
τj = tj − tj−1 for each j and h = maxi(xi − xi−1). The method bears some
resemblance to Example 4.3; compare the discussion of Petrov-Galerkin meth-
ods in Section I.2.2.5. To discretize in space, piecewise linear test functions
are used; the trial functions are piecewise linear outside the “layer region”
(i.e., for those xi such that xi ≤ 1 − (2ε/β)| ln ε|) and are L̄-splines (as in
(4.9), but with the sign of b̄ changed) inside the layer region. Backward Euler
differencing is used to approximate ut. It is proved that

N∑

j=1

τj‖uj − U j‖21,ε,d + max
j=0,...,N

‖uj − U j‖0,d ≤ C(τ2 + h2| lnh|),

where wj(x) := w(x, tj) for each function w ∈ C(Ω̄), U is the computed
solution, ‖ · ‖0,d is a discrete L2[0, 1] norm and ‖ · ‖1,ε,d is the energy norm
‖ · ‖1,ε with its L2 component replaced by ‖ · ‖0,d.

Finally, a uniform convergence estimate will be described in (4.60) for the
case where the boundary data in (4.1) is periodic, which excludes a boundary
layer.

4.1.3 Local Error Estimates

All proofs that methods are uniformly convergent assume a bound such as
(4.12) on the derivatives of the solution. This is a strong assumption that
often fails to be satisfied in realistic problems; in particular, it excludes interior
layers. To operate in a more practical framework, yet still develop proofs that
numerical methods give accurate results even when ε is very small, we replace
the target of global uniform convergence by a less demanding objective: the
convergence of each method only at those nodes that lie outside layers.

That is, local error estimates will examined on regions in Q where u is
“smooth”: the solution u of (4.1) is said to be smooth on a subdomain Q′ of Q
if a certain number of its derivatives are bounded, uniformly in ε, on Q′. This
terminology is commonly used in the literature. When dealing with functions
that do not depend on ε, we use “smooth” in its classical sense of having
sufficient regularity.
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Our analysis must somehow distinguish nodes “inside” the layers from
those “outside”. This is done using cut-off functions as in the local analysis of
the streamline diffusion method in Section III.3.2.1. We omit the details and
content ourselves here with a statement of the results obtained.

Example 4.8. Two schemes from [GS93] were discussed in Example 4.6. The
following local error estimate holds true for each of these schemes.

Suppose that b ≡ d ≡ 1 on Q and the mesh is equidistant. Let (xi, tj) be
a node in Q. Define Q1 by

Q1 := {(x, t) ∈ Q : 0 ≤ x ≤ xi + C1ε
∗| ln(hτ)|,

|x− t− (xi − tj)| ≤ C1

√
ε∗ | ln(hτ)|

}
, (4.23)

where ε∗ = max{ε, h, τ} and C1 is a constant chosen in the proof. The subdo-
main Q1 is (see Figure 4.1) a long thin region centred on the subcharacteristic
t = x through (xi, tj) and extending from the inflow boundary of Q to slightly
downstream of (xi, tj).

�
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�

�
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�
�

�
��

�
�

��� direction of flow

�

�
�

�
��

�� C1

√
ε∗ | ln(hτ)|

� �
C1ε

∗| ln(hτ)|

(xi, tj)

t

x0

Fig. 4.1. The region Q1 of Example 4.8

Assume that
‖u‖C2(Q1) + ‖f‖C1(Q1) ≤ C, (4.24)
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where

‖w‖Ck(Q1) := max

{∥∥∥∥
∂ℓ+mw

∂xℓ∂tm

∥∥∥∥
L∞(Q1)

: ℓ+m ≤ k
}
.

In other words, we assume that (xi, tj) is not close to any layer. Assume also
that there exists a constant C such that

‖s‖L∞(0,1) + τ
N∑

j=1

[
‖u(·, tj)‖L∞(0,1) + ‖f(·, tj)‖L∞(0,1)

]

+ τ2
N∑

j=1

‖ut(·, tj)‖L1(0,1) ≤ C. (4.25)

One can reasonably expect (4.25) to hold true in many practical problems,
even when interior layers are present.

Then, writing uj
i for the solution computed by either of the schemes from

[GS93], from that paper we have the local error estimate

|u(xi, tj)− uj
i | ≤ C(h+ τ). (4.26)

This bound shows that the schemes are convergent away from layers. Fur-
thermore, the schemes are also convergent at any node inside the boundary
layer, if the boundary layer has “typical” behaviour in a neighbourhood of
that node. For replace the bound on u in (4.24) by the assumption that, for
k ≤ 1 and k +m ≤ 2,

∣∣∣∣
∂k+mu(x, t)

∂xk∂tm

∣∣∣∣ ≤ C(1 + ε−ke−β(1−x)/ε) for all (x, t) ∈ Q1. (4.27)

(This is (4.12) restricted to Q1.) Assume again that (4.25) holds true. Then
(4.26) is still valid.

Corresponding results hold good for the nonlumped scheme of [GS94]. ♣
Remark 4.9. The property of convergence, uniformly in ε, on regions where u
is smooth is much less stringent than uniform convergence on all of Q. For ex-
ample, for two-point boundary value problems, Theorem I.2.12 shows that the
upwind scheme (2.12) of Part I is first-order convergent, uniformly in ε, at all
nodes sufficiently far from the boundary layer at x = 1, while Theorem I.2.17
implies that this method fails to be uniformly convergent on [0,1].

The proof of Theorem 3.19 relies on following the scheme into the boundary
layer; it fails for methods that achieve uniform in ε convergence only where u
is smooth. ♣

4.2 Subcharacteristic-Based Methods

The approach of Section 4.1 essentially splits the operator L into (·)t and
−ε (·)xx + b (·)x + d (·). In this section we shall develop several finite element
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methods that are based on a decomposition of L into −ε (·)xx and (·)t +
b (·)x + d (·). This choice of operator splitting implies that space-time finite
elements must be used. Furthermore, the subcharacteristics of (4.1) will play
a significant role.

Throughout Section 4.2, set

wz := wt + bwx

for various functions w. We call wz the material derivative of w.
This section is divided into three subsections, beginning with the stream-

line diffusion finite element method in Section 4.2.1. While the test functions
in this method are related to the material derivative, the subcharacteristics
themselves are not explicitly used. The discontinuous Galerkin, continuous
Reed-Hill-Richter, and Eulerian-Lagrangian methods of the remaining two
subsections do however require some knowledge of the subcharacteristics of
(4.1).

4.2.1 SDFEM in Space-Time

Standard Galerkin methods that use continuous space-time basis functions are
usually unstable when applied to (4.1). They can be stabilized by artificially
increasing the diffusion coefficient ε in (4.1a), but the computed solution will
then betray the fact that we have modified (4.1) as its layers will be excessively
diffuse.

The streamline diffusion finite element method (SDFEM), which is also
known as the streamline upwinding Petrov-Galerkin method (SUPG), achieves
stability by adding diffusion to the problem only in the direction of the sub-
characteristics of (4.1). This produces much less diffusion in the numerical
solution than the artificial diffusion method of the previous paragraph. More-
over, the increased diffusion in the method is generated in a credible manner
using a Petrov-Galerkin finite element framework that is described below.
The approach here is of course related to the investigation of the SDFEM for
two-point boundary value problems in Section I.2.2.3.

To discretize (4.1) one could apply the SDFEM in the spatial variable,
combined with an arbitrary discretization in time, but we shall not discuss
this approach here; see Remarks 4.2 and III.4.3.

Partition [0, T ] by an equidistant mesh {tj : j = 0, . . . , N}, where for
each j we set tj = jT/N = jτ . Our trial functions will be continuous on each
space-time strip

Qj := [0, 1]× (tj−1, tj).

This avoids possible technical difficulties in the interpretation of −εvxx when
v is a trial function.

One could work with trial functions that were continuous on Q, but this
would lead later to multi-step schemes. Consequently we allow the trial func-
tions to be discontinuous across each line t = tj .
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In general, one uses a space of standard finite element functions on an
arbitrary subdivision of each Qj into triangles or quadrilaterals. Here we shall
consider a simple specific case. Divide [0,1] by the equidistant mesh {xi :
i = 0, . . . , M}, with xi = i/M = ih for each i. Then partition each strip Qj

by the lines t = tj−1, t = tj and x = xi for i = 0, . . . , M , together with
each northwest to southeast diagonal of the rectangles so formed. This gives
a uniform structured triangulation of Qj .

Let Vj denote the space of standard piecewise linear functions on this
triangulation of Qj that vanish at x = 0 and x = 1. Our solution uh,τ will
satisfy uh,τ |Qj

∈ Vj for each j.
So far, we have described a typical space-time finite element space whose

functions are continuous in space but possibly discontinuous in time as one
moves from one strip Qj to the next. The use of such spaces is not peculiar
to the streamline diffusion method.

Set ûj = uh,τ |Qj
. Each ûj ∈ Vj is defined by a Petrov-Galerkin method.

In this method, each test function is constructed from a corresponding trial
function φ by the mapping

φ �→ φ+ δφz, (4.28)

where δ is a sufficiently small positive constant (see below).
Thus in (4.1a) we change u to ûj , then multiply both sides of the equation

by φ+δφz, where φ is an arbitrary member of Vj , and finally integrate overQj .
This gives

ε(ûj
x, φx)Qj

− ε
∑

T⊂Qj

(ûj
xx, δφz)T + (ûj

z + dûj , φ+ δφz)Qj

= (f, φ+ δφz)Qj
,

(4.29)

where (·, ·)G is the L2(G) inner product for any measurable G ⊂ Q̄, each T is
an open triangle in Qj , and the term −ε(ûj

xx, φ)Qj
was integrated by parts.

In the present case, where ûj is piecewise linear, the contribution from ûj
xx

to (4.29) is zero.
Of course (4.29) alone cannot determine ûj ; some initial condition is needed

at t = tj−1. As the solution may be discontinuous across t = tj−1, the infor-
mation provided by ûj−1 can be used only in a weak sense. This procedure is
also standard in the discontinuous Galerkin method [Joh87, Section 8.4.3].

Thus modify (4.29) to the complete streamline diffusion formulation:

ε(ûj
x, φx)Qj

− ε
∑

T⊂Qj

(ûj
xx, δφz)T + (ûj

z + dûj , φ+ δφz)Qj
+ 〈ûj

+, φ+〉j−1

= (f, φ+ δφz)Qj
+ 〈ûj−1

− , φ+〉j−1, (4.30)

for j = 1, . . . , N . Here φ ∈ Vj is arbitrary, the L2(0, 1) inner product for
t = tj−1 is denoted by 〈·, ·〉j−1, and

w±(x, tj−1) := lim
k→0+

w(x, tj−1 ± k)
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for x ∈ [0, 1]. We replace 〈ûj−1
− , φ+〉j−1 in (4.30) by 〈s, φ+〉0 when j = 1.

One can write (4.30) as a linear system of equations in the unknowns
ûj
−(xi, tj), where i = 1, . . . ,M−1. For let φm,k be the canonical basis function

in Vj that satisfies

φm,k(xi, tℓ) = δmiδkℓ for i = 0, . . . ,M and ℓ = j − 1, j. (4.31)

Take φ = φi,j−1 in (4.30). On considering the support of φi,j−1 in Qj , we find
that (4.30) yields a linear equation in

(ûj−1
− )j−1

i−1 , (ûj−1
− )j−1

i , (ûj−1
− )j−1

i+1 , (ûj
+)j−1

i−1 , (ûj
+)j−1

i , (ûj
+)j−1

i+1 ,

(ûj
−)j

i−1, and (ûj
−)j

i .

Here, for example,
(ûj−1

− )j−1
i−1 := ûj−1

− (xi−1, tj−1).

Of the above eight quantities, the values of the (ûj−1
− )j−1

(·) are known from the

previous time step. The (ûj
−)j

(·) will be computed as the numerical solution

advances forward in time. The (ûj
+)j−1

(·) are of relatively minor interest and we

now eliminate them.
In turn take φ = φi,j−1, φi+1,j−1, φi−1,j , and φi+1,j in (4.34). These four

equations can be combined to eliminate the intrusive terms (ûj
+)j−1

m , where
i− 1 ≤ m ≤ i+ 2.

Example 4.10. Suppose that b ≡ 1, d ≡ 0, δ = h, and we set ε = 0. Then the
resulting difference scheme is [Joh87, Näv82]

(
1

4
+

2ν

3
+

4ν2

9

)
uj+1

i−2 +

(
1

6ν
− 23

18
− 101ν

36
− 49ν2

36

)
uj+1

i−1

+

(
2

3ν
+

9

4
+

63ν

18
+

3ν2

2

)
uj+1

i +

(
1

6ν
− 5

6
− 57ν

36
− 25ν2

36

)
uj+1

i+1

+

(
1

9
+

2ν

9
+
ν2

9

)
uj+1

i+2

=

(
1

6ν
+

2

9
+
ν

36

)
uj

i−1 +

(
2

3ν
+

3

4
+
ν

12

)
uj

i

+

(
1

6ν
− 1

3
− ν

12

)
uj

i+1 −
(

5

36
+
ν

36

)
uj

i+2,

where ν = τ/h and uj
i := (ûj

−)j
i . ♣

Does (4.30) have a unique solution? Write its left-hand side as a(ûj , φ).
Then for arbitrary φ ∈ Vj , one has
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a(φ, φ) = ε‖φx‖2L2(Qj)
+ (φz + dφ, φ)Qj

+ δ‖φz‖2L2(Qj)

+ δ(dφ, φz)Qj
+ 〈φ+, φ+〉j−1

≥ ε‖φx‖2L2(Qj)
+ ω‖φ‖2L2(Qj)

+
1

2
〈φ−, φ−〉j + δ‖φz‖2L2(Qj)

+ δ(dφ, φz)Qj
+

1

2
〈φ+, φ+〉j−1,

where we integrated by parts and used (4.2). But

|δ(dφ, φz)Qj
| ≤ δ

2
‖d‖2L∞(Qj)

‖φ‖2L2(Qj)
+
δ

2
‖φz‖2L2(Qj)

.

Hence, if δ ≤ ω/‖d‖2L∞(Qj)
, then

a(φ, φ) ≥ ε‖φx‖2L2(Qj)
+
δ

2
‖φz‖2L2(Qj)

+
ω

2
‖φ‖2L2(Qj)

+
1

2
〈φ−, φ−〉j +

1

2
〈φ+, φ+〉j−1.

It follows that (4.30) has a unique solution.
Assume that τ ≤ Ch for some C > 0 in the analysis that follows.
For higher order piecewise polynomial trial spaces, the term

−ε
∑

T⊂Qj

(ûj
xx, δφz)T

is not zero and must be bounded in the above analysis. This leads to the
stability requirement [Joh87, Näv82] that δ ≤ Ch when ε < h. On the other
hand, if h ≤ ε, then the ordinary Galerkin method is stable so one can take
δ = 0. To obtain accurate results using the streamline diffusion method, one
must choose δ carefully. See Section III.3.2.1 for a discussion of this choice in
the elliptic case.

We next state a simplified version of the global and local error estimates
of Nävert [Näv82] for the streamline diffusion solution uh,τ . These estimates
are proved using standard but detailed finite element techniques. To prove the
local estimates one uses a cut-off function (cf. Section III.3.2.1) and approxi-
mation theory arguments.

For each set Q̂ that is the closure of a union of open triangles T , and
each w that lies in H1(T ) for all T ⊂ Q̂, define

|||w|||Q̂ :=

⎧
⎨
⎩ε

∑

T⊂Q̂

‖∇w‖2L2(T ) +
∑

T⊂Q̂

δ‖wz‖2L2(T ) + ‖w‖2
L2(Q̂)

⎫
⎬
⎭

1/2

.

Theorem 4.11. (Global error bound) Assume that we have ε ≤ h, τ ≤ Ch,
and δ ≤ C ′h for some sufficiently small constant C ′. Then there exists a
constant C such that for all sufficiently small h (independently of ε),

|||u− uh,τ |||Q ≤ Ch3/2|u|H2(Q). (4.32)
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Theorem 4.12. (Local error bound) Assume the hypotheses of Theorem 4.11.
Suppose that b is constant. Let Q2 ⊂ Q be a union of open mesh triangles.
For each mesh node (xi, tj) in Q̄2, define Qij

2 (cf. Example 4.8) by

Qij
2 :=

{
(x, t) ∈ Q : x + bt ≤ xi + btj + C2h| ln h|,

|x− bt− (xi − btj)| ≤ C2

√
h | ln h|

}
,

(4.33)

where C2 is a fixed constant chosen in the proof. Set Q3 = ∪(xi,tj)∈Q2
Qij

2 .
Then for any union of mesh triangles Q4 for which Q3 ⊂ Q̄4, there exists a
constant C such that

|||u− uh,τ |||Q2
≤ C

{
h3/2|u|H2(Q4) + h2

[
‖f‖L2(Q) + ‖s‖L2(0,1)

]}
. (4.34)

In Theorem 4.12, the region Qij
2 has width 2C2

√
h | ln h| about the sub-

characteristic through (xi, tj), and extends from the upstream boundary of Q
to O(h| ln h|) downstream of (xi, tj).

Global bounds such as (4.32) do not guarantee that uh,τ is close to u, since
typically |u|H2(Q) is O(ε−3/2) (recall Theorem 2.6) and in practice ε < h. The
local bound (4.34) is much more useful, but also harder to prove. It ensures
that uh,τ is an O(h3/2) L2 approximation to u on regions in Q that are
not “near” layers. Numerical experiments in [Näv82], for a problem whose
subcharacteristics are straight lines, show that ‖u − uh,τ‖L2

is O(h2) away
from layers, but it is known that for elliptic problems with smooth solutions
one sometimes achieves only O(h3/2) accuracy in L2 [Zho97].

SDFEM on a Layer-adapted Mesh

It seems natural to combine the SDFEM with some layer-adapted mesh yet
the literature contains only one paper [GS97] that analyses this combination
for (4.1). Its contents will now be described.

Theorem 3.19 implies that the streamline diffusion method cannot be uni-
formly convergent on the rectangular equidistant mesh of Section 3.2. In par-
ticular it fails to converge inside layers. We can alleviate this situation inside
the outflow boundary layer by replacing our original equidistant mesh by the
following Shishkin mesh, which is similar to the mesh of Section 3.4.2.

Assume that d ≡ 1 and that b is a positive constant. Let the mesh lines
t = tj be equidistantly spaced. For the x-direction, assume that ε ≤M−1 and
that M is even. Set σ = 2b−1ε lnM ; the parameter σ is the distance from the
boundary x = 1 at which the mesh switches from coarse to fine. Let

xi =

{
2i(1− σ)M−1 for i = 0, . . . ,M/2,
1− σ + 2σ(i−M/2)M−1 for i = M/2 + 1, . . . ,M.

Construct a triangulation of Q as before, based on the points (xi, tj), and use
the SDFEM scheme (4.30). In the next result, recall that all constants C are
generic.
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Theorem 4.13. [GS97] Assume that

‖f‖L2(Q) + ‖s‖L2(0,1) + ‖ut + bux‖L1(Q) + ε‖uxx‖L1(Q) ≤ C. (4.35)

Assume also that max{M/N,N/M} ≤ C. Let (xi, tj) be a node in Q. Set

Q3 :=
{
(x, t) ∈ Q : x ≤ xi + C3M

−1 lnM,

|x− bt− (xi − btj)| ≤ C3M
−1/2 lnM } ,

where C3 is a constant chosen in the proof.
If ‖u‖C2(Q3) ≤ C, where ‖ · ‖C2(Q3) is defined as in Example 4.8, then

|u(xi, tj)− uj
i | ≤ CM−5/4 lnM. (4.36)

If, for k +m ≤ 2,

∣∣∣∣
∂k+mu(x, t)

∂xk∂tm

∣∣∣∣ ≤ C(1 + ε−ke−βx/ε) for all (x, t) ∈ Q3,

then
|u(xi, tj)− uj

i | ≤ CM−3/4 ln5/2M. (4.37)

The condition (4.35) is frequently true in practice and can indeed some-
times be proved. The estimate (4.36) is useful away from layers, while (4.37)
indicates that the method converges inside typical parts of the boundary layer.
Numerical results in [GS97] indicate that the method converges at a rate of
approximately O(M−0.8) inside a representative boundary layer.

When considering elliptic problems in Section III.3.2.1, it will be shown
that local error estimates such as (4.36) can be improved by the addition of a
judicious amount of artificial crosswind diffusion, and for certain meshes are
close to O(M−2).

Several variants of the SDFEM are compared in [HD05] via a Fourier
stability analysis and a computation of phase error, and many references to
the literature are given.

We shall continue the discussion of the streamline diffusion method for
parabolic problems in Chapter 5, where adaptive implementations of two of
its variants are discussed.

4.2.2 Explicit Galerkin Methods

In this Section we examine two methods originally due to Reed and Hill
[RH73]. The first is a Galerkin method that generates a discontinuous ap-
proximation to u, the other a Petrov-Galerkin method that yields a continuous
approximation. The methods were originally designed for first-order problems
such as the reduced problem (2.5) and were later extended to convection-
diffusion problems by Richter [Ric90, Ric92].
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We begin with a version of the discontinuous Galerkin method that
uses space-time elements for parabolic problems. The discontinuous Galerkin
method for elliptic problems that will be discussed at length in Section III.3.4
incorporates several extra features that do not appear in the present section.

Consider the subdivision of Q by a family F of quasi-uniform triangular
meshes. (Quasi-uniform means that there exists positive constants C0 and C1

such that the minimum angle of each triangle is bounded below by C0 for all
meshes in F and on each mesh in F the ratio of maximum triangle diameter to
minimum triangle diameter is bounded above by C1.) Let k be a non-negative
integer. For each triangle T , let Pk(T ) denote the space of polynomials of
degree at most k defined on T .

Our discontinuous Galerkin method computes a piecewise continuous solu-
tion on successive triangles by following the subcharacteristics of (4.1a). The
computed solution uh,τ will satisfy uh,τ |T ∈ Pk(T ) for each T . This solution is
not necessarily continuous on Q; consequently the total number of degrees of
freedom is larger than for functions in C(Q) that are piecewise polynomials.

Assume that d ≡ 0 and b is constant. Let z = (b, 1) be a vector parallel to
the subcharacteristic direction. Assume that no triangle side lies on or near
the direction z, i.e., that

|z · n| ≥ K for some K > 0, (4.38)

where n represents all possible unit vectors perpendicular to triangle sides.
With respect to the reduced problem (2.5), Lesaint and Raviart [LR74]

show that the triangles in the mesh can always be explicitly ordered in such a
way that the domain of dependence of each triangle is contained in the union
of all earlier triangles with the inflow boundary S0 ∪ Sx.

Using this ordering, the solution uh,τ for (4.1) will be computed triangle
by triangle. Begin by choosing uh,τ |S0∪Sx

as the interpolant to the initial-
boundary conditions.

Let T be a typical triangle. We require uh,τ ∈ Pk(T ) to satisfy

(−ε(uh,τ )xx + (uh,τ )z, ψ)T −
∫

∂−T

[
(uh,τ )+ − (uh,τ )−

]
ψ z.n ds

+ ε

∫

∂−T ′

[
((uh,τ )x)+ − ((uh,τ )x)−

]
ψn1 ds = (f, ψ)T , (4.39)

for all ψ ∈ Pk(T ). Here (·, ·)T is the L2(T ) inner product, ∂−T is the inflow
boundary of T , ∂−T ′ = ∂−T \ (S0 ∪ Sx), and n = (n1, n2) is the outward-
pointing unit normal on the boundary of T . The functions w+ and w− are
the downstream and upstream limits respectively of w on ∂−T , viz.,

w±(p) := lim
k→0+

w(p± kz),

for every p ∈ ∂−T . All boundary integrals are with respect to arclength. If we
set ε = 0 in (4.39), we recover the original discontinuous Galerkin method for
(2.5).
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This algorithm for solving (4.1) does not use any data from the outflow
boundary S1, so its solution cannot exhibit boundary layers.

Example 4.14. Take k = 1. Recall the triangulation of Q used in Section 4.2.1.
We order the triangles by moving along each strip Qj from left to right,
starting with Q0, then continuing with Q1, Q2, . . . , QN−1.

Let the triangle T have vertices (xi−1, tj−1), (xi, tj−1) and (xi−1, tj). De-
note by uℓ

m nodal values of uh,τ |T , by (uL)ℓ
m nodal values on the triangle to

the left of T , and by (uB)ℓ
m nodal values on the triangle below T .

We take in turn ψ = φi−1,j−1, φi,j−1, and φi−1,j in (4.39), where each φm,k

is defined in (4.31). This gives three independent equations. For constant f ,
these equations are

b

h
(uj−1

i − uj−1
i−1 ) +

1

τ
(uj

i−1 − uj−1
i−1 ) +

b

h
[2uj−1

i−1 − 2(uL)j−1
i−1 + uj

i−1 − (uL)j
i−1]

+
1

τ
[2uj−1

i−1 − 2(uB)j−1
i−1 + uj−1

i − (uB)j−1
i ]

− 3ε

h2
[uj−1

i − uj−1
i−1 + (uL)j

i−1 − (uL)j
i−2] = f,

b

h
(uj−1

i − uj−1
i−1 ) +

1

τ
(uj

i−1 − uj−1
i−1 )

+
1

τ
[2uj−1

i − 2(uL)j−1
i + uj−1

i−1 − (uL)j−1
i−1 ] = f,

and
b

h
(uj−1

i − uj−1
i−1 ) +

1

τ
(uj

i−1 − uj−1
i−1 ) +

b

h
[2uj

i−1 − 2(uL)j
i−1 + uj−1

i−1 − (uL)j−1
i−1 ]

− 3ε

h2
[uj−1

i − uj−1
i−1 + (uL)j

i−1 − (uL)j
i−2] = f.

Now take k = 0. Applying (4.39) on T and on the triangles immediately to
the left of T and below T , then combining these three equations, one obtains
the simple upwind scheme (cf. Example 3.4)

1

τ
(uj

i−1 − uj−1
i−1 ) +

b

h
(uj

i−1 − uj
i−2) = f, (4.40)

where um
k denotes the value of uh,τ on the triangle with vertices at (xk, tm),

(xk, tm−1) and (xk+1, tm−1). ♣

Write a(uh,τ , ψ) for the left-hand side of (4.39). Richter [Ric92] assumes
that ε ≤ C1h for some constant C1, and shows by a careful analysis that a(·, ·)
satisfies a complicated coercivity inequality. Then he deduces the following
error estimate for the discontinuous Galerkin method:
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Theorem 4.15. There exists a constant C such that

‖u− uh,τ‖L2(Q) +
(√
ε+ h

)
⎧
⎨
⎩
∑

T⊂Q

‖(u− uh,τ )x‖2L2(T )

⎫
⎬
⎭

1/2

+ h1/2

⎧
⎨
⎩
∑

T⊂Q

‖(u− uh,τ )z‖2L2(T )

⎫
⎬
⎭

1/2

≤ Chk+1/2‖u‖Hk+1(Q), (4.41)

where each sum is over all open triangles T in Q.

Remark 4.16. These global error bounds are not convincing at first sight, be-
cause usually ‖u‖Hk+1(Q) is O(ε−k−1/2). Recall, however, that the solution
uh,τ is computed triangle by triangle; hence (4.41) also holds true on any
collection Q′ of triangles in Q for which

∂−Q
′ ⊂ ∂−Q, (4.42)

where ∂− denotes the inflow boundary. ♣

IfQ′ is chosen so that ‖u‖Hk+1(Q′) ≤ C, then (4.41) shows that the L2 error
of the derivative of the computed solution in the subcharacteristic direction
is of optimal order. If also ε/h is bounded below by a positive constant, then
(4.41) yields ⎧

⎨
⎩

∑

T⊂Q′

‖∇(u− uh,τ )‖2L2(T )

⎫
⎬
⎭

1/2

≤ Chk,

which is an optimal order bound on the gradient of the error.
When ‖u‖Hk+1(Q′) ≤ C, the bound

⎧
⎨
⎩

∑

T⊂Q′

‖u− uh,τ‖2L2(T )

⎫
⎬
⎭

1/2

≤ Chk+1/2 (4.43)

of (4.41) is order 1/2 less than optimal. Peterson [Pet91] has shown that (4.43)
is the best possible general result, but Richter [Ric88] proves for first-order
problems such as (2.5) that on certain triangulations the optimal order is
achieved. Numerical results in [Ric92] include a convection-diffusion example
for which piecewise linears on a uniform structured mesh yield the optimal
rate of convergence, viz.,

‖u− uh,τ‖L2(Q) ≤ Ch2.

We now move on to the continuous Reed-Hill-Richter method. This pro-
vides a continuous piecewise polynomial numerical solution for (4.1). It con-
structs this solution triangle by triangle, as in the discontinuous Galerkin
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method, but it is a Petrov-Galerkin method. The analyses of the two methods
are quite similar.

Once again assume that the mesh is quasiuniform, b is constant, d ≡ 0,
and (4.38) holds true.

For each triangle T of the mesh, let m(T ) denote the number of inflow
sides. Inequality (4.38) implies that the value of m(T ) – i.e., 1 or 2 – is well
defined.

The solution uh,τ is computed on successive triangles. We require that
uh,τ |T ∈ Pk(T ) for each T , and that uh,τ ∈ C(Q). On S0 ∪ Sx, take uh,τ to
be the interpolant to the initial-boundary data.

On each triangle T , the solution satisfies

(−ε(uh,τ )xx + (uh,τ )z, ψ)T + ε

∫

∂−T

[
((uh,τ )x)+ − ((uh,τ )x)−

]
ψn1 ds

= (f, ψ)T , (4.44)

for all ψ ∈ Pk−m(T )(T ), where the notation is that of (4.39). Take k ≥ 2 so
that k−m(T ) ≥ 0. As uh,τ lies in C(Q) and is already computed on ∂−T , the
number of degrees of freedom of uh,τ on T equals the dimension of Pk−m(T )(T ).

This method, with ε = 0, is due to Reed and Hill [RH73]. Richter [Ric90]
introduced the generalization (4.44). Note how (4.44) resembles (4.39); this
partly explains why the analyses of the methods are alike.

Example 4.17. We use the same triangulation as in Example 4.14, with k = 2
for the simplest possible case. Then the value of uh,τ must be determined at
six points in each triangle: the vertices and the midpoints of the edges.

Let the triangle T have vertices (xi−1, tj−1), (xi, tj−1) and (xi−1, tj). Then
m(T ) = 2, so k−m(T ) = 0. Since dimP0(T ) = 1 and uh,τ is already computed
on ∂−T , (4.44) yields a single equation in the single unknown

u
j−1/2
i−1/2 := u

(
xi−1 + xi

2
,
tj−1 + tj

2

)
.

Take ψ = 1 in (4.44) to get this equation:

b

3h
uj−1

i +
4

3

(
b

h
+

1

τ

)
u

j−1/2
i−1/2 +

1

3τ
uj

i−1 −
4b

3h
u

j−1/2
i−1

− 1

3

(
b

h
+

1

τ

)
uj−1

i−1 −
4

3τ
uj−1

i−1/2 +
2ε

h2

[
−3uj−1

i + 2u
j−1/2
i−1/2

− uj
i−1 − 2u

j−1/2
i−1 − 3uj−1

i−1 + 4uj−1
i−1/2 + 2uj

i−3/2 − u
j
i−2 + 2u

j−1/2
i−3/2

]

=
2

hτ

∫

T

f. (4.45)

If we formally allow k to equal 1, then (4.44) is vacuous on T since
m(T ) = 2. But on the triangle T ′ to the left of T , one has m(T ′) = 1; if
we set ε = 0 and k = 1 then (4.44) applied on T ′ yields the simple upwind
scheme (4.40). ♣
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Assume that ε ≤ C ′h for some constant C ′. Our assumptions on the mesh
then imply that

ετT ≤ C ′h2
T for all T, (4.46)

where hT and τT are the lengths of the projections of triangle T onto the x- and
t-axes respectively. Condition (4.46) ensures that the method is stable [Ric90].
Under the reasonable assumption that the triangulation can be divided into
J strips, where J = O(h−1) and each strip is one triangle deep, it is shown
in [Ric90] that one has the following error estimates for the continuous Reed-
Hill-Richter method:

Theorem 4.18. Under the above assumptions, the method (4.44) has a unique
solution uh,τ . There exists a constant C such that

‖u− uh,τ‖L2(Q) +
√
ε ‖(u− uh,τ )x‖L2(Q) ≤ Cε−1/2hn+1‖u‖Hn+1(Q), (4.47a)

and, when ε ≤ Ch3/2,

‖u− uh,τ‖L2(Q) + h1/4‖(u− uh,τ )z‖L2(Q) + h3/4‖(u− uh,τ )x‖L2(Q)

≤ Chn+1/4‖u‖Hn+1(Q). (4.47b)

Remark 4.16 applies to these estimates also.
Richter [Ric90] considers a modification of (4.6) near S1 in order to incor-

porate data from the outflow boundary, but concludes that the best strategy
is to use a triangulation of Q that excludes S1 from the domain of depen-
dence of uh,τ in the interior of Q. Numerical results in [Ric90] for the case
k = 2 illustrate the effect of this strategy on the computed solution. One
example, for which ε = h, exhibits the optimal convergence rate of O(h3) for
‖u− uh,τ‖L2(Q), although the estimate (4.47a) predicts only O(h5/2).

Falk and Richter [FR92] prove the following local error estimate for the
method, while assuming that ε ≤ Ch for some sufficiently small C.

Let (xi, tj) be a node of the triangulation. Let u ∈ Hn+1(Q). Set

D = {(x, t) ∈ Q : t ≤ tj , |x− bt− (xi − btj)| ≤ K}

for some positive K, and

D′ = {(x, t) ∈ Q : t ≤ tj , |x− bt− (xi − btj)| ≤ K + C ′√h | lnh|},

where C ′ is constant with C ′ > 2n+7/2. Let Dh be the union of all triangles T
for which T ∩D′ is nonempty. Then

‖(u− uh,τ )z‖L2(D) + h1/2‖∇(u− uh,τ )‖L2(D)

≤ Chn
{
‖u‖Hn+1(Dh) + δ

[
‖u‖L2(Q) + ‖f‖L2(Q) + ‖s‖L2(0,1)

]}
, (4.48)

where δ → 0+ as h→ 0, independently of ε.
This local estimate of ‖(u− uh,τ )z‖L2(Q) is of optimal order.
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The methods of this subsection have in recent years been superseded by
more sophisticated discontinuous Galerkin finite element methods that incor-
porate additional features such as the stabilization of jumps across edges in
the computed solution. In Section III.3.4 these methods are presented for el-
liptic problems; for their application in a parabolic context see [CCSS02] and
its references, and the discussion in Section III.4.3.

4.2.3 Eulerian-Lagrangian Methods

We know from Chapter 2 that the solution of (4.1) closely approximates the
solution of the reduced problem (2.5) on most of Q. The methods of Sec-
tion 4.2.2 use this fact implicitly, since they choose triangles in an order that
depends on the subcharacteristics of (4.1). Eulerian-Lagrangian finite element
methods are also based on the premise that the computed solution of (4.1)
should evolve along the subcharacteristics, just as (more or less) the true
solution does; they are akin to the classical “method of characteristics” for
first-order hyperbolic problems.

The basic methodology of this section appears in the literature under vari-
ous names, such as the characteristic Galerkin method, the Lagrange-Galerkin
method and the modified method of characteristics. A discussion of some
of these methods and of their properties can be found in [EW01]; see also
[BK02, CRHE90, DHP99, DR95, HS01a, Pir89, Pri94] and their references.
Furthermore, the characteristic streamline diffusion method of Section 5.1 be-
low falls into this category. These methods all bear a strong resemblance to
each other. Consequently, instead of attempting to present an overview of all
Eulerian-Lagrangian methods for (4.1), we shall consider only the Eulerian-
Lagrangian local adjoint method (ELLAM) [CRHE90] since it has been applied
to many types of problem [EW01], its analysis is well developed, and unlike
some of the other methods in this family it conserves mass, which is often
important in applications.

Assume for simplicity that b is constant and d ≡ 0. Then (4.1a) becomes

−εuxx + uz = f. (4.49)

Writing u0 for the solution of the reduced problem (2.5), one has

u0(x, t) = u0(x− b∆t, t−∆t) +

∫ ∆t

y=0

f (x+ b(y −∆t), t+ y −∆t) dy (4.50)

for any ∆t > 0, provided that (x, t) and (x− b∆t, t−∆t) both lie in Q.
Our treatment of convection will use a Lagrangian frame of reference to

mimic (4.50), while for diffusion the previous Eulerian frame is retained.
Place the usual equidistant rectangular grid of points {(xi, tj)} on Q̄, where

xi = i/M = ih for i = 0, . . . ,M and tj = j T/N = jτ for j = 0, . . . , N . We
shall use trial and test functions that depend on both x and t, lie in C(Q̄),
and vanish on S0 ∪ S1.
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Set
Qj := [0, 1]× (tj−1, tj).

Let ψ be a typical basis function from the space of test functions, so ψ has
“small” support. Assume that the support of ψ does not intersect any sub-
characteristic that passes through (S0 ∪ S1) ∩Qj . Then (4.49) implies that

∫∫

Qj

fψ dt dx =

∫∫

Qj

(−εuxx + uz)ψ dt dx

=

∫ 1

x=0

∫ tj

z′=tj−1

(−εuxx + uz)ψ dz
′ dx, (4.51)

where z′ is a subcharacteristic coordinate. Now integration by parts gives

∫ 1

x=0

∫ tj

z′=tj−1

(−εuxxψ − uψz) dz
′ dx

+

∫ 1

x=0

[u(x, tj)ψ(x, tj)− u(x− bτ, tj−1)ψ(x− bτ, tj−1)] dx

=

∫∫

Qj

fψ dt dx. (4.52)

For each t, the support of ψ(·, t) lies in a small interval, so (4.52) is analogous
to (4.50).

We intend to replace u in (4.52) by our computed solution uh,τ in order
to generate a difference scheme. Before doing this, formally integrate twice by
parts so that

∫∫
(−εuxxψ − uψz) dz

′ dx =

∫∫
u(−εψxx − ψz) dz

′ dx. (4.53)

The test functions ψ are chosen to yield an approximate solution of the adjoint
equation −εψxx−ψz = 0 almost everywhere in Q. There are two obvious ways
of doing this. The first is to choose ψ(x, t) to satisfy (cf. Section 4.1.2)

−εψxx − bψx = 0 and − ψt = 0.

In the ELLAM, one requires instead that ψ satisfy the local adjoint equation
for the convective derivatives given by

−ψz = −bψx − ψt = 0, (4.54)

which says that each test function is constant along the subcharacteristics of
(4.1); thus convection is treated in a Lagrangian frame of reference. Diffusion
is treated from the Eulerian point of view, so the test functions at each discrete
time level tj can be any standard piecewise polynomials in the x variable, and
since ε is small one has −εψxx − ψz ≈ 0.
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Let us consider the ELLAM in detail when the trial functions are piecewise
linear functions of x. Then for j = 1, . . . , N and i = 1, . . . , M − 1, define

ψi,j(x, t) :=

⎧
⎨
⎩

(x− xi−1)/h+ b(tj − t)/h for (x, t) ∈ Qi,j ,
(xi+1 − x)/h− b(tj − t)/h for (x, t) ∈ Qi+1,j ,
0 otherwise,

(4.55)

where
Qm,j := {(x, t) ∈ Qj : xm−1 − btj ≤ x− bt ≤ xm − btj}.

The test space on Qj is the span of {ψi,j(x, t) : i = 1, . . . ,M − 1}.
Now substitute (4.53) into (4.52), then replace u by uh,τ and ψ by ψi,j .

This gives

− ε

h

∫ tj

z′=tj−1

[uh,τ (xi−1 − b(tj − z′), z′)

− 2uh,τ (xi − b(tj − z′), z′) + uh,τ (xi+1 − b(tj − z′), z′)] dz′

+
1

h

∫ xi

x=xi−1

[uh,τ (x, tj)− uh,τ (x− bτ, tj−1)](x− xi−1) dx

+
1

h

∫ xi+1

x=xi

[uh,τ (x, tj)− uh,τ (x− bτ, tj−1)](xi+1 − x) dx

=

∫∫

Qj

fψi,j dt dx. (4.56)

In practice, one uses a quadrature rule to evaluate the first integral in
(4.56). The simplest option is a one-point rule at z′ = tj , which yields

− ε

h2
[uj

i−1 − 2uj
i + uj

i+1]

+
1

h2τ

∫ xi

x=xi−1

[uh,τ (x, tj)− uh,τ (x− bτ, tj−1)](x− xi−1) dx

+
1

h2τ

∫ xi+1

x=xi

[uh,τ (x, tj)− uh,τ (x− bτ, tj−1)](xi+1 − x) dx

=
1

hτ

∫∫

Qj

fψi,j dt dx. (4.57)

Note that the diffusion term −εuxx is approximated by a spatial difference,
while the convective term bux + ut is in effect upwinded along the subcharac-
teristics.

Example 4.19. For each fixed tk, suppose that the trial functions are piecewise
linear on [0, 1]. Then (4.57) simplifies to [CRHE90]
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− ε

h2
[uj

i−1 − 2uj
i + uj

i+1] +
1

6τ
[uj

i−1 + 4uj
i + uj

i+1]

− 1

6τ

[
(1− 3θ + 3θ2 − θ3)uj−1

i−⌊ν⌋−2 + (4− 6θ2 + 3θ3)uj−1
i−⌊ν⌋−1

+ (1 + 3θ + 3θ2 − 3θ3)uj−1
i−⌊ν⌋ + θ3uj−1

i−⌊ν⌋+1

]

=
1

hτ

∫∫

Qj

fψi,j dt dx, (4.58)

where ν = bτ/h is the Courant number, ⌊ν⌋ denotes its integer part, and
θ := 1− (ν − ⌊ν⌋). ♣

Remark 4.20. (Boundary conditions) Near S0 and S1, a subcharacteristic
passing through a point (xm, tk), where k = j − 1 or j, may leave Q̄ before
it reaches t = t2j−k−1. In the derivation of (4.52), we took care to avoid such
subcharacteristics. When they occur, (4.56) must be modified. The treatment
of boundary conditions in Eulerian-Lagrangian methods is in general a non-
trivial problem, but for the ELLAM it can be done in a systematic manner
[WDE+99]. ♣

Remark 4.21. (Variable b) When b is non-constant, so the subcharacteristics
of (4.1) are curved, then in (4.52) the test functions are specified as before at
t = tj and are extended backwards in time to t = tj−1 by requiring that they
remain constant along each subcharacteristic. Thus (4.54) is satisfied. Russell
and Trujillo [RT90] show how certain resulting integrals in the method should
be evaluated using a forward-tracking algorithm.

Furthermore, one then needs to impose a time-stepping restriction of the
form τ‖b‖L∞(0,T ;W 1

∞) ≤ 1 (this norm is defined in (III.4.8)) to ensure that
subcharacteristics from neighbouring mesh points cannot cross during each
time step. ♣

When piecewise linear trial functions are used, Wang et al. [WER95] show
that for all j one has

‖u(·, tj)− uh,τ (·, tj)‖L2(0,1) ≤ K(h2 + τ). (4.59)

This result is of optimal order; it should be noted that theoretical error bounds
for alternative Eulerian-Lagrangian methods are sometimes suboptimal. Here,
however, K depends on certain Sobolev norms of u and hence on ε. Numerical
results in [WER95] show that (4.59) is sharp when u has no layers and that
the scheme is stable even for large Courant numbers. See [WW] for a more
recent related result.

In [WW07] the authors consider (4.1a) with periodic boundary data, which
excludes a boundary layer. A complicated analysis demonstrates that for all j
one has

‖u(·, tj)− uh,τ (·, tj)‖L2(0,1) ≤ C[h2 + τ + min{h, τ}], (4.60)
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where the constant C depends only on the data of the problem and so is
completely independent of ε; this is the first ε-independent error bound for
the ELLAM.

A finite volume analogue of the ELLAM appears in [HR93] and is analysed
in [RSW08].

In Section III.4.3 we shall return to the ELLAM in the context of multi-
dimensional parabolic problems.
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Two Adaptive Methods

All methods considered so far in Part II use fixed meshes that are chosen a
priori. Adaptive methods, which were applied to two-point boundary value
problems in Section I.2.5, aim to produce accurate numerical solutions by
refining the mesh in certain regions, using the current computed solution to
(4.1) as a guide to this refinement. In the present Chapter we consider two
such methods.

An adaptive method can be constructed by combining any of the numerical
methods of Part II with some recipe that refines the mesh in regions where
the computed solution appears to be inaccurate. Plausible mesh-refinement
criteria abound in the literature, but it is difficult to give meaningful analyses
(i.e., error bounds that are independent of ε) of adaptive methods in the
context of convection-diffusion problems. We nevertheless acknowledge that
approaches based on an incomplete theory can yield satisfactory numerical
results; see, e.g., [AFMW92, CA92, FVZ90].

The discussion below does not attempt to give a comprehensive overview
of adaptive methods; see also Sections I.2.5 and III.3.6. Our exposition is
confined to streamline diffusion finite element methods and to moving mesh
methods. These topics will provide an adequate exposure to the core ideas
used in adaptive techniques.

5.1 Streamline Diffusion Methods

In the present section two variants of the streamline diffusion finite element
method (SDFEM) of Section 4.2.1 are considered; the first of these adds a
controlled amount of artificial diffusion to the problem, while the second uses
a mesh that is oriented along the subcharacteristics of the problem.

Suppose for simplicity that d ≡ 0 and b ≡ 1 in (4.1), so the problem is
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ut(x, t)− εuxx(x, t) + ux(x, t) = f(x, t) for (x, t) ∈ Q, (5.1a)

u(x, 0) = s(x) on Sx := {(x, 0) : 0 ≤ x ≤ 1}, (5.1b)

u(0, t) = 0 on S0 := {(0, t) : 0 < t ≤ T}, (5.1c)

∂u

∂x
(1, t) = 0 on S1 := {(1, t) : 0 < t ≤ T}. (5.1d)

Note that on S1 the Dirichlet boundary condition of (4.1d) has been replaced
by a Neumann condition. Consequently no strong boundary layer in u forms
at S1 (cf. Remark I.1.5) but interior layers may still be present.

Consider the following modification of the SDFEM (4.30), with the same
triangulation and choice of linear trial functions as in (4.30), while assuming
that max{τ/h, h/τ} ≤ C:

(ε̂ûj
x, φx)Qj

+ (ε̂ûj
t , φt)Qj

+ (ûj
t + ûj

x, φ+ δ(φt + φx))Qj
+ 〈ûj

+, φ+〉j−1

= (f, φ+ δ(φt + φx))Qj
+ 〈ûj−1

− , φ+〉j−1,
(5.2)

for j = 1, . . . , N and all φ ∈ Vj , where on each triangle T ∈ Qj one sets

ε̂|T := max
T
{ε, C2h

2|f − ûj
t − ûj

x|} and θ|T := C1 min{0, h− ε̂},

with C1 and C2 positive constants. Compared with (4.30), we have introduced
a shock-capturing artificial diffusion ε̂ that in general depends on the computed
solution uh,τ . Thus (5.2) is a nonlinear method, even though (5.1) is a linear
problem.

Eriksson and Johnson [EJ93a] analyse this method (cf. [EJ93b], which is
similar), while assuming that ε̂ is approximable by a smoothly varying function
that we also call ε̂. They argue heuristically that ε̂ = max{ε,O(h3/2)} near
interior layers and that ε̂ = max{ε,O(h3)} on regions where the solution is
smooth. Thus in all cases ε̂ is small.

Let ũ be the solution of the problem obtained when (5.1a) is replaced by

ũt − (ε̂ũt)t − (ε̂ũx)x + ũx = f,

with the same initial-boundary conditions as in (5.1b)–(5.1d). Now

‖u− uh,τ‖ ≤ ‖u− ũ‖+ ‖ũ− uh,τ‖,

where ‖·‖ denotes the L2(Q) norm and uh,τ is the solution computed by (5.2).
One can regard u− ũ as a perturbation error and ũ− uh,τ as a discretization
error. In [EJ93a] a rigorous a posteriori bound on ‖ũ− uh,τ‖ is derived. The
term ‖u − ũ‖ is more troublesome: for it only a heuristic a posteriori bound
is given. (A derivation of a bound on ‖u− ũ‖ that depends only on uh,τ and
on the data of (5.1) is sketched in [EJ93a].)

The results outlined here still hold true, with appropriate changes in the
notation, when the equidistant structured mesh of Section 4.2.1 is replaced
by any triangular mesh that satisfies the classical minimum angle condition.
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Eriksson and Johnson [EJ91] describe two local refinement methods whose
objectives are to construct a mesh for which ‖u − uh,τ‖ is less than some
user-prescribed tolerance and whose a posteriori error estimators are approx-
imately equally distributed over all triangles in the mesh. Their first approach
begins with a coarse mesh which is refined locally until some tolerance is
reached. The alternative method of [EJ91] is to create triangles of a suitable
size at a “front” separating the triangulated and untriangulated parts of Q; a
single sweep across Q generates the final mesh.

Remark 5.1. Either of these approaches could be implemented with any finite
element method for which an a posteriori bound on ‖u−uh,τ‖ is available. ♣

Remark 5.2. The characteristic streamline diffusion method [EJ93a, Han92]
is a streamline diffusion method of Eulerian-Lagrangian type. In each time
interval, the movement of the space mesh is approximately along the subchar-
acteristics. The analysis of this method shows that one may often use mesh
triangles whose length in the subcharacteristic direction greatly exceeds their
length in the x-direction. Consequently we can adaptively compute a mesh
that has far fewer degrees of freedom than meshes based on rectangular grids
in the (x, t)-plane. ♣

All methods of Section 5.1 extend to higher-dimensional problems.

5.2 Moving Mesh Methods (r-refinement)

The adaptive methods of Section 5.1 introduce extra grid nodes in subregions
of Q where they are apparently useful. We now consider a popular alterna-
tive adaptive method for solving (4.1) that does not attack the problem by
increasing the number of mesh points; instead, the number of spatial nodes
remains the same as one moves from the discrete time level t = tj−1 to the
level t = tj , but the locations of these nodes is altered so as to get a good
approximation (in some norm) to u(·, tj). This leads to the name moving
mesh method . The technique is also called r-refinement . When the method
is applied to convection-diffusion problems, some nodes will cluster around
layers.

The literature contains many papers that implement this idea in both finite
difference and finite element contexts. See Hawken et al. [HGH91] for a thor-
ough survey up to 1988; more recent work can be found in the bibliographies
of [BMRS02, Hua01].

There are two types of moving grid method. In the static method one
computes a trial solution at discrete time levels tj , using information from
t = tj−1. This solution is used to choose a mesh on [0, 1] × {tj}, then the
solution at t = tj is recomputed using this new mesh. Thus there is no direct
link between the mesh on [0, 1]× {tj−1} and that on [0, 1]× {tj}.



226 5 Two Adaptive Methods

We shall study the more widely used dynamic method. In this framework,
one starts from a user-specified mesh on Sx, then for each t the mesh on
[0, 1] × {t} is constructed by continuously moving the nodes according to
some prescription.

Should the nodes be explicitly forced to follow the subcharacteristics of
(4.1)? This might appear attractive for linear convection-diffusion problems,
but if the solution reaches steady-state one certainly does not want the nodes
to keep following the subcharacteristics as this will move them all to the
outflow boundary. Furthermore, Furzeland et al. [FVZ90] give a nonlinear
reaction-diffusion example for which such subcharacteristic-tracking is incom-
patible with the primary aim of generating an optimal spatial approximation
to u(·, t). Bank and Santos [BS93a] describe a finite element method where
the user can directly control the location of the nodes at each discrete time
level. An alternative approach (for a pure convection problem) is described in
[MB01].

Many authors select the nodes at each time level so as to equidistribute
(cf. Section I.2.5) some estimate of the solution. That is, the value of the esti-
mate on each subinterval of [0, 1]×{t} should be the same for all subintervals.
This condition and (4.1) generate a system of nonlinear ordinary differential
equations that control the computed solution and the movement of the mesh.

We now present a detailed description of the moving finite element method,
which has received much attention. Other moving mesh methods can be found
in [FVZ90, HGH91, HHG92, HR01, LBD+02] and are applied to nonlinear
variants of (4.1) such as Burgers’ equation −εuxx + uux + ut = 0 in [BKS98,
BMRS01, HLP03, MQS97]; see also Section III.4.3. Huang et al. [HRR94]
discuss the relationships between the movements of the mesh in some of these
methods. For further reading, see Baines’s monograph [Bai94].

For each t ∈ [0, T ], let

0 = X0(t) < X1(t) < . . . < XM (t) = 1 (5.3)

denote the mesh on [0, 1]× {t}. Set

X(t) := (X0(t), X1(t), · · · , XM (t)).

Our computed solution uh will be piecewise linear in x for each fixed t.
The basis functions on the mesh X(t) are

φi(x,X(t)) =

⎧
⎨
⎩

(x−Xi−1)/∆Xi when Xi−1 ≤ x ≤ Xi,
(Xi+1 − x)/∆Xi+1 when Xi ≤ x ≤ Xi+1,
0 otherwise,

(5.4)

for i = 1, . . . ,M − 1, where ∆Xi := Xi −Xi−1. Then

uh(x, t) =
M−1∑

i=1

ui(t)φi(x,X(t)) for (x, t) ∈ Q̄. (5.5)
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This representation generalizes (4.3).
From (5.4) and (5.5),

(uh)t(x, t) =
M−1∑

i=1

[
u′

i(t)φi(x,X(t)) + ui(t)
i+1∑

j=i−1

∂φi(x,X(t))

∂Xj
X ′

j(t)

]
,

where each prime denotes differentiation with respect to t. That is,

(uh)t(x, t) =

M−1∑

i=1

[
u′i(t)φi(x,X(t))

+

M−1∑

j=1

X ′
j(t)

j+1∑

i=j−1

ui(t)
∂φi(x,X(t))

∂Xj

]
.

(5.6)

Differentiating (5.4), we see that

∂φi(x,X(t))

∂Xi
=

⎧
⎨
⎩
−φi/∆Xi when Xi−1 < x < Xi,
φi/∆Xi+1 when Xi < x < Xi+1,
0 otherwise.

(5.7)

Now φi−1 + φi = 1 when x ∈ [Xi−1, Xi], so (5.7) implies that

∂φi−1(x,X(t))

∂Xi
=

φi

∆Xi
when Xi−1 < x < Xi. (5.8)

Similarly,

∂φi+1(x,X(t))

∂Xi
=

−φi

∆Xi+1
when Xi < x < Xi+1. (5.9)

Substitution of (5.7)–(5.9) into (5.6) gives

(uh)t(x, t) =

M−1∑

i=1

[
u′i(t)φi(x,X(t)) +X ′

i(t)ωi(x,X(t))
]
, (5.10)

where

ωi(x,X(t)) =

⎧
⎨
⎩
−∆uiφi(x,X(t))/∆Xi when Xi−1 < x < Xi,
−∆ui+1φi(x,X(t))/∆Xi+1 when Xi < x < Xi+1,
0 otherwise,

and ∆ui := ui − ui−1. Each function ωi is piecewise linear and is in general
discontinuous at x = Xi.

We now generate the semidiscrete system of equations that determines the
2(M −1) unknown functions ui(t) and Xi(t). Replace u in (4.1) by uh, invoke
(5.10), then for fixed t minimize the L2(0, 1) norm of the residual (i.e., apply a
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standard Galerkin procedure). This gives, for j = 1, . . . , M − 1 and t ∈ [0, T ],

M−1∑

i=1

[u′
i(t)(φi, φj) +X ′

i(t)(ωi, φj)]

+ ε((uh)x, (φj)x) + (b(uh)x + cuh, φj) = (f, φj) (5.11a)

and
M−1∑

i=1

[u′i(t)(φi, ωj) +X ′
i(t)(ωi, ωj)]

+ ε((uh)x, (ωj)x) + (b(uh)x + cuh, ωj) = (f, ωj), (5.11b)

where (·, ·) is the L2(0, 1) inner product for fixed t. Here t was dropped from
the notation for brevity. If the mesh were fixed, so that X ′

i = 0 for all i, then
(5.11a) would be the standard Galerkin equations for the method of lines.

The terms
∑

i[. . .] in (5.11) are given explicitly by

[u′j−1∆Xj + 2u′j(∆Xj +∆Xj+1) + u′j+1∆Xj+1]/6

− [X ′
j−1∆uj + 2X ′

j(∆uj +∆uj+1) +X ′
j+1∆uj+1]/6 (5.12a)

and

− [u′j−1∆uj + 2u′j(∆uj +∆uj+1) + u′j+1∆uj+1]/6

+ [X ′
j−1(∆uj)

2/∆Xj + 2X ′
j((∆uj)

2/∆Xj + (∆uj+1)
2/∆Xj+1))

+X ′
j+1(∆uj+1)

2/∆Xj+1]/6 (5.12b)

respectively. Thus one can write (5.11) as the system of nonlinear ordinary
differential equations

A(y)y′ = g(y), (5.13)

where y := [u1, X1, u2, X2, . . . , uM−1, XM−1]
T , the block tridiagonal matrix

A(y) is gleaned from (5.12), and the vector g(y) contains all terms that depend
on ε, b, d and f . The system (5.13) is valid for all t > 0. It is complemented
by the initial condition y(0), whose data come from s(·) and from the initial
mesh on Sx chosen by the user.

Does (5.13), subject to y(0), have a unique solution? The answer in gen-
eral is no. We could have foreseen as early as (5.5) that such an unwelcome
circumstance might occur. For if uh(·, t) has the same slope on (Xi−1, Xi)
and (Xi, Xi+1) for some i, then the representation (5.5) is not unique: one
can move Xi to any other location in (Xi−1, Xi+1) and change ui accord-
ingly. The phenomenon is known as parallelism. A related difficulty may arise
when two nodes Xi−1 and Xi are very close to each other. If uh(Xi−1, t) and
uh(Xi, t) are also very close, then a swop of φi−1 and φi in (5.5) has little effect
on uh. Such virtual loss of uniqueness of representation ill-conditions A(y).

These two deficiencies, parallelism and node-crossing, have attracted much
attention. Various modifications of the basic method try to exclude them. For
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example, Miller [Mil83] introduces penalty functions. Unlike our minimization
of the L2 norm of a residual (call it R) to get (5.11), he minimizes

(R, R) +
M−1∑

i=1

(γi∆(X ′
i)− δi)2

when deriving (5.11b), with

γ2
i := K2

1/(∆Xi −K3), δi := K2
2/[γi(∆Xi −K3)

2],

and K1,K2,K3 user-chosen small positive constants. In effect, K3 usually
acts like a lower bound on the distance between adjacent nodes. Furzeland et
al. [FVZ90] discuss how K1,K2 and K3 should be chosen in practice.

Even when one does not encounter the twin difficulties described above, the
system (5.13) is stiff. In practice the implicit backward differentiation formula
method is frequently used to solve (5.13). The stability of time-integration
schemes for (5.13) is examined in [MM07].

Baines [Bai91] considers the reduced problem (2.5) and shows that in cer-
tain cases the moving finite element method for this problem is closely related
to the classical method of characteristics. Zegeling and Blom [ZB92] apply
the method to convection-diffusion problems and investigate the movement of
the nodes. Their numerical experiments show that the moving nodes tend to
follow the characteristics of the reduced problem, but that in more than one
space dimension this property may cause severe distortion of the mesh.

The satisfactory extension of moving mesh methods to time-dependent
problems with two or more space dimensions will be considered in Sec-
tion III.4.3.



Part III

Elliptic and Parabolic Problems in Several
Space Dimensions



Parts I and II contain results that are representative of the large body
of theory dealing with singularly perturbed boundary value problems in one
space variable. We now move to several space dimensions, where one encoun-
ters technical problems that are much more varied and challenging.

The first three Chapters of Part III will discuss the linear singularly per-
turbed boundary value problem

Lu := −ε∆u+ b(x) · ∇u+ c(x)u = f(x) for x ∈ Ω ⊂ R
d, (0.1a)

Bu = 0 on ∂Ω = Γ, (0.1b)

where B is some operator that represents the boundary conditions. Here Ω is
a bounded domain in Rd with d ≥ 2 and, as usual, the parameter ε satisfies
0 < ε ≪ 1. We restrict ourselves to second-order differential equations and
assume, for simplicity, that the diffusion term is −ε∆ and not some more
general elliptic expression. When the vector b is not identically zero, b · ∇u
represents convection; this is the convection-diffusion case. It is our main focus
of interest, but we shall also make some remarks on problems of reaction-
diffusion type where b ≡ 0.

The last Chapter presents discretization methods for the unsteady problem

ut + Lu = f(x, t) for (x, t) ∈ Q := Ω × (0, T ], (0.2a)

u|t=0 = u0, Bu = 0 on ∂Ω × (0, T ]. (0.2b)

Here, in contrast to Part II, the space dimension is greater than one.



1

Analytical Behaviour of Solutions

Notation: throughout Chapter 1, a generic point in Ω ⊂ Rd is denoted by
x = (x1, x2, . . . , xd), but in the case d = 2 the notation (x, y) is sometimes
used instead. The standard Sobolev spaces Hk(Ω) with associated norms ‖·‖k

and seminorms |·|k are often used, as their more general counterparts W k,p(Ω)
with seminorm | · |W k,p(Ω).

1.1 Classical and Weak Solutions

In general, the boundary value problem (0.1) has a classical solution that is
smooth in the closed domain Ω̄ only if

• b, c, f and the boundary data are sufficiently smooth
• the boundary ∂Ω = Γ is (at least piecewise) smooth
• the boundary data satisfy some extra conditions.

Example 1.1. Consider the boundary value problem

−∆u(x, y) = 0 in Ω = (0, 1)× (0, 1),

u = x2 on Γ.

Then the exact solution u does not lie in C2(Ω̄): for if u ∈ C2(Ω̄), then
uxx(0, 0) = 2 and uyy(0, 0) = 0, which contradicts the differential equation. ♣

To describe classical solutions that are smooth on Ω̄ one should use Hölder
spaces related to those of Part II, but unlike Section II.2.1 one sets

dist (x, x′) =

(
d∑

i=1

(xi − x′i)2
)1/2

for x, x′ ∈ R
d.

With this measure of distance, one obtains the Hölder space C2,α(Ω̄), which
(unlike Part II) requires Hölder continuity of all second-order, first-order and
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zero-order derivatives. The Hölder space Ck,α(Ω̄) is defined analogously for
each non-negative integer k.

Existence theorems guaranteeing that u ∈ C2,α(Ω̄) usually require that
the boundary Γ belong at least to the class C2,α. From the practical point
of view this condition is too restrictive, so such results are not described
here; see instead [ADN59]. It is more realistic to look for classical solutions
in C(Ω̄) ∩ C2(Ω). We say that Ω is a domain with a regular boundary if Γ
belongs to the class C0,1, that is, if Γ can be described locally by Lipschitz
continuous functions. In two dimensions, a polygonal domain without slits
belongs to this class. Roughly speaking, for problems with a regular boundary
and continuous data, one expects a classical solution in C(Ω̄) ∩ C2(Ω). Let
us quote, for instance, the following slightly weakened theorem from [Mic77]:

Theorem 1.2. Consider the elliptic differential equation (0.1a) with homo-
geneous Dirichlet boundary conditions. If b, c and f are Hölder continuous
on Ω̄, c ≥ 0 and Ω is a domain with a regular boundary, then this problem
has a unique classical solution u ∈ C(Ω̄) ∩ C2(Ω).

The behaviour of classical solutions near any point on the boundary where
different boundary conditions meet is described, e.g., in [Wig70].

If one is interested in solutions that are smooth up to the boundary, and
the domain is not in the class C2,α but only regular, then additional conditions
– compatibility conditions – are necessary at corners.

Example 1.3. Consider the boundary value problem

−ε∆u+ b(x, y) · ∇u+ c(x, y)u = f(x, y) in Ω = (0, 1)× (0, 1), (1.1a)

u = 0 on Γ. (1.1b)

Assume that b1, b2, c are smooth. Let α ∈ (0, 1).
(i) Suppose that f ∈ C0,α(Ω̄). Then the boundary value problem has a

solution in C1,α(Ω̄) ∩ C2,α(Ω).
(ii) Let f ∈ C0,α(Ω̄). Then u ∈ C2,α(Ω̄) if and only if

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0. (1.2)

If in addition to (1.2) one has f ∈ C1,α(Ω̄), then u ∈ C3,α(Ω̄). These re-
sults appear in [Vol65, Gri85b, HK90]. In [HK90], higher-order compatibility
conditions are discussed; see also [Azz80]. ♣

Second-order elliptic problems satisfy maximum and comparison principles
if the coefficients b and c of the operator L are continuous and c(x) ≥ 0. See
[PW67] for a discussion of more general cases.

Let w ∈ C(Ω̄) ∩ C2(Ω), where Ω ⊂ Rn. The operator L is said to be
inverse-monotone if the inequalities

Lw(x) ≥ 0 for all x ∈ Ω and w(x) ≥ 0 for all x ∈ Γ
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together imply that w(x) ≥ 0 for all x ∈ Ω̄.
We say that L satisfies a maximum principle if

Lw(x) = 0 for all x ∈ Ω

implies that for every x ∈ Ω̄

min
x∈Γ

{w(x), 0} ≤ w(x) ≤ max
x∈Γ

{w(x), 0}.

For our purposes the comparison principle below is the most useful for-
mulation. The maximum and comparison principles are direct consequences
of the inverse monotonicity property; in fact each of these three properties is
sometimes called a maximum principle.

Theorem 1.4. (Classical comparison principle) Suppose that c ≥ 0. Let
v, w ∈ C(Ω̄) ∩ C2(Ω) satisfy the inequalities

|(Lv)(x)| ≤ (Lw)(x) for all x ∈ Ω,

|v(x)| ≤ w(x) for all x ∈ Γ.

Then, for every x ∈ Ω̄, we have

|v(x)| ≤ w(x).

The solution v of a given boundary value problem is often bounded by invoking
Theorem 1.4 with an appropriate barrier function w.

The results that were sketched above show that in domains with corners
– which are important in many practical applications – the theory of classical
solutions is not entirely satisfactory. An alternative possibility is the use of
weak solutions. The basic existence and uniqueness result for such solutions is
Theorem I.2.31, the Lax-Milgram lemma. With a view to using this theorem,
let us demonstrate here how to transform an elliptic boundary value problem
into its weak formulation.

Suppose that the boundary Γ is divided into three disjoint pieces called
Γ1, Γ2 and Γ3. We study the problem

−ε∆u+ b(x) · ∇u+ c(x)u = f(x) in Ω, (1.3a)

u = 0 on Γ1, (1.3b)

ε
∂u

∂n
= 0 on Γ2, (1.3c)

ε
∂u

∂n
+ µu = g on Γ3. (1.3d)

Set
V =

{
v ∈ H1(Ω) : v = 0 on Γ1

}
,

where Hm(Ω) is the usual Sobolev space of functions whose mth-order gener-
alized derivatives lie in L2(Ω). Introduce the bilinear form



238 1 Analytical Behaviour of Solutions

a(v, w) := ε(∇v,∇w) + (b · ∇v + cv, w) +

∫

Γ3

µvw,

and the linear form

f(v) := (f, v) +

∫

Γ3

g v.

The Lax-Milgram lemma tells us that if the linear form is continuous and
the bilinear form is V -elliptic and continuous, then the given problem has a
unique weak solution u ∈ V . To get V -ellipticity, it is standard to assume that

c− 1

2
div b ≥ ω > 0, µ > 0, b · n ≥ 0 on Γ2 ∪ Γ3 and Γ1 �= ∅.

To guarantee a smoother solution (e.g., u ∈ H2(Ω)) one needs additional
assumptions involving the given data, the structure of the boundary and the
boundary conditions. For homogeneous boundary conditions in a polygonal
domain Ω ⊂ R2, to ensure u ∈ H2(Ω) requires in general convexity of Ω; see
[Gri85b].

Let us mention finally that, even for weak solutions, one has maximum
and comparison principles. See [GT83, Tro87] for details.

1.2 The Reduced Problem

Our experience in Part II leads us to expect that the solution of the singularly
perturbed boundary value problem (0.1) is, except near layers, close to the
solution of the first-order reduced equation

b(x) · ∇w + c(x)w = f(x)

subject to some boundary conditions. But which boundary conditions of (0.1)
should one use?

Assume that Ω is a domain with a regular boundary that has an outward-
pointing unit normal vector n defined uniquely almost everywhere on its
boundary Γ . Set

Γ+ = {x ∈ Γ : b · n > 0} ,
Γ− = {x ∈ Γ : b · n < 0} ,
Γ0 = {x ∈ Γ : b · n = 0} .

The subcharacteristics ξx(τ) of the reduced equation are defined to be the
solutions of

dξ

dτ
= b(ξ(τ)), ξ(0) = x.

These subcharacteristics are transverse to the boundary at Γ+ and Γ−, while
at Γ0 the subcharacteristics and the boundary are parallel. As in problems
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of fluid dynamics, we use the terminology inflow boundary for Γ−, outflow
boundary for Γ+ and characteristic boundary for Γ0. One often thinks of τ as
a time-like variable.

It seems adequate to augment the reduced equation by boundary condi-
tions on Γ̄− or Γ̄+, but the cancellation law from Part I tells us that Γ̄−
is the correct choice. From now on, we shall assume homogeneous Dirichlet
boundary conditions on Γ̄−. Thus, define the reduced problem for (0.1) to be

L0u0 := b(x) · ∇u0 + c(x)u0 = f(x) in Ω, (1.4a)

u0 = 0 on Γ̄−. (1.4b)

The solution u0 of the reduced problem may behave in a very complicated
way, which makes it difficult to treat singularly perturbed problems in several
dimensions because for small ε the solution of (0.1) is close to the solution of
(1.4). A simpler version of (1.4) was examined in Section II.3.1.

We state without proof (see [BBB73, Rau72]) some basic results on exis-
tence, uniqueness and regularity of the solution u0 of (1.4).

Lemma 1.5. Let b, c ∈ C1(Ω̄), f ∈ L2(Ω) and

c− 1

2
div b ≥ ω > 0. (1.5)

(i) There exists a unique solution u0 ∈ L2(Ω) of the reduced problem (1.4).
(ii) In the special case Ω = (0, 1)d and bk ≥ βk > 0, the solution lies in the
graph space {v ∈ L2(Ω) : L0v ∈ L2(Ω)} even for arbitrary u0 ∈ L2(Γ−).

Remark 1.6. If in addition f ∈W 1,1(Ω)∩L∞(Ω), then the solution u0 of the
reduced problem lies in L∞(Ω). In general, however, we can expect neither
u0 ∈W 1,1(Ω) nor u0 ∈ H1(Ω); see [BBB73]. ♣

The properties of solutions of hyperbolic problems such as (1.4) are very
different from those of elliptic problems. Thus ε > 0 is a general assumption
in this book to exclude the case ε = 0. (See [Kro97, LeV90] for numerical
methods for hyperbolic problems.) Let us mention two of these properties:

• Unlike elliptic operators, first order hyperbolic operators have no intrinsic
smoothing property in isotropic Sobolev spaces: while for elliptic operators
Lu ∈ L2(Ω) implies u ∈ Hs(Ω) for some s > 0 – e.g., ∆u ∈ L2(Ω) implies
u ∈ H2(Ω) for convex domains Ω – this is not true of hyperbolic operators.

• In two dimension, the Green’s function of an elliptic problem is smooth
except for a point logarithmic singularity. But for hyperbolic problems the
Green’s function (or Green’s measure, to be more precise) has nonlocal
singularity concentration along a characteristic and does not, in general,
decay along the characteristic. In this context see our investigation of the
Green’s function of the convection-diffusion operator in Section 1.4.
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Even when the geometrical behaviour of the subcharacteristics is relatively
simple – for instance, if all subcharacteristics leave the domain in a finite time
– the function u0 may not be very smooth. We give two typical examples.

Example 1.7. Consider the first-order problem

b(x, y) · ∇u0 + c(x, y)u0 = f(x, y) in Ω = (0, 1)× (0, 1),

u0 = 0 on Γ̄−,

with b = (b1, b2) and b1 > 0, b2 > 0.
An inspection of u0 shows that it lies only in W 1,∞(Ω); its first-order

derivatives have jumps along the subcharacteristic through the corner (0,0).
See Figure 1.1. ♣

Γ−

Γ+

Γ−

Γ+

P

Fig. 1.1. A subcharacteristic through a corner

Example 1.8. For the problem

∂u0

∂y
+ cu0 = f in Ω =

{
(x, y) : 1 < x2 + 2y2 < 4

}
,

u0 = 0 on Γ̄−,

the solution u0 will in general be discontinuous along the line segments
{(−1, y) : 0 ≤ y ≤

√
3/2} and {(1, y) : 0 ≤ y ≤

√
3/2} that pass through the

points C and E in Figure 1.2. ♣
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Γ0 Γ0

Γ+

Γ+

Γ−

Γ−

C

D

E

F

Fig. 1.2. A discontinuity at an inner subcharacteristic

The situation is simplest when

• the boundary Γ is smooth
• Γ− is closed in Γ (hence Γ− = Γ or Γ− = φ if Γ is simply connected; in

general a similar statement holds true on each connected component of Γ )
• c is sufficiently large.

Lemma 1.9. Let Ω be a domain with a smooth boundary Γ , where Γ− is
closed in Γ . Let k be a positive integer. Then for c > c0(k,Ω) and smooth
data, the solution of (1.4) lies in Ck,α(Ω̄).

See [OR73] for the proof. A simple example shows that the condition on c
is necessary. Consider, for constant positive c, the problem

−x∂u0

∂x
− y ∂u0

∂y
+ cu0 = 1 in Ω =

{
(x, y) : 0 < x2 + y2 < 1

}
,

u0 = 0 on Γ̄− = Γ.

Then

u0(x, y) =
1

c

[
1−

(
x2 + y2

)c/2
]
;

the smoothness of u0 does indeed depend on the magnitude of c.
If the subcharacteristics do not all leave the domain Ω in a finite time,

then their geometrical behaviour is more complicated. For each x ∈ Ω, define

β(x) :=
⋂

0≤s<∞
{ξx(τ) : s ≤ τ ≤ ∞} ∩ Ω̄,

α(x) :=
⋂

−∞<s≤0

{ξx(τ) : −∞ ≤ τ ≤ s} ∩ Ω̄.
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It is usual to say that the subcharacteristic ξx(τ) through x originates at α(x)
and dies at β(x). Let I(Ω̄) denote the union of all sets of the above types.
In particular, if b(x∗) = 0 then x∗ belongs to I(Ω̄); such points are called
stationary points of the field b(x) or turning points of the original singular
perturbation problem.

Closed subcharacteristics – that is, the images of periodic solutions of the
characteristic equations – are another example of subsets of I(Ω̄). They can
appear, for instance, as a continuum or as an isolated limit cycle.

Example 1.10. Let us consider the equation

[x(r2 − 1)− y(r2 + 1)]
∂v

∂x
+ [y(r2 − 1) + x(r2 + 1)]

∂v

∂y
+ cv = f

where r2 = x2 +y2, in Ω =
{
(x, y) : 1/4 < r2 < 4

}
. Then the circle r2 = 1 is

an isolated limit cycle of the field of subcharacteristics. There are no stationary
points in Ω. ♣

If ∂Ω is not smooth or Γ− is not closed in Γ , or both, then we cannot
expect to prove regularity results for the solution of the reduced problem that
are globally valid in Ω̄. We therefore examine regularity on subsets of Ω̄. For
each point x ∈ Ω ∪ Γ̄−, let

τ+(x) = inf{τ > 0 : ξx(τ) �∈ Ω}

be the exit time. The domain of influence of each Γ ∗ ⊂ Γ̄− is defined to be

Dinfl(Γ
∗) = { ξx(τ) : x ∈ Γ ∗, 0 ≤ τ ≤ τ+(x)}.

It is generated by the characteristics through points of Γ ∗. We have

Lemma 1.11. [GFL+83] Assume that Σ is a connected, smooth compact set
with Σ̄ ⊂ Γ−. Then the problem

b(x) · ∇u∗0 + c(x)u∗0 = f(x) in Dinfl(Σ),

u∗0 = 0 on Σ̄,

has a unique smooth solution u∗0 in Dinfl(Σ) \ U(I(Ω̄)), where U(I) is some
open neighbourhood of I.

Let us remark finally that even if I(Ω̄) belongs to the domain of influence,
it may not be possible to extend a smooth solution to all of I(Ω̄). This is
demonstrated by the example

−x∂v
∂x
− y ∂v

∂y
= f in Ω = {(x, y) : x2 + y2 < 1},

v = 0 on Γ.
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1.3 Asymptotic Expansions and Boundary Layers

Consider the boundary value problem

Lu := −ε∆u+ b(x) · ∇u+ c(x)u = f(x) in Ω ⊂ R
d, (1.6a)

u = 0 on ∂Ω = Γ, (1.6b)

where the boundary Γ is regular. The discussion of properties of the solution
u0 of the reduced problem in the previous section leads us to expect that, as
ε→ 0, the solution of (1.6) tends to the solution of the reduced problem only
in some weak sense.

Theorem 1.12. [Lio73] Assume that the hypotheses of Lemma 1.5 are satis-
fied. Then u ⇀ u0 weakly in L2(Ω) as ε→ 0.

Lemma 1.11 shows nevertheless that the solution u0 of the reduced problem
is smooth in certain subdomains of Ω; thus, away from boundary layers and
from the union of all limit sets of subcharacteristics, we expect a better result.
In [GFL+83] the following statement is proved:

Theorem 1.13. Let Ω be a domain with smooth boundary and Σ a connected,
compact set with Σ ⊂ Γ−. Assume that c > 0 on Ω̄. Then there exists a
constant C (independent of x and ε) such that

|u(x)− u0(x)| ≤ Cε for x ∈ Dinfl(Σ) \ (Uγ(Γ+) ∪ Uγ(I(Ω̄))).

Furthermore, if all characteristics through points of Dinfl(Σ) leave the do-
main Ω at points of Γ+ in finite time, then

|u(x)− u0(x)| ≤ Cε in Dinfl(Σ) \ Uγ(ε)(Γ+),

where γ(ε) satisfies

lim
ε→0

ε ln ε

γ(ε)
= 0.

Here Uγ(G) denotes an open neighbourhood of G with dist (G,Ω\Uγ(G)) ≥ γ.

If no limit sets exist, then all subcharacteristics through Γ̄− leave Ω̄ in a finite
time. Choose a fixed δ > 0, independently of ε. Then the global domain

Ωδ = {x ∈ Ω : dist (x, Γ0 ∪ Γ+) > δ}

is far from possible boundary layers at Γ0 and Γ+ when ε is small. Theo-
rem 1.13 now tells us that

|u(x)− u0(x)| ≤ Cε for x ∈ Ωδ. (1.7)

But if Γ is not smooth, then (1.7) is no longer true because subcharacter-
istics through corners cause additional difficulties. For this case Felgenhauer
[Fel84] (see also [BCG87]) used a weak maximum principle to prove
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|u(x)− u0(x)| ≤ Cε1/2 for all x ∈ Ωδ. (1.8)

To improve the results mentioned so far in this chapter, local corrections
are needed at the layers. These follow the same principles as in Parts I and II.
Near Γ+ (or connected smooth parts of Γ+), let us introduce the local coor-
dinates

(ρ, ϕ) = (ρ, ϕ1, ..., ϕd−1),

where ρ(x) := dist(x, Γ+) and 0 < ρ < ρ0 corresponds to a strip parallel
to Γ+. In these new coordinates L is transformed into L̃, with

L̃u := −εL2u+B0(ρ, ϕ)
∂u

∂ρ
+

d−1∑

µ=1

Bµ(ρ, ϕ)
∂u

∂ϕµ
+ c(ρ, ϕ),

where L2 is an elliptic operator and

B0(0, ϕ) = b · ∇ρ|ρ=0 < 0

from the definition of Γ+. Set ζ = ρ/ε. The first term v0 of a local correction
satisfies the equation

A0(0, ϕ)
d2v0
dζ2

+B0(0, ϕ)
dv0
dζ

= 0.

Thus there is an exponential boundary layer at Γ+ as the ellipticity of L2

forces A0(0, ϕ) < 0. Written out explicitly, the boundary layer function is

v0(ρ, ϕ) = −u0|Γ+
exp

(
−B0(0, ϕ)ρ

A0(0, ϕ)ε

)
.

At Γ0 the procedure is analogous, but the boundary layer equations are more
complicated because B0(0, ϕ) = 0. Introducing

ξ =
ρ

ε1/2
,

one then obtains for the local correction v0 the equation

A0(0, ϕ)
∂2v0
∂ξ2

+
∂B0

∂ρ
(0, ϕ)ξ

∂v0
∂ξ

+

d−1∑

µ=1

Bµ(0, ϕ)
∂v0
∂ϕµ

+ c(0, ϕ)v0 = 0. (1.9)

This is a parabolic partial differential equation so we say that there is a
parabolic boundary layer or characteristic layer at Γ0. See [GFL+83] for a
general discussion of equation (1.9); Examples 1.16 and 1.24 below perform a
detailed investigation of particular parabolic layers.

Remark 1.14. Parabolic layers may also occur as interior layers, e.g., along the
exceptional subcharacteristics of Figures 1.1 and 1.2. For each interior layer
is located along a subcharacteristic; consequently one gets b · ∇ρ|ρ=0 = 0 on
introducing local coordinates in a neighbourhood of this subcharacteristic. ♣
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For smooth domains with Γ = Γ+ or Γ = Γ− or Γ = Γ0 (unusual sit-
uations that rarely occur in practical applications), one can construct full
asymptotic expansions and prove their validity [Eck79, GFL+83]. In other
cases each problem must be studied individually.

This chapter described the principles underpinning the construction of as-
ymptotic expansions in several dimensions; even when the validity of these
expansions cannot be proved, one nevertheless gains an insight into the be-
haviour of the solution of (1.6) when ε is small. This information is extremely
valuable in devising effective numerical methods for (1.6).

To round off our exposition, we discuss two model problems in more detail.

Example 1.15. (Exponential boundary layers) Consider the boundary value
problem

−ε∆u+ b(x, y) · ∇u+ c(x, y)u = f(x, y) in Ω = (0, 1)× (0, 1),

u = 0 on Γ.

Assume that the data are smooth and that c ≥ 0 with

b = (b1, b2) where b1 > 0 and b2 > 0.

Then the subcharacteristics behave as in Figure 1.1 and the reduced problem
is defined by

b · ∇u0 + cu0 = f, u0|x=0 = u0|y=0 = 0.

We expect exponential boundary layers at x = 1 and at y = 1. The asymptotic
approximation

u∗as(x, y) := u0(x, y)− u0(1, y) exp

[
−b1(1, y)

1− x
ε

]

− u0(x, 1) exp

[
−b2(x, 1)

1− y
ε

]

is inaccurate near the corner (1, 1) because the boundary layer terms overlap
there. Consequently one adds a corner layer correction, which [Eck79] is given
by a solution of

−
(
∂2w

∂ξ2
+
∂2w

∂η2

)
− b1(1, 1)

∂w

∂ξ
− b2(1, 1)

∂w

∂η
= 0 on (0,∞)× (0,∞),

where ξ := (1− x)/ε and η := (1− y)/ε. One then obtains

uas(x, y) := u∗as(x, y) + u0(1, 1) exp

[
− b1(1, 1)

1− x
ε

]
exp

[
− b2(1, 1)

1− y
ε

]
.

If u0 ∈ C2(Ω) ∩ C(Ω̄), the classical comparison principle yields

‖u− uas‖∞ ≤ Cε,
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where ‖ · ‖∞ is the maximum norm on C(Ω̄). But, as we already know, the
assumption that u0 ∈ C2(Ω) ∩ C(Ω̄) is not always satisfied. Without this
assumption, we get only (1.8); and in the ε-weighted H1 norm defined by

‖v‖2ε := ε|v|21 + ‖v‖20

one can prove that
‖u− uas‖ε ≤ Cε1/2; (1.10)

see [Sch84, Sch86] for related estimates. ♣

Example 1.16. (A parabolic boundary layer) Let us consider the boundary
value problem

−ε∆u+
∂u

∂y
= f in Ω = (0, 1)× (0, 1),

u = 0 on Γ.

This popular example appears in most textbooks on asymptotic expansions
(see, e.g., [Eck79]) as it is the simplest problem that exhibits a parabolic layer.
Define u0 by

∂u0

∂y
= f in Ω, u0|y=0 = 0.

We expect an exponential boundary layer at the outflow boundary y = 1, and
parabolic boundary layers at the characteristic boundaries x = 0 and x = 1.
Consider the boundary x = 0 (the boundary x = 1 is analogous). Introduce
the variable ξ := x/ε1/2. The first term of a local correction at x = 0 satisfies

−∂
2v0
∂ξ2

+
∂v0
∂y

= 0 in (0,∞)× (0, 1),

v0(0, y) = g(y) := −u0(0, y),

v0|y=0 = 0.

The solution of this standard parabolic initial-boundary value problem is

v0(ξ, y) =

√
2

π

∫ ∞

ξ/
√

2y

exp

(
− t

2

2

)
g

(
y − ξ2

2t2

)
dt. (1.11)

One can hence deduce some typical features of parabolic layers:

• the thickness (corresponding to the stretching exponent α in the local
variable ξ = x/εα) of the parabolic layer is O(ε1/2), in contrast to O(ε)
for an exponential layer;

• |u|1,Ω∗ = O(ε−1/4) near a parabolic layer, while |u|1,Ω0 = O(ε−1/2) near
an exponential layer (here Ω∗ and Ω0 denote small neighbourhoods of the
respective layers);
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• parabolic layers have a more complicated analytical structure than expo-
nential layers.

A detailed analysis shows that derivatives of v0 have singularities at (0, 0)
and, furthermore, that at (0, 1) and (1, 1) the overlap of a parabolic and an
exponential layer causes some difficulties. See [KS07a, Lel76, SK87] for more
information.

The approximation

uas(x, y) := u0(x, y)− u0(x, 1) exp

(
− 1− y

ε

)
,

which completely neglects the parabolic layers, nevertheless achieves [Sch86]

‖u− uas‖ε = O(ε1/4).

If the exponential layer were neglected similarly in Example 1.15, one would
obtain only ‖u−u0‖ε ≤ C. Thus, when measured in the ε-weighted H1-norm,
parabolic layers are less significant asymptotically.

If in this example one replaces
∂u

∂y
by
∂u

∂x
, then the exponential layer moves

to x = 1 and the parabolic boundary layers are at y = 0 and y = 1. ♣

Remark 1.17. (Neumann outflow boundary conditions) As we saw already in
Section I.1.1.1, the strength of the layer depends on the boundary conditions.
With a homogeneous Neumann condition ∂u/∂n = 0 at the outflow bound-
ary Γ+, one expects ∂u/∂n but not u to have large first-order derivatives.
Therefore (assuming that Γ0 is empty) if one uses the asymptotic expansion
ũas = u0 + εv0 with an exponential boundary layer correction v0, one expects
that

|u|1 = O(ε1/2) and ‖u− u0‖1 = O(ε1/2) (1.12)

(cf. (1.10)), in contrast to the estimates

|u|1 = O(ε−1/2) and ‖u− u0‖1 = O(ε−1/2)

that are typical of Dirichlet outflow boundary conditions. But we do not know
of any rigorous proof of (1.12) for homogeneous Neumann outflow boundary
conditions. ♣

1.4 A Priori Estimates and Solution Decomposition

The method of matched asymptotic expansions, when applied to singularly
perturbed problems of convection-diffusion type in several dimensions, does
not in general provide enough information for the analysis of numerical meth-
ods, because a rigorous proof of the validity of an asymptotic approximation
is available only in exceptional cases. Such proofs are especially difficult if one
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works with a norm that includes derivatives. Consequently we regard asymp-
totic expansions as only an auxiliary technique that communicates to us some
understanding of the nature of the problem. The derivative bounds that are
needed for numerical analysis are derived directly by other means, as will now
be demonstrated.

Consider the boundary value problem

Lu := −ε∆u+ b(x) · ∇u+ c(x)u = f(x) in Ω, (1.13a)

u = 0 on Γ. (1.13b)

Let us introduce the ε-weighted norm

‖v‖ε,p :=

{∫

Ω

(p− 1)ε(∇v)2|v|p−2 + |v|p
}1/p

for 2 ≤ p <∞,

while ‖ · ‖ε,∞ is defined to be the usual L∞(Ω) norm. This is a generalization
of the norm ‖ · ‖ε (obtained by setting p = 2 here) that was used already.

Lemma 1.18. Assume that

c− 1

p
div b ≥ ωp > 0 on Ω̄.

Then the solution u of the boundary value problem (1.13) satisfies

‖u‖ε,p ≤ C‖f‖Lp
for 2 ≤ p ≤ ∞. (1.14)

If in addition u ∈ H2(Ω), then

ε3/2‖u‖2 + ε1/2‖u‖1 + ‖u‖0 ≤ C‖f‖0. (1.15)

Proof. Multiply (1.13a) by up−1, integrate by parts and invoke Hölder’s in-
equality to get (1.14). In particular for p = 2 one has

ε1/2‖u‖1 + ‖u‖0 ≤ C‖f‖0.

This inequality and (1.13a) yield

ε‖∆u‖0 ≤ Cε−1/2‖f‖0.

Then since ‖u‖2 ≤ C(‖∆u‖0 + ‖u‖0) (see, e.g., [LU68, Chapter I]), inequality
(1.15) follows. ⊓⊔

For problems with exponential boundary layers, the estimate (1.15) is
sharp, as can be inferred from the exposition of Section 1.3.

Remark 1.19. Using techniques similar to the proof of Lemma 1.18, further
special estimates have been established in the literature:

(i) For the problem
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−ε∆u+ ux = f(x, y) in Ω = (0, 1)2,

u = 0 on Γ,

one has, in addition to (1.14) for p = 2, the bound

‖φ1/2ux‖0 +

(∫

Γ

εφ|∇u|2|n| dΓ
)1/2

≤ C‖f‖0.

Here φ is a cutoff function that vanishes on Γ+ and has certain other proper-
ties; see [EJ93b, Lemma 1.2].

(ii) The solution of the problem

−ε∆u+ ux = f(x) in Ω = (0, 1)2,

u = 0 onΓ− ∪ Γ0,

∂u

∂n
= 0 onΓ+,

has a weak exponential outflow layer and parabolic boundary layers. Here, as
well as the bounds of Lemma 1.18, one has [EJ93b, Lemma 1.1]

‖ux‖0 + ε|u|2 +

(∫

Γ+

u2 ndΓ

)1/2

+

(∫

Γ

ε|∇u|2|n| dΓ
)1/2

≤ C‖f‖0.

(iii) If neither an outflow nor an inflow boundary is present – i.e., if Γ−∪Γ+

is empty – then one can prove [AL90] that

ε‖u‖2 + ‖b · ∇u‖0 + ‖u‖0 ≤ C(‖b · ∇f‖0 + ‖f‖0).

(iv) Pointwise gradient estimates at the boundary and Lp estimates for
the gradient can be found in [Doe98, Doe99a].

(v) Further a priori bounds on u and on its smooth and layer components
are derived in [KS01a]. ♣

Lemma 1.18 bounds the L2 norm of the gradient of the exact solution. In
the one-dimensional case, we know from Theorem I.1.13 that in many cases
the L1 norm of this gradient is often bounded uniformly in ε. A similar result
holds true in several dimensions.

Lemma 1.20. [BBB73] Assume that the hypotheses of Lemma 1.5 are sat-
isfied and that f ∈ W 1,1(Ω). Then there exists a constant C such that the
solution u of (1.13) satisfies

‖u‖W 1,1(Ω) ≤ C‖f‖W 1,1(Ω).

In the one-dimensional case it was quite fruitful to study the properties
of the Green’s function associated with the differential operator in order to
prove sharp stability results and a priori estimates. In two dimensions the
behaviour of the Green’s function is much more complicated:
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Remark 1.21. (The Green’s function in two dimensions) Let us consider (1.13)
with constant coefficients while assuming that

b2
1 + b2

2 > 0 and c > 0.

Fix (x, y) ∈ Ω. Assume that the domain Ω allows existence of a Green’s
function G(x, y; ξ, η) and that f ∈ Lp(Ω). The representation

u(x, y) =

∫

Ω

G(x, y; ξ, η)f(ξ, η) dΩ

will be used to derive a priori estimates for u. Let G̃ be the free space Green’s
function that is defined on all of R2. A weak maximum principle argument
shows that 0 ≤ G ≤ G̃. This is helpful since G̃ is known explicitly: on setting
r2 = (ξ − x)2 + (η − y)2) and λ2 = (b21 + b22 + 4εc)/(2ε), one has

G̃(x, y; ξ, η) =
1

2πε
exp

{
[b1(ξ − x) + b2(η − y)]/(2ε)

}
K0(λr), (1.16)

where K0 denotes the modified Bessel function of the second kind. The be-
haviour of K0 is well known and enables us to deduce some properties of G̃:

• logarithmic singularity at r = 0
• fast exponential decay downwind of the point (x, y)
• slower (≈ r−1/2) decay upwind of (x, y)
• symmetry with respect to the wind direction b.

Our Green’s function G has the same properties. Using (1.16) one can show
that

‖G‖Lp
≤ C(p, b1, b2, c)ε

−(p−1)/p for 1 ≤ p <∞.
Then for (1.13) with constant coefficients the following estimates are valid:

‖u‖∞ ≤ Cε−1/q‖f‖Lq
for 1 < q ≤ ∞,

‖u‖Lp
≤ Cε−(p−1)/p‖f‖L1

for 1 ≤ p <∞;

see [DR90]. Unfortunately, it seems difficult to get similar information about
the derivatives of G and thereby improved stability estimates. ♣

Using an approximate Green’s function, interesting anisotropic stability
estimates are proved by Dörfler [Doe99a]. For simplicity, assume that b1 >
β1 > 0. Then we call the x-direction the global stream direction. (In the
general case, Dörfler introduces a new coordinate system representing the
global stream direction and a direction orthogonal to it; as b1 > 0 we can use
the (x, y) coordinate system.)

We say that w ∈ Lµ⊗Lν if q �→ ‖w(q, ·)‖Lν
∈ Lµ. That is, the underlined ν

indicates that the norm associated with the second variable is evaluated first.
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Theorem 1.22. Assume that b1 > β1 > 0. Then the solution of (1.13) satis-
fies the following anisotropic stability estimates:

‖u‖∞⊗1 ≤ C‖f‖1 (1.17)

and
‖u‖∞ ≤ C‖f‖1⊗∞. (1.18)

We sketch the proof of this result. Fix (x, y) ∈ Ω. Let {δn(·;x, y)}∞n=1 be
a Dirac sequence associated with (x, y). This is a sequence of smooth positive
functions, each with L1 norm equal to 1, such that

|supp δn| → 0 and

∫

Ω

u(ξ, η)δn(ξ, η;x, y)) dΩ → u(x, y) as n→∞.

For each n ≥ 1, define an approximate Green’s function Gn by

L∗Gn(x, y; ·) = δn(·, x, y) in Ω, Gn(x, y; ·) = 0 on Γ. (1.19)

An integration by parts gives

∫

Ω

u(ξ, η)δn(ξ, η;x, y) dΩ =

∫

Ω

Gn(x, y; ξ, η) f(ξ, η) dΩ.

Assume for the moment that (1.17) is proved. Applying this result to (1.19),
one gets

sup
x,y

sup
ξ

∫
Gn(x, y; ξ, η) dη ≤ C.

Letting n→∞, it follows that

|u(x, y)| ≤ C‖f‖1⊗∞

and (1.18) is established. It remains to prove (1.17). Roughly speaking, this
estimate follows if we first integrate the differential equation with respect
to the second variable and then apply an (L∞, L1) stability result for the
subsequent one-dimensional problem; see [Doe99a] for a full description.

If one is interested in the construction or analysis of uniformly convergent
numerical methods, then the above a priori estimates do not yield enough
information – more precise bounds on the derivatives are required. For first-
order derivatives, taking a derivative of the differential equation then invoking
a comparison principle and barrier function often delivers the desired bound.

Example 1.23. (Bounds for first-order derivatives: exponential layers)
We continue the discussion of Examples 1.3 and 1.15, assuming that all hy-
potheses of these examples are satisfied and in particular that the compati-
bility condition that f vanishes at each of the four corners of Ω̄ is fulfilled.
Then for the boundary value problem (1.13),
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• a differentiable classical solution exists;
• this solution has exponential boundary layers at x = 1 and y = 1.

One can prove the following a priori estimate [RAF96]: suppose that c ≥ γ
with γ sufficiently large, and that

(b2)x ≤ 0 and (b1)y ≤ 0.

Then for all (x, y) ∈ Ω, one has

|ux(x, y)| ≤ C(1 + ε−1 exp(−β1(1− x)/ε)),
|uy(x, y)| ≤ C(1 + ε−1 exp(−β2(1− y)/ε)),

where b1 > β1 > 0 and b2 > β2 > 0. This result generalizes older estimates
[Lis83, OS89] that make the separability assumption (b2)x = (b1)y = 0. The
proof uses a maximum principle for the elliptic system of equations satisfied
by (ux, uy). ♣

Example 1.24. (Bounds for first-order derivatives: parabolic layers)
Let us consider the problem

−ε∆u+ uy + cu = f in Ω = (0, 1)× (0, 1),

u = 0 on Γ,

with c ≥ γ > 0 and under conditions such that a differentiable classical
solution exists in C2,α(Ω̄). As in Example 1.16, there are parabolic layers at
x = 0 and x = 1 and an exponential layer at y = 1. Vulanović [Vul91] proves
the estimates

|uy(x, y)| ≤ C(1 + ε−1 exp(−β2(1− y)/ε)),
|ux(x, y)| ≤ C

[
1 + ε−1/2

(
exp(−γ1/2x/ε1/2) + exp(−γ1/2(1− x)/ε1/2)

)]
.

where 0 < β2 < 1. The last bound clearly demonstrates the influence of the
parabolic layer and shows that |ux| can be estimated using standard exponen-
tials instead of the complicated function v0 of (1.11).

It seems difficult to extend this analysis to higher-order derivatives because
differentiation of the differential equation leads to difficulties. ♣

Is there a suitable decomposition of the solution of our elliptic boundary
value problem, as in Parts I and II, into smooth and layer components?

In [Shi92c] Shishkin derived a solution decomposition for elliptic problems.
We first describe his approach for the problem with exponential layers, i.e.,
for the problem (1.13):

Lu := −ε∆u+ b(x, y) · ∇u+ c(x, y)u = f(x, y) in Ω = (0, 1)2,

u = 0 on Γ,
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with b1 > β1 > 0, b2 > β2 > 0. Assume that b1, b2, c and f are smooth. Then
the solution u can be decomposed as

u = S + E with S = u0 + εu1 + u∗2, E = E0 + E∗
1 . (1.20)

The components of the smooth part S and the layer part E are defined by

L0u0 = f, u0|Γ−
= 0,

L0u1 = −L2u0, u0|Γ−
= 0, (writing L = εL2 + L0)

Lu∗2 = −ε2L2u1, u∗2|Γ given,

and

LE0 = 0, E0|Γ = −(u0 + εu1)|Γ ,
LE∗

1 = 0, E∗
1 |Γ = −u∗2|Γ .

But the details of this analysis in [Shi92c, Chapter III, p.131] contain sev-
eral misprints and the functions u∗2, E

∗
1 (which Shishkin calls v1, v2) are not

defined there but in [Shi92c, Appendix C, Section 2]. While u0 and u1 are
standard terms in an asymptotic expansion, the other terms are defined are
nonstandard. The layer component E0 can be decomposed further into two
exponential layers and a corner layer:

E0 = E1 + E2 + E12. (1.21)

Let r((x, y), Γ ) denote the distance from a point (x, y) to the boundary.

Theorem 1.25. [Shi92c] In addition to the hypotheses above, assume that
u0, u1 ∈ C3,α(Ω̄). Then the solution of (1.13) can be decomposed as (1.20)–
(1.21) and its components satisfy the following estimates for 0 ≤ k ≤ 3:

∣∣∣∣
∂kS(x, y)

∂xk1∂yk2

∣∣∣∣ ≤ C
[
1 + ε2−k + ε2 r−k((x, y), Γ )

]
, (1.22a)

∣∣∣∣
∂kE1(x, y)

∂xk1∂yk2

∣∣∣∣ ≤ C
[
ε−k1 + ε1−k + r−k((x, y), Γ )

]
e−β1(1−x)/ε, (1.22b)

∣∣∣∣
∂kE2(x, y)

∂xk1∂yk2

∣∣∣∣ ≤ C
[
ε−k2 + ε1−k + r−k((x, y), Γ )

]
e−β2(1−y)/ε, (1.22c)

∣∣∣∣
∂kE12(x, y)

∂xk1∂yk2

∣∣∣∣ ≤ C T (ε, r) e−[β1(1−x)+β2(1−y)]/ε (1.22d)

where k = k1 + k2 and

T := ε−k + r−k((x, y), Γ ).

If moreover one has u∗2, E
∗
1 ∈ C3,α(Ω̄), then the terms containing r((x, y), Γ )

can be omitted.
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The proof of Theorem 1.25 is sketched in [Shi92c, Appendix C], but the argu-
ments are presented in a very concise way and it is difficult to understand the
precise steps used. Furthermore, it is not easy to check if u∗

2, E
∗
1 ∈ C3,α(Ω̄).

Extending an argument first outlined in [DR97], Linß and Stynes [LS01a]
presented the following precise sufficient conditions for the validity of a de-
composition in the sense of the above theorem. Define the notation

Li v :=
∂v

∂y

∂i

∂xi

(
b2
b1

)
+ v

∂i

∂xi

(
c

b1

)
for i = 0, 1, . . . ,

and let ‖ · ‖ν,α denote the Cν,α(0, 1) norm with respect to (·).
Theorem 1.26. (S-type decomposition) [LS01a] Consider the boundary value
problem (1.13) in the unit square with b1 > β1 > 0, b2 > β2 > 0 (so the
solution has only exponential boundary layers) and f ∈ C4,α(Ω̄). Suppose
that f satisfies the compatibility conditions

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0

and
(
f

b1

)

y

(0, 0) =

(
f

b2

)

x

(0, 0),

((
f

b1

)

x

− L0

(
f

b1

))

y

(0, 0) =

(
f

b2

)

xx

(0, 0),

[(
f

b1

)

xx

− L0

((
f

b1

)

x

− L0

(
f

b1

))
− 2L1

(
f

b1

)]

y

(0, 0) =

(
f

b2

)

xxx

(0, 0),

(
b1

(
f

b1

)

yy

)
(0, 0) =

(
b2

(
f

b2

)

xx

)
(0, 0).

Let n ≥ 2 be an integer. If n ≥ 4, assume in addition that

b2,x(1, 1) = b1,y(1, 1).

Then the given boundary value problem has a classical solution u ∈ C3,α(Ω̄)
that can be decomposed as

u = S + E1 + E2 + E12 (1.23)

where
‖S‖C2 + εα‖S‖C2,α ≤ C, (1.24)

and for all x, y ∈ [0, 1] one has
∥∥∥∥
∂k1

∂xk1
E1(x, ·)

∥∥∥∥
ν,α

≤ Cε−k1e−β1(1−x)/ε, (1.25a)

∥∥∥∥
∂k2

∂yk2
E2(·, y)

∥∥∥∥
µ,α

≤ Cε−k2e−β2(1−y)/ε, (1.25b)
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and ∣∣∣∣
∂k

∂xk1∂yk2
E12(x, y)

∣∣∣∣ ≤ C ε−k e−(β1(1−x)+β2(1−y))/ε (1.26)

for 0 ≤ ν, µ ≤ 2 and 0 ≤ k1, k2 ≤ n. Moreover, for all (x, y) ∈ Ω one has

|LE1(x, y)| ≤ Cεe−β1(1−x)/ε, (1.27a)

|LE2(x, y)| ≤ Cεe−β2(1−y)/ε, (1.27b)

and

|LE12(x, y)| ≤ C ε e−(β1(1−x)+β2(1−y))/ε. (1.27c)

A similar decomposition in [Kop03] requires less compatibility at the cor-
ner (0, 0).

For problems with parabolic boundary layers the situation is different. Let
us study the typical problem

Lu := −ε∆u+ ux = f in Ω = (0, 1)× (0, 1) (1.28a)

u = 0 on Γ, (1.28b)

whose solution u has in general parabolic boundary layers at y = 0 and y = 1.
The decomposition

u = u0 + u∗1 + v0 + v∗1 + w0 + w∗
1 (1.29)

from [Shi92c] contains the leading terms u0, v0, w0 of an asymptotic expansion,
representing the solution of the reduced problem, the exponential and the
parabolic boundary layer correction, and also the nonstandard terms u∗1, v

∗
1 , w

∗
1

that guarantee that the layer terms are in the null space of L. But [Shi92c,
Appendix D, Section 1, Theorem 1.1] gives only estimates for the derivatives
of u0, v0, w0 and, under some compatibility assumptions, the bounds,

‖u− u0‖∞ ≤ Cε, ‖v − v0‖∞ ≤ Cε1/3, ‖w − w0‖∞ ≤ Cε1/5. (1.30)

These estimates are too weak to give optimal-order error estimates for numer-
ical methods.

The use of standard asymptotic expansions in the construction of decom-
positions has the disadvantage that they entail the use of hyperbolic or par-
abolic operators whose regularity properties differ from those of elliptic oper-
ators. It is therefore attractive to construct decompositions whose terms are
solutions of elliptic problems – a so-called elliptic decomposition. This idea is
related to the use of extended domains; see [OS07b, OS07a, Roo02].

The solution of the boundary value problem (1.28) is now decomposed as

u = S + E1 + E2 + E3 (1.31)
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where the smooth component S is the solution of, for instance (other extended
domains are possible),

LS = f∗ in the half plane x > 0,

u = 0 on x = 0.

Here and in what follows g∗ denotes a smooth extension of g with compact
support. The component E1 representing the exponential layer at x = 1 is
defined by

LE1 = 0 in the strip 0 < x < 1,

E1 = 0 on x = 0, E1 = −S∗ on x = 1.

The parabolic boundary layers are contained in E2, which satisfies

LE2 = 0 in x > 0, 0 < y < 1,

E2 = 0 on x = 0, E2 = −S∗ on y = 0, y = 1.

Finally E3, the corner layer component:

LE3 = 0 in Ω.

E3 = −E2 on x = 1, E3 = 0 on x = 0,

E3 = −E1 on y = 0 and y = 1.

Then one expects under certain compatibility assumptions the following esti-
mates to hold for certain i, j and 0 < α < 1:

∣∣∣∣
∂i+j

∂xi∂yj
S(x, y)

∣∣∣∣ ≤ C, (1.32a)

∣∣∣∣
∂i+j

∂xi∂yj
E1(x, y)

∣∣∣∣ ≤ Cε−ie−α(1−x)/ε, (1.32b)

∣∣∣∣
∂i+j

∂xi∂yj
E2(x, y)

∣∣∣∣ ≤ Cε−j/2B(y), (1.32c)

∣∣∣∣
∂i+j

∂xi∂yj
E3(x, y)

∣∣∣∣ ≤ C ε−(i+j/2) e−α(1−x)/εB(y) (1.32d)

with
B(y) := exp(−γ∗y/√ε ) + exp(−γ∗(1− y)/√ε )

and some γ∗ > 0. Under sufficient compatibility assumptions, the above ideas
are used in [KS05, KS07a] to prove that the estimates (1.32) are valid, but
the construction and estimation of the decomposition there is complicated (it
includes the cases of little or no corner compatibility) and minimal sufficient
conditions for these estimates are unknown. A related problem is examined in
[KS06], where a jump discontinuity in an inflow boundary condition generates
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an interior characteristic layer. This is a test case that is often mentioned in
the literature but is difficult analytically since the solution of such a problem
does not lie in H1(Ω).

For the important practical case of a Neumann outflow boundary condi-
tion, see [NKS08].

Remark 1.27. (Solution decomposition for reaction-diffusion problems) Let us
consider the two-dimensional reaction-diffusion problem

Lu := −ε∆u+ c(x, y)u = f(x, y) in Ω ⊂ R
2,

u = g on Γ, (1.33)

where c > γ > 0 and g is continuous. Under suitable regularity hypotheses
on c, f and g one has u ∈ Cα(Ω̄) or even u ∈ C1,α(Ω̄), but in general one
does not obtain u ∈ C2,α(Ω̄) for domains with non-smooth boundary; see
Example 1.3 and [Gri85b].

The classical theory of matched asymptotic expansions gives

u = S + EBL + ECL +R, (1.34)

where EBL contains several boundary layer terms and ECL the corner layer
terms while R is a remainder. For a rectangular domain, say Ω = (0, 1)2, Bu-
tuzov [But75] proved that for each n ≥ 0 there exists an asymptotic expansion
(1.34) such that

‖R‖∞ ≤ Cn ε
n+1.

Han and Kellogg [HK90] extended this analysis by showing that S,EBL and
R are smooth and consequently any corner singularities are contained in the
corner layer terms. With the notation

d2ν(x, y) := min
{
x2 + y2, (1− x)2 + y2, x2 + (1− y)2, (1− x)2 + (1− y)2

}

ds(x, y) := min{x, y, 1− x, 1− y}

they derived, for the case of constant c, the following estimates for derivatives
of the solution of the given reaction-diffusion problem:

|Dm
xyu(x, y)| ≤ C + Cε−m/2Ebl +

⎧
⎪⎨
⎪⎩

C Ecl if m = 1,

C[1 + | ln(dν/(ε
1/2)|]Ecl if m = 2,

C(dν/(ε
1/2))−(m−2)Ecl if m ≥ 3,

where
Ebl = e−γds(x,y)/ε1/2

, Ecl = e−γdν/ε1/2

.

As Andreev [And06] pointed out, singularities in the fourth-order derivatives
appear only in the mixed derivatives: the pure derivatives satisfy

∣∣∣∣
∂4u

∂x4

∣∣∣∣ ≤ Cε−2,

∣∣∣∣
∂4u

∂y4

∣∣∣∣ ≤ Cε−2.
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The paper [And06] also contains a critical discussion of [HK90, Theorem 3.3]
(in the case of variable c) and of the decomposition of [CGO05, Theorem 2.2].

More general problems can be found in [Shi92c] and in the book [Mel02]
where Melenk allows the domain to be a curvilinear polygon whose bound-
ary Γ is assumed to consist of finitely many curves. While the proof of a
decomposition in [Shi92c, Section I.3] is incomplete, Melenk [Mel02, Theorem
2.3.4] gives full information about the behaviour of S, EBL, ECL and R. ♣



2

Finite Difference Methods

2.1 Finite Difference Methods on Standard Meshes

2.1.1 Exponential Boundary Layers

Consider the convection-diffusion problem

Lu := −ε∆u+ b · ∇u+ cu = f in Ω := (0, 1)× (0, 1), (2.1a)

u = 0 on ∂Ω, (2.1b)

with 0 < ε ≤ 1, b = (b1(x, y), b2(x, y)) > (β1, β2) > (0, 0) on Ω̄ and c ≥ 0
on Ω̄. Assume that the data of the problem are smooth.

Example 1.15 shows that in general the solution u has exponential bound-
ary layers at the sides x = 1 and y = 1 of Ω̄. Just like problems in one dimen-
sion, these layers cause serious instabilities in standard difference schemes.

The solution u0 of the reduced problem is defined by:

L0u0 := b · ∇u0 + cu0 = f in Ω,

u0(x, 0) = 0 on {(x, 0) : 0 ≤ x ≤ 1},
u0(0, y) = 0 on {(0, y) : 0 < y ≤ 1}.

This is the same type of problem as (II.3.1), and much of Section II.3.1 still
applies here. We again refer to the characteristic curves of the reduced problem
as the subcharacteristics of (2.1). Any satisfactory scheme for (2.1) should,
on setting ε = 0, become a satisfactory scheme for the reduced problem.
This implies that one should use upwinded schemes, i.e., schemes that are
equivalent to approximating the convection terms (b · ∇u)(x, y) by means
of asymmetrical finite differences that are centered on some point upstream
of (x, y).

Let M and N be positive integers. Let 0 = x0 < x1 < . . . < xM = 1 and
0 = y0 < y1 < . . . < yN = 1. Throughout Chapter 2, we consider rectangular
tensor-product grids on Ω, whose nodes are (xi, yj) for i = 0, . . . ,M and
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j = 0, . . . , N . Set hi = xi − xi−1 for each i and kj = yj − yj−1 for each j.
Let h = max{hi} and k = max{yj}. Given any function v that is defined
on the grid, vij denotes v(xi, yj). In each scheme considered, uh denotes the
computed solution and the computed nodal values are written as uij .

We shall follow standard practice by working within a discrete L∞-norm
framework in Section 2.1.

A scheme Lhv = f̃ is said to be consistent of O(α) with (2.1) in the
maximum norm if

‖Lh u− f̃‖∞,d ≤ K(hα + kα) as h, k → 0, (2.2)

where K and α are fixed constants. (For convenience the restriction operator
Rh that restricts u to the mesh is ignored.) Here ‖ · ‖∞,d = maxij |(·)ij | is the
discrete L∞(Ω) norm. If (2.2) is proved only under the assumption that ε is
constant, then the scheme is said to be formally consistent of O(α).

The scheme Lhv = f̃ , v|∂Ω = 0, is L∞ stable if its solution v satisfies

‖v‖∞,d ≤ K‖f̃‖∞,d

for all mesh functions f̃ and some constant K.
Stability is often proved by the following argument described already in

Part I. Suppose that Lh is inverse-monotone, i.e., (Lh)−1 ≥ 0. Suppose also
that we can find a mesh function φ and constants K1 and K2 such that
0 ≤ φij ≤ K1 and 0 < K2 ≤ (Lhφ)ij for all i and j. (The choice φ(x, y) = 1+y
often works for (2.1a), since b2 is positive.) Then

Lh(φ‖f̃‖∞,d/K2)ij ≥ ‖f̃‖∞,d ≥ f̃ij ,

so inverse-monotonicity implies that

‖v‖∞,d ≤ ‖f̃‖∞,d‖φ‖∞,d/K2 ≤ (K1/K2)‖f̃‖∞,d.

Here φ acts as a barrier function.

Construction of Difference Schemes and Upwinding

A common way of generating schemes for (2.1) is to take some stable scheme
for the reduced problem (see Section II.3.1) and to it add a standard difference
approximation of −ε∆u. Our first example is in this vein.

Example 2.1. (Simple upwind scheme) Example II.3.4 discussed the simple
upwind scheme for (II.3.1). To approximate (2.1), we generalize this scheme
to

− 2ε

hi + hi+1

(
ui+1,j − uij

hi+1
− uij − ui−1,j

hi

)

− 2ε

kj + kj+1

(
ui,j+1 − uij

kj+1
− uij − ui,j−1

kj

)

+ (b1)ij
uij − ui−1,j

hi
+ (b2)ij

uij − ui,j−1

kj
+ cij = fij (2.3a)
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for i = 1, . . . , M − 1 and j = 1, . . . , N − 1, with

uij = 0 when (xi, yj) ∈ ∂Ω. (2.3b)

This is simple upwinding. The matrix of the scheme is an M-matrix and irre-
ducibly diagonally dominant [OR70], so the discrete problem (2.3) is inverse-
monotone and has a unique solution. One can find a barrier function (consider
1 + xi) and prove L∞ stability uniformly with respect to the parameter ε.

It is straightforward to verify that the scheme is formally only first-order
consistent. It is stable, but will smear layers as it did already in one dimension.
In practice it is usually first-order accurate away from layers. We do not prove
this rigorously (see [Tob83] for a closely related result), but merely observe
that on equidistant meshes with ε≪ min{h, k}, the scheme is very similar to
the scheme of [GS93], whose local behaviour was described in Example II.4.6.

When the condition b > (0, 0) is violated, the continuous problem may
be unstable for c ≡ 0. Then simple upwinding is also unstable and may give
a seriously inaccurate solution. Brandt and Yavneh [BY91] discuss such an
example of linearized recirculating flow with c ≡ 0, where Ω is an annulus, the
subcharacteristics are circles and, except near ∂Ω, the solution of an analogue
of (2.3a) is O(1) distant from the solution of the differential equation. We
saw in Example I.2.35 that this effect is already possible for one-dimensional
problems with turning points. ♣

An alternative approach to the construction of schemes for (2.1) is to take
a scheme for the one-dimensional analogue of (2.1), then form the “tensor
product” of that scheme in two dimensions. Simple upwinding fits into this
category also; it is the tensor product of the upwind scheme (I.2.12). Solutions
of tensor-product schemes generally suffer from excessive smearing of layers.
To see why this happens, consider Example 2.1. When ε is much smaller than
the local mesh size, uij is essentially computed from ui−1,j and ui,j−1, while
information from the natural candidate ui−1,j−1 is not used – even in the case
when the subcharacteristic through (xi, yj) also passes through (xi−1, yj−1).
This means that information is moved across the subcharacteristics rather
than along them. Consequently the method will not compute sharp internal
layers.

A third technique used in devising difference schemes for (2.1) is to arti-
ficially increase the diffusion coefficient ε, then to apply some standard non-
upwinded scheme (cf. Section I.2.1.2). For example, in the case of a square
mesh, replacing ε in (2.1a) by ε+h then applying a central difference scheme
yields again (2.3a). Here we have added isotropic diffusion to the problem;
that is, when modifying the differential equation, all directions were treated
in exactly the same manner.

Numerical experience shows that isotropic artificial diffusion can make
internal layers over-diffuse and that it is sufficient to add diffusion only in the
direction of the subcharacteristics [KNZ80]. Hegarty [Heg82] adds anisotropic
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diffusion of this type in the following systematic way, drawing inspiration from
the familiar one-dimensional case. (See also [Lay93].)

Assume that b1 and b2 are constants and that, without loss of generality,
b1 ≥ b2. Transform coordinates from (x, y) to (ζ, η) by rotating the axes so
that η is constant along each subcharacteristic while ζ is constant along lines
perpendicular to subcharacteristics. That is,

ζ :=
b1x+ b2y√
b21 + b22

and η :=
b2x− b1y√
b21 + b22

.

The given equation can be written in terms of these variables as

−εûζζ − εûηη +
√
b21 + b22ûζ + cû = f̂ , (2.4)

where û(ζ, η) := u(x, y). The idea now is to treat

û �→ −εûζζ +
√
b21 + b22 ûζ

as a one-dimensional differential operator.
We work on a square mesh. Hegarty’s first scheme imitates the one-

dimensional Il’in-Allen-Southwell scheme (see Section I.2.1.3) by altering
−εûζζ to −(H/2)coth[H/(2ε)] ûζζ , where H := h

√
b21 + b22/b1 is the effective

mesh width in the subcharacteristic direction ζ. The term −εûηη becomes
−ε̂ûηη, where ε̂ is yet to be determined. He then transforms back to the
(x, y) variables and introduces a central difference approximation. An exam-
ination of the truncation error motivates the choice of ε̂ (when b1 = b2, it is
b1h/sinh(b1h/ε)). Numerical results in [Heg82] show that this scheme gives
sharp internal boundary layers, but its solution may exhibit oscillations.

To exclude oscillations, Hegarty develops an alternative scheme, which is
of positive type (see Remark 2.3). Again transform (2.1a) to (2.4), but now
after adding the same artificial diffusion as before, apply central differencing
in the ζ and η variables. In general, this introduces points not on the original
mesh; values at these points are approximated by linear interpolation. Set
χ = b2/b1 and θ = H/(2ε). At each (xi, yj) ∈ Ω, the scheme is

b1h

2
(coth θ)[(1− χ)δxxuij + χδξξuij ]

+
b1h

2
(sinh θ)−1[(1− χ)δyyuij + χδηηuij ]

+ b1[(1− χ)δxuij + χδξuij ] + cijuij = fij .

Here δxxu and δyyu are the standard second-order difference approximations
to uxx and uyy respectively, while

δξuij := (ui+1,j+1 − ui−1,j−1)/2h,

δξξuij := (ui+1,j+1 − 2uij + ui−1,j−1)/h
2

and
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δννuij := (ui+1,j−1 − 2uij + ui−1,j+1)/h
2

approximate derivatives in the north-east and south-east directions. This
scheme yields more diffuse internal layers than the first scheme [Heg82], but
its solutions are oscillation-free.

Remark 2.2. When the diffusion coefficient is altered a priori, the extra dif-
fusion added is called artificial viscosity (AVIS). This AVIS can easily be
quantified from an inspection of the consistency error of the scheme. Bank et
al. [BBF90] work with a variant of AVIS when they compare various upwind
methods with the standard Galerkin method by inspection of the 3×3 element
stiffness matrix associated with the diffusion term.

We carefully distinguish between AVIS – which appears in the difference
scheme – and numerical viscosity (NVIS), which is said to be present when
the numerical solution of the scheme has excessively diffuse layers. There is no
standard definition of NVIS. In [To93b] it is specified as that increase in the
diffusion parameter such that the exact solution of the resulting differential
equation is closest (in some norm) to the computed numerical solution of the
original problem. It is in general difficult to compute NVIS precisely, unlike
AVIS – but NVIS is much more important, because a numerical solution is
accurate if and only if its NVIS is small.

The two quantities are often confused in the literature. In particular, the
amount of AVIS is sometimes taken as a measure of the amount of NVIS. This
is fallacious as we know from Section I.2.1.3: the Il’in-Allen-Southwell scheme,
applied to a two-point boundary value problem with constant coefficients has
non-zero AVIS, but it yields exact nodal solutions (i.e., it has zero NVIS!). ♣
Remark 2.3. On an equidistant mesh, consider a consistent difference scheme
Lhv = f̃ whose matrix (aij) is of positive type. Such a matrix satisfies the
following conditions:

• aii > 0; aij ≤ 0 when i �= j; aii ≥ −
∑

j �=i aij for all i with strict inequality
for at least one i;

• the matrix is irreducible.

For example, the matrix of the simple upwind scheme has these properties.
Schemes of positive type are at best first-order consistent when ε is small
compared to min{h, k}. This follows from Godunov’s analogous result for the
reduced problem (II.3.1), which can be proved by applying the technique of
[Yse83] (see also [Lax61, Wid71]. ♣

If the scheme Lhv = f̃ is of positive type, then Lh is an M-matrix [OR70]
and hence inverse-monotone. Inverse-monotone schemes are usually well be-
haved and can often be analysed using barrier functions. The easiest way to
obtain such schemes is to use matrices of positive type or M-matrices – but
then Remark 2.3 imposes a restriction of moderate accuracy on the scheme.
It is a challenging problem to construct inverse-monotone schemes that are
second-order accurate when ε is small compared with the local mesh diameter.
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One such scheme is given by Kratsch and Roos [KR92] for the case when
b1 and b2 are constant. Their difference scheme matrix is not of positive type
but it can be expressed as a product of two M-matrices and consequently is
inverse-monotone. It is formally second-order consistent.

A similar idea appears in the LECUSSO scheme of Günther [Gün92], but
he writes the scheme as a product of M-matrices only in the one-dimensional
case. This paper also provides an interesting comparison of numerical results
for various schemes applied to a demanding heat flow problem in two space
dimensions.

One can use local properties of the problem to determine the set of points
used in the stencil of the difference scheme. Our next example is of this type.

Example 2.4. Roe and Sidilkover [RS92] use a variable stencil approach to de-
velop a scheme of positive type on a uniform square mesh for a time-dependent
constant coefficient first-order hyperbolic problem in two space dimensions.
Their scheme minimizes truncation error within the class of four-point schemes
of positive type. (They show that simple upwinding maximizes the truncation
error in the same class.)

We generalize their scheme to (2.1a) by adding suitable approximations
of cu and f and a standard difference approximation of −ε∆u. Then at each
(xi, yj) ∈ Ω, one gets the scheme

− εui+1,j − 2uij − ui−1,j

h2
− εui,j+1 − 2uij − ui,j−1

h2

+ (b1)ij
ui,j + ui,j−1 − ui−1,j − ui−1,j−1

2h

+ (b2)ij
ui,j + ui−1,j − ui,j−1 − ui−1,j−1

2h

+ |(b1)ij − (b2)ij |
ui,j − ui−1,j − ui,j−1 + ui−1,j−1

2h
+ cijuij = fij .

The convective terms in this scheme always simplify to a two-point or three-
point difference approximation of b · ∇u and the scheme is of positive type. It
is formally first-order consistent. ♣

Daĺık [Dal95] also uses a variable stencil on an arbitrary quasi-uniform
triangulation of Ω. His scheme is more complicated than that of Example 2.4.
Assuming that ε is less than the minimum mesh diameter, he shows that the
matrix of the scheme is inverse-monotone and that, away from layers,

‖u− uh‖∞ ≤ C(h2 + ε),

where uh is the computed solution and h is the mesh diameter.

Uniformly Convergent Methods

We now examine finite difference methods for (2.1) whose computed solu-
tions uh satisfy
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‖u− uh‖∞,d ≤ C(hα + kβ),

where α and β are positive constants that are independent of ε and of the
mesh. That is, these methods are uniformly convergent in the discrete maxi-
mum norm ‖ · ‖∞,d.

We begin with a necessary condition from [Roo85] that generalizes Theo-
rem I.2.17 to two dimensions.

Theorem 2.5. In (2.1) assume that b1 and b2 are positive constants and that
c ≡ 0. Let the mesh be square (i.e., hi = kj = h for all i and j). Consider
a nine-point difference scheme for (2.1) and assume that at each mesh point
(xi, yj) the scheme can be written as

1∑

ν,µ=−1

aνµui+ν,j+µ = hf̃ij ,

where each aνµ depends only on the ratio h/ε.
Then to achieve uniform convergence of any positive order in the discrete

maximum norm ‖ · ‖∞,d, the coefficients of the scheme must satisfy the fol-
lowing three conditions:

e−b1h/ε
1∑

µ=−1

a−1,µ +
1∑

µ=−1

a0,µ + eb1h/ε
1∑

µ=−1

a1,µ = 0, (2.5a)

e−b2h/ε
1∑

ν=−1

aν,−1 +

1∑

ν=−1

aν,0 + eb2h/ε
1∑

ν=−1

aν,1 = 0, (2.5b)

1∑

ν,µ=−1

aνµe
(νb1+µb2)h/ε = 0. (2.5c)

Proof. The argument resembles the proof of Theorem I.2.17. ⊓⊔

If one weakens the hypothesis of uniform convergence in the discrete L∞
norm to uniform convergence of order greater than 1/2 in the discrete L2

norm, then [ST95] the scheme must still satisfy (2.5a) and (2.5b).
A more general approach towards the assessment of numerical methods,

based on a comparison of the fundamental systems of the continuous and
discrete operators, is presented in [AD01].

Example 2.6. On a square mesh, consider a nine-point scheme that upwinds in
each coordinate direction by an arbitrary amount. After multiplication by h,
one can write the stencil of the scheme as

− ε
h

⎡
⎣
· 1 ·
1 −4 1
· 1 ·

⎤
⎦+

b1
2

⎡
⎣

· · ·
−1− p 2p 1− p
· · ·

⎤
⎦+

b2
2

⎡
⎣
· 1− q ·
· 2q ·
· −1− q ·

⎤
⎦ ,
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where p and q are upwinding parameters. The conditions (2.5) of Theorem 2.5
are satisfied if and only if

p = coth

(
b1h

2ε

)
− 2ε

b1h
and q = coth

(
b2h

2ε

)
− 2ε

b2h
. (2.6)

This is the two-dimensional version of of the Il’in-Allen-Southwell scheme of
Section I.2.1.3; it was proposed by Allen and Southwell [AS55] and indepen-
dently by Il’in [Il’69]. ♣

Surprisingly, optimal error estimates for the Il’in-Allen-Southwell scheme
in two dimensions are not known. Emel’janov [Eme73] proves

‖u− uh‖∞,d ≤ Ch4/(2+λ) (2.7)

under the strong hypothesis that u ∈ C4,λ(Ω̄). He uses the estimates

‖u‖k,λ ≤ Cε−(k+λ) for k = 2, 3, 4,

and the bound
‖u− uas‖∞ ≤ Cε

which requires smoothness of the reduced solution (compare Example 1.15).
An inspection of the proof shows that if we assume the existence of the de-
composition (1.23), then one gets

‖u− uh‖∞,d ≤ C(ε+ h).

Numerical results in [HOS93] indicate that the error bound in (2.7) is fairly
sharp and that with less compatibility of the data one obtains a lower rate of
convergence.

2.1.2 Parabolic Boundary Layers

Consider now (2.1) with b1 ≡ 0. That is, our problem becomes

−ε∆u+ b2(x, y)uy + c(x, y)u = f in Ω := (0, 1)× (0, 1), (2.8a)

u = 0 on ∂Ω. (2.8b)

Once again take b2(x, y) > β2 > 0 on Ω̄ and c ≥ 0 on Ω̄, and assume that the
data of the problem are smooth.

As in Example 1.16, the solution of this problem has typically an expo-
nential boundary layer at y = 1 and parabolic boundary layers at x = 0 and
x = 1. The exponential boundary layer can be treated as in the previous sub-
section. The parabolic layers raise interesting numerical issues. They cause
numerical instabilities that are far less severe than those engendered by expo-
nential layers, yet it is difficult in practice to approximate them accurately.
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A common strategy for solving (2.8) is to use some form of upwinding
to stabilize the exponential boundary layer, combined with mesh refinement
near x = 0 and x = 1. Whether or not the mesh refinement yields an accurate
solution in the parabolic layers, the solution elsewhere is often satisfactory.

Emel’janov [Eme70] uses a uniform mesh and applies the obvious variant
of the Il’in-Allen-Southwell scheme to problem (2.8) (i.e., he sets p = 0 and
defines q by (2.6) in Example 2.6). He proves that, on the subdomain of Ω
obtained by excluding the parabolic layers, this method is first-order uniformly
convergent.

Su [Su87] solves (2.8) by means of a more detailed asymptotic expansion
than in Example 1.16. He uses the expansion ũ of Butuzov [But75], which
contains terms for the exponential layer, for each parabolic layer and for two
corner layers. Assuming that b2 ≡ c ≡ 1 and f(0, 0) = f(1, 0) = 0, Butuzov
shows that

‖u− ũ‖∞ ≤ Cε on Ω̄.

All terms in the expansion can be computed explicitly, except the parabolic
and corner layer terms. Su approximates each of these layer terms separately
by a change of variable followed by the application of standard difference
schemes. Finally, he adds all terms to obtain an approximation uh that satisfies

|u(xi, yj)− uij | ≤ C(h2 + ε)

at all mesh points (the position of the mesh points depends on the changes
of variable, but they are clustered more densely in the parabolic layers than
elsewhere). A numerical method of this type relies strongly, however, on the
ability to construct an accurate asymptotic expansion of the solution u, which
may be difficult in practice.

We turn now to methods for (2.8) that are uniformly convergent in the
discrete maximum norm; that is, methods whose solutions satisfy

‖u− uh‖∞,d ≤ C(hα + kβ),

where α and β are positive constants and u is the solution of (2.8). Before
attempting to construct such a method, recall from Remark II.3.22 Shishkin’s
surprising obstacle result [Shi89] for parabolic reaction-diffusion problems:
if a difference scheme whose stencil comprises a fixed number of points on
an equidistant mesh has coefficients that are independent of the boundary
data and satisfies a discrete maximum principle, then it cannot be uniformly
convergent in the discrete maximum norm. The difficulty is caused by the
parabolic boundary layer present in the solution of such problems. As these
layers also occur in the solution of (2.8), we expect a similar impediment to
exist. For some five-point schemes this negative result is proved in [RS96].

The following heuristic argument explains the difficulty faced by uniformly
convergent schemes: necessary conditions for uniform convergence are induced
by the layer terms that characterize the exact solution – see the proof of
Theorem I.2.17. But the parabolic boundary layer problem (cf. Example 1.16)
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−∂
2v0
∂ξ2

+
∂v0
∂y

= 0, v0(0, y) = g(y), v0(ξ, 0) = 0

has, on taking g(y) := yi for i = 0, 1, . . . , infinitely many linearly independent
solutions v0. Each of these solutions generates its own necessary condition, but
it should not be possible to satisfy infinitely many conditions with the finite
number of parameters available in a scheme with a fixed number of nodes (see
[AD01, Shi97b] for further details).

2.2 Layer-Adapted Meshes

2.2.1 Exponential Boundary Layers

This subsection examines a model problem with exponential layers at x = 0
and y = 0, namely

Lu := −ε∆u− b · ∇u+ cu = f on Ω := (0, 1)× (0, 1), (2.9a)

u = 0 on ∂Ω, (2.9b)

where b = (b1(x, y), b2(x, y)) > (β1, β2) > (0, 0) on Ω̄ and b, c, f are smooth.
If the differential equation were −ε∆u+ b · ∇u+ cu = f , whose solution has
layers at x = 1 and y = 1, then the change of variables x �→ 1−x and y �→ 1−y
converts this problem to (2.9).

First consider the simple upwind scheme

Lupuh = fh,

which, written out in full, is

− 2ε

hi + hi+1

(
ui+1,j − uij

hi+1
− uij − ui−1,j

hi

)

− 2ε

kj + kj+1

(
ui,j+1 − uij

kj+1
− uij − ui,j−1

kj

)

− (b1)ij
ui+1,j − ui,j

hi
− (b2)i,j

ui,j+1 − ui,j

kj
+ cij = fij (2.10a)

for i = 1, . . . ,M − 1 and j = 1, . . . , N − 1, with

uij = 0 when (xi, yj) ∈ ∂Ω. (2.10b)

We shall study this scheme on a tensor-product mesh ωx × ωy, where ωx

and ωy are one-dimensional Shishkin-type meshes (see Section I.2.4) having
the same number of mesh points. Thus ωx is obtained from the continuous
mesh-generating function λ, where
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λ(ξ) =
σε

β1
λ̃(ξ) for ξ ∈ [0, 1/2].

The function λ̃ is monotone with λ̃(0) = 0 and λ̃(1/2) = lnN ; on [1/2, 1]
the function λ is linear with λ(1) = 1. Recall that the mesh-characterizing
function ψ is defined by ψ = exp(−λ). Figure 2.1 shows the typical structure
of a tensor-product Shishkin-mesh for a problem with two exponential layers
at x = 1 and y = 1; in this diagram (see Section I.2.4) λx = Cxε lnN and
λy = Cyε lnN , where N mesh intervals are used in each coordinate direction.

1 − λy

1 − λx

�

�

�

�

Fig. 2.1. Shishkin mesh for convection-diffusion with two outflow exponential layers

Theorem 2.7. Assume that the solution of (2.9) can be decomposed similarly
to Theorem 1.26 with α = 1 and n = 3. Let the mesh-generating function be
piecewise differentiable and satisfy

max λ̃′(ξ) ≤ CN,
∫ 1/2

0

λ̃′(ξ)2dξ ≤ CN.

Then for σ ≥ 2, the error of the simple upwind scheme satisfies

|u(xi, yj)− uij | ≤
{
C N−1 for i, j = N/2, . . . , N,
C N−1 max |ψ′| otherwise.

For a piecewise-equidistant Shishkin mesh the mesh-characterizing function ψ
introduces a factor lnN into the error estimate. On the other hand, the
Bakhvalov-Shishkin mesh, for which ψ(ξ) = 1−(1−1/N)2ξ, yields the optimal
error estimate CN−1 because |ψ′| is uniformly bounded.

Proof. Recalling the decomposition of Theorem 1.26, split the numerical so-
lution in a similar manner: define the mesh function SN as the solution of

[
LupSN

]
ij

= [LS]ij for all i and j, SN = S on ∂Ω,
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and define EN
1 , EN

2 and EN
12 analogously. For the smooth component S, stan-

dard classical arguments give

|S(xi, yj)− SN
ij | ≤ C N−1 for all i and j.

For the layer term at x = 0 we have, like the proof of Lemma I.2.94,

0 ≤ EN
1,ij ≤W1,i := C

i∏

ν=1

(
1 +

β1hν

2ε

)−1

for i, j = 0, . . . , N.

The smallness of E1 on the coarse mesh leads to

∣∣E1(xi, yj)− EN
1,ij

∣∣ ≤ C N−1 for i = N/2, . . . , N, j = 0, . . . , N.

A Taylor expansion gives

∣∣Lup(E1 − EN
1 )

∣∣ ≤ C(N−1 + ε−1W1,i max |ψ′|).

Appealing to a discrete comparison principle and using the barrier function
C(N−1 +W1,iN

−1 max |ψ′|) yields

∣∣E1(xi, yj)− EN
1,ij

∣∣ ≤ C N−1 max |ψ′| for i = 0, . . . , N/2− 1, j = 0, . . . , N.

Similar arguments are used for the terms E2 and E12 corresponding to the
boundary layer at y = 0 and the corner layer. ⊓⊔

When the solution is less regular, one can nevertheless prove some positive
rate of convergence; see [Shi00].

In [LS99] a modified hybrid scheme on a tensor-product Shishkin mesh is
considered. It is based on simple upwinding, but employs central differencing
whenever the mesh allows one to do this without losing inverse-monotonicity.
For this scheme the above proof avoids the factor lnN and gives the optimal
error bound

‖u− uh‖∞,d ≤ CN−1.

Liseikin [Lis83] uses a tensor product of one-dimensional Bakhvalov-type
meshes (see Section I.2.4). He assumes the validity of the estimates

∣∣∣∣
∂ku

∂xk
(x, y)

∣∣∣∣ ≤ C
[
1 + ε−ke−β1(1−x)/ε

]

and ∣∣∣∣
∂ku

∂yk
(x, y)

∣∣∣∣ ≤ C
[
1 + ε−ke−β2(1−y)/ε

]

on Ω for 0 ≤ k ≤ 3. Such an assumption implies, as was seen in Chapter 1, that
the data of the problem are smooth and satisfy strong compatibility conditions
at the corners of Ω̄. The logarithmically graded mesh then controls the local
truncation error of the simple upwind scheme. The computed solution satisfies
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‖u− uh‖∞,d ≤ CN−1.

The proof of Theorem 2.7 used the discrete comparison principle and care-
fully chosen barrier functions. Alternatively, as we saw in Section I.2.4.2, one
can use an improved stability result for the upwind scheme. Thus [And01] one
has the following discrete stability analogue of the continuous stability bound
of Theorem 1.22. Set h̄i = (hi + hi+1)/2 and k̄i = (ki + ki+1)/2 for each i.
Define the discrete Green’s function Gd by

LupGd(xi, yj ; ξm, ηn) = δd(xi, ξm) δd(yj , ηn), Gd = 0 on ∂Ω,

with

δd(xi, ξm) =

{(
h̄i

)−1
for i = m,

0 otherwise;

the mesh function δd(yj , ηn) is defined analogously.

Lemma 2.8. The discrete Green’s function Gd is nonnegative. One has the
estimates

max
xi,yj ,ηn

‖Gd(xi, yj ; ·, ηn)‖L1,d ≤
1

β2

and

max
xi,yj ,ξm

‖Gd(xi, yj ; ξm, ·)‖L1,d ≤
1

β1
,

where ‖ · ‖L1,d is the one-dimensional discrete L1 norm.

Proof. It suffices to prove the statement for c = 0 because its Green’s function
G̃d satisfies 0 ≤ Gd ≤ G̃d owing to the inverse-monotonicity of the discrete
problem. Thus assume that c = 0 in (2.9). Fix (xi, yj). Define the function of
one variable GΣ(xi, yj ; ·) by

GΣ(xi, yj ; ξm) :=
∑

n

Gd(xi, yj ; ξm, ηn)k̄n.

As Gd ≥ 0, this sum is simply the discrete L1 norm of Gd(xi, yj ; ξm, ·). Analo-
gously to the continuous Green’s function, the functionGd satisfies the adjoint
problem associated with (ξm, ηn) – for the simple upwind scheme, the term
−biD+ui has adjoint D−(biui). Multiplying the adjoint equation by k̄n then
summing over n, we obtain a difference equation for GΣ in its third argument:

−εδ2(GΣ)m +D−(b∗1G
Σ)m = δd(xi, ξm)− F (xi, yj , ξm). (2.11)

Here b∗1 ≥ β1 is derived from b1 via a mean value theorem while

F (xi, yj , ξm) : = b2,m,N−1Gd(xi, yj ; ξm, ηN−1) +
ε

k̄N−1
Gd(xi, yj ; ξm, ηN−1)

+
ε

k̄1
Gd(xi, yj ; ξm, η1).
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Denoting by G∗
d the Green’s function associated with the one-dimensional

operator on the left-hand side of (2.11), one then has

0 ≤ G∗
d ≤

1

β1
.

Now the solution representation

GΣ(xi, yj , ξm) = G∗
d(xi, yj , ξm, ξm)−

∑

n

G∗
d(xi, yj , ξm, zn)F (xi, yj , zn)h̄n

gives us immediately the second estimate of the lemma because F ≥ 0. The
other inequality is proved similarly. ⊓⊔

Consider now the discrete boundary value problem

Lupuh = fh in Ω, uh = 0 on ∂Ω.

The solution representation

uh(xi, yj) =
∑

m,n

h̄mk̄nGd(xi, yj , ξm, ηn)fh(ξm, ηn)

yields

Theorem 2.9. Assume that b1 > β1 > 0. Then the simple upwind operator
enjoys the anisotropic stability estimate

‖vh‖∞,d ≤ C‖Lupvh‖1⊗∞,d.

The notation here is analogous to Theorem 1.22: first apply the maximum
norm in the y-direction and then the discrete L1 norm with respect to x.

When b1 > 0 and b2 > 0 on Ω̄, Theorem 2.9 gives an alternative proof of

‖u− uh‖∞,d ≤ C
{
N−1 for a Bakhvalov mesh,
N−1 lnN for a Shishkin mesh.

Remark 2.10. (Reaction-diffusion problem) For the reaction-diffusion problem
discussed in Remark 1.27 with Ω = (0, 1)2 one expects uniform convergence on
a Shishkin mesh for the standard finite difference method obtained by setting
b1 ≡ b2 ≡ 0 in (2.10). With sufficient compatibility to ensure that u ∈ C4,α(Ω̄)
and that one has a suitable decomposition of u, it is straightforward to prove

‖u− uh‖∞,d ≤ C(N−1 lnN)2. (2.12)

This was shown in [CGO05] using a barrier function technique; alternatively,
one could use an improved stability estimate based on the Green’s function
as in the one-dimensional problem considered by Savin [Sav95].
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Remarkably, Andreev [And06] was able to avoid the use of compatibility
conditions (see the discussion on solution decomposition in Remark 1.27) when
proving

‖u− uh‖ ≤ C N−2(lnN)4

for this scheme. Subsequently Andreev [And] and Andreev and Kopteva
[AK08] extended these results to problems with stronger corner singularities.
In the first of these papers, Dirichlet and Neumann boundary conditions meet
at a corner of the unit square, while in the second an L-shaped domain with
Dirichlet boundary conditions is treated. In both cases the solution lies only
in C0,α(Ω̄) with 0 < α < 1. The analysis combines layer-adapted meshes with
geometrically graded meshes near the corner singularity; for related work, see
[Mel02].

Kopteva [Kop07a, Kop07b] studies semilinear problems of the type

Lu := −ε△u+ b(x, u) = 0 in Ω,

u = g on Γ,

in a domain with a smooth boundary while assuming some standard stability
property of the reduced solution. The discretization combines features of finite
differences and finite elements. In a strip “parallel” to the boundary, whose
thickness corresponds to the construction of a Bakhvalov or a Shishkin mesh, a
finite difference method is used, and in the interior of Ω the difference scheme
is generated via linear finite elements on a Delaunay triangulation. Optimal
error bounds in the maximum norm are derived.

Systems of reaction-diffusion problems in two-dimensional domains are
solved in [KLS, KMS08, Shi07b] using standard schemes on Bakhvalov and
Shishkin meshes and error bounds like (2.12) are proved. ♣

Are there second-order schemes for convection-diffusion problems? In
[Kop03] Kopteva derives an error expansion for the simple upwind scheme on
a piecewise equidistant mesh. This expansion is used to show that Richard-
son extrapolation generates a robust almost (i.e., up to a logarithmic factor)
second-order method.

Comparing numerical results for simple upwinding, a hybrid scheme, cen-
tral differencing and defect correction on a Shishkin mesh, it is concluded in
[LS01b] that defect correction is the most efficient of these because it com-
bines the accuracy of central differencing with the good stability properties
of upwinding. But up to now, no complete analysis of defect correction for
two-dimensional convection-diffusion problems has been given.

We do not know of any theoretical result for central differencing on layer-
adapted meshes for (2.9), but there are some results for related schemes gen-
erated by finite element methods; see Chapter 3.
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2.2.2 Parabolic Layers

Compared with exponential layers, satisfactory convergence results for differ-
ence schemes for parabolic boundary layers are thin on the ground. Let us
consider the model problem

Lu := −ε∆u+ ux + cu = f in Ω := (0, 1)× (0, 1), (2.13a)

u = 0 on ∂Ω. (2.13b)

The problem has an exponential layer of width O(ε| ln ε|) at the outflow
boundary x = 1 and parabolic layers of width O(

√
ε | ln ε|) at the charac-

teristic boundaries y = 0 and y = 1.
We know already that on standard meshes it is impossible to construct

difference schemes that are uniformly convergent pointwise for problems with
parabolic boundary layers. Thus for (2.13) one could combine fitted schemes
in the x-direction with a layer-adapted scheme in the y-direction, or use layer-
adapted meshes in both directions to try to achieve uniform convergence. In
a finite difference framework, we know of only one paper that avails itself
of the former strategy: Shishkin [Shi86] uses the one-dimensional Il’in-Allen-
Southwell scheme to approximate −εuxx − ux and central differencing to ap-
proximate −εuyy. He proves the following result, where the mesh uses N
points in each coordinate direction – equidistant in x but layer-adapted in y.

Theorem 2.11. (Il’in-Allen-Southwell scheme and a Bahkvalov mesh) As-
sume that c, f ∈ C3(Ω̄), that u ∈ C4(Ω̄), and f(1, 0) = f(1, 1) = 0. Then

‖u− uh‖∞,d ≤ CN−1/4.

If more smoothness and compatibility of the data are assumed, then the con-
clusion of the Theorem becomes ‖u− uh‖∞,d ≤ CN−1/2.

As tensor products of layer-adapted meshes were quite successful for ex-
ponential layers, we now introduce a mesh of this type for (2.13), using the
mesh transition parameters (see Section I.2.4)

λx = min
{
1/2, σxε lnN

}
, λy = min

{
1/4, σy

√
ε lnN

}

where N mesh intervals are used in each coordinate direction and the mesh
is fine at x = 0 and at y = 0, y = 1. Note that the ε of the exponential layer
transition point becomes

√
ε for the parabolic layer; this is due to the different

asymptotic structure of these layers. Figure 2.2 shows the typical structure of
such a mesh for (2.13); in each coordinate direction, half the mesh intervals are
in the coarse mesh and half in the fine mesh. For simplicity, only the standard
Shishkin mesh is discussed here but Shishkin-type and Bakhvalov-type meshes
are also possible.

Numerical results in several papers [CMOS01, FHS96a, FHS96b, FHS96c,
HMOS95] and the monograph [FHM+00] demonstrate numerically the almost
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Fig. 2.2. Shishkin mesh for one exponential and two parabolic layers

first-order uniform convergence of the simple upwind scheme, but a rigorous
proof of this convergence under minimal regularity assumptions is not easy.
Using the decomposition (1.29) and the estimates (1.30), Shishkin [Shi90b]
proved that

‖u− uh‖∞,d ≤ C(N−1 lnN)p

with p = 1/18 or p = 1/14 depending on the precise assumptions on the
problem data. If we assume the validity of the decomposition

u = S + E1 + E2 + E12

and of bounds like (1.32) for the third-order derivatives needed in the analysis
of the simple upwind scheme, then it should be possible to prove that

‖u− uh‖∞,d ≤ CN−1 lnN.

In fact [OS07a] derives the error estimate ‖u− uh‖∞,d ≤ CN−1(ln N)2.

Remark 2.12. (The A-mesh) In [Wes96] Wesseling implicitly assumes the ex-
istence of a decomposition of the solution (by ignoring higher-order terms in
an asymptotic expansion) for a problem with parabolic boundary layers and a
weak exponential layer. He proves first-order uniform convergence for an up-
wind scheme with a refined piecewise equidistant mesh near the characteristic
boundaries but his choice of transition point is

λy = min{1/4, σy

√
ε | ln ε|},

i.e., the factor lnN of the Shishkin mesh is replaced by | ln ε|. This mesh is
sometimes called the A-mesh. Numerical experiments in [HMOS97] demon-
strate however that this choice of transition point for a piecewise equidistant
mesh is not as good as Shishkin’s if one wants also to approximate scaled
derivatives of the solution. ♣
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Remark 2.13. The authors of [CGLS02] study a problem with Robin boundary
conditions on the characteristic boundary, so the parabolic boundary layer is
weak. Assuming the existence of a decomposition of the type (1.31) with
estimates similar to (1.32) for the fourth-order derivatives, it is shown that

‖u− uh‖∞,d ≤ C
[
(N−1 lnN)2 +

√
εN−1 lnN

]

for a scheme which in the x-direction is related to the midpoint upwind
scheme. ♣

Remark 2.14. (Interior parabolic layers) In [HS94], Hemker and Shishkin
study a singularly perturbed parabolic equation with a discontinuous initial
condition that generates an interior parabolic layer and construct a uniformly
convergent (fitted) scheme on an equidistant mesh. Unlike the situation with
parabolic boundary layers, the equation determining the layer correction now
has only one solution (the classical error function).

One would expect a similar result for an elliptic problem of type (2.13)
with constant coefficients, if a discontinuous boundary condition generates an
interior parabolic layer at the subcharacteristic through the point of discon-
tinuity. For nonconstant coefficients (curved subcharacteristics) the situation
is more complicated and is unclear. ♣

Remark 2.15. (Hemker’s problem) In [Hem97] Hemker proposes the following
benchmark problem: solve

−ε△u+ ux = 0

in the plane region exterior to the unit circle with the boundary conditions

u(x, y) = 1 for x2 + y2 = 1, u(x, y) → 0 as x2 + y2 →∞.

This is a complicated problem: the solution has an exponential layer and
two interior parabolic layers – in particular the asymptotic situation is quite
complicated at the points (0,±1) where the parabolic layers are “born” from
the exponential layer. (The unboundedness of the domain is unimportant.)

Numerical results for this problem can be found in [HHH00] (here the so-
called over-set grid technique is used) and [NH00], where an adaptive sparse-
grid technique is developed. ♣
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Finite Element Methods

Throughout most of Chapter 3, we consider the problem

Lu := −ε∆u+ b · ∇u+ cu = f in Ω, (3.1a)

u = 0 on Γ := ∂Ω, (3.1b)

where Ω is a bounded polygonal domain in R2. (In Section 3.3, R2 is replaced
by Rd with d ≥ 2.) Nevertheless many of the ideas below can be transferred
to problems posed in more than two space dimensions.

The weak formulation of problem (3.1) is:

Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω) one has a(u, v) = (f, v),

where the bilinear form a(·, ·) : H1
0 (Ω)×H1

0 (Ω) → R is defined by

a(v, w) := ε(∇v,∇w) + (b · ∇v + cv, w)

with (·, ·) the L2(Ω) inner product. As in the one-dimensional case (Sec-
tion I.2.2.1), choose a finite-dimensional space Vh ⊂ H1

0 (Ω) that comprises
continuous piecewise polynomial splines. Then the standard Galerkin finite
element method is

Find uh ∈ Vh such that for all vh ∈ Vh one has a(uh, vh) = (f, vh). (3.2)

We know already from Parts I and II that standard Galerkin finite ele-
ment methods usually yield inaccurate approximate solutions to convection-
diffusion problems. This disappointing behaviour occurs because such meth-
ods lose stability and cannot adequately approximate solutions inside layers.
Thus modified finite element methods whose performance is more satisfactory
will now be discussed.

To stabilize (3.2), the simplest technique is to add artificial viscosity
(AVIS) of magnitudeO(h) to the diffusion coefficient ε. In the one-dimensional
case, this modification is equivalent to an upwind discretization of the con-
vective term – recall (I.2.14). But in the multi-dimensional case, the term
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“upwinding” encompasses various stabilization techniques, not all of which
are equivalent to the addition of AVIS. Upwinding may produce excessive nu-
merical viscosity (NVIS) in the computed solution; Remark 2.2 discussed the
distinction between AVIS and NVIS.

The finite element spaces considered in Chapter 3 are based on an asso-
ciated family of triangulations Th of Ω that has to satisfy some conditions.
Let T denote any triangle (or convex quadrilateral) of Th. Then the diam-
eter of T is denoted by hT and the diameter of its largest inscribed circle
by ρT . Set h = maxT∈Th

hT . A family of triangulations Th is called shape-
regular if there is a positive constant C, independent of h and ε, such that
hT /ρT ≤ C for all T ∈ Th. It is always assumed here that the family of trian-
gulations is shape-regular unless we say otherwise. A shape-regular family of
triangulations Th is said to be quasi-uniform if there is a positive constant C ′,
independent of h and ε, such that C ′h ≤ hT for all T ∈ Th. The quasi-uniform
property is stronger than the shape-regular property; in particular, arbitrary
locally-refined meshes are not quasi-uniform. Regrettably, the precise meaning
of terms such as these varies in the research literature, so when reading any
work one must be careful to check the definitions of the terminology used.

Chapter 3 is organized as follows. Section 3.1 studies schemes that pre-
serve the inverse-monotonicity of the continuous problem. This is a desirable
attribute in many applications, but such schemes are restricted to first-order
accuracy. Then, in Section 3.2 we switch to higher-order methods, viz., the
streamline diffusion, Galerkin least squares and residual-free bubble finite
element methods. Here the addition of weighted residuals to the standard
Galerkin finite element method yields improved stability properties, despite
the absence of a discrete maximum principle. Stabilization methods based on
adding symmetric terms are studied in Section 3.3. The underlying concept of
stabilization by discontinuous Galerkin finite element methods will be inves-
tigated in Section 3.4. In general, the methods presented in Sections 3.1–3.4
are not ε-uniformly convergent – methods of that type are considered in Sec-
tion 3.5. Finally, adaptive finite element methods are examined in Section 3.6.

3.1 Inverse-Monotonicity-Preserving Methods Based on
Finite Volume Ideas

Consider first the case where the coefficients b and c of the operator L are
continuous with c(x) ≥ c0 ≥ 0. These hypotheses ensure L has the following
two properties, which are closely related to the classical comparison principle
of Theorem 1.4.

Let w ∈ C(Ω̄) ∩ C2(Ω). The operator L is said to be inverse-monotone if
the inequalities

Lw(x) ≥ 0 for all x ∈ Ω
w(x) ≥ 0 for all x ∈ Γ

}
imply w(x) ≥ 0 for all x ∈ Ω̄ . (3.3)
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We say that L satisfies a maximum principle if

Lu(x) = 0 for all x ∈ Ω implies that

min
x∈Γ

{u(x), 0} ≤ u(x) ≤ max
x∈Γ

{u(x), 0} for all x ∈ Ω̄ . (3.4)

Note that (3.4) is a direct consequence of (3.3). It has the following physical
interpretation: suppose that c = 0 and u denotes the density of a substance,
where no source of the substance is present – then the maximum principle
states that the greatest density occurs on the boundary Γ and the density
never takes negative values.

Finite element methods for which (3.4) fails may produce solutions that
take negative values. Consequently inverse-monotonicity-preserving methods
are particularly desirable in some applications.

When searching for a weak solution of the boundary value problem (3.1),
i.e., for u ∈ H1

0 (Ω), then the operator L must be interpreted in the weak sense
that L : H1

0 (Ω) → H−1(Ω). In this case, sufficient conditions for the inverse-
monotonicity of L follow from a weak maximum principle, see [GT83, Tro87].

Inverse-monotonicity of the discretized problem is often proved using the
M-criterion of Theorem I.2.7, which is now presented in a slightly different
form.

Theorem 3.1. Let A = (aij) be an N × N matrix with aij ≤ 0 for i �= j.
Then the following conditions are equivalent:

(i) A is an M-matrix;
(ii) A is inverse-monotone, i.e., Az ≥ 0 implies z ≥ 0;
(iii) there is a vector e ≥ 0 with Ae ≥ 0, and for each i ∈ {1, . . . , N} with

(Ae)i = 0, there is a chain i0 = i, i1, . . . , ik ∈ {1, . . . , N} such that
aiν−1iν

< 0 for ν = 1, . . . , k and (Ae)ik
> 0.

We begin with the case of pure diffusion (i.e., b and c identically zero), for
which the operator L := −∆ is inverse-monotone. Consider a finite element
space Vh of piecewise linear functions on triangles where Vh satisfies Dirichlet
homogeneous boundary conditions. Then at the inner meshpoints pk ∈ Ω,
where k = 1, . . . , N , the matrix A = (aij) has the form

aij = (∇ϕj ,∇ϕi) for i, j = 1, . . . , N,

where ϕi denotes the usual basis function satisfying ϕi(pj) = δij . Now aij �= 0
only when pi and pj belong to the same triangle T . Since ∇ϕi is constant on T
and has direction opposite to the outer normal on the side not containing pi,
it follows that the sign of aij , for i �= j, depends only on the angle between
the two sides that do not simultaneously contain pi and pj . More precisely,
for i �= j, one has aij < 0 if this angle is less than π/2, while aij = 0 if the
angle equals π/2. Moreover, we conclude that

aij = 0 for i �= j implies that aik < 0 and akj < 0, for i �= k, k �= j.
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Triangulations of the polygonal domain Ω are said to be weakly acute if
all angles of their triangles are less than or equal to π/2. We now examine
properties of the matrix A = (aij), with aij = (∇ϕj ,∇ϕi), for conforming
finite element methods that use piecewise linears on weakly acute meshes.

Let e = (1, . . . , 1) be an N -dimensional vector and pi an inner vertex of a
triangle that has no boundary node. Then

(Ae)i =

N∑

j=1

aij =

(
∇

N∑

j=1

ϕj ,∇ϕi

)
= 0,

because
∑N

j=1 ϕj = 1 on the support of ϕi. If instead pi is a vertex of a
boundary triangle, let pj , for j = N + 1, . . . , N +M , be the vertices at the
boundary that belong to the support of ϕi. Then

(Ae)i =

(
∇

N∑

j=1

ϕj ,∇ϕi

)
= −

(
∇

N+M∑

j=N+1

ϕj ,∇ϕi

)
= −

N+M∑

j=N+1

aij ≥ 0.

The final case is where T is a triangle with one inner vertex pi and two
boundary vertices. As T has at most one angle equal to π/2, we have (Ae)i > 0.
Thus the hypotheses of Theorem 3.1(iii) have been verified and we infer that
A is an M-matrix. This proves

Lemma 3.2. On meshes of weakly acute type, the discretization of −∆ by
piecewise linear functions preserves the inverse-monotonicity of the continu-
ous problem.

The above argument ensured the desired sign pattern in A by considering
the contribution of each triangle T ∈ Th. But for piecewise linear functions,
all elements that share the edge pipj contribute to aij = (∇ϕj ,∇ϕi). This ob-
servation permits the replacement of the hypothesis of weakly acute meshes in
Lemma 3.2 by the following less stringent condition from [XZ99] for simplicial
meshes in Rd with d ≥ 2:

for each T ∈ Th and all E ∈ Eh, one has the inequality

1

d(d− 1)

∑

E⊂T

|κE,T | cotΘE,T ≥ 0 . (3.5)

Here Eh is the set of all edges in the mesh; when the edge E joins the vertices
pi and pj , then Fi,T and Fj,T are the faces of T opposite the vertices pi

and pj respectively, |κE,T | is the (d− 2)-dimensional measure of the simplex
Fi,T ∩Fj,T opposite the edge E of T , and ΘE,T is the angle between the faces
Fi,T and Fj,T . In the two-dimensional case d = 2, this assumption means that
the sum of the two angles facing any edge in the mesh is less than π, which
implies that we have a Delaunay triangulation – these are characterized by
the condition that the circumcircle of each triangle T ∈ Th contains no vertex
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of any triangle other than T . It has been studied intensively in computational
geometry and fast algorithms for constructing a Delaunay triangulation using
a given set of vertices are known [Pac93].

The condition (3.5) on the mesh in Rd is necessary and sufficient [XZ99,
Lemma 2.1] for the M-matrix property in the discretization of −∆ by linear
finite elements. For the three-dimensional case see also [KKN00].

It is important to note that in the case of a discretization of −∆ by piece-
wise quadratic elements, inverse-monotonicity can be proved only in special
geometric situations [HM81]. Consequently it is natural in Section 3.1 to re-
strict our analysis to piecewise linear elements and to shun the construction
of inverse-monotonicity preserving methods for higher-order elements.

Consider now the more general case where c(x) ≥ 0. If c(x) = 1, then
when ϕi and ϕj have overlapping supports, clearly

(c ϕj , ϕi) > 0 for i �= j.

This produces positive off-diagonal matrix entries in the corresponding matrix,
which therefore is not an M-matrix. Nevertheless, there is a simple remedy: if
one calculates each term (c ϕj , ϕi) approximately by means of a quadrature
rule such as ∫

T

Φ(x) dx ∼ |T |
3

[
Φ(pi) + Φ(pj) + Φ(pk)

]
,

where |T | denotes the measure of T ; this will contribute positive entries only
on the main diagonal of A, which will now be an M-matrix. This quadrature
rule also maintains the order of convergence of the method.

The right-hand side f can be handled in the same way. In particular, the
approximation (f, ϕi) ∼ (f(pi)/3)

∑
T∩pi �=∅ |T | is non-negative if f ≥ 0. In

some cases this quadrature rule resembles is like the lumping technique that
is often applied to the mass matrix in parabolic problems.

The construction of inverse-monotonicity-preserving discretizations of the
convective term in (3.1) is much more complicated; various techniques have
been developed in the literature. We shall study certain modifications of the
standard Galerkin finite element method whose corresponding discrete oper-
ators are inverse-monotone.

Consider a triangulation Th of Ω of weakly acute type. (We should more
properly deal with a family of such triangulations, indexed by a parameter h,
but for simplicity here and below we work with a single such triangulation.)
Triangle vertices that do not lie on the boundary Γ are denoted by pi, for
i = 1, . . . , N . Approximate the solution space V by the standard piecewise
linear space

Vh := {v ∈ C(Ω̄) : vh

∣∣
T
∈ P1(T ) for all T ∈ Th, vh

∣∣
Γ

= 0 } .

Let ϕi ∈ Vh be the canonical basis function that satisfies ϕi(pj) = δij , so
Vh = span{ϕ1, . . . , ϕN}.

The discrete problem now reads:
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Find uh ∈ Vh such that for all vh ∈ Vh one has

ε(∇uh,∇vh) + bh(uh, vh) + ch(uh, vh) = fh(vh), (3.6)

where bh(·, ·), ch(·, ·) and fh(·) are approximations of the continuous bilinear
forms (b · ∇·, ·), (c ·, ·) and the linear form (f, ·). As was mentioned earlier, ch
and fh are computed by applying the quadrature rule

∫

T

Φ(x) dx ∼ |T |
3

[Φ(pi) + Φ(pj) + Φ(pk)] ,

where pi, pj and pk are the vertices of T . More precisely,

(c uh, ϕi) =
∑

T

∫

T

c(x)uh(x)ϕi(x) dx ∼
∑

T∩pi �=∅

|T |
3
c(pi)uh(pi),

thus set

ch(uh, ϕi) :=
1

3
c(pi)uh(pi)

∑

T∩pi �=∅
|T | , (3.7a)

fh(ϕi) :=
1

3
f(pi)

∑

T∩pi �=∅
|T | . (3.7b)

Now we come to the discretization of the convective term. Define the di-
rectional derivative ∂(·)/∂b by

|b| ∂uh

∂b
= b · ∇uh,

then apply the same integration rule; this gives

(b · ∇uh, ϕi) ∼
1

3
|b(pi)|

∂uh

∂b
(pi)

∑

T∩pi �=∅
|T |,

so now one need only approximate the directional derivative at pi.
The first idea for this is due to Tabata [Tab77], who proposes to set

|b(pi)|
∂uh

∂b
(pi) ∼ b(pi) · ∇uh

∣∣
Ti
,

where Ti denotes an upwind triangle. For the vertex pi, a triangle Ti is called
upwind with respect to b (see Figure 3.1) if

(i) pi is a vertex of Ti,
(ii) the vector −b(pi) points from pi into Ti.

Observe here that if b(pi) = 0 it is not necessary to define an upwind tri-
angle and in all other cases at least one upwind triangle Ti exists. Thus the
discretization of the convective term is given explicitly by

bh(uh, ϕi) :=
1

3
b(pi) · ∇uh

∣∣
Ti

∑

T∩pi �=∅
|T |. (3.8)
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Ti

−b(pi)

pi

Fig. 3.1. Upwind triangle Ti associated with pi

Example 3.3. Consider the upwind triangle method in the case b(x) ≡ (1, 0),
c(x) ≡ 0 where we use a uniform square mesh of Friedrichs-Keller type as
shown in Figure 3.2. Denote the distance between adjacent nodes by h. In
this example each meshpoint pij has two upwind triangles Tij and T ∗

ij but

b · ∇uh

∣∣
Tij

= b · ∇uh

∣∣
T∗

ij

.

Write uij := uh(pij) for the discrete solution at the meshpoints. After scaling
one gets the difference scheme

− ε

h2
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij) +

1

h
(uij − ui−1,j) = f(pij),

for i, j = 1, . . . , N . In this case the upwind triangle method coincides with the
simple upwind scheme (2.3a) on setting hi = hi+1 = kj = kj+1 = h, b1 = 1,
and b2 = c = 0. ♣

pij pi+1,jpi−1,j

pi,j+1

pi,j−1

Fig. 3.2. Triangulation of Friedrichs-Keller type

To investigate the properties of the discrete problem (3.6)–(3.8), consider
the matrix Lh = (lij) of the scheme, which is defined by
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lij := ε(∇ϕj ,∇ϕi) + bh(ϕj , ϕi) + ch(ϕj , ϕi) for i, j = 1, . . . , N.

Theorem 3.4. Assume that the coefficients b and c and the right-hand side f
of (3.1) are sufficiently smooth, with c(x) ≥ 0. Let Th be a triangulation of
weakly acute type. Then the discrete problem (3.6)–(3.8) preserves the inverse-
monotonicity property of L, i.e., Lh is inverse-monotone.

For the proof of Theorem 3.4 and further properties of the upwind triangle
method see [Ike83, Tab77].

Remark 3.5. Bristeau et al. [BGP79] proposed a modification of the upwind
triangle method that improves the approximation of the directional derivative
and can be applied to arbitrary functions b for which |b| �= 0 on weakly acute
meshes. In this method the directional derivative is approximated using two
points that are upwind of pi with respect to the flow direction. A detailed study
of the properties of the scheme including numerical experiments is given in
[Kra87, KR92].

An extension of the Bristeau et al. scheme to a formally third-order scheme
is proposed in [TF91], where an improved approximation of the directional
derivative at pi is sought by using two upwind points and two downwind
points. ♣

We will now concentrate on methods that use some ideas from the finite
volume method to discretize the convection term and combine them with
the finite element approximation of the diffusion term. Thus these methods
are sometimes called combined finite volume-finite element methods. This
approach has been extended to nonstationary nonlinear convection-diffusion
and compressible flow problems in [FFLM95, FFLM97, FSS99].

Example 3.3 showed that under certain circumstances the triangle up-
wind method is equivalent to the simple upwind difference scheme, which in
one dimension (see Section I.2.1.2) smears the boundary layer and so has
excessive numerical viscosity. Can we construct methods that preserve the
inverse-monotonicity of the continuous problem but have acceptable NVIS?

As above we use piecewise linear functions. For weakly acute meshes the
discretization of −∆ is an M-matrix. Terms of the form cu − f are handled
either by a quadrature rule or by the lumping technique described below.
The main emphasis in the following discussion is the discretization of the
convective term b ·∇u, which will be carried out in a finite volume framework.

Start from a weakly acute triangulation of the polygonal bounded do-
main Ω. A secondary grid is another partition of Ω that is derived from the
original triangulation. It takes two main forms: barycentric and circumcentric.

Let pi, for i = 1, . . . , N +M , be the vertices of our triangulation, where
p1, . . . , pN are in the interior of Ω while the remaining pi lie on Γ . A dual
domain Di of the secondary grid is associated with each pi. This region Di is
defined in the barycentric case by
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pipi

pjpj

DiDi

Γij

Γij

Fig. 3.3. Barycentric and circumcentric dual domains

Di :=
⋃

T∩pi �=∅
{ p ∈ T : λT

i (p) ≥ λT
j (p) for all j with pj ∈ T }

and in the circumcentric case by

Di :=
⋃

T∩pi �=∅
{ p ∈ T : |pip| ≤ |pjp| for all vertices pj ∈ T },

where λT
i (p) is the barycentric coordinate of the point p with respect to T and

| · | is the length of a line segment; see Figure 3.3. The boundary ∂Di of Di is
polygonal in both cases. For i = N+1, . . . , N+M , some of ∂Di lies on Γ . For
i = 1, . . . , N , let Γij denote the face(s) of ∂Di that meet the line segment pipj .
In the barycentric case, Γij comprises those parts of the medians of the two
triangles that intersect the interior of pipj . In the circumcentric case, Γij lies
on the perpendicular bisector of pipj .

For later use, introduce the index set

Λi := { j �= i : ∃T with pi, pj ∈ T }

for i = 1, . . . , N +M . Let χi be the characteristic function of the dual do-
main Di. Define the lumping operator lh by

lhw :=

N+M∑

i=1

w(pi)χi.

We seek an approximation of the solution of (3.6) in the discrete space Vh of
piecewise linears. To approximate the convective term, start from the identity

(b · ∇u, v) = (div (bu), v)− (div b, uv).

Applying the lumping operator and Green’s formula, one obtains

(b · ∇u, v) ≈ (div (bu), lhv)− (div b, lh(uv))

=

N+M∑

i=1

∑

j∈Λi

v(pi)

∫

Γij

[
u− u(pi)

]
b · nij dγ,
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where nij denotes the unit normal to Γij that points out of Di. With upwind-
ing in mind, replace u on Γij by a linear combination of function values at
the neighbouring nodes pi and pj :

u ≈ λij u(pi) + (1− λij)u(pj) on Γij .

The parameter λij ∈ [0, 1] controls the amount of upwinding; some guidance
in its choice will be given below. The new discretization of the convective term
is now

bh(uh, vh) =

N+M∑

i=1

∑

j∈Λi

βij (1− λij)
[
uh(pj)− uh(pi)

]
vh(pi),

for all uh, vh ∈ Vh, where βij is some approximation of the flux
∫

Γij

b · nij dγ

across Γij . Assume that for βij one has

(A1) |
∫

Γij
b · nij dγ − βij | ≤ C h3,

(A2) βij + βji = 0 if Γij ∩ Γ = ∅ .
Both (A1) and (A2) are satisfied if one uses the mid-point rule

∫

Γij

b · nij dγ ∼ |Γij | b(qij) · nij =: βij ,

where qij := (pi + pj)/2 is the mid-point of the line segment pipj .
One simple choice of λij is motivated by the sign of the approximated

flux βij through Γij : set λij = 1 if βij > 0, and λij = 0 if βij < 0. In
practice the parameter λij is often chosen as a function of the mesh Peclet
number βij/(2ε). We shall study the properties of the scheme obtained when
λij is determined by

λij = Φ

(
βij

2ε

)
,

where Φ(·) is a general weighting function. Let us assume that:

(B1) Φ(t) = 1− Φ(−t) ∀ t > 0 and 0 ≤ Φ(t) ≤ 1 ∀ t ∈ R;

(B2) t
[
Φ(t)− 1

2

]
≥ 0 ∀ t ∈ R;

(B3) Ψ(t) := t Φ(t) is Lipschitz continuous on R.

Some candidates for Φ(·) that satisfy the assumptions (B1)–(B3) and have
been used in practical computations are

Φ1(t) =

{
1 if t ≥ 0,
0 if t < 0,

and Φ2(t) =

{
(1 + 2t)/(2 + 2t) if t ≥ 0,

1/(2− 2t) if t < 0.

In fact this Φ1 generates the choice of λ described at the beginning of the para-
graph. In the present context, Φ1 is called simple upwinding and Φ2 Samarskĭı
upwinding (cf. Section I.2.1.2).
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Example 3.6. Consider a uniform triangulation of Friedrichs-Keller type as in
Figure 3.2, with a circumcentric secondary grid. Assume that b(x) ≡ (1, 0)
and c(x) ≡ 0. Let h denote the distance between adjacent nodes. Writing
uij := uh(pij) for the discrete solution at the meshpoints, after scaling one
gets the difference scheme

− ε

h2
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij)

+ α
uij − ui−1,j

h
+ (1− α)

ui+1,j − uij

h
= f(pij),

for i, j = 1, . . . , N , where α := Φ(h/(2ε)). For simple upwinding one has
α = 1, which yields the simple upwind scheme (2.3a). Samarskĭı upwinding,
on the other hand, has

α =
1

2

(
1 +

q

1 + q

)
where q =

h

2ε
,

which approaches the central difference scheme as h/ε tends to zero and the
simple upwind scheme as ε/h tends to zero. Compared with the upwind tri-
angle method, it is apparent that this secondary grid method provides more
flexibility in controlling the amount of upwinding and numerical viscosity. ♣

The reaction term cu and the right-hand side f of (3.1) are discretized via
the following lumping procedure:

(c uh, vh) ≈ (lh(c uh), lhvh) =

N+M∑

i=1

|Di| c(pi)uh(pi)vh(pi),

(f, vh) ≈ (lhf, lhvh) =
N+M∑

i=1

|Di| f(pi)vh(pi).

In the case of a barycentric secondary grid, one has

|Di| =
1

3

∑

T∩pi �=∅
|T |,

so lumping can also be viewed as a simple quadrature rule.
The discrete problem can now be formulated:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ah(uh, vh) = fh(vh), (3.9a)

where
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ah(uh, vh) := ε(∇uh,∇vh) + bh(uh, vh) + ch(uh, vh), (3.9b)

bh(uh, vh) :=

N+M∑

i=1

∑

j∈Λi

βij

(
1− Φ

(
βij

2ε

))
[uh(pj)− uh(pi)] vh(pi), (3.9c)

ch(uh, vh) :=

N+M∑

i=1

|Di| c(pi)uh(pi)vh(pi), (3.9d)

fh(vh) :=
N+M∑

i=1

|Di| f(pi)vh(pi). (3.9e)

In the case of simple upwinding, the following result is valid:

Theorem 3.7. Assume that the coefficients b and c and the right-hand side f
of (3.1) are sufficiently smooth, and that c(x) ≥ 0. Let Th be a weakly acute
triangulation. Let the weighting function be Φ(t) := 1/2 (1 + sgn t). Fur-
thermore, assume that the approximation of the flux satisfies (A1) and (A2).
Then the discrete problem (3.9) preserves the inverse-monotonicity property,
i.e., the matrix Lh of the associated difference scheme is inverse-monotone.

Proof. Consider the convective term. For i �= j and tij := βij/(2ε),

bh(ϕj , ϕi) = βij(1− Φ(tij)) = 2ε tij(1− Φ(tij)) ≤ 0.

Hence the off-diagonal entries of Lh are non-positive. Choosing e = (1, . . . , 1),
one can verify condition (iii) of Theorem 3.1. ⊓⊔

Corollary 3.8. Assume the hypotheses of Theorem 3.7, and that one has a
majorizing element eh ∈ Vh that satisfies Lheh ≥ (e0, e0, . . . , e0) > 0 and
‖eh‖∞,d ≤ emax with constants e0 and emax that are independent of h and ε.
Then the discrete problem (3.9) is L∞ stable uniformly with respect to ε, i.e.,

‖vh‖∞,d ≤
emax

e0
‖Lhvh‖∞,d ∀ vh ∈ Vh.

We now discuss error estimates for the method (3.9), using general weight-
ing functions Φ, in the ε-weighted H1 norm

‖vh‖ε :=
(
ε|vh|21 + ‖vh‖20

)1/2
,

a one-dimensional analogue of which was used in Section I.2.2.2. Our results
are based on the Vh-ellipticity of the bilinear form ah(·, ·), which preserves the
ellipticity of the continuous problem.

Lemma 3.9. Suppose that the coefficients b, c and f of (3.1) are sufficiently
smooth and that c − 1

2∇ · b ≥ c0 > 0. Let the assumptions (A1), (A2), (B1)
and (B2) be satisfied. Then there is a positive constant h0, independent of ε,
such that for all h < h0 one has
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ah(vh, vh) ≥ ε|vh|21 +
c0
2
‖vh‖20 ∀vh ∈ Vh; (3.10)

that is, ah(·, ·) is Vh-elliptic with respect to ‖ · ‖ε.

Proof. Now
ah(vh, vh) = ε|vh|21 + bh(vh, vh) + ch(vh, vh).

In bh(vh, vh) the summation index i runs only from 1 to N since vh(pi) = 0
for i = N +1, . . . , N +M . Writing the convective term in two ways and using
(B2) and (B1) yields, with λij = Φ(βij/(2ε)),

bh(vh, vh) =
1

2

N∑

i=1

∑

j∈Λi

βij(1− λij)[vh(pj)− vh(pi)]vh(pi)

+
1

2

N∑

i=1

∑

j∈Λi

βji(1− λji)[vh(pi)− vh(pj)]vh(pj)

=
1

2

N∑

i=1

∑

j∈Λi

βij [vh(pj)− vh(pi)][(1− λij)vh(pi) + λijvh(pj)]

=
1

2

N∑

i=1

∑

j∈Λi

βij

(
λij −

1

2

)
[vh(pj)− vh(pi)]

2

− 1

2

N∑

i=1

∑

j∈Λi

βij [vh(pi)]
2

≥ −1

2

N∑

i=1

∑

j∈Λi

βij [vh(pi)]
2 .

Recall assumption (A1) and note that

∑

j∈Λi

∫

Γij

b · nij ds =

∫

∂Di

b · ni ds =

∫

Di

div b dx.

We therefore obtain
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bh(vh, vh) + ch(vh, vh) ≥
N∑

i=1

[vh(pi)]
2

∫

Di

(
c− 1

2
div b

)
dx

+
N∑

i=1

[vh(pi)]
2

∫

Di

(c(pi)− c) dx

+
1

2

N∑

i=1

[vh(pi)]
2
∑

j∈Λi

( ∫

Γij

b · nij ds− βij

)

≥ c0
N∑

i=1

|Di| [vh(pi)]
2 −O(h3)

N∑

i=1

[vh(pi)]
2

≥ c0
2
‖vh‖20,

since the discrete norm
( N∑

i=1

|Di| [vh(pi)]
2
)1/2

and the continuous L2 norm

‖vh‖0 are equivalent on Vh. ⊓⊔

Lemma 3.9 implies existence of a unique solution to (3.9). An error esti-
mate in ‖·‖ε for this solution can now be proved. While doing this we consider
also triangulations of Ω by three-directional meshes. Such meshes have the
following properties:

(i) each element side is parallel to one of three fixed directions;
(ii) each inner node is surrounded by six triangles;
(iii) each inner node has six neighbouring nodes – two in each of the

three fixed directions.

An example of a three-directional mesh is a triangulation of Friedrichs-
Keller type (see Figure 3.2).

Theorem 3.10. Suppose that b, c and f in (3.1) are sufficiently smooth and
that c− 1

2∇ · b ≥ c0 > 0. Assume that (A1), (A2), (B1), (B2) and (B3) hold
true and that u ∈ H2(Ω), where u is the solution of (3.1). Let uh be the
solution of (3.9). Then for all h < h0, with h0 independent of ε,

‖u− uh‖ε ≤ C
h√
ε

(‖u‖2 + ‖f‖1,p) (3.11a)

for p > 2. This error estimate can be strengthened to

‖u− uh‖ε ≤ C h (‖u‖2 + ‖f‖1,p) (3.11b)

if Ω is triangulated by a three-directional mesh.

Proof. The proof, many of whose details we omit, is based on the following
modification of Strang’s first lemma (see [Cia02]):
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‖u− uh‖ε ≤ C

{
inf

vh∈Vh

[
‖u− vh‖1 + sup

wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖ε

]

+ sup
wh∈Vh

|(f, wh)− fh(wh)|
‖wh‖ε

}
.

Let us explain how the presence of a three-directional mesh improves the
result. The assumption f ∈W 1,p(Ω), p > 2, guarantees that f is continuous;
hence lhf is well-defined. Furthermore, the approximation property

‖f − lhf‖0,p ≤ Ch‖f‖1,p ∀f ∈ W 1,p(Ω)

holds true for the lumping operator lh. In the case of a general mesh, defining
q by 1/p + 1/q = 1, one can invoke the standard argument

|(f, wh)− fh(wh)| = |(f, wh − lhwh) + (f − lhf, lhwh)|
≤ C h (‖f‖0 |wh|1 + ‖f‖1,p ‖lhwh‖0,q)

≤ C
h√
ε
‖f‖1,p ‖wh‖ε ,

where one uses ‖f‖0,2 ≤ C‖f‖0,p, the stability result ‖lhwh‖0,q ≤ C‖wh‖0,q,
and ‖wh‖0,q ≤ ‖wh‖0,2. This last inequality follows from the equivalence of
the norms ŵ �→ ‖ŵ‖0,q,T̂ and ŵ �→ ‖ŵ‖0,2,T̂ in the finite-dimensional space

on the reference cell T̂ , scaling properties and summing over all cells T ∈ Th.
But for a three-directional mesh, it can be shown that

(vh, lhwh) = (lhvh, wh) ∀vh, wh ∈ Vh.

Consequently, writing Ih for the piecewise linear nodal interpolation operator,
one has

|(f, wh)− fh(wh)| = |(f − Ihf, wh − lhwh) + (Ihf, wh − lhwh)

+ (f − lhf, lhwh)|
= |(f − Ihf, wh − lhwh) + (Ihf − lhIhf, wh)

+ (f − lhf, lhwh)|
≤ Ch (‖f‖1,p ‖wh‖0,q + ‖Ihf‖1,p ‖wh‖0,q

+ ‖f‖1,p ‖lhwh‖0,q )

≤ Ch‖f‖1,p ‖wh‖ε.

The consistency error of the bilinear form clearly satisfies

|a(vh, wh)−ah(vh, wh)|
≤ |(b · ∇vh, wh)− bh(vh, wh)|+ |(c vh, wh)− ch(vh, wh)|.

The last term can be handled in the same way as f above. The estimate
of the convective term is very technical and is not presented here. For the
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simple upwind method, i.e., for the weighting function Φ(t) = (1 + sgn t)/2,
Risch [Ris86] proves

|(b · ∇Ihu,wh)− bh(Ihu,wh)| ≤ C h ‖u‖2 ‖wh‖1

on general meshes, and in the case of a three-directional mesh the bound

|(b · ∇Ihu,wh)− bh(Ihu,wh)| ≤ C h ‖u‖2 ‖wh‖0

is derived. ⊓⊔

Remark 3.11. For the standard Galerkin finite element method with piecewise
linears, one can easily prove the energy norm estimate

‖u− uh‖ε ≤ C h ‖u‖2

on shape-regular meshes, but this method is only L2 stable as ε → 0. The
method of Corollary 3.8 is L∞ stable on fairly general meshes under rea-
sonable assumptions, but (3.11a) is inferior to the bound just stated for the
standard Galerkin method. Is the standard Galerkin method more accurate?
No; numerical computations show that for ε ≪ h it has a wildly oscillatory
solution that is clearly unsatisfactory. ♣

Remark 3.12. The estimates (3.11) seem useless because in general ‖u‖2 is
large when ε is small, but Risch [Ris86] has obtained analogous estimates on
subdomains Ω′ ⊂ Ω by means of special cut-off functions. (This technique
was first applied to convection-diffusion problems in [Näv82], to analyse the
streamline diffusion method.) More precisely, Risch proves the local error es-
timates

‖u− uh‖ε,Ω′ ≤ C h√
ε

(
‖u‖2,Ω′′ + ‖f‖1,p,Ω′′

)
(3.12a)

with p > 2 on a general mesh, and

‖u− uh‖ε,Ω′ ≤ C h
(
‖u‖2,Ω′′ + ‖f‖1,p,Ω′′

)
(3.12b)

if Ω′′ is triangulated by a three-directional mesh. The subdomains Ω′′ and Ω′,
with Ω′ ⊂ Ω′′ ⊂ Ω, should be chosen so that Ω′′ intersects no layer of the
solution u. In this way one gets a ε-uniform local convergence result (cf. The-
orem 3.41, which is a similar result for the streamline diffusion method). ♣

Next we examine local estimates in the L∞ norm that can be applied on
subdomains Ω′ ⊂ Ω′′ ⊂ Ω, where one should choose Ω′′ to avoid layers in the
solution u.

Theorem 3.13. Suppose that b, c and f in (3.1) are sufficiently smooth and
that c − 1

2∇ · b ≥ c0 > 0. Assume that the solution u of (3.1) belongs to
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H1
0 (Ω) ∩ W 2,p(Ω) for some p > 2. Let the triangulation of Ω be weakly

acute. Assume that (A1) and (A2) hold true and that the weighting func-
tion is Φ(t) = (1 + sgn t)/2. Let uh be the solution of (3.9). Then for h < h0,
with h0 independent of ε, one has the local error estimate

‖u− uh‖0,∞,Ω′ ≤ C hκ(p)| lnh|√
ε

‖u‖2,p,Ω′′ , (3.13a)

where 1/2 < κ(p) < 1 and lim
p→∞

κ(p) = 1. This estimate can be strengthened

to

‖u− uh‖0,∞,Ω′ ≤ C hκ(p)| lnh| ‖u‖2,p,Ω′′ (3.13b)

if Ω′′ is triangulated by a three-directional mesh.

The proof of this theorem in [Ris86, Ris90] employs cut-off functions Ψ ,
a variant of Vh-ellipticity in a Ψ -weighted energy norm, and the M-matrix
property of the discrete problem. The technique of [Näv82] cannot be applied
directly to secondary grid methods because they lack Galerkin orthogonality.
Risch’s proof exploits the inverse-monotonicity of the discrete problem and is
suited only to monotonicity-preserving discretizations.

Remark 3.14. The local error estimates (3.12) and (3.13) are very useful if the
domain Ω′′ does not include interior or boundary layers. As we know from
Section 1.3, the position of layers in the solution u of (3.1) depends on the
data of the problem. A typical situation is the case when b = (b1, 0) with
b1 > 0, f is smooth and Ω is the unit square: one then has boundary layers
along the sides x = 1, y = 0 and y = 1 of Ω (see Section 1.2). In the local
error estimates (3.12), (3.13), when ε and h are small, it is therefore sensible
to choose Ω′ = (0, 1−σ′)× (δ′, 1− δ′) and Ω′′ = (0, 1−σ′′)× (δ′′, 1− δ′′) with
0 < σ′′ < σ′ << 1 and 0 < δ′′ < δ′ << 1. More general situations are studied
in [Ris86, Ris90]. ♣

In deriving the secondary grid method (3.9), the convective term was dis-
cretized using essentially a finite volume technique, while the diffusion term
was handled in a purely finite element manner. Also, if ε = 0 and c = 0, then
the non-positivity of the off-diagonal entries of the corresponding matrix is
ensured only if the weighting function is Φ(t) = 1/2 (1 + sgn t). Furthermore,
for ε > 0 the diffusion term can yield negative off-diagonal entries. Taking
these facts into consideration, it seems worthwhile to look for discretizations
that treat

−ε∆u+ b · ∇u
as a single term, unlike our previous approach.

With this aim in mind, for convenience rewrite (3.1) in the form

div (−ε∇u+ bu) + (c− div b) u = f in Ω, u = 0 on Γ. (3.14)
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Let the triangulation of Ω be weakly acute. Construct a secondary grid
of circumcentric type as before. We retain our old notation: the inner nodes
are pi for i = 1, . . . , N , the dual domain around each inner node pi is Di, the
index set of neighbour nodes of pi is Λi, while Γij denotes the face of ∂Di that
meets the line segment pipj and nij is the unit normal to Γij that points out
of Di. Let mi denote the area of Di, dij the length of the line segment pipj ,
and mij the length of Γij .

Integrating (3.14) over Di and applying Green’s formula yields

−
∑

j∈Λi

∫

Γij

nij · (ε∇u− bu) ds+

∫

Di

(c−∇ · b)u dx =

∫

Di

f dx. (3.15)

To simplify the notation, set

Nij =
1

mij

∫

Γij

(nij · b) ds, ci =
1

mi

∫

Di

c dx, fi =
1

mi

∫

Di

f dx.

Apply the lumping operator lh to the second term in (3.15):

∫

Di

(c−∇ · b)u dx ≈
∫

Di

(c−∇ · b) (lhu) dx

= cimiu(pi)−
∑

j∈Λi

Nijmiju(pi).

The term

−
∑

j∈Λi

∫

Γij

nij · (ε∇u− bu) ds. (3.16)

must still be approximated. This can be done by replacing the integrand by
a constant, i.e.,

−nij · (ε∇u− bu) ≈ Sij .

To define this Sij , we consider the following boundary value problem on the
line segment between pi and pj :

− ε

dij

dw

dξ
+Nijw = Sij , w(0) = u(pi), w(1) = u(pj),

where w = w(ξ) for 0 ≤ ξ ≤ 1. This yields

Sij = Nij
u(pi) exp(Nijdij/ε)− u(pj)

exp(Nijdij/ε)− 1
,

and the integral in (3.16) is replaced by Sijmij .
Assembling these approximations gives finally the system of discrete equa-

tions
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∑

j∈Λi

εmij

dij
B

(
Nijdij

ε

)(
ui − uj

)
+ cimiui = fimi (3.17)

for i = 1, . . . , N, where B(·) denotes the Bernoulli function defined by

B(t) =

⎧
⎨
⎩

t

exp t− 1
for t �= 0,

1 for t = 0.

and uk = u(pk) for all k. This scheme was studied by Angermann in several
papers[Ang91b, Ang93, Ang95b], with a more general control function

B̃(t) = 1− t[1− r(t)], (3.18)

under the assumptions that

(C1) r(t) is monotone for all t ∈ R,

(C2) lim
t→−∞

r(t) = 0, lim
t→+∞

r(t) = 1,

(C3) 1 + r(t)t ≥ 0 for all t ∈ R,

(C4) [1− r(t)− r(−t)]t = 0 for all t ∈ R,

(C5) [r(t)− 1/2]t ≥ 0 for all t ∈ R,

(C6) the mapping t �→ t r(t) is Lipschitz continuous on R.

In particular the choice

r(t) = 1− 1

t

(
1− t

exp t− 1

)

satisfies assumptions (C1)–(C6) and B̃ is then the Bernoulli function B.

Remark 3.15. The scheme (3.17)–(3.18) resembles the scheme (3.9), but the
control functions Φ(·) and r(·) depend on different mesh Peclet numbers,
namely

Nijmij

2ε
and

Nijdij

ε

respectively. In the case of a uniform mesh of Friedrichs-Keller type with
meshsize h, one has mij = dij = h, and if Φ(t) = r(2t) then the schemes are
identical. The averaged finite element scheme developed by Xu and Zikatanov
[XZ99] for any space dimension d is also closely related to (3.17)–(3.18); these
schemes are identical for d = 2 and constant functions b. ♣

We state the analogue of Theorem 3.10 for the present scheme.

Theorem 3.16. Suppose that b, c and f in (3.14) are sufficiently smooth and
that c− 1

2∇ · b ≥ c0 > 0. Let Th be a weakly acute triangulation. Let uh be the
solution of (3.17)–(3.18), and assume that the control function r(·) satisfies
(C1)–(C6). Then for h < h0, with h0 independent of ε, the discrete problem
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(3.17)–(3.18) is inverse-monotone. If u ∈ H2(Ω), where u is the solution of
(3.14), then

‖u− uh‖ε ≤ C
h√
ε

(‖u‖2 + ‖f‖1,p) (3.19a)

for p > 2. This error estimate can be strengthened to

‖u− uh‖ε ≤ C h (‖u‖2 + ‖f‖1,p) (3.19b)

if Ω is triangulated by a three-directional mesh.

Proof. See [Ang95b]. ⊓⊔

Remark 3.17. Angermann [Ang95b] asks the interesting question: can one
choose the control function r(·) for an arbitrary mesh in such a way that
the factor 1/

√
ε can be removed from the error bound (3.19a)? While this

would not give an ε-uniformly convergent method, it would nevertheless be
helpful in the context of adaptive methods (see Section 3.6). Unfortunately,
on general meshes the answer to this question is negative. ♣

Remark 3.18. Angermann [Ang95c] and Johannsen [Joh96] consider finite vol-
ume schemes where the control volumes (dual domains) are aligned with the
piecewise constant approximation of the convection field b, i.e., the edges of the
control volumes are parallel or perpendicular to the convection field. Though
no complete theoretical analysis is available, numerical experiments show the
effectiveness of this finite volume variant. ♣

Finally, we discuss two extensions to nonconforming methods, i.e., meth-
ods where Vh �⊂ V := H1

0 (Ω). Nonconforming finite element methods are very
useful when solving the incompressible Navier-Stokes equations (see Chap-
ter IV.2). Here only piecewise linear basis functions are examined.

First, consider a method closely related to (3.9). Start from a weakly acute
triangulation. Denote by Bi, for i = 1, . . . , N , all mid-points of inner edges
of triangles T of the triangulation and by Bi, for i = N + 1, . . . , N + M ,
the mid-points of edges lying on the boundary Γ of Ω. We introduce the
nonconforming finite element space

Vh := { vh : vh

∣∣
T
∈ P1(T )∀T, vh continuous at Bi for i = 1, . . . , N,

vh(Bi) = 0, for i = N + 1, . . . , N +M }

In general Vh �⊂ C(Ω), so our discretization will be nonconforming. Conse-
quently (∇uh,∇vh) is not defined and is replaced by (∇uh,∇vh)h, where the
inner products are computed element by element. With each inner node Bi, for
i = 1, . . . , N , is associated a dual domainDi of the secondary grid, as shown in
Figure 3.4. We complete our secondary grid by analogously defining dual do-
mains Di that correspond to the boundary nodes Bi for i = N+1, . . . , N+M .
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Let Γij denote the segment of ∂Di that intersects the line segment BiBj . For
each i, set

Λi := {j �= i : ∃T with Bi, Bj ∈ T}.
Unlike the earlier conforming case, Λi contains at most four indices irrespective
of the triangulation.

Bi

Bi

Bj

Bj

Di

Di
Γij

Γij

Fig. 3.4. Dual domains Di associated with an inner (left) and boundary (right)
node Bi for the nonconforming element

Define a lumping operator lh by

lhw :=

N+M∑

i=1

w(Bi)χi,

where χi is the characteristic function of the dual domain Di. Then, retrac-
ing our steps in the derivation of the scheme (3.9), we arrive at the discrete
problem:

Find uh ∈ Vh such that, for all vh ∈ Vh,

ah(uh, vh) = fh(vh), (3.20a)

where

ah(uh, vh) := ε(∇uh,∇vh)h + bh(uh, vh) + ch(uh, vh), (3.20b)

bh(uh, vh) :=

N+M∑

i=1

∑

j∈Λi

βij

(
1− Φ

(
βij

2ε

))
[uh(Bj)− uh(Bi)] vh(Bi), (3.20c)

ch(uh, vh) :=

N+M∑

i=1

|Di| c(Bi)uh(Bi)vh(Bi) , (3.20d)

fh(vh) :=

N+M∑

i=1

|Di| f(Bi)vh(Bi). (3.20e)
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Theorem 3.19. Assume that the coefficients b and c and the right-hand side
f of (3.1) are sufficiently smooth, and that c(x) ≥ 0. Let Th be a weakly acute
triangulation. Let the weighting function be Φ(t) := (1+sgn t)/2. Furthermore,
assume that the approximation of the flux satisfies (A1) and (A2). Then the
discrete problem (3.20) preserves the inverse-monotonicity property, i.e., the
matrix Lh of the associated difference scheme is inverse-monotone.

Proof. The proof is similar to that of Theorem 3.10. See also [OU84]. ⊓⊔

Remark 3.20. Error estimates similar to (3.11) are also true in the noncon-
forming case, as one might expect. In particular on three-directional meshes
the factor 1/

√
ε can be removed by using the property

(vh, lhwh) = (lhvh, wh)

as described in the proof of Theorem 3.10. ♣

The last method that we describe in this section is the nonconforming
finite element method of [MW94]. The problem (3.1) is rewritten as

−div (ε∇u− bu) + du = f in Ω, u = 0 on Γ. (3.21)

Assume that the functions b, d and f are sufficiently smooth and that

b21 + b22 �= 0, d+
1

2
∇ · b ≥ 0 and d ≥ 0 on Ω̄. (3.22)

Begin again with a triangulation of Ω such that, for every triangle T ,
the circumcircle of T contains no vertices other than vertices of T itself. As
mentioned earlier such a triangulation is called a Delaunay triangulation and
ensures that the discretization of −∆ by piecewise linear elements yields an
M-matrix.

Our usual notation is used. With each inner vertex pi, for i = 1, . . . , N ,
associate the circumcentric dual domain

Di :=
⋃

T∩pi �=∅
{ p ∈ T : |pip| ≤ |pjp| for all vertices pj ∈ T }

of the secondary grid. Let Γij denote the face of ∂Di that crosses the line
segment pipj . Let γij be a unit vector along Γij that is oriented in an anti-
clockwise manner around pi and let dij denote the length of the segment pipj ;
see Figure 3.5.

Complete the secondary grid by analogously defining dual domainsDi that
correspond to the boundary nodes Pi for i = N + 1, . . . , N +M . Some faces
of their boundaries ∂Di will lie on the boundary Γ . Define the index set

Λi := { j �= i : ∃T with pi, pj ∈ T }.
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Γij

γij

pi

pj

Bij

Fig. 3.5. Dual domain Di bounded by the set of Γij and the box Bij

Two finite-dimensional finite element spaces will be used – one defined on
each of our two grids. Using the characteristic function χi of the dual domain
Di, define the lumping operator lh by

lhw :=

N+M∑

i=1

w(pi)χi,

which maps into the piecewise constant space

Qh := {qh : qh

∣∣
T
∈ P0(T )} = span {χ1, . . . , χN+M}.

To construct a nonconforming piecewise exponential space Vh, proceed as
follows. Write eij for the line segment pipj . Define the exponential function
Φij on eij to be the solution of the two-point boundary value problem

d

dnij

(
ε
dΦij

dnij
− b̄ijΦij

)
= 0, Φij(pi) = 1, Φij(pj) = 0, (3.23)

where nij denotes the unit vector from pi to pj and b̄ij is a piecewise constant
approximation of b · nij that preserves constants – for instance, we can set
b̄ij := [(b(pi) + b(pj)) · nij ]/2. Let Bij be the quadrilateral whose diagonals
are Γij and eij ; see Figure 3.5. Then extend the domain of definition of Φij

to Bij by defining Φij to be constant along each perpendicular to eij . We can
now define a canonical basis function for Vh as follows:

Φi =

{
Φij on Bij if j ∈ Λi,
0 otherwise.

The finite element space Vh := span {Φ1, . . . , ΦN}, which satisfies the homo-
geneous boundary conditions, is not a subset ofH1

0 (Ω) since in general it lacks
the property of continuity across the boundaries of boxes Bij . Finally, on each

box Bij define the vector-valued function b̂ij by
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b̂ij = b̄ijnij + (b · γij)γij . (3.24)

Now we are ready to define our discrete Petrov-Galerkin problem:

Find uh ∈ Vh such that for all qh ∈ Qh one has

ah(uh, qh) + (lh(duh), qh) = (f, qh), (3.25a)

where the bilinear form ah : Vh ×Qh → R is given by

ah(uh, qh) : = −
N+M∑

i=1

∑

j∈Λi

∫

Γij

(ε∇uh − b̂ijuh) · nijqh ds. (3.25b)

One can write (3.25) as the system of discrete equations

∑

j∈Λi

εmij

dij

[
B
(
− b̄ijdij

ε

)
ui −B

( b̄ijdij

ε

)
uj

]
+ dimiui =

∫

Di

f dx, (3.26)

where B(t) := t/(exp(t)− 1) is the Bernoulli function, mij denotes the length
of Γij , mi is the area of Di, ui := uh(pi) and di = d(pi).

Theorem 3.21. Assume that the coefficients b and d of (3.21) satisfy (3.22).
Let Th be a Delaunay triangulation. Then the discrete problem (3.26) preserves
the inverse-monotonicity of the continuous problem (3.21).

Proof. Since the Bernoulli function B(·) is always positive, the coefficient
matrix of (3.22) has non-positive off-diagonal entries and positive diagonal
entries. Moreover, the chain property of Theorem 3.1 (iii) can be proved using
e = (1, . . . , 1). The coefficient matrix is therefore an M-matrix. ⊓⊔

Remark 3.22. The scheme (3.26) in [MW94] is similar in construction to the
scheme (3.17) of Angermann. The principal difference is the use of piecewise
linears by Angermann whereas Miller & Wang use exponentials. In fact (3.26)
is a type of exponential box scheme; such schemes are widely used when solving
the drift-diffusion equations of semiconductor device modelling [PHSM87]. ♣

In [MW94], the error of the solution of (3.26) is studied in the mesh-
dependent norm

|||vh|||MW :=

[N+M∑

i=1

∑

j∈Λi

h area(Bij)

(
vh(pi)− vh(pj)

dij

)2

+ [vh(pi)]
2

(
dimi +

1

2

∫

Γij

b̂ij · nij ds

)]1/2

, (3.27)

under the hypothesis that
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(A) there is a positive constant α0 such that, for i = 1, . . . , N+M ,
the function b̂ defined in (3.24) satisfies the relations

min
j∈Λi

|b̂ij · nij | ≥ α0 > 0, (3.28a)

dimi +
1

2

∫

Γij

b̂ij · nij ds ≥ 0. (3.28b)

The first part of (3.27) corresponds to a discrete H1 norm weighted by h1/2

and the second part to a discrete L2 norm. The assumption (3.28b) is closely
related to (3.22). For, integrating (3.22) over the dual domain Di and using
the lumping operator, one obtains

dimi +
1

2

∫

Γij

b̂ij · nij ds ≈
∫

Di

d dx+
1

2

∫

Γij

bij · nij ds ≥ 0.

To state the convergence result, we need another mesh-dependent seminorm
on (W 1,∞)2, namely

|g|1,∞,h :=

[N+M∑

i=1

∑

j∈Λi

area(Bij) |g|21,∞,Bij

]1/2

.

Theorem 3.23. Let Ihu interpolate to the exact solution u of (3.21) in the
nonconforming exponential fitted space Vh. Suppose that Assumption (A) holds
true. Then for the discrete solution uh of (3.25), one has the error estimate

|||uh − Ihu|||MW ≤ Ch1/2(|du|1 + |b|1,∞,h‖u‖∞ + |ε∇u− bu|1,∞,h). (3.29)

Proof. See [MW94]. ⊓⊔

Remark 3.24. The global error bound (3.29) does not imply that the method
converges uniformly with respect to ε: in general |du|1 and |ε∇u − bu|1,∞,h

are not bounded uniformly in ε. ♣
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3.2 Residual-Based Stabilizations

This section discusses two stabilization techniques that add weighted residu-
als to the standard Galerkin finite element method: the streamline diffusion
and Galerkin least squares finite element methods. These methods combine
good global stability properties with high accuracy in subdomains that ex-
clude boundary layers but they do not always preserve monotonicity. Since
the residual of the exact solution is zero, the methods are automatically con-
sistent in the finite element sense – i.e., the solution of the original boundary
value problem also satisfies the discrete system of equations as in (3.33) be-
low – unlike the monotonicity-preserving methods considered in the previous
section. Furthermore, in Section 3.2.3 we shall use a multiscale framework to
reveal that the streamline diffusion finite element method can be recovered
from the standard Galerkin approach by taking into account the effect of the
fine scales on the coarse scales.

3.2.1 Streamline Diffusion Finite Element Method (SDFEM)

The streamline diffusion finite element method (SDFEM) was introduced by
Hughes and Brooks [HB79] for the numerical solution of convection-dominated
convection-diffusion problems. Its manifestation in the simpler case of one
space dimension was already studied in Section I.2.2.3. As we shall see, the
SDFEM can be interpreted as a Petrov-Galerkin method, so it is also known
as the streamline upwind Petrov-Galerkin method (SUPG method). For first-
order hyperbolic problems (when ε = 0) similar ideas appeared in [Den74,
Wah74]; these older methods can be considered precursors of the SDFEM.

We start with a weak formulation of the convection-diffusion problem (3.1):

Find u ∈ V := H1
0 (Ω) such that for all v ∈ V one has

ε(∇u,∇v) + (b · ∇u, v) + (c u, v) = (f, v), (3.30)

where (·, ·) is the L2(Ω) inner product. Assume that b, c and f are sufficiently
smooth with c− 1

2∇ · b > 0.
Let Vh ⊂ V be a conforming finite element space that consists of piecewise

polynomials of degree k, i.e.,

Vh := {vh ∈ V : vh

∣∣
T
∈ Pk(T ) for all T ∈ Th },

and assume that the triangulation Th of Ω is shape-regular. Let u ∈ Hk+1(T )
with k ≥ 1 so that u ∈ C(Ω̄). Then one can define its interpolant uI in Vh

and [Cia02, GRS07] this enjoys the approximation property

|u− uI |m,T ≤ C hk+1−m
T |u|k+1,T for m = 0, 1, 2 (3.31)

on each T ∈ Th. Moreover, using a scaling argument and the equivalence of
norms in finite-dimensional spaces, one can prove the local inverse inequality
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‖∆vh‖0,T ≤ µinvh
−1
T |vh|1,T ∀vh ∈ Vh, (3.32)

where the constant µinv is independent of T and h.
The SDFEM adds weighted residuals to the usual Galerkin finite element

method. Thus, assuming that the solution u of (3.30) is regular, in the sense
that

−ε∆u+ b · ∇u+ cu = f in L2(T ) ∀T ∈ Th,

it follows that u satisfies

ah(u, vh) = fh(vh) ∀vh ∈ Vh, (3.33)

where

ah(w, v) := ε(∇w,∇v) + (b · ∇w, v) + (cw, v)

+
∑

T∈Th

δT (−ε∆w + b · ∇w + cw, b · ∇v)T , (3.34)

fh(v) := (f, v) +
∑

T∈Th

δT (f, b · ∇v)T . (3.35)

Here (·, ·)T denotes the inner product in L2(T ). The user-chosen constant δT
is called the SD parameter. Since in general ∆uh �∈ L2(Ω) but ∆uh ∈ L2(T )
for each T , we calculate ∆uh element by element.

Now the SDFEM is defined as follows:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ah(uh, vh) = fh(vh). (3.36)

The SDFEM satisfies (3.33) and so is consistent ; combining this with
(3.30) yields the projection property

ah(u− uh, vh) = 0 ∀vh ∈ Vh

for solutions u ∈ H2(Ω) of (3.30). This identity is also known as Galerkin
orthogonality.

It is natural to measure stability and errors in the following norm that is
related to the discrete bilinear form ah:

|||v|||SD :=

(
ε|v|21 +

∑

T∈Th

δT ‖b · ∇v‖20,T + ω‖v‖20,T

)1/2

.

Set cT = maxx∈T |c(x)| for each T ∈ Th. For stability of the SDFEM, let the
constant ω satisfy

c− 1

2
∇ · b ≥ ω > 0 on Ω.

The stability properties of the SDFEM are a consequence of
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Lemma 3.25. Let the SD parameter δT satisfy

0 < δT ≤
1

2
min

{
ω

c2T
,
h2

T

εµ2
inv

}

for each T ∈ Th. Then the discrete bilinear form is coercive, i.e.,

ah(vh, vh) ≥ 1

2
|||vh|||2SD ∀vh ∈ Vh.

Proof. For each vh ∈ Vh, we have

ah(vh, vh) ≥ ε|vh|21 + ω‖vh‖20 +
∑

T∈Th

δT ‖b · ∇vh‖20,T

+
∑

T∈Th

δT (−ε∆vh + cvh, b · ∇vh)T .

The local inverse inequality (3.32) and the hypothesis on δT give
∣∣∣
∑

T∈Th

δT (−ε∆vh + cvh, b · ∇vh)T

∣∣∣

≤
∑

T∈Th

ε2δT ‖∆vh‖20,T +
∑

T∈Th

c2T δT ‖vh‖20,T +
1

2

∑

T∈Th

δT ‖b · ∇vh‖20,T

≤ ε

2
|vh|21 +

ω

2
‖vh‖20 +

1

2

∑

T∈Th

δT ‖b · ∇vh‖20,T ,

which yields the desired result. ⊓⊔
Remark 3.26. Lemma 3.25 implies the a priori estimate

|||uh|||SD ≤ C
(
‖f‖20 +

∑

T∈Th

δT ‖f‖20,T

)1/2

and the stability inequality

|||uh|||SD ≤ 2 |||Ahuh|||∗
for the discrete operator Ah : Vh → V ∗

h defined by

< Ahvh, wh >:= ah(vh, wh) ∀vh, wh ∈ Vh,

where the norm on the dual space V ∗
h is

|||gh|||∗ := sup
wh∈Vh

< gh, wh >

|||wh|||SD
for gh ∈ V ∗

h .

Compared with the standard Galerkin finite element method, where δT = 0,
the SDFEM provides additional control over the convective derivative in the
streamline direction because of the definition of the norm ||| · |||SD. This addi-
tional bound prevents the discrete solution from oscillating over a large part
of Ω, as Schieweck [Sch08] explains. ♣
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To get an error estimate for the SDFEM, consider first the error between
uh and the interpolant uI ∈ Vh of the exact solution u. Lemma 3.25 and the
projection property (3.40) give

1

2
|||uI − uh|||2SD ≤ ah(uI − uh, uI − uh) = ah(uI − u, uI − uh) .

We estimate the right-hand side term by term, invoking the interpolation
properties (3.31) for smooth functions u in V ∩Hk+1(Ω):

ε(∇(uI − u),∇(uI − uh)) ≤ ε1/2|uI − u|1 |||uI − uh|||SD

≤ Cε1/2hk|u|k+1 |||uI − uh|||SD ,

(b · ∇(uI − u) + c(uI − u), uI − uh)

= ((c−∇ · b)(uI − u), uI − uh)− (uI − u, b · ∇(uI − uh))

≤
[
C

( ∑

T∈Th

‖uI − u‖20,T

)1/2

+

( ∑

T∈Th

δ−1
T ‖uI − u‖20,T

)1/2]
|||uI − uh|||SD

≤ C hk

[ ∑

T∈Th

h2
T (1 + δ−1

T )|u|2k+1,T

]1/2

|||uI − uh|||SD

and
∣∣∣
∑

T∈Th

δT
(
− ε∆(uI − u) + b · ∇(uI − u) + c(uI − u), b · ∇(uI − uh)

)
T

∣∣∣

≤ C
∑

T∈Th

δ
1/2
T (εhk−1

T + hk
T + hk+1

T )|u|k+1,T δ
1/2
T ‖b · ∇(uI − uh)‖0,T

≤ C
[ ∑

T∈Th

(ε+ δT )h2k
T |u|2k+1,T

]1/2

|||uI − uh|||SD.

The last inequality appealed to the bound εδT ≤ Ch2
T that was assumed in

Lemma 3.25. Combining all of these estimates, one gets

|||uI − uh|||SD ≤ C
[∑

T

(ε+ δT + δ−1
T h2

T + h2
T )h2k

T |u|2k+1,T

]1/2

. (3.37)

In order to extract the best possible convergence rate from (3.37), one must
balance the terms ε, δT , and δ−1

T h2
T while respecting the constraints on δT in

the hypotheses of Lemma 3.25. This balance is achieved by setting

δT =

{
δ0 hT if PeT > 1 (convection-dominated case),
δ1 h

2
T /ε if PeT ≤ 1 (diffusion-dominated case),

(3.38)



306 3 Finite Element Methods

with appropriate positive constants δ0 and δ1. Here and in what follows the
local mesh Péclet number is defined by

PeT :=
‖b‖0,∞,T hT

2ε
.

Theorem 3.27. Let the hypotheses of Lemma 3.25 be satisfied. Choose δT
according to (3.38). Then the solution uh of the SDFEM satisfies the global
error estimate

|||u− uh|||SD ≤ C (ε1/2 + h1/2)hk|u|k+1 .

Proof. It follows from (3.37) and (3.38) that

|||uI − uh|||SD ≤ C (ε1/2 + h1/2)hk|u|k+1.

Applying the interpolation properties (3.31), we get

|||u− uI |||SD ≤ C (ε1/2 + h1/2)hk|u|k+1.

A triangle inequality completes the proof. ⊓⊔

Remark 3.28. In the convection-dominated case one has ε < ‖b‖0,∞,T hT /2
and δT = δ0hT . Hence on meshes satisfying h ≤ ChT one obtains the global
estimate

‖u− uh‖0 + h1/2
(∑

T

‖b · ∇(u− uh)‖20,T

)1/2 ≤ C hk+1/2|u|k+1.

As
‖u− uI‖0 ≤ C hk+1|u|k+1 and |u− uI |1 ≤ C hk|u|k+1,

we see that the L2 error of the derivative in the streamline direction is optimal,
but the bound on ‖u− uh‖0 is order 1/2 less than optimal. ♣

In the special case where b = (b1, b2) is constant, c ≡ 0 and Vh comprises
piecewise linear elements, the bilinear form associated with the SDFEM can
be written as

ah(uh, vh) = ε(∇uh,∇vh) +
∑

T∈Th

δT |b|2
(
∂uh

∂b
,
∂vh

∂b

)

T

+ (b · ∇uh, vh).

Thus the SDFEM adds artificial diffusion of O(δT |b|2) in the direction of the
streamline – this explains why it is called a streamline diffusion method.

The SDFEM can also be regarded as a Petrov-Galerkin method, for choos-
ing the test functions on each triangle T to be v+δT b ·∇v gives (3.34)–(3.36).
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Remark 3.29. In the special case of piecewise linear elements, the expression∑
T εδT (∆uh, b · ∇vh)T contributes nothing to ah(uh, vh). The upper bound

for the SD parameter δT in Lemma 3.25 can then be relaxed to

0 < δT ≤
ω

c2T
.

This upper bound is independent of the discretization constant µinv of (3.32).
♣

Remark 3.30. When choosing δT for second-order or higher-order elements,
one has to take into consideration the constant µinv from the local inverse
inequality (3.32). The value of µinv depends on the mesh and on the finite
element space Vh used; estimates of this constant are given in [HH92] and its
numerical computation is investigated in [Fra94]. ♣

Remark 3.31. Optimal-order error bounds with respect to the mesh size h and
the polynomial order p = k of the finite element space Vh have been given in
[HS01b]. In this hp-type analysis the inverse inequality (3.32), the range of δT
in Lemma 3.25, and its choice in (3.38) have to be replaced by

‖∆vh‖0,T ≤ µinvp
2h−1

T |vh|1,T ∀vh ∈ Vh,

0 < δT ≤
1

2
min

{
ω

c2T
,

h2
T

εµ2
invp

4

}
,

δT =

⎧
⎪⎪⎨
⎪⎪⎩

δ0 hT

p
if PeT > 1,

1

2
min

{
ω

c2T
,

h2
T

εµ2
invp

4

}
if PeT ≤ 1.

♣

Remark 3.32. Can one make an optimal choice of the SD parameter δT inside
the range assumed in Theorem 3.27? In general the answer is unknown. If
piecewise linear finite elements are used for a one-dimensional problem with
constant coefficients, then the optimal value of δT can be computed and pro-
duces the Il’in-Allen-Southwell scheme (see Section I.2.1.3), which yields the
exact solution at the nodes. For two or more dimensions some fresh crite-
rion is needed to fix δT . One possibility is to try to fulfil some necessary
conditions for convergence, uniformly with respect to ε, in a certain norm
[Roo85, SE99, ST95]. An alternative is the reduction of the numerical vis-
cosity of the scheme [Tob95]. The reduced solution outside layers has been
taken into account in [Kno, MS96] when trying to optimize δT . A symbi-
otic relationship between “best” solution approximation and fast convergence
of smoothers based on the standard GMRES iteration has been reported in
[FRSW99]. ♣
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Numerical results comparing the SDFEM and its modifications with other
methods can be found in [JK07b]; see also [LS01b] and Remark 3.119 for a
related discussion on layer-adapted meshes.

Example 3.33. We write down the difference scheme generated by the SDFEM
for the model problem

−ε∆u+ 2ux + uy = f in Ω = (0, 1)2, u = 0 on ∂Ω,

using piecewise linear elements on a uniform square mesh of Friedrichs-Keller
type. The distance between adjacent nodes is denoted by h. After scaling, one
gets the difference stencil

ε

h2

⎡
⎣
· −1 ·
−1 4 −1
· −1 ·

⎤
⎦+

1

2h

⎡
⎣
· · 1
−1 · 1
−1 · ·

⎤
⎦+

δ0
h

⎡
⎣
· 1 −2
−2 6 −2
−2 1 ·

⎤
⎦ ,

where in accordance with the convection-dominated case ε ≪ h we have set
δT = δ0h with a user-chosen constant δ0 as in (3.38).

One cannot apply Theorem 3.1 to this scheme because in general positive
off-diagonal terms appear, so the sufficient conditions for a discrete maximum
principle are not satisfied. In fact, numerical calculations show that the dis-
crete maximum principle does indeed fail for the SDFEM: oscillations can be
observed near sharp layers – see for example [JK07b]. ♣

A nonlinear modification of the SDFEM that satisfies the discrete max-
imum principle for meshes of weakly acute type has been proposed by
Mizukami and Hughes [MH85]. Suppose that b = (b1, b2) is piecewise con-
stant and c ≡ 0. We use piecewise linear elements and denote by ϕi the usual
basis function associated with the node pi. Assume that p1, p2, and p3 are the
vertices of the triangle T ∈ Th. The contributions from T to the convective
part of the matrix ah(ϕj , ϕi) are given by

eij := (b · ∇ϕj , ϕi + δT b · ∇ϕi)T for i, j = 1, 2, 3.

For each i ∈ {1, 2, 3}, Mizukami and Hughes replace b and δT b ·∇ϕi by b̃i and
Mi respectively; these constants are such that the modified contributions

ẽij := (b̃i · ∇ϕj , ϕi +Mi)T for i, j = 1, 2, 3

satisfy ẽij ≤ 0 for i �= j. (The element entries of the SDFEM can be recovered

by setting b̃i = b and Mi = δT b · ∇ϕi for i = 1, 2, 3.)
We now examine the choice of b̃i and Mi. Consider first Mi. From the

representation

ẽij = b · ∇ϕj

∣∣
T

∫

T

(ϕi +Mi) dx = b · ∇ϕj

∣∣
T

(
1

3
+Mi

)
|T | (3.39)
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it follows that that the sign of ẽij is determined by b · ∇ϕj

∣∣
T

if

Mi ≥ −1/3 for i = 1, 2, 3 . (3.40)

A second requirement when selecting Mi is the fulfillment of a discrete con-
servation law [MH85]. Consequently we look for constants Mi (for i = 1, 2, 3)
such that (3.40) and

M1 +M2 +M3 = 0 (3.41)

are satisfied. The different cases that can arise will now be discussed.
If the orientation of the triangle T with respect to the flow direction b is

such that the term (b · ∇ϕj) is positive for a single value of j, say j = 1, and
non-negative for j = 2 and j = 3, then it suffices to choose M2 = M3 = −1/3
and no replacement of b is needed. This guarantees that ẽi1 = 0 for i = 2, 3.
To fulfil (3.41) one must choose M1 = 2/3.

If instead two of the terms (b · ∇ϕj), where j = 1, 2, 3, are positive, then
for definiteness let (b ·∇ϕj) > 0 for j = 2, 3. In this case one cannot choose the
Mi so that ẽij ≤ 0 for i �= j. Nevertheless we can profit from the observation
that

b̃i · ∇uh = b · ∇uh

whenever b− b̃ is perpendicular to ∇uh. Thus for i = 1, 2, 3 replace b by b̃i in
(3.39), where

b̃1 = b, b̃2 = b+ w2 and b̃3 = b+ w3

for some as yet unspecified w2, w3 ⊥ ∇uh. A careful analysis shows that it is
possible to find w2, w3 ⊥ ∇uh such that at least one set of inequalities

b̃2 · ∇ϕ1 < 0, b̃2 · ∇ϕ2 > 0, b̃2 · ∇ϕ3 < 0 (3.42a)

and

b̃3 · ∇ϕ1 < 0, b̃3 · ∇ϕ2 < 0, b̃2 · ∇ϕ3 > 0 (3.42b)

holds true. If (3.42a) is true, set M1 = M3 = −1/3 and M2 = 2/3 to get non-
negative off-diagonals. If (3.42b) holds true, choose M1 = M2 = −1/3 and
M3 = 2/3. If one can find w2 and w3 satisfying both (3.42a) and (3.42b), then
set M1 = −1/3 and choose M2 > −1/3 and M3 > −1/3 with M2 +M3 = 1/3;
only in this case, by taking δT = (3|b · ∇ϕ1|)−1, M2 = δT b · ∇ϕ2 and M3 =
δT b · ∇ϕ3, does one recover the original SDFEM. Note that the choice of b̃
depends on ∇uh which is a priori unknown, so the choice of the constantsMi,
for i = 1, 2, 3, depends also on ∇uh, thereby generating a nonlinear system of
equations.

Each contribution ẽij from each triangle T gives a matrix with non-positive
off-diagonal entries, so the global matrix also has this property. As the diffu-
sion matrix for piecewise linear elements is an M-matrix, it follows that the
coefficient matrix for the discrete problem will be an M-matrix.
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Remark 3.34. Numerical experiments in [MH85] show that the method gives
accurate solutions with little crosswind diffusion, but in some cases the method
does not give satisfactory results [Kno06] since a small change of b can change
drastically the constants Mi for i = 1, 2, 3. Improvements of the method
in layer regions are suggested in [Kno06] where extensions to convection-
diffusion-reaction equations and three-dimensional problems are also consid-
ered. But the method remains nonlinear, even in the constant coefficient case,
since the matrix of the difference scheme generated depends on ∇uh. ♣

Lemma 3.25 shows that the SDFEM (3.34)–(3.36) has improved stability
properties when compared with the standard Galerkin method. Its theoretical
convergence rate for the global L2 error is order 1/2 less than optimal for
smooth solutions; see Remark 3.28. We now give an optimal L2-convergence
result for a special mesh and sufficiently regular solutions.

To concentrate on the essential features of the argument, consider as a
model problem the case b ≡ (1, 0), c ≡ 1, viz., the boundary value problem

−ε∆u+ ux + u = f inΩ = (0, 1)2, u
∣∣
∂Ω

= 0, (3.43)

and restrict the discussion to the case of piecewise linear approximations, i.e.,

Vh = {vh ∈ H1
0 (Ω) : vh

∣∣
T
∈ P1(T ) for all T ∈ Th, vh

∣∣
∂Ω

= 0 }.

The interesting case 0 < ε ≤ h will be examined here, so interior and boundary
layers are not resolved; we aim for a numerical method in which these layers
do not pollute regions where the solution is smooth. With these assumptions,
the SDFEM of (3.34)–(3.36) is:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ε(∇uh,∇vh) + (uh
x, v

h) + (uh, vh) +
∑

T∈Th

δT (uh
x + uh, vh

x)T

= (f, vh) +
∑

T∈Th

δT (f, vh
x)T . (3.44)

Consider now a more general method of streamline-diffusion type that adds
artificial crosswind diffusion [JSW87, Nii90, Zho95, ZR96]. That is, consider
the following numerical method for solving (3.43):

Find uh ∈ Vh such that for all vh ∈ Vh one has

(ε+ δ)(uh
x, v

h
x) + εm(uh

y , v
h
y + (1− δ)(uh

x, v
h) + (uh, vh))

= (f, vh + δvh
x), (3.45)

where the artificial crosswind diffusion εm is as yet unspecified. Clearly (3.45)
can be derived from (3.44) by setting δT = δ for all T ∈ Th, changing the
crosswind diffusion from ε to εm, and integrating by parts the term δ(uh, vh

x).



3.2 Residual-Based Stabilizations 311

In what follows we assume that δ and εm are positive. To analyse (3.45),
introduce the bilinear form

bh(w, v) : = (ε+ δ)(wx, vx) + εm(wy, vy) + (1− δ)(wx, v) + (w, v),

the linear form

lh(v) : = (f, v + δvx),

and the mesh-dependent norm

|||v|||ACD :=
[
(ε+ δ)‖vx‖20 + εm‖vy‖20 + ‖v‖20

]1/2
. (3.46)

The discrete problem (3.45) can be rewritten as

Find uh ∈ Vh such that for all vh ∈ Vh one has

bh(uh, vh) = lh(vh).

Since bh(vh, vh) = |||vh|||2ACD, the Lax-Milgram lemma ensures that (3.45)
has a unique solution. If the exact solution of (3.43) lies in H1

0 (Ω) ∩H2(Ω),
one obtains the quasi-orthogonality relation

bh(u− uh, vh) = Per(u, vh) ∀vh ∈ Vh (3.47a)

with the perturbation term

Per(u, vh) : = (ε∆u, δvh
x) + (εm − ε)(uy, v

h
y ). (3.47b)

First we derive a global error estimate for the artificial crosswind diffusion
method. Start from the triangle inequality

|||u− uh|||ACD ≤ |||u− uI |||ACD + |||uI − uh|||ACD,

where uI denotes the interpolant from Vh to the exact solution u. Here

|||u− uI |||ACD ≤ C
[
(ε+ δ)1/2h+ ε1/2

m h+ h2
]
|u|2.

For the second term, the coercivity of bh and the quasi-orthogonality relation
(3.47a) yield

|||uI − uh|||2ACD

= bh(uI − u, uI − uh) + Per(u, uI − uh)

≤ C
[
(ε+ δ)1/2h+ ε1/2

m h+ δ−1/2h2 + h2
]
|u|2 |||uI − uh|||ACD

+ C
(
εδ1/2‖∆u‖0 + |εm − ε| ‖uyy‖0

)
|||uI − uh|||ACD.

Combining these bounds and minimizing the resulting right-hand side with
respect to δ yields δ ∼ h; using 0 < ε ≤ h one then gets
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|||u− uh|||ACD ≤ C
(
h3/2 + ε1/2

m h+ h2 + |εm − ε|
)
|u|2.

Hence
|||u− uh|||ACD ≤ Ch3/2|u|2,

provided that the added crosswind diffusion |εm − ε| is of O(h3/2).
We see that the L2-norm convergence rate is O(h3/2) for the modified

SDFEM (3.45), as for the standard SDFEM (3.34)–(3.36). In general this
result cannot be sharpened (Remark 3.44), but on certain structured meshes
the modified SDFEM (3.45) will yield second-order convergence in L2. We
now prove this for the model problem (3.43) on a three-directional mesh. A
triangle inequality and (3.47a) yield

‖u− uh‖0 ≤ ‖u− uI‖0 + ‖uI − uh‖0

≤ Ch2 +
bh(uI − u, uI − uh)

|||uI − uh|||ACD
+

Per(u, uI − uh)

|||uI − uh|||ACD
.

For an improved error estimate, a sharper bound on the approximation error
term bh(·, ·) is needed. The technique that was applied earlier does not benefit
from any possible interaction of error terms from adjacent triangles, but it will
be shown below that a useful cancellation of low-order error terms occurs.

In order to give a detailed formula for the local interpolation error, we
introduce some notation for an arbitrary fixed triangle T . For i = 1, 2, 3, let
pi denote the vertices of T in anti-clockwise ordering, let the side opposite
pi be Si, let hi = λih be the length of Si, write ni = (ni

x, n
i
y) for the outer

normal unit vector along Si, denote the directional derivative along Si (in the
anti-clockwise direction) by Di and let |T | be the area of T .

Lemma 3.35. Let uI be the linear nodal interpolant to the function u on a
triangular element T and let w ∈ Vh. Then the following error expansions
hold true:
∫

T

(u− uI)µwν dxdy = O
(
h2(‖u‖4,T + h‖u‖5,T ) ‖w‖0,T

)

+
h4

24|T |
3∑

i=1

∫

Si

(
λ3

iλi+1n
i
µn

i
νDi+1D

2
i u−λ4

i+2n
i+2
µ ni+2

ν DiD
2
i+2u

)
w ds

+
h4

24|T |
3∑

i=1

∫

Si

(
λ3

iλi+2n
i
µn

i+2
ν D2

i u−λ4
i+1n

i+1
µ ni+1

ν D2
i+1u

)
Diw ds, (3.48)

∫

T

(u− uI)wxdxdy = −h
2

24

3∑

i=1

∫

Si

( 3∑

j=1

λ2
jD

2
ju

)
ni

xw ds

+O(h2‖u‖3,T ‖w‖0,T ), (3.49)

where µ and ν may be x or y and the indices i+ 1, i+ 2 are used modulo 3.
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Proof. This uses techniques that are expounded in [BLR86, ZL94, Zho97]. ⊓⊔

We resume our examination of the approximation error for a three-
directional mesh. Let S1 = S′

1 be a common side of the two triangles T and
T ′. On a three-directional mesh one has λi = λ′i, Di = −D′

i, |T | = |T ′| and
ni = −(n′)i. Consequently all line integrals over interior sides cancel when
summing (3.48) and (3.49) over all triangles T . Moreover, all line integrals
over the boundary vanish also, because w ≡ Diw ≡ 0 on Si ⊂ ∂Ω. In this
way, for each wh ∈ Vh one has

bh(uI − u,wh) = (ε+ δ)((uI − u)x, w
h
x) + εm((uI − u)y, w

h
y )

− (1− δ)((uI − u), wh
x) + ((uI − u), wh)

≤ C(ε+ δ + εm + 1)h2 ‖u‖5‖wh‖0.

For the perturbation term,

|Per(u,wh)| ≤ (εδ‖∆ux‖0 + |εm − ε| ‖uyy‖0)‖wh‖0.

Taking wh = uI − uh above, one now gets

‖u− uh‖0 ≤ ‖u− uI‖0 + |||uI − uh|||ACD

≤ Ch2|u|2 +
bh(uI − u, uI − uh)

|||uI − uh||| +
Per(u, uI − uh)

|||uI − uh|||ACD

≤ Ch2(ε+ δ + εm + 1)‖u‖5 + C (εδ + |εm − ε|)‖u‖5.

We have proved

Theorem 3.36. Let the solution u of (3.43) belong to H1
0 (Ω)∩H5(Ω). Sup-

pose that 0 < ε < εm ≤ Ch2 for some positive (generic) constant C. Let uh be
the solution of the modified SDFEM (3.45). Then on a three-directional mesh
one has the error estimate

‖u− uh‖0 ≤ Ch2‖u‖5. (3.50)

Remark 3.37. No lower bounds on δ and εm are needed for the global error
estimate (3.50) but it will emerge later that lower bounds on these parameters
are used in estimating the local L2 and pointwise errors. ♣

Remark 3.38. Optimal global L2-error estimates for bilinear finite elements on
structured meshes have been considered in [Zho97]. An alternative technique
for proving optimal global L2-error estimates for linear and bilinear finite
elements on special meshes under weaker regularity assumptions can be found
in [Näv82]. ♣

All error estimates so far are meaningful only for smooth solutions, i.e., for
solutions where the norm |u|k+1 is of moderate size. This norm will be large
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if boundary or interior layers are present in the solution u. We therefore turn
to the investigation of local errors.

In subdomains that exclude layers, uniform local error estimates will be
derived. It follows that the SDFEM is able to identify the layer regions. As-
ymptotic analysis tells us that boundary layers will appear in the solution
of (3.43) along the sides x = 1, y = 0 and y = 1. It is therefore natural to
consider the local error in the fixed subdomain

Ω′ = { (x, y) ∈ Ω : 0 < x < x1 < 1, 0 < y1 < y < y2 < 1 }

where x1, y1 and y2 are some fixed constants. To simplify the presentation
assume that the boundary of Ω′ coincides with lines of the mesh. Introduce
the cut-off function

ϕ(x, y) := exp

(
− d

(
x− x1

σx

))
exp

(
− d

(
y1 − y
σy

))
exp

(
− d

(
y − y2
σy

))
,

(3.51)

where d : R → R is defined by d(t) := max{0, t}, while σx and σy are positive
parameters that will be chosen later. The derivation of local error estimates
uses the coercivity of the bilinear form, some approximation theory properties
and the stability of the interpolant with respect to the weighted discrete norm

|||wh|||ϕ :=
[
(ε+ δ)‖wh

x‖2ϕ + εm‖wh
y‖2ϕ +

1− δ
2
‖
√
|ϕx|wh‖20 + ‖wh‖2ϕ

]1/2

,

where we recall that 0 < δ < 1. Here ‖ · ‖ϕ denotes the ϕ-weighted L2 norm
defined by

‖w‖2ϕ :=

∫

Ω

ϕw2 dx.

First we prove the coercivity of the bilinear form with respect to ||| · |||ϕ.

Lemma 3.39. Let 0 < δ ≤ 1/2. Define σx and σy in (3.51) by σx = (ε+δ)M
and σy = M

√
εm, where M ≥ 4 is constant. Then

bh(wh, ϕwh) ≥ 1

2
|||wh|||2ϕ for all wh ∈ Vh. (3.52)

Proof. The definition of bh gives

bh(wh, ϕwh) = |||wh|||2ϕ −
1− δ

2

∥∥√|ϕx|wh
∥∥2

0
+ (1− δ)(wh

x , ϕw
h)

+ (ε+ δ)(wh
x , ϕx w

h) + εm(wh
y , ϕy w

h).

Integrating by parts and invoking ϕx ≤ 0, the second and third terms cancel:

(wh
x , ϕw

h) =
1

2

(
− ϕx, (w

h)2
)

=
1

2

∥∥√|ϕx|wh
∥∥2

0
.
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The last two terms can be absorbed into the others, since

|(ε+ δ)(wh
x , ϕx w

h)| ≤ ε+ δ

σ
1/2
x

‖wh
x‖ϕ

∥∥√|ϕx|wh
∥∥

0

≤ 2(ε+ δ)

M
‖wh

x‖2ϕ +
1− δ

4

∥∥√|ϕx|wh
∥∥2

0

as δ ≤ 1/2, and

|εm(wh
y , ϕy w

h)| ≤ εm
σy
‖wh

y‖ϕ ‖wh‖ϕ ≤
εm

2M2
‖wh

y‖2ϕ +
1

2
‖wh‖2ϕ.

Taking M ≥ 4, we finally obtain (3.52). ⊓⊔

The next lemma gives an approximation theory estimate. For ease of read-
ing we shall use the notation Ih(gh) instead of (gh)I for the nodal interpolant
to the product of two functions g and h.

Lemma 3.40. Let the parameters σx and σy of the cut-off function ϕ be as
in Lemma 3.39. Define the streamline-diffusion parameter δ and the artificial
crosswind diffusion parameter εm by δ = Ch and εm = Ch3/2. Then for each
θ ∈ (0, 1), one can choose a sufficiently large M ≥ 4 in the definition of σx

and σy such that

|bh(wh, ϕwh − Ih(ϕwh))| ≤ θ|||wh|||2ϕ for all wh ∈ Vh.

Proof. Set E = ϕwh − Ih(ϕwh). A detailed analysis is given only for the
term (wh

x , E) as the other terms in bh(wh, E) are handled similarly. First, the
interpolation property of Ih yields

(wh
x , E) =

∑

T∈Th

(wh
x , E)T

≤
∑

T∈Th

1

min
z∈T

ϕ1/2(z)
‖ϕ1/2wh

x‖0,T ‖E‖0,T

≤ θ(ε+ δ)

2
‖wh

x‖2ϕ + C
∑

T∈Th

h4

(ε+ δ) min
z∈T

ϕ(z)
|ϕwh|22,T . (3.53)

Now on each triangle T ,

(ϕwh)xx = ϕxxw
h + 2ϕxw

h
x , |(ϕwh)xx|2 ≤ Cϕ

( |ϕx|
σ3

x

|wh|2 +
ϕ

σ2
x

|wh
x |2

)
.

Consequently, on each T ,
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∫

T

h4

(ε+ δ) min
z∈T

ϕ(z)
|(ϕwh)xx|2 dx dy

≤ C h4

σ2
x(ε+ δ)2

⎛
⎝

max
z∈T

ϕ

min
z∈T

ϕ

⎞
⎠
(
ε+ δ

σx
‖
√
|ϕx|wh‖20,T + (ε+ δ)‖wh

x‖2ϕ,T

)

≤ C

M2

(
‖
√
|ϕx|wh‖20,T + (ε+ δ)‖wh

x‖2ϕ,T

)
.

Here we used σx = (ε + δ)M , δ = Ch and maxz∈T ϕ(z)/minz∈T ϕ(z) ≤ C,
where C is independent of T . Analogously, one gets

(ϕwh)yy = ϕyyw
h + 2ϕyw

h
y , |(ϕwh)yy|2 ≤ Cϕ

(
ϕ

σ4
y

|wh|2 +
ϕ

σ2
y

|wh
y |2

)
,

and on each T ,

∫

T

h4

(ε+ δ) min
z∈T

ϕ(z)
|(ϕwh)yy|2 dx dy

≤ C h4

δσ4
y

(
‖wh‖2ϕ,T + σ2

y‖wh
y‖2ϕ,T

)

≤ C h3

M2ε2m

(
1

M2
‖wh‖2ϕ,T + εm‖wh

y‖2ϕ,T

)
.

To continue, recall that εm = Ch3/2 and obtain

∫

T

h4

(ε+ δ) min
z∈T

ϕ(z)
|(ϕwh)yy|2 dx dy ≤

C

M2

(
‖wh‖2ϕ,T + εm‖wh

y‖2ϕ,T

)
.

The mixed derivative (ϕwh)xy can be estimated using the same ideas. Sum-
ming, one obtains an estimate for the final term in (3.53). One then has

|(wh
x , E)| ≤ θ(ε+ δ)

2
‖wh

x‖2ϕ +
C

M2
|||wh|||2ϕ ≤ θ|||wh|||2ϕ

for sufficiently large M . Analogous estimates can be derived for the other
terms in bh(wh, E). ⊓⊔

We wish to describe a local L2-error estimate for the modified SDFEM
in the convection-dominated case ε ≪ h. Recall that Ω′ = (0, x1) × (y1, y2),
where 0 < x1 < 1 and 0 < y1 < y2 < 1. Define the enlargement Ω′′ of Ω′ to
be the union of all triangles that lie entirely in the set

{
(x, y) ∈ Ω : x ≤ x1 +Kσx| log h|,

y1 −Kσy| log h| ≤ y ≤ y2 +Kσy| log h|
}
, (3.54)
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where the constant K is specified later. In the complement Ωc := Ω\Ω′′, the
cut-off function (3.51) is exponentially small, i.e., ϕ ≤ Chκ, where a suitably
large positive value of κ can be achieved by choosing K large enough.

Theorem 3.41. Choose the constant K in (3.54) so that κ > 3/2. Suppose
that u ∈ L∞(Ω) and that for this fixed enlargement Ω′′ the solution u of (3.43)
satisfies u ∈ H2(Ω′′). Take δ = C0h and choose the artificial crosswind diffu-
sion εm to satisfy ε ≤ εm = C1h

3/2, with arbitrary but fixed positive constants
C0 and C1. Then there is a positive constant C such that the solution uh of
(3.45) satisfies the local error estimate

‖u− uh‖0,Ω′ ≤ Ch3/2‖u‖2,Ω′′ . (3.55)

Proof. We start with the usual splitting

‖u− uh‖0,Ω′ ≤ ‖u− uI‖0,Ω′ + ‖uI − uh‖0,Ω′

≤ Ch2|u|2,Ω′ + ‖uI − uh‖ϕ

≤ Ch2|u|2,Ω′ + |||uI − uh|||ϕ. (3.56)

To estimate wh := uI − uh, appeal to Lemmas 3.39 and 3.40 and the quasi-
orthogonality relation (3.47a), obtaining

1

2
|||wh|||2ϕ ≤ bh(wh, ϕwh)

= bh(wh, ϕwh − Ih(ϕwh)) + bh(wh, Ih(ϕwh))

≤ θ|||wh|||2ϕ + bh(uI − u, Ih(ϕwh)) + bh(u− uh, Ih(ϕwh)),

so
(

1

2
− θ

)
|||wh|||2ϕ ≤ bh(uI − u, Ih(ϕwh)) + Per(u, Ih(ϕwh)). (3.57)

As in the proof of Lemma 3.40, one can establish the estimate

(ε+ δ)‖ϕ−1/2(Ih(ϕwh))x‖20 + εm‖ϕ−1/2(Ih(ϕwh))y‖20
+ ‖ϕ−1/2Ih(ϕwh)‖20 ≤ 6|||wh|||2ϕ.

Next, each term in (3.57) is estimated by considering separately the two subdo-
mains Ω′′ and Ωc, invoking interpolation properties in Ω′′ and the exponential
smallness of the cut-off function ϕ in Ωc. Thus, taking for example the term

((u− uI)x, Ih(ϕwh)) = (uI − u, (Ih(ϕwh)x),

in Ω′′ one has

|(uI − u, (Ih(ϕwh))x)Ω′′ | ≤ θδ‖(Ih(ϕwh))x‖20 + Cδ−1h4|u|22,Ω′′

≤ θ|||wh|||2ϕ + Ch3|u|22,Ω′′ ,
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while in Ωc we get

|(uI − u, (Ih(ϕwh))x)Ωc
| ≤ C‖u‖∞,Ωc

max
z∈Ωc

ϕ1/2(z) ‖ϕ−1/2(Ih(ϕwh))x‖0

≤ θ|||wh|||2ϕ + Chκ−1‖u‖2∞,Ωc
.

The other terms in (3.57) are handled similarly. One finally obtains

|||wh|||2ϕ ≤ Ch3|u|22,Ω′′ + Chκ−1‖u‖2∞,Ωc
.

Substituting this result into (3.56) yields (3.55). ⊓⊔

Remark 3.42. The assumption that the boundary of Ω′ coincides with mesh
lines is not essential; it merely enables us to use a simple cut-off function. For
the general case see [JSW87]. ♣

Remark 3.43. The global optimal-order L2-error estimate (3.50) for a three-
directional mesh also holds true locally, but unlike Theorem 3.41 one chooses
εm = Mh2; see [Zho95, ZR96]. ♣

We summarize the known local pointwise error estimates for the SDFEM.
The first local pointwise error estimate for the modified SDFEM (3.45) was
given in [JSW87] under local smoothness conditions. For piecewise linear el-
ements on quasi-uniform meshes with εm = h3/2 and δ = h, they prove for
each (x0, y0) ∈ Ω the estimate

|(u− uh)(x0, y0)| ≤ Ch5/4| log h|3/2‖u‖2,Ω0
+ Chκ, (3.58)

where κ ≥ 2 and

Ω0 := {(x, y) ∈ Ω : x− x0 ≤ Ch| log h|, |y − y0| ≤ Ch3/4| log h|}.

The requirement that the mesh be quasi-uniform, i.e., there is also a positive
constant C such that h ≤ ChT , is stronger than our usual shape-regular as-
sumption. The proof of (3.58) exploits local bounds on the associated discrete
Green’s function. In [Nii90] this pointwise error estimate is sharpened to

|(u− uh)(x0, y0)| ≤ Ch11/8| log h| ‖u‖2,Ω0
+ Chκ, (3.59)

again on quasi-uniform triangular meshes. Furthermore, using improved esti-
mates for the approximation error on rectangular streamline-oriented uniform
meshes (similar to those given in Lemma 3.35 for a triangular three-directional
mesh), the estimate (3.59) is sharpened in [ZR96] for εm = h2 and δ = h to

|(u− uh)(x0, y0)| ≤ Ch2| log h| ‖u‖3,Ω0
+ Chκ, (3.60)

where

Ω0 := {(x, y) ∈ Ω : x− x0 ≤ Ch| log h|, |y − y0| ≤ Ch| log h|}.
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(A rectangular mesh is called streamline-oriented if the streamline direction
coincides with mesh lines. Such a mesh is called uniform if the meshsizes are
quasi-uniform in each coordinate direction.) All these estimates were proved
for differential operators with constant coefficients and under the assumption
that ε < h3/2. Note that in (3.60) the order of convergence has been improved
and also the local subdomain Ω0 has reduced width.

Remark 3.44. The standard duality arguments of classical finite element analy-
ses do not yield an improved L2-error estimate here because negative powers
of ε appear in the analysis. Regarding pointwise estimates, a detailed theoreti-
cal and experimental analysis of the convergence rate on specially constructed
meshes is given in [Zho97]. Starting with a triangular streamline-directed uni-
form mesh and inserting additional lines that are parallel to the streamline
direction, pointwise convergence rates of O(hα) with 3/2 ≤ α ≤ 2 are obtained
for a smooth function u; here α depends on the number of lines inserted. Thus
the SDFEM does not in general give local convergence of O(h2). ♣

Finally, we return to the drawback that in general the streamline dif-
fusion method does not satisfy a discrete maximum principle – recall Ex-
ample 3.33. As a consequence, overshoots or undershoots in the computed
solution can be observed near sharp layers. Several proposals for overcom-
ing this unpleasant behaviour are made in the literature. All are based on
adding so-called shock-capturing terms that lead to additional numerical vis-
cosity [BE02, BE05, Cod93, HMM86, INSB96, JK06b, JSW87, KLR02, LR06,
MH85, SE99, TP86]. A thorough review of methods that are designed to re-
duce spurious oscillations at layers, including extensive numerical tests, is
given in [JK07a, JK07b, JK07c].

Let Vh ⊂ H1
0 (Ω) be a finite element space consisting of piecewise polyno-

mials. Following [KLR02, LR06] we consider a shock-capturing variant of the
streamline-diffusion method:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ah(uh, vh) + asc(uh;uh, vh) = fh(vh) (3.61)

where ah(·, ·) and fh(·) are the bilinear and linear form associated with the
streamline-diffusion method (3.34)–(3.36) and asc(·; ·, ·) is a general shock-
capturing term of the form

asc(w;u, v) :=
∑

T∈Th

(τT (w)Dsc∇u,∇v)T . (3.62)

HereDsc : Ω → R2×2 is some symmetric positive semi-definite matrix function
with ‖Dsc‖L∞(Ω)2×2 ≤ 1. The non-negative limiter function τT is introduced
to restrict the effect of shock capturing to subregions where the residual Lu−f
is too large. A common feature of most proposals is that τT is a function of
the scaled residual
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τT (w) := τ∗T (R∗
T (w)), R∗

T (w) :=
‖Lw − f‖0,T

κT + ‖w‖1,T
, (3.63)

where a regularization parameter κT > 0 has been introduced. (Older shock-
capturing schemes [Cod93, GdC88, SE00, HMM86] with κT = 0 lead to ill-
posed nonlinear problems.) Note that in general the scheme (3.61) is nonlinear.

Theorem 3.45. Let the SD parameter δT satisfy

0 ≤ δT ≤
1

2
min

{
ω

c2T
,
h2

T

εµ2
inv

}

for each T ∈ Th. Assume that the limiter function τ∗T : R → R is continu-
ous. Then the streamline diffusion method with shock-capturing stabilization
(3.61)–(3.63) has at least one solution uh. Moreover, the a priori estimate

|||uh|||2SD +
∑

T∈Th

∥∥∥∥
√
τ∗T (uh)D1/2

sc ∇uh

∥∥∥∥
2

0,T

≤ C sup
vh∈Vh,|||vh|||SD=1

(f, vh)

holds true for each solution.

Proof. The proof relies on a variant of Brouwer’s fixed-point theorem; for the
h and hp version of the FEM see [KLR02] and [LR06] respectively. ⊓⊔

Remark 3.46. All extant uniqueness proofs make strong assumptions on τ∗T
that are usually not satisfied by the limiter functions used in practice. ♣

Examples of the shock-capturing term (3.62) are now given, with I used
to denote the unit tensor:

Artificial viscosity method [Ike83]

τT (w) = τT , Dsc = I.

Artificial crosswind diffusion method [JSW87], see also (3.45)

τT (w) = τT , Dsc =

⎧
⎪⎨
⎪⎩

I− b⊗ b|b|2 if b �= 0,

0 if b = 0.

Nonlinear isotropic diffusion

τT (w) = σT (w)

(‖Lw − f‖0,T

κT + ‖w‖1,T

)2

, Dsc = I

with appropriate σT , see [GdC88] or [Cod93].
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Nonlinear crosswind diffusion

τT (w) = σT (w)
‖Lw − f‖0,T

κT + ‖w‖1,T
, Dsc =

⎧
⎪⎨
⎪⎩

I− b⊗ b|b|2 if b �= 0,

0 if b = 0,

with appropriate σT , see [Cod93, CS99].

Although these methods have been successfully used numerically with higher-
order finite elements, all theoretical analysis for shock-capturing is up to now
confined to establishing the existence of solutions that allow qualitatively the
same error estimates as for stabilized methods without shock-capturing terms
[KLR02, LR06]. In particular, a discrete maximum principle (which would
explain the non-oscillatory behaviour of their solutions) has been rigorously
established only for first-order finite elements on certain simplicial meshes
[Cod93, Ike83, BE02, BE05].

Following [BE05], we now derive a discrete maximum principle for a
method with a special nonlinear shock-capturing term applied to piecewise
linear discretizations. To simplify the notation we will restrict ourselves to
meshes satisfying the assumption of Xu and Zikatanov (3.5); recall that this as-
sumption is satisfied for Delaunay triangulations and for weakly acute meshes
(see Section 3.1). When proving a discrete maximum principle for discretiza-
tions that include nonlinear shock-capturing terms, the M-matrix framework
of Section 3.1 is inapplicable and needs to be extended. To find a suitable
generalization, consider first discretizations of −∆. As in Section 3.1, we use
the standard piecewise linear basis functions ϕi, i = 1, . . . , N +M , satisfying
ϕi(pj) = δij , where pi, i = 1, . . . , N , denote the inner vertices of the triangu-
lation and pi, i = N + 1, . . . , N +M , are the boundary nodes. The set of all
indices j of vertices pj that are neighbours of pi is

Λi := {j �= i : ∃T ∈ Th with pi, pj ∈ T}.

Suppose that uh has a local minimum at an inner vertex pi, i.e. uh(pj) ≥
uh(pi) for all j ∈ Λi. By [XZ99, Lemma 2.1] the discretization of −∆ is an
M-matrix such that (∇ϕj ,∇ϕi) ≤ 0 for j �= i. But

(∇uh,∇ϕi) = uh(pi) (∇ϕi,∇ϕi) +
∑

j∈Λi

uh(pj) (∇ϕj ,∇ϕi) ,

so

(∇uh,∇ϕi) ≤ uh(pi)

(
∇
[
ϕi +

∑

j∈Λi

ϕj

]
,∇ϕi

)
= 0. (3.64)
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pipi

Fig. 3.6. Patch Ωi (left) and set of edges E(pi) (right) associated with an inner
vertex pi ∈ Ω

In fact this inequality can be sharpened: let Ωi, for i = 1, . . . , N , be the
union of all cells T ∈ Th that have pi as a vertex, let nT be the outer unit
normal on ∂T , and let E(pi) be the set of all edges E to which pi belongs; see
Figure 3.6. Using the notation

[∇uh]E :=
(
(∇uh)|T · nT + (∇uh)|T ′ · nT ′

)∣∣∣
E

for the scalar jump of ∇uh across the edge E = T ∩ T ′ (see Figure 3.7), and
writing hE for the length of edge E, elementwise integration by parts yields

pi pj

pk

pk′

T

T ′

nT

nT ′

E

Fig. 3.7. Illustration for calculating the scalar jump [∇uh]E across the edge E

(∇uh,∇ϕi) =
∑

T⊂Ωi

(∇uh,∇ϕi)T =
∑

T⊂Ωi

〈∇uh · nT , ϕi〉∂T

=
∑

E∈E(pi)

〈[∇uh]E , ϕi〉E =
∑

E∈E(pi)

hE

2
[∇uh]E ,

since [∇uh]E is constant along E.
The assumption that uh has a local minimum at the inner vertex pi �∈ ∂Ω

implies that the term [∇uh]E is non-positive for all E ∈ E(pi). To see this, in
the notation of Figure 3.7 one has ϕi + ϕj + ϕk = 1 on T , so
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∇uh|T = (uh(pj)− uh(pi))∇ϕj + (uh(pk)− uh(pi))∇ϕk

and similarly

∇uh|T ′ = (uh(pj)− uh(pi))∇ϕj + (uh(pk′)− uh(pi))∇ϕk′ .

As

nT =
∇ϕk′

|∇ϕk′ | = − ∇ϕk

|∇ϕk|
= −nT ′ ,

it follows that

[∇uh]E =
(
(∇uh)|T · nT + (∇uh)|T ′ · nT ′

)∣∣∣
E

= −
[
(uh(pk)− uh(pi))|∇ϕk|+ (uh(pk′)− uh(pi))|∇ϕk′ |

]
≤ 0.

To summarize, if uh has a local minimum at an inner vertex pi �∈ ∂Ω, then

(∇uh,∇ϕi) = −
∑

E∈E(pi)

hE

2

∣∣[∇uh]E
∣∣.

This relation is stronger than the inequality (3.64) and forms the basis for the
non-linear generalization of the discrete maximum principle (DMP) that we
shall apply to the following problem:

Find uh ∈ Vgh such that for all vh ∈ V0h one has

ãh(uh; vh) = (f, vh). (3.65)

Here ã(· ; ·) is a semilinear form that is linear in the second argument, and
Vgh (V0h) is the finite element space associated with inhomogeneous (homo-
geneous) boundary values g.

Definition 3.47. The semilinear form ãh(· ; ·) is said to satisfy the strong
DMP property, if for all uh ∈ Vgh and for all inner vertices pi ∈ Ω such that
uh is locally minimal at the vertex pi over the patch Ωi, there are positive
quantities αE such that

ãh(uh;ϕi) ≤ −
∑

E∈E(pi)

αE

∣∣[∇uh]E
∣∣ ;

here ϕi is the piecewise linear basis function that satisfies ϕi(pj) = δij.

Definition 3.48. The semilinear form ãh(·; ·) is said to satisfy the weak DMP
property, if for all uh ∈ Vgh and for all inner vertices pi ∈ Ω such that uh has
a negative local minimum at the vertex pi over the patch Ωi, there are positive
quantities αE such that

ãh(uh;ϕi) ≤ −
∑

E∈E(pi)

αE

∣∣[∇uh]E
∣∣ ;

here ϕi is the piecewise linear basis function that satisfies ϕi(pj) = δij.



324 3 Finite Element Methods

Following [BE05], we show that the strong/weak DMP property implies a
strong/weak minimum principle for the discrete solution of (3.65).

Theorem 3.49. Assume that the semilinear form ãh(· ; ·) has the strong DMP
property and that (f,ϕi) ≥ 0 for i = 1, . . . , N . Then the piecewise linear
solution uh of (3.65) reaches its minimum at a boundary node, i.e.,

uh(pi) ≥ min
pj∈∂Ω

uh(pj) for i = 1, . . . , N +M.

If instead ãh(· ; ·) has the weak DMP and (f, ϕi) ≥ 0 for i = 1, . . . , N , then
the solution uh of (3.65) satisfies

uh(pi) ≥ min
pj∈∂Ω

{
0, uh(pj)

}
for i = 1, . . . , N +M.

Proof. Assume that ãh(· ; ·) has the strong DMP property. Suppose that uh

attains its minimum at an inner vertex pi ∈ Ω. Then there are positive αE

such that
0 ≤ (f, ϕi) = ãh(uh;ϕi) ≤ −

∑

E∈E(pi)

αE

∣∣[∇uh]E
∣∣.

Consequently ∇uh is constant on Ωi and the minimum is attained also at
a boundary node of Ωi. One can continue this argument until the boundary
of Ω is reached.

Now assume instead that ãh(· ; ·) has the weak DMP property. To prove
the second assertion of the theorem, observe that if uh has a nonnegative
minimum, or a negative minimum at a boundary vertex, then the result is
immediate. Thus we need only consider the case where uh attains a negative
minimum at an inner vertex, and the above argument can be used again. ⊓⊔
Remark 3.50. If ãh(−uh;ϕi) = −ãh(uh;ϕi), then a multiplication by −1 of
the inequalities of Theorem 3.49 gives corresponding maximum principles. ♣
Remark 3.51. Define the discrete nonlinear operator L̃h associated with the
semilinear form ãh by

(L̃huh, vh) := ãh(uh; vh) for all uh, vh ∈ Vh.

The weak DMP property guarantees that L̃h is inverse-monotone; see (3.3).
In particular for f ≡ 0 one has the discrete version of the maximum principle
(3.4), viz.,

min
pj∈∂Ω

{
0, uh(pj)

}
≤ uh(pi) ≤ max

pj∈∂Ω

{
0, uh(pj)

}
for i = 1, . . . , N +M.

The strong DMP property implies the sharper estimate

min
pj∈∂Ω

uh(pj) ≤ uh(pi) ≤ max
pj∈∂Ω

uh(pj) for i = 1, . . . , N +M.

As we saw on pages 321–323, one has the strong DMP property for the dis-
cretization of the Laplacian by piecewise linear finite elements on meshes that
satisfy the Xu and Zikatanov condition (3.5). ♣
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Example 3.52. Consider for c ≥ 0 the continuous problem

−u′′ + cu = 0 in (−1,+1), u(−1) = u(+1) = 1,

whose solution is u(x) = cosh
√

cx/ cosh
√

c. For c ≥ 0 one has a weak maxi-
mum principle:

0 = min{0, 1} ≤ u(x) ≤ max{0, 1} = 1.

But if c > 0 there can be no strong maximum principle because it would force
u to be constant on [−1, 1]. Thus in the discrete case one cannot expect that
the associated operator satisfies a strong DMP property for c > 0. ♣

The following technical lemma will be needed later.

Lemma 3.53. If uh ∈ Vgh has a local minimum at the vertex pi, then

∣∣(∇uh)|T
∣∣ ≤

∑

E∈E(pi)

∣∣[∇uh]E
∣∣ for all T ⊂ Ωi.

Proof. See [BE05, Lemma 2.7]. ⊓⊔

Now consider the model problem

−ε∆u+ b∇u = 0 in Ω, u = g on Γ = ∂Ω,

where b is smooth. Let gh be the piecewise linear interpolation of g. Let Vgh and
V0,h be the finite element spaces comprising piecewise linear functions vh that
satisfy vh = gh and vh = 0 respectively on the boundary Γ . The streamline
diffusion method would be based on the bilinear form

ah(w, v) := ε(∇w,∇v) + (b · ∇w, v) +
∑

T∈Th

δT (b · ∇w, b · ∇v)T .

We seek a shock-capturing term asc(w; v) such that the augmented semilinear
form ãh(w; v) := ah(w, v) + asc(w; v) enjoys the strong or weak DMP prop-
erty. Then the SDFEM with shock-capturing for solving the model problem is:

Find uh ∈ Vgh such that for all vh ∈ V0h one has

ah(uh, vh) + asc(uh; vh) = 0. (3.66)

To construct a suitable shock-capturing term asc(· ; ·) one needs sharp esti-
mates of ah(uh;ϕi) when uh has a local minimum at pi relative to the patchΩi;
recall Figure 3.6. It has already been shown that

(∇uh,∇ϕi) = −
∑

E∈E(pi)

hE

2

∣∣[∇uh]E
∣∣. (3.67)
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The shape-regularity of the mesh implies the existence of a positive constant ρ
such that

max
T⊂Ωi

|T | ≤ ρ min
E∈E(pi)

h2
E

and that there is a fixed maximum number of cells T in Ωi, independently of
the mesh size h. As ∇uh|T is constant, an appeal to Lemma 3.53 yields

∣∣(b · ∇uh, ϕi)
∣∣ =

∑

T⊂Ωi

∣∣(b · ∇uh, ϕi)T

∣∣ ≤
∑

T⊂Ωi

|T | ‖b‖0,∞,T

3

∣∣(∇uh)|T
∣∣

≤
∑

E∈E(pi)

h2
E

∣∣[∇uh]E
∣∣
{ ∑

T⊂Ωi

|T |
3h2

E

‖b‖0,∞,Ωi

}

≤ d1
∑

E∈E(pi)

h2
E ‖b‖0,∞,ω(E)

∣∣[∇uh]E
∣∣, (3.68)

where ω(E) = Ωi ∪Ωj when E is the edge joining the vertices pi and pj , and
d1 is some fixed constant. Analogously, the stabilizing term satisfies

∣∣∣
∑

T∈Th

δT (b · ∇uh, b · ∇ϕi)T

∣∣∣ =
∣∣∣
∑

T⊂Ωi

δT (b · ∇uh, b · ∇ϕi)T

∣∣∣

≤
∑

T⊂Ωi

CδT ‖b‖20,∞,T |T |1/2
∣∣(∇uh)|T

∣∣

≤ d2
∑

E∈E(pi)

h2
E ‖b‖0,∞,ω(E)

∣∣[∇uh]E
∣∣ , (3.69)

where Lemma 3.53 was used again, the standard choice of δT in the convection-
dominated regime was made, viz., ‖b‖0,∞,T δT ≤ ChT , and the shape-
regularity of the mesh gives hT |T |1/2 ≤ Ch2

E . In (3.69), d2 is a fixed constant.
Consider the term

ψE(uh; vh) =

(
sgn

(
∂uh

∂tE

))
∂vh

∂tE
hE

on any edge E ∈ E , where ∂/∂tE denotes the tangential derivative along E. It
is not difficult to see that for a basis function vh = ϕi the term depends only on
the restriction of uh ontoΩi, which means that it is local, and ψE(uh;ϕi) = −1
for uh locally minimal at pi. Thus, one possible shock-capturing term is

asc(uh; vh) := cρ
∑

E∈E
h2

E ‖b‖0,∞,ω(E)

∣∣[∇uh]E
∣∣ψE(uh; vh) (3.70)

with a positive constant cρ that depends on the shape-regularity constant.
Indeed, we have the following

Theorem 3.54. Let the SD parameter δT satisfy δT ≤ C hT /‖b‖0,∞,T . Define
the shock-capturing term by (3.70). Then for sufficiently large cρ, the semi-
linear form corresponding to the SDFEM with shock-capturing satisfies the
strong DMP.
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Proof. Collecting the estimates (3.67)–(3.69), one gets

ãh(uh;ϕi) ≤ −
∑

E∈E(pi)

[ε
2

+ (cρ − 1)(d1 + d2)hE‖b‖0,∞,ω(E)

]
hE

∣∣[∇uh]E
∣∣

which establishes the strong DMP property of the semilinear form ãh. ⊓⊔

Remark 3.55. For clarity in our presentation we did not compute precise for-
mulas specifying how d1 and d2 depend on the data and on the mesh para-
meters in (3.68) and (3.69). More detailed information and an extension to
the three-dimensional case as well as to the continuous interior penalty (CIP)
method of Section 3.3.2 below can be found in [BE05]. ♣

Remark 3.56. One has f ≡ 0 in the model problem above and the shock-
capturing term (3.70) satisfies asc(−uh, vh) = −asc(uh, vh). Hence the discrete
solution uh of (3.66) achieves its minimum and its maximum at the bound-
ary if cρ is chosen large enough. That is, the discrete maximum principle
suppresses excessive oscillations. ♣

3.2.2 Galerkin Least Squares Finite Element Method (GLSFEM)

Two important features of the streamline diffusion finite element method are:

(a) the standard Galerkin method is augmented by the addition of
terms that represent the residual of the original differential equation
on each mesh element;
(b) since the residual of the exact solution is zero, the method is
automatically consistent, unlike some other upwind methods.

The above features can be preserved in a more general framework, the
Galerkin least squares method, which tries to combine certain advantages
of the Galerkin and least squares methods: the Galerkin method has the pro-
jection property and can use elements that lie only in C0(Ω), while the least
squares method can be applied to a large class of problems.

Let us briefly describe the application of the classical least squares method
to solving the problem

Lu := −ε∆u+ b · ∇u+ cu = f in Ω, u
∣∣
∂Ω

= 0. (3.71)

Begin by choosing a finite dimensional space Wh ⊂ H2(Ω) that comprises
functions vh satisfying the homogeneous boundary condition vh

∣∣
∂Ω

= 0. Then
we seek a solution uh ∈Wh of the minimization problem

‖Luh − f ‖20 = min
vh∈Wh

‖Lvh − f ‖20 .

This is equivalent to the problem:

Find uh ∈Wh such that for all vh ∈Wh one has



328 3 Finite Element Methods

(Luh − f, Lvh) = 0. (3.72)

A drawback of this method – compared with the standard Galerkin finite el-
ement method – is that when using piecewise polynomials, the assumption
that Wh ⊂ H2(Ω) requires the use of C1(Ω) elements, but the construction
of C1(Ω) elements on arbitrary triangulations is not easy. A second drawback
is that the condition number of the matrix associated with the discrete prob-
lem (3.72) is larger than the condition number encountered in the standard
Galerkin approach (but see [CLMM94, FMM98], where the original elliptic
problem is transformed into a first-order system to avoid this difficulty). On
the other hand, the least squares method does not have restricted stability
properties like the standard Galerkin finite element method in the singularly
perturbed case; furthermore, the matrix associated with (3.72) is symmetric
and positive definite.

The aim of this section is to combine the best features of the Galerkin and
least squares methods. Let us introduce the residual

∑

T∈Th

δT (Luh − f, Lvh)T (3.73)

of the equation (3.71), which is evaluated element by element. This permits
use of C0 elements from any space Vh ⊂ H1

0 (Ω). The basic idea of the Galerkin
least squares finite element method (GLSFEM) ([HS88, HFH89]) is to add
this term to the standard Galerkin finite element method:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ε(∇uh,∇vh) + (b · ∇uh + cu, vh) +
∑

T∈Th

δT (Luh, Lvh)T

= (f, vh) +
∑

T∈Th

δT (f, Lvh)T . (3.74)

Remark 3.57. (Generalized GLSFEM) More generally, instead of (3.73), one
could add the term ∑

T∈Th

δT (Luh − f, ψ(vh))T

to the standard Galerkin finite element method, where ψ is some user-chosen
operator. If ψ(vh) = Lvh one recovers the GLSFEM, while if ψ(vh) = b · ∇vh

the SDFEM is generated. Other choices are possible, e.g., in [FFH92] ψ(vh) =
b · ∇vh + ε∆vh was studied in the case c = 0. ♣

We now analyse the GLSFEM. Assume that b, c and f are sufficiently
smooth with c− 1

2∇ · b ≥ ω > 0. The discrete solution is sought in the space

Vh := { vh ∈ Vh : vh

∣∣
T
∈ Pk(T ) for all T ∈ Th }

of piecewise polynomials of degree k ≥ 1. Introduce the mesh-dependent norm
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|||vh|||GLS :=
(
ε|vh|21 + ω‖vh‖20 +

∑

T∈Th

δT ‖Lvh‖20,T

)1/2

,

the bilinear form

ah(w, v) := ε(∇w,∇v) + (b · ∇w + cw, v) +
∑

T∈Th

δT (Lw,Lv)T ,

and the linear form

fh(v) := (f, v) +
∑

T∈Th

δT (f, Lv)T .

The next result shows that the GLSFEM is more stable than the standard
Galerkin method. Unlike the SDFEM of Section 3.2.1, no upper bound on δT
is needed in the proof.

Lemma 3.58. Let the Galerkin least squares parameter δT be positive. Then
the discrete bilinear form ah is coercive on Vh × Vh, i.e.,

ah(vh, vh) ≥ |||vh|||2GLS for all vh ∈ Vh,

and the linear form fh is continuous on Vh, i.e.,

|fh(vh)| ≤ C
[
‖f‖0 +

( ∑

T∈Th

δT ‖f‖20,T

)1/2
]
|||vh|||GLS for all vh ∈ Vh.

Proof. For each vh ∈ Vh, one has

ah(vh, vh) = ε|vh|21 + (c− 1

2
∇ · b, v2h) +

∑

T∈Th

δT ‖Lvh‖20,T

≥ |||vh|||2GLS

and

|fh(vh)| ≤ ‖f‖0 ‖vh‖0 +
( ∑

T∈Th

δT ‖f‖20,T

)1/2( ∑

T∈Th

δT ‖Lvh‖20,T

)1/2

≤ C
[
‖f‖0 +

( ∑

T∈Th

δT ‖f‖20,T

)1/2
]
|||vh|||GLS .

⊓⊔

Remark 3.59. Lemma 3.58 implies the a priori estimate

|||uh|||GLS ≤ C
[
‖f‖0 +

( ∑

T∈Th

δT ‖f‖20,T

)1/2
]
.
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Moreover, we have the stability inequality

|||uh|||GLS ≤ |||Ahuh|||∗ for all uh ∈ Vh,

where the discrete operator Ah : Vh → V ∗
h is defined by

< Ahvh, wh >:= ah(vh, wh) ∀vh, wh ∈ Vh

and the norm on the dual space V ∗
h is

|||gh|||∗ := sup
wh∈Vh

< gh, wh >

|||wh|||GLS
∀gh ∈ V ∗

h .

Thus the GLSFEM has additional stability compared with the standard
Galerkin finite element method, where δT = 0. ♣

If an upper bound is imposed on δT , then the GLSFEM can also control
the derivatives in the streamline direction. To demonstrate this, introduce the
mesh-dependent norm

|||vh|||SDGLS :=
(
|||vh|||2SD +

∑

T∈Th

δT ‖cvh − ε∆vh‖20,T

)1/2

,

where ||| · |||SD was defined in Section 3.2.1.

Lemma 3.60. Let the GLS parameter δT satisfy

0 < δT <
1

8
min

{
ω

c2T
,
h2

T

εµ2
inv

}
,

where µinv is defined in (3.32) and cT := maxx∈T |c(x)|. Then the discrete
bilinear form is coercive with respect to ||| · ||||SDGLS, i.e.,

ah(vh, vh) ≥ 1

2
|||vh|||2SDGLS for all vh ∈ Vh.

Furthermore, one has the a priori estimate

|||uh|||SDGLS ≤ 2‖f‖0 + 4

( ∑

T∈Th

δT ‖f‖20,T

)1/2

.

Proof. For all vh ∈ Vh, we have

ah(vh, vh) = ε|vh|21 + (c− 1

2
∇ · b, v2h) +

∑

T∈Th

δT ‖b · ∇vh‖20,T

+ 2
∑

T∈Th

δT (cvh − ε∆vh, b · ∇vh)T +
∑

T∈Th

δT ‖cvh − ε∆vh‖20,T

≥ |||vh|||2SDGLS −
∑

T∈Th

δT
2
‖b · ∇vh‖20,T

− 4
∑

T∈Th

δT
(
‖cvh‖20,T + ‖ε∆vh‖20,T

)
.
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Using the local inverse inequality ‖∆vh‖0,T ≤ µinv h−1
T |vh|1,T and the upper

bound for δT gives

ah(vh, vh) ≥ |||vh|||2SDGLS −
∑

T∈Th

δT
2
‖b · ∇vh‖20,T −

ω

2
‖vh‖20 −

ε

2
|vh|21

≥ 1

2
|||vh|||2SDGLS .

⊓⊔

The convergence properties of the GLSFEM are studied next.

Theorem 3.61. Assume that u ∈ H1
0 (Ω) ∩ Hk+1(Ω), where k ≥ 1. Let the

GLS parameter δT be positive. Then for the solution uh of the GLSFEM (3.74)
one has the global error estimate

|||u− uh|||GLS ≤ C hk

( ∑

T∈Th

λ(ε, δT , hT )|u|2k+1

)1/2

,

where
λ(ε, δT , hT ) := ε+ ε2δTh

−2
T + δT + h2

T + δ−1
T h2

T .

Proof. The solution u belongs to the space H1
0 (Ω) ∩ Hk+1(Ω) with k ≥ 1,

so the scheme is consistent, i.e., ah(u, vh) = fh(vh) for all vh ∈ Vh. Hence,
writing uI for the interpolant of u from Vh, one obtains

|||uI − uh|||2GLS ≤ ah(uI − uh, u
I − uh) = ah(uI − u, uI − uh).

Invoking the interpolation properties (3.31) and estimating separately each
term on the right-hand side, we have

|ε(∇(uI − u),∇(uI − uh))| ≤ Cε1/2hk|u|k+1 |||uI − uh|||GLS ,

∣∣∣∣
∑

T∈Th

δT
(
L(uI − u), L(uI − uh)

)
T

∣∣∣∣

≤
( ∑

T∈Th

δT ‖L(uI − u)‖20,T

)1/2

|||uI − uh|||GLS

≤ C hk

( ∑

T∈Th

δT (ε2h−2
T + 1 + h2

T )

)
|u|k+1 |||uI − uh|||GLS

and

|(c(uI − u), uI − uh)| ≤ C
( ∑

T∈Th

h2k+2
T |u|2k+1,T

)1/2

|||uI − uh|||GLS .
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The term
(b · ∇(uI − u), uI − uh).

has not yet been estimated. If we were to bound this term by

|(b · ∇(uI − u), uI − uh)| ≤ C hk |u|k+1 |||uI − uh|||GLS ,

it is then impossible to extract any extra power of h in the convection-
dominated case ε ≤ h. Therefore, integrate by parts then complete the term
to get L(uI − uh):

− (b · ∇(uI − u), uI − uh)

= (uI − u, b · ∇(uI − uh)) + (uI − u,∇ · b (uI − uh))

=
∑

T∈Th

(uI − u, L(uI − uh))T +
∑

T∈Th

(uI − u, (∇ · b− c)(uI − uh))T

+
∑

T∈Th

(uI − u, ε∆(uI − uh))T .

The first term on the right-hand side can now be bounded by

∣∣∣∣
∑

T∈Th

(uI − u, L(uI − uh))T

∣∣∣∣

≤ C
( ∑

T∈Th

δ−1
T h2k+2

T |u|2k+1,T

)1/2

|||uI − uh|||GLS

≤ Chk

( ∑

T∈Th

δ−1
T h2

T |u|2k+1,T

)1/2

|||uI − uh|||GLS .

The second term is dealt with in a standard way:

|
∑

T∈Th

(uI − u, (∇ · b− c)(uI − uh))T |

≤ C hk+1|u|k+1‖uI − uh‖0
≤ C

( ∑

T∈Th

h2k+2
T |u|2k+1,T

)1/2|||uI − uh|||GLS .

To bound the third term, one appeals to the local inverse inequality (3.32):

∣∣∣∣
∑

T∈Th

(uI − u, ε∆(uI − uh))T

∣∣∣∣ ≤ C
∑

T∈Th

hk+1
T |u|k+1,T εµinvh

−1
T |uI − uh|1,T

≤ Cε1/2hk|u|k+1 |||uI − uh|||GLS .

Finally, combining all these inequalities yields
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|||uI − uh|||GLS

≤ Chk

[ ∑

T∈Th

(
ε+ ε2δTh

−2
T + δT + h2

T + δ−1
T h2

T

)
|u|2k+1,T

]1/2

from which, via a triangle inequality, the error estimate follows. ⊓⊔

Remark 3.62. The choice

δT ∼
hT√

1 + (ε/hT )2
(3.75)

minimizes the expression ε2δTh
−2
T +δT +δ−1

T h2
T in Theorem 3.61. Thus, taking

the GLS parameter

δT = δ0
hT√

1 + (ε/hT )2

with some user-chosen constant δ0, we have

|||uI − uh|||GLS ≤ C(ε1/2 + h1/2)hk|u|k+1 .

This choice of δT corresponds asymptotically to the choice of the SD parameter
in Section 3.2.1: from (3.75), for ε ≤ ChT we see that δT ∼ hT and for
ε ≥ ChT , we have δT ∼ h2

T /ε; compare (3.38). ♣

Remark 3.63. The optimal choice of the GLS parameter is, as for the SDFEM,
an open question. If c ≡ 0, b and f are constant and hT = h for all T , then a
nodally exact solution can be obtained in the one-dimensional case by setting

δT =
h

2|b|

(
cothPe− 1

Pe

)
with Pe :=

|b|h
2ε

.

In the asymptotic limit case ε≪ h, i.e., Pe≫ 1, one then has δT ∼ h, while
for ε≫ h we have instead δT ∼ h2/ε. ♣

Remark 3.64. (Galerkin gradient least squares method) For reaction-diffusion
problems where b ≡ 0, a so-called Galerkin gradient least squares method is
proposed in [FdC89]. Here a stabilization term of the form

∑

T∈Th

δT (∇(Luh − f),∇(Lvh))T

is used instead of
∑

T∈Th
δT (Luh − f, ψ(vh))T . ♣

3.2.3 Residual-Free Bubbles

A new characterization of the streamline diffusion method is presented in
[BR94]. Its key observation is that the SDFEM for piecewise linear finite
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elements is equivalent to a Galerkin approach using standard finite element
spaces enriched by “bubble functions” where static condensation of the bubble
component of the solution yields the SDFEM [BBF93]. A comparison of both
approaches is carried out by Russo [Rus06], who writes “the importance of
these ideas lies in the recognition that the variational framework should be
used as a ‘safe guide’ in the development of new numerical methods”.

To elucidate the bubble function approach, let us consider the problem
(3.30) with piecewise constant functions b and f and c ≡ 0. Assume that Vh

consists of piecewise linear functions; enrich this space by a bubble space Bh

defined by

Bh := span {bT ∈ H1
0 (T ), ∀T ∈ Th }, dim (Bh) < ∞.

This definition of Bh permits very general bubble functions bT which will be
restricted later. Now consider the standard Galerkin FEM on the enriched
space Vh ⊕Bh:

Find uh ∈ Vh ⊕Bh such that for all vh ∈ Vh ⊕Bh one has

ε(∇uh,∇vh) + (b · ∇uh, vh) = (f, vh). (3.76)

The dimension of this system of equations can be reduced by static conden-
sation of the bubble component of the solution. To do this, write the solution
uh as uh = uL +uB , with uL ∈ Vh and uB ∈ Bh, and apply the test functions
vh = vL ∈ Vh and vh = bT ∈ Bh. Then (3.76) can be reformulated as:

Find uL ∈ Vh and uB ∈ Bh such that for all vL ∈ Vh and all vB ∈ Bh,

ε(∇(uL + uB),∇vL) + (b · ∇(uL + uB), vL) = (f, vL), (3.77a)

ε(∇(uL + uB),∇vB) + (b · ∇(uL + uB), vB) = (f, vB). (3.77b)

Now uB =
∑

T∈Th
dT bT where the dT are unknown constants, so (3.77b) is

equivalent to:

Given uL ∈ Vh, find {dT : dT ∈ R} such that for each T one has

ε
(
∇(uL + dT bT ),∇bT

)
T

+
(
b · ∇(uL + dT bT ), bT

)
T

= (f, bT )T . (3.78)

An integration by parts then gives

ε(∇uL,∇bT )T = −ε(∆uL, bT )T +

〈
ε
∂uL

∂n
, bT

〉

∂T

= 0,

dT (b · ∇bT , bT )T =
dT

2

〈
b · n, b2T

〉
∂T

= 0,

so one can solve (3.78) for dT , obtaining

dT =
(1, bT )T

ε|bT |21,T

(f − b · ∇uL)
∣∣
T
.
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Similarly ε(∇uB ,∇vL) = 0 and one can reduce (3.77a) to

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

dT (b · ∇bT , vL)T = (f, vL).

The term
∑

T∈Th
· · · does not appear in the standard Galerkin finite element

method applied on the space Vh. It can be rewritten as

∑

T∈Th

dT (b · ∇bT , vL)T = −
∑

T∈Th

dT (b · ∇vL, bT )T

=
∑

T∈Th

γT (b · ∇uL − f, b · ∇vL)T ,

where

γT =
1

|T |
|(1, bT )T |2
ε|bT |21,T

. (3.79)

The bubble component has now been eliminated from (3.76), giving

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

γT (b · ∇uL, b · ∇vL)T

= (f, vL) +
∑

T∈Th

γT (f, b · ∇vL)T for all vL ∈ Vh. (3.80)

This is the SDFEM with the SD parameter δT = γT specified by (3.79).
Clearly the choice of bubble function bT determines the value of the SD pa-
rameter γT .

Remark 3.65. The simplest bubble function is the product of barycentric coor-
dinates λT

i , i = 1, 2, 3. A scaling argument then shows that γT ∼ h2
T /ε, which

corresponds to the choice of δT in the diffusion-dominated case of (3.38). ♣
Now let us consider the largest possible bubble space

Bh := {v ∈ H1
0 (Ω) : v|T ∈ H1

0 (T ) ∀T ∈ Th}, dim (Bh) =∞.

As above one can split the problem (3.76) into (3.77a) and (3.77b), but in
contrast to the previous case (3.77b) is now an infinite-dimensional problem.
Integrating by parts over each T ∈ Th, one obtains

(∇uL,∇vB)T = (∇uB ,∇vL)T = 0, ∀uL, vL ∈ VL, ∀uB , vB ∈ Bh

and hence the local problems:

Given uL ∈ Vh, find uB ∈ Bh such that for each T and all vB ∈ Bh,

ε(∇uB ,∇vB)T + (b · ∇uB , vB)T = (f − b · ∇uL, vB)T . (3.81)
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Observe that (3.81) is the weak formulation of the problem

−ε∆uB + b · ∇uB = (f − b · ∇uL)
∣∣
T

in T, uB = 0 on ∂T.

Thus, choosing the residual-free bubble function bT to be the solution of

−ε∆bT + b · ∇bT = 1 in T, bT = 0 on ∂T, (3.82)

the component uB ∈ Bh can be represented as

uB =
∑

T∈Th

(f − b · ∇uL)
∣∣
T
bT .

Note that the choice of bT in (3.82) is a natural generalization of the L-spline
ψi used in (I.2.27). Eliminating uB from (3.77a) again produces (3.80) with γT

specified by (3.79). Multiplying (3.82) by bT and integrating by parts shows
that

ε|bT |21,T = (1, bT )T ,

so in order to determine γT from (3.79), one must compute

γT =
1

|T | (1, bT )T

for the solution bT of (3.82). In the one-dimensional case, (3.82) can be solved
explicitly so γT can be computed; this yields the Il’in-Allen-Southwell scheme.
But in higher dimensions the exact solution of (3.82) seems to be impossible.
Nevertheless, one can generalize the method to an abstract setting by relaxing
the assumptions that the data (b and f) are constant and that piecewise linear
elements are used, as we now demonstrate.

Let us start again with the Galerkin formulation of (3.76): we seek uh ∈ Vh,
uB ∈ Bh such that

a(uh, vh) + a(uB , vh) = (f, vh) for all vh ∈ Vh, (3.83a)

a(uh, vB) + a(uB , vB) = (f, vB) for all vB ∈ Bh, (3.83b)

where Vh is some finite element space of piecewise polynomials of degree k ≥ 1,
the space Bh is a suitable bubble space with Vh ∩ Bh = ∅, and the bilinear
form is

a(u, v) := ε(∇u,∇v) + (b · ∇, v).
Two new functions in Bh are now introduced.

Find M(uh), F (f) ∈ Bh such that for all vB ∈ Bh one has

a(M(uh), vB) = −a(uh, vB), a(F (f), vB) = (f, vB).

Then uB = M(uh) + F (f) can be eliminated from (3.83), yielding the exact
residual-free bubble (RFB) method:
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Find uh ∈ Vh such that for all vh ∈ Vh one has

a(uh + M(uh), vh) = (f, vh)− a(F (f), vh).

The stability properties of the exact RFB method are identical to those of
the SDFEM when piecewise linears are used, but for piecewise bilinears on
rectangular meshes certain mesh configurations must be avoided to ensure
that the RFB method is as stable as the SDFEM; for more details see [FT02].

The terms a(M(uh), vh) and a(F (f), vh) must be evaluated to imple-
ment the exact RFB method, but this means solving an infinite-dimensional
problem so in practice some type of approximation is used. Various pos-
sibilities are the pseudo-residual-free bubble method [BMR98], the stabi-
lizing subgrid method [BMR05], and two-level and three-level approaches
[FN01, FNS98, GWR04, GWR05].

Remark 3.66. A priori error estimates for the exact residual-free bubble
method are given for finite elements on simplicial meshes in [BHM+99,
BMS00, ARS04]. Bilinears on quadrilateral meshes without the assumption
of shape regularity are studied in [Ris01]. The case of higher- order finite el-
ements on anisotropic quadrilateral meshes is investigated in [CS07]. Local
estimates are discussed in [San00, San01]. A priori error estimates for some
approximate residual-free bubble methods are given in [ARS04, FJMT07]. ♣

Remark 3.67. The residual-free bubble method is closely related to the vari-
ational multiscale method [Hug95, HS07, HFMQ98] that was examined in
Section I.2.2.4. The essential difference between these methods is that in the
residual-free bubble approach one has Vh⊕Bh ⊂ V but Vh⊕Bh �= V , whereas
in the variational multiscale method we make the splitting V = Vh ⊕ V ⋄ into
resolvable and unresolvable scales. ♣
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3.3 Adding Symmetric Stabilizing Terms

When the residual-based stabilization methods of the previous section are
applied to systems of convection-diffusion-reaction problems, this engenders
couplings between the dependent variables but in general these couplings do
not have any physical counterpart. In optimal control problems, residual-based
stabilization methods lead to different discrete adjoint equations depending
on whether the discretization of the problem or the construction of the adjoint
is carried out first [BV07, BL08]. It has been observed that the asymmetry of
the stabilizing term means that the computed control is significantly affected
by the way in which the discrete optimality condition is defined. Moreover,
in the case of transient problems, this asymmetric stabilization does not lead
to diagonal matrices for the reaction term when a lumping technique (nodal
quadrature) is applied; this is awkward for convection-dominated flows with
zones of strong reaction. In the next two subsections we consider symmetric
stabilization methods that avoid these failings.

3.3.1 Local Projection Stabilization

In residual-based stabilization methods with a given finite element space Yh,
several terms are added to the standard Galerkin method. For example, the
streamline diffusion method adds

∑

T∈Th

δT (−ε∆u+ b · ∇u+ cu− f, b · ∇v)T ,

but an inspection of how stabilization is achieved reveals that only the term

∑

T∈Th

δT (b · ∇u, b · ∇v)T (3.84)

is responsible for the increased stability and consequent improved convergence
properties. Thus it is natural to ask: in order to reduce the costs of assembling
the discrete system, it is enough to add only a term like (3.84)? But with such
a replacement, the consistency property of the method is lost. To retain the
stability properties of the SDFEM, in the convection-dominated case choose
δT = O(hT ) in (3.84); then

∣∣∣∣∣
∑

T∈Th

δT (b · ∇u, b · ∇v)T

∣∣∣∣∣ ≤ Ch
1/2|u|1

( ∑

T∈Th

δT ‖b · ∇v‖20,T

)1/2

shows that the consistency error is O(
√
h ) and the method will be suboptimal.

The remedy presented here is to introduce a projection πh : L2(Ω) → Dh into
a second finite element space Dh, then to replace b · ∇u by its fluctuations
κh(b · ∇u), where κh := id − πh with id : L2(Ω) → L2(Ω) the identity
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operator. The order of the consistency error can now be tuned by choosing an
appropriate projection space Dh. Indeed, if πh is the L2 projection and Dh

the space of discontinuous, piecewise polynomials of degree k− 1 with k ≥ 1,
then

‖κh(b · ∇u)‖0,T ≤ Chk
T ‖u‖k+1,T ,

and for δT = O(hT ) it follows that
∣∣∣
∑

T∈Th

δT (κh(b · ∇u), κh(b · ∇v))T

∣∣∣

≤ Chk+1/2‖u‖k+1

( ∑

T∈Th

δT ‖κh(b · ∇v)‖20,T

)1/2

.

Later we shall learn that the O(hk+1/2) estimation of the convection term for
an approximation space Yh with piecewise polynomials of degree k (which is
already known for the SDFEM) can be preserved if there is an interpolant
jh : H2(Ω) → Yh such that w − jhw is orthogonal to Dh.

This local projection stabilization (LPS) method is introduced for the
Stokes problem in [BB01], extended to the transport equation in [BB04], and
analysed for the lowest order (r ≤ 2) discretizations of the Oseen equations
in [BB06]. In all these papers a two-level approach is used where the projection
space Dh lives on a mesh that is coarser than the mesh used by the approx-
imation space Yh. This has the disadvantage that the LPS scheme produces
a stencil that is less compact than for the SDFEM stabilization. To overcome
this difficulty, an alternative technique based on enrichment of the approxi-
mation space Yh is proposed in [MST07]. We shall explain both approaches
in a unified framework.

In the following the notation α ∼ β means that there exist positive con-
stants C1 and C2, which are independent of the meshsize h and of ε, such
that

C1α ≤ β ≤ C2α.

Let Mh be a shape-regular decomposition of Ω into d-dimensional sim-
plices, quadrilaterals or hexahedra. Each cell M ∈ Mh is called a macro-
element and its diameter is denoted by hM . Each macro-element M will be
decomposed into one or more cells T ∈ Th, such that Th also is shape-regular
– one could for example generate Th from Mh by some refinement rule. Then
the projection space Dh will be a discontinuous finite element space defined
on the macro-decomposition Mh while the approximation space Yh ⊂ H1(Ω)
comprises continuous piecewise polynomial functions defined on Th. The case
Th =Mh is permitted. We assume that the partitions Th and Mh satisfy

hT ∼ hM ∀T ⊂M, ∀M ∈Mh.

Let Dh(M) := {qh|M : qh ∈ Dh} be the local projection space. Define the
global projection πh : L2(Ω) → Dh by (πhw)|M := πM (w|M ), where
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πM : L2(M) → Dh(M) is a local projection. Associate with the projection πh

the fluctuation operator κh : L2(Ω) → L2(Ω) defined by κh := id−πh, where
id : L2(Ω) → L2(Ω) is the identity.

Now we are ready to formulate the local projection stabilization (LPS)
method for the convection-diffusion-reaction problem

−ε∆u+ b · ∇u+ cu = f in Ω ⊂ R
d, u = 0 on Γ, (3.85)

where Γ = ∂Ω, d ≥ 2, the data b, c, f are sufficiently smooth, and 0 < ε≪ 1
is a given small positive parameter. Assume that

c− 1

2
div b ≥ ω > 0

which guarantees the unique solvability of the problem. Let Vh = Yh ∩H1
0 (Ω)

be the finite element space for approximating the weak solution u ∈ H1
0 (Ω)

of (3.85). The corresponding stabilized discrete problem is:

Find uh ∈ Vh such that for all vh ∈ Vh one has

ε(∇uh,∇vh) + (b · ∇uh + cuh, vh) + Sh(uh, vh) = (f, vh), (3.86a)

where the stabilizing term Sh is given by

Sh(uh, vh) : =
∑

M∈Mh

τM

(
κh(b · ∇)uh, κh(b · ∇)vh

)
M

(3.86b)

with user-chosen constants τM . Define the mesh-dependent norm

|||v|||LPS :=

(
ε|v|21 + ω‖v‖20 +

∑

M∈Mh

τM‖κh(b · ∇)v‖20,M

)1/2

(3.87)

associated with the discrete bilinear form implicitly defined by the left-hand
side of (3.86a).

Remark 3.68. There is a close relation to stabilization by subgrid modelling
[EG04, Gue99a], as we shall see in Section IV.4.5, but in subgrid modelling
the stabilizing term uses gradients of fluctuations instead of fluctuations of
gradients. ♣

The stability and convergence properties of the LPS method (3.86) will
now be studied under the following assumptions.

Assumption A1: The approximation space Yh is of order r ∈ N. That is,
there exists an interpolation operator ih : H2(Ω) → Yh with the properties
that ih : H1

0 (Ω) ∩H2(Ω) → Vh and

‖w − ihw‖0,T + hT |w − ihw|1,T ≤ C hl
T ‖w‖l,T (3.88)
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for all w ∈ H l(T ), all T ∈ Th, and 2 ≤ l ≤ r + 1.

Assumption A2: The fluctuation operator κh has the approximation prop-
erty

‖κhq‖0,M ≤ C hl
M |q|l,M ∀q ∈ H l(M), ∀M ∈Mh, 0 ≤ l ≤ r. (3.89)

Remark 3.69. Let πh be the L2 projection in Dh and let the space Dh(M)
contain the space Pr−1(M) of polynomials of degree at most r − 1, where
r ≥ 1. Since Dh is allowed to be discontinuous across macro-element faces,
the projection πM : L2(M) → Dh(M) is defined locally by

(πMw − w,wh)M = 0 ∀wh ∈ Dh(M), w ∈ L2(M).

Then the L2 projection πM : L2(M) → Dh(M) reduces to the identity map-
ping on the subspace Pr−1(M) ⊂ H l(M), and the Bramble-Hilbert lemma
gives the approximation property of Assumption A2. ♣

Let Yh(M) := {wh|M : wh ∈ Yh} ∩H1
0 (M).

Assumption A3: There exists a constant β1 > 0 such that for all h > 0 and
all M ∈Mh one has

inf
qh∈Dh(M)

sup
vh∈Yh(M)

(vh, qh)M

‖vh‖0,M ‖qh‖0,M
≥ β1 > 0. (3.90)

Remark 3.70. To satisfy Assumption A3, clearly Yh(M) has to be sufficiently
rich compared with Dh(M). In particular, it is necessary that

dimYh(M) ≥ dimDh(M). (3.91)

On the other hand one cannot choose Dh(M) too small to satisfy Assump-
tion A3 since Assumption A2 should also be met. Later we try to fulfill both
requirements for a given approximation space Yh on Th by choosing the projec-
tion space Dh as a discontinuous finite element space on the coarser meshMh,
where the dimension of Dh(M) is small enough to satisfy Assumption A3 yet
big enough to fulfil Assumption A2. A different strategy is used in the one-
level approach where both spaces are defined on the same mesh: Dh(M) is
chosen such that Assumption A2 holds, then Yh(M) is enriched by additional
functions in order to verify Assumption A3. ♣
Theorem 3.71. Let Assumptions A1 and A3 be satisfied. Then there is an
interpolation operator jh : H2(Ω) → Yh, with jh : H1

0 (Ω)∩H2(Ω) → Vh, that
has the following orthogonality and approximation properties:

(w − jhw, qh) = 0 (3.92a)

for all qh ∈ Dh and all w ∈ H2(Ω), and

‖w − jhw‖0,M + hM |w − jhw|1,M ≤ C hl
M‖w‖l,M (3.92b)

for all w ∈ H l(Ω) with 2 ≤ l ≤ r + 1, and all M ∈Mh.
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Proof. Let Dh(M)′ denote the dual space of Dh(M). Define the continuous
linear operator Bh : Yh(M) → Dh(M)′ by

〈Bhvh, qh〉Dh(M) := (vh, qh)M ∀vh ∈ Yh(M), qh ∈ Dh(M).

Set
Wh(M) := {vh ∈ Yh(M) : (vh, qh) = 0 ∀qh ∈ Dh(M)},

and let Wh(M)⊥ be the L2-orthogonal complement of Wh(M) in Yh(M). By
[GR86, Lemma I.4.1], Bh is an isomorphism from Wh(M)⊥ onto Dh(M)′ with

β1‖vh‖0,M ≤ ‖Bhvh‖Dh(M)′ ∀vh ∈Wh(M)⊥

if and only if Assumption A3 holds true. Now, given w ∈ H2(Ω), the mapping

qh �→ (w − ihw, qh)M

is linear and continuous on Dh(M); hence for each w ∈ H2(Ω) there is a
unique zh(w) ∈Wh(M)⊥ such that

〈Bhzh(w), qh〉Dh(M) = (w − ihw, qh)M ∀qh ∈ Dh(M),

‖zh(w)‖0,M ≤ 1

β1
sup

qh∈Dh(M)

〈Bh(zh(w)), qh〉Dh(M)

‖qh‖0,M
.

The definition of Bh : Yh(M) → Dh(M)′ yields

(zh(w), qh)M = (w − ihw, qh)M ∀w ∈ H2(Ω), ∀qh ∈ Dh(M), (3.93a)

‖zh(w)‖0,M ≤ 1

β1
‖w − ihw‖0,M ∀w ∈ H2(Ω). (3.93b)

Set jhw
∣∣
M

:= ihw
∣∣
M

+ zh(w) for all M ∈ Mh. Since
⊕

M∈Mh

Yh(M) ⊂ Yh, we

then have a global interpolation operator jh : H2(Ω) → Yh such that

‖w − jhw‖0,M ≤
(

1 +
1

β1

)
‖w − ihw‖0,M ≤ C hl

M‖w‖l,M

for all M ∈ Mh, for all w ∈ H l(Ω), 2 ≤ l ≤ r + 1. That is, the L2 approxi-
mation property of (3.92b) is verified.

The orthogonality property (3.92a) follows from (3.93a) and the definition
of jh. It remains to show the approximation property for the H1 seminorm.
To this end, apply an inverse inequality and (3.93b) to get

|zh(w)|1,M ≤ Ch−1
M ‖zh(w)‖0,M ≤ Ch−1

M ‖w − ihw‖0,M .

This inequality and the approximation property (3.88) then give

|w − jhw|1,M ≤ |w − ihw|1,M + |zh(w)|1,M ≤ C hl−1
M ‖w‖l,M .

⊓⊔
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Remark 3.72. Following the analysis of [Ste99] and assuming a family of
macro-elements that are equivalent to a reference macro-element, Assump-
tion A3 reduces to showing that

NM := {qh ∈ Dh(M) : (qh, vh)M = 0 ∀vh ∈ Vh(M)} = {0}.

♣

Example 3.73. Consider the case Th = Mh. Let the approximation space Yh

comprise continuous piecewise linear functions enriched element by element
with the bubble function bT that is the product of the barycentric coordi-
nates. Let the projection space Dh be discontinuous piecewise constant func-
tions on Th. The usual piecewise linear nodal interpolation ih satisfies the
approximation property of Assumption A1 with r = 1, but it fails to sat-
isfy (3.92a). Since Dh(T ) = span (1) and Yh(T ) = span (bT ), Assumption A3
can be established by transforming the integrals in (3.90) to a reference cell.
Thus there does exist an interpolation operator jh : H2(Ω) → Yh with the
properties (3.92). It is given explicitly by a local definition on each cell T :

(jhw)|T (pi) = w(pi) for all vertices pi ∈ T, (jhw, 1)T = (w, 1)T ∀T ∈ Th.

♣

Theorem 3.74. Let the data of the problem be sufficiently smooth. Let As-
sumptions A1–A3 be fulfilled. If τM ∼ hM for all M ∈ Mh, then there is a
positive constant C, which is independent of ε and the mesh, such that

|||u− uh|||LPS ≤ C (ε1/2 + h1/2)hr‖u‖r+1 .

Proof. The argument is standard: one demonstrates coercivity of the under-
lying discrete bilinear form

ah(w, v) := ε(∇w,∇v) + (b · ∇w + cw, v) + Sh(w, v)

then estimates the approximation and consistency errors. Coercivity with re-
spect to the ||| · |||LPS norm, i.e.,

ah(vh, vh) ≥ |||vh|||2LPS ∀vh ∈ Vh,

follows by integration by parts for all nonnegative τM . (This differs from the
streamline diffusion method where an upper bound for δT is needed; compare
the proof of Lemma 3.25.) Then for the interpolant jhu of the weak solution u
of (3.85) and the solution uh of the discrete problem (3.86) we have

|||jhu− uh|||2LPS ≤ ah(jhu− u, jhu− uh) + ah(u− uh, jhu− uh)

whence
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|||jhu− uh|||LPS ≤ sup
wh∈Vh

ah(jhu− u, wh)

|||wh|||LPS
+ sup

wh∈Vh

ah(u− uh, wh)

|||wh|||LPS
.

The first term here is the approximation error, the second term the consistency
error. (The consistency error of a consistent method is zero.)

The tricky part in the estimation of the approximation error is the con-
vection term which is split into two terms:

(b · ∇(jhu− u), wh) = −(jhu− u, b · ∇wh)− (div b (jhu− u), wh)

using integration by parts. For the first term, use the orthogonality and ap-
proximation properties of the special interpolant and τM ∼ hM to get
∣∣(jhu− u, b · ∇wh)

∣∣ =
∣∣(jhu− u, κh(b · ∇)wh)

∣∣

≤ C
( ∑

M∈Mh

τ−1
M h2r+2

M |u|2r+1,M

)1/2 ( ∑

M∈Mh

τM‖κh(b · ∇)wh‖20,M

)1/2

≤ C hr+1/2|u|r+1 |||wh|||LPS .

The estimation of the second term uses the approximation properties and the
definition of the ||| · |||LPS norm:

∣∣(div b (jhu− u), wh)
∣∣ ≤ Chr+1|u|r+1‖wh‖0 ≤ Chr+1|u|r+1 |||wh|||LPS .

Using (3.89), τM ∼ hM , and ah(u−uh, wh) = Sh(u,wh), the consistency error
bound follows from

|Sh(u,wh)| ≤
∑

M∈Mh

τM‖κh(b · ∇u)‖0,M ‖κh(b · ∇wh)‖0,M

≤ C
∑

M∈Mh

τMh
r
M |b · ∇u|r,M ‖κh(b · ∇wh)‖0,M

≤ Chr+1/2‖u‖r+1|||wh|||LPS .

It is now straightforward to finish the proof. ♣

Remark 3.75. An analogous theorem can be proved when the stabilizing term
(3.86b) and the norm (3.87) are replaced by

Sh(uh, vh) :=
∑

M∈Mh

τM

(
κh(∇uh), κh(∇vh)

)
M

and

|||v|||LPS :=

(
ε|v|21 + ω‖v‖20 +

∑

M∈Mh

τM‖κh(∇v)‖20,M

)1/2

respectively. ♣
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Fulfillment of Assumptions A1–A3 depends on the selections of the approx-
imation space Yh and the projection space Dh. Assumption A1 is satisfied for
common finite element spaces that contain continuous piecewise polynomials
of degree r. Assumption A2 can be easily satisfied by choosing the projection
space Dh sufficiently large but Assumption A3 restricts the size of Dh for a
given approximation space Yh. Below we discuss examples of pairs of finite
element spaces (Yh, Dh) that satisfy Assumptions A1–A3 of Theorem 3.74
while referring the reader to [MST07] for the proofs.

Local Projection as a Two-level Approach

Consider the case where the partition Th is formed by a suitable refinement
of a macro-mesh Mh. This is indicated by the notation Mh = T2h. First
we discuss simplicial elements in Rd. A macro-element M ∈ T2h is refined
into d + 1 elements T ∈ Th by connecting the d + 1 vertices of M with its
barycentre; see Figure 3.8 for the cases d = 2 and d = 3. For the approximation

Fig. 3.8. Refinement of a macro-simplex M ∈ T2h into cells T ∈ Th

space Yh we choose a finite element space of continuous piecewise polynomials
of degree r ≥ 1. Let the projection space Dh comprise discontinuous piecewise
polynomials of degree r−1 on T2h. This is summarized by writing (Yh, Dh) =
(Pr,h, P disc

r−1,2h). Here and in what follows the superscript ‘disc’ indicates that
the finite element space contains discontinuous functions. Then on shape-
regular meshes Assumptions A1–A3 are satisfied [MST07].

Consider now hexahedral elements such as bricks. Let M̂ = (−1, 1)d denote
the reference hyper-cube with 2d vertices. This is refined into 2d congruent
cubes T̂i, where i = 1, . . . , 2d. The multilinear mapping FM : M̂ → M maps
M̂ onto a macro-cell M ∈ T2h and induces a refinement of M into 2d cells
Ti = FM (T̂i); see Figure 3.9 for the two-dimensional case. Furthermore, there

is a bijective linear mapping Gi : T̂ → T̂i of the reference cell T̂ = (0, 1)d

onto T̂i for i = 1, . . . , 2d. Now for each T ∈ Th there are a unique M ∈ Mh

and a unique i ∈ {1, . . . , 4} such that T = Ti ⊂ M and T = (FM ◦ Gi)(T̂ ).
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Fig. 3.9. Refinement of a macro-cell M ∈ T2h (right) induced by a congruent

refinement of the reference hyper-cube M̂ (left)

We write the bijective multilinear mapping FM ◦ Gi as FT for brevity. For
the approximation space Yh choose the standard space of mapped continuous
piecewise polynomials of degree at most r in each variable, i.e., Yh = Qr,h.
The projection space Dh lives on the coarser mesh T2h and can be defined
in two different ways, namely as an image of a space living on the reference
macro-cell M̂ or directly on the macro-cell M . In general, this leads to two
different finite element spaces. The mapped version of Dh has the advantage
that the projection space defined locally on the reference macro-cell is always
the same when moving from one element to another, but the approximation
property of Assumption A2 is not satisfied on arbitrary families of shape-
regular meshes [ABF02, Mat01]. This is apparently a great disadvantage but
in practice the family of macro-element meshes is often generated by succes-
sively refining a given initial mesh, and for such a (restricted) mesh family
Assumption A2 does hold true [Mat01]. The unmapped version of Dh satisfies
Assumption A2 for any family of shape-regular meshes but the associated fi-
nite element spaces on the reference macro-cell differ from element to element.
To distinguish between these two spaces we shall use the superscript ‘unm’ for
the unmapped version of the finite element space Dh, with the understanding
that all spaces lacking this superscript are mapped spaces.

The finite element pair (Yh, Dh) = (Qr,h, Qdisc
r−1,2h) is our first example on

hexahedral meshes; here

Qr,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

Qdisc
r−1,2h : = {v ∈ L2(Ω) : v|M ◦ FM ∈ Qr−1(M̂) ∀M ∈ T2h} .

Assumption A1 is clearly satisfied [Ape99, Clé75, SZ90]. Furthermore, since
Pr−1(M) ⊂ Qdisc

r−1(M), one can verify Assumption A2 on arbitrary shape-
regular families of meshes. For the proof of Assumption A3 see [MST07].

Alternatively, one can choose a smaller projection space by taking Dh to
be

P disc
r−1,2h := {v ∈ L2(Ω) : v|M ◦ FM ∈ Pr−1(M̂) ∀M ∈ T2h} .

This produces more stabilization in the sense that the stabilizing term van-
ishes on the smaller subset P disc

r−1,2h ⊂ Qdisc
r−1,2h. Assumptions A1 and A3 are
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still valid but Assumption A2 can be guaranteed only on a restricted fam-
ily of shape-regular meshes, e.g., on uniformly-refined families of meshes; see
[ABF02] for quadrilateral meshes and [Mat01] for hexahedral meshes.

One could also investigate a choice of projection space Dh that is larger
than Qdisc

r−1,2h in order to minimize the stabilizing effect. Indeed, a dimen-
sional analysis indicates that the inequality (3.91) is still satisfied for larger
spaces Dh. For the choice (Yh, Dh) = (Qr,h, Qdisc

r−1,2h) one has

dim Yh(M) = (2r − 1)d ≥ rd = dimDh(M)

and only for r = 1 do the dimensions of both spaces coincide. In the case
r ≥ 2 a possible choice might be Dh = Qdisc

r,2h since

dimYh(M) = (2r − 1)d ≥ (r + 1)d = dimDh(M), r ≥ 2.

Now Assumption A1 still holds true without any change and Assumption A2
would be satisfied with a higher order of approximation than necessary. It is
unclear however whether the inf-sup condition of Assumption A3 is valid.

Unmapped finite element spaces satisfy Assumption A2 on arbitrary
shape-regular meshes. For example, take the approximation space to be again
the space Yh = Qr,h but for the projection space Dh select the space of discon-
tinuous, piecewise polynomials of degree r−1 posed directly on the macro-cells
M ∈Mh. That is, we choose

(Yh, Dh) = (Qr,h, P disc,unm
r−1,2h )

where

Qr,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

P disc,unm
r−1,2h : = {v ∈ L2(Ω) : v|M ∈ Pr−1(M) ∀M ∈ T2h} .

Then Assumptions A1–A3 are satisfied on families of shape-regular meshes
[MST07].

Local Projection by Enrichment of Approximation Spaces

One disadvantage of the local projection onto coarser meshes is that the sup-
port of the projected gradient κh(b · ∇ϕ) of a basis function ϕ is in general
larger than the support of ∇ϕ, which leads to an increase in the stencil size
that might not suit the data structure of an existing computer code. Bearing in
mind that the key ingredient of the local projection method is the existence
of an interpolation with the additional orthogonality property (3.92a), one
can try to define the approximation and projection space on the same mesh
Mh = Th and to satisfy Assumption A3 by an enrichment of the approxima-
tion space Yh. This approach has been developed successfully in [MST07], as
we now describe.
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Use simplicial elements and set

b̂(x̂) := (d + 1)d+1
d+1∏

i=1

λ̂i(x̂),

where λ̂i, i = 1, . . . , d + 1, are barycentric coordinates on T̂ . This bubble
function b̂ takes the value 1 at the barycentre of the reference simplex T̂ . Then
define the enriched space of continuous piecewise polynomials of degree r by

P bubble
r (T̂ ) := Pr(T̂ ) + b̂ · Pr−1(T̂ ) .

We choose the approximation and projection spaces

(Yh, Dh) := (P bubble
r,h , P disc

r−1,h)

to be the pair of finite element spaces defined via reference mappings by

P bubble
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ P bubble

r (T̂ ) ∀T ∈ Th} ,
P disc

r−1,h : = {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th} .

Clearly Assumptions A1 and A2 are fulfilled. At first sight the enriched space
seems large, but in fact

Pr(T̂ ) + b̂ · Pr−1(T̂ ) = Pr(T̂ )⊕
(
b̂ ·

d∑

i=1

P̃r−i(T̂ )

)

where

P̃r(T̂ ) = span

{
d∏

i=1

x̂αi
i ,

d∑

i=1

αi = r , (x̂1, . . . , x̂d) ∈ K̂
}
.

The enrichment is minimal with respect to the required inequality (3.91). For,

since the bubble part of the space Pr(T̂ ) is b̂ · Pr−(d+1)(T̂ ), we have

dim Ŷ (T̂ ) =

(
r − (d+ 1) + d

d

)
+

d∑

i=1

[(
r − i+ d

d

)
−
(
r − i+ d− 1

d

)]

=

(
r − 1

d

)
+

(
r − 1 + d

d

)
−
(
r − 1

d

)

= dimDh(T̂ ).

When (Yh, Dh) := (P bubble
r,h , P disc

r−1,h), Assumption A3 is satisfied [MST07].

If the mesh is quadrilateral or hexahedral, then the reference mapping
FT : T̂ → T is in general no longer affine. Thus one has two different options
for the projection space, the mapped version
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P disc
r−1,h := {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th}

and the unmapped version

P disc,unm
r−1,h := {v ∈ L2(Ω) : v|T ∈ Pr−1(T ) ∀T ∈ Th}.

To ensure the approximation property of Assumption A2 for the mapped ver-
sion of the projection space, only families of uniformly-refined meshes will
be considered [ABF02, Mat01]. For the unmapped version, Assumption A2
holds true on general shape-regular meshes. Choosing as approximation space
Yh = Qr,h, i.e., the usual space of continuous piecewise mapped polynomials
of degree at most r in each variable, one obtains the approximation prop-
erty Assumption A1 but not the local inf-sup condition of Assumption A3.
Therefore we search for suitable enrichments of the approximation space Yh.
Let

b̂(x̂) =

d∏

i=1

(1− x̂2
i ) ∈ Q2(T̂ ) , x̂ = (x̂1, . . . , x̂d) ∈ T̂ , d = 2, 3 ,

be a bubble function associated with the reference cell T̂ := (−1, 1)d. Our first
enriched finite element space is

Qbubble,1
r (T̂ ) := Qr(T̂ )⊕ span

{
b̂ x̂r−1

i : i = 1, . . . , d
}

.

Select the finite element spaces

(Yh, Dh) : = (Qbubble,1
r,h , P disc

r−1,h)

where

Qbubble,1
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,1

r (T̂ ) ∀T ∈ Th}.

Note that in general Qbubble,1
r,h and P disc

r−1,h are not polynomial spaces. Since

Qr(T̂ ) ⊂ Qbubble,1
r (T̂ ), Assumption A1 is clearly satisfied. Assumption A2

holds on uniformly refined meshes – see [ABF02, Mat01]. For the proof of
Assumption A3 we refer to [MST07].

Comparing the dimensions of the spaces Yh(T ) and Dh(T ), one has

dim Ŷ (T̂ ) = (r − 1)d + d ≥
(

r − 1 + d

d

)
= dimPr−1(T̂ ) for all r, d ∈ N.

In particular the enrichment is minimal with respect to (3.91) for biquadratic
and bicubic elements on quadrilaterals and for triquadratic elements on hexa-
hedra.

Remark 3.76. It is remarkable that the space Qbubble,1
r (T̂ ) has, for all r ≥ 2,

precisely d basis functions more than Qr(T̂ ). That is, the amount of enrich-
ment is independent of the polynomial degree r. ♣
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To satisfy Assumption A2 on arbitrary families of shape-regular (non-
simplicial) meshes, we propose a second version of the enriched finite element
space: set

Qbubble,2
r (T̂ ) := Qr(T̂ ) + b̂ ·Qr−1(T̂ )

with the bubble function b̂ ∈ Q2(T̂ ) and use the mapped enriched space

Qbubble,2
r,h := {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,2

r (T̂ ) ∀T ∈ Th} .

Thus
(Yh, Dh) := (Qbubble,2

r,h , P disc,unm
r−1,h ).

and Assumptions A1–A3 are fulfilled [MST07].

Remark 3.77. The space Qbubble,2
r,h is more enriched than the space Qbubble,1

r,h .
Comparing the dimensions of the spaces Yh(T ) and Dh(T ), one can surmise
that the enriched space could be made smaller, but the validity of the local
inf-sup condition Assumption A3 is then unresolved. ♣

Relationship to the Streamline Diffusion Method (SDFEM)

In Section 3.2.3 we started from the standard Galerkin finite element method
with piecewise linears enriched by bubble functions on simplices and showed
that elimination of the bubble part yields the streamline diffusion finite ele-
ment method [BBF93, BR94]. Moreover, the shape of the bubble defined the
SD parameter uniquely, but the symmetric version of the bubble

bT :=

d+1∏

i=1

λT
i , λT

i barycentric coordinates of T,

as we saw in Remark 3.65, generated the SD parameter for the diffusion-
dominated instead of the convection-dominated case. Several ideas have been
developed to overcome this problem, ranging from the pseudo-residual-free
bubble to the residual-free bubble method, where the bubbles are local solu-
tions of the problem under consideration.

Here we shall examine the idea of eliminating the bubble part from the
local projection method (3.86) for enriched approximation spaces. In problem
(3.85) assume that one has piecewise constant functions b and f , and c ≡ 0.
As in Section 3.2.3 suppose that Vh consists of piecewise linear functions and
enrich this space by a bubble space Bh defined by

Bh := span {bT : T ∈ Th }.

Consider the local projection method on the enriched space Vh⊕Bh where the
projection space Dh is the space of discontinuous piecewise constant functions
on a triangulation Th:
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Find uh ∈ Vh ⊕Bh such that for all vh ∈ Vh ⊕Bh one has

ε(∇uh,∇vh) + (b · ∇uh, vh) + Sh(uh, vh) = (f, vh). (3.94)

Here the stabilizing term Sh is given by (3.86b) withMh = Th. The dimension
of the corresponding algebraic system of equations can be reduced by static
condensation of the bubble part of the solution. To do this, write the solution
as uh = uL + uB , with uL ∈ Vh and uB ∈ Bh, and use the test functions
vh = vL ∈ Vh and vh = vB ∈ Bh. As ∇vL is piecewise constant, we get
κh(b · ∇)vL = 0 for all vL ∈ Vh. Moreover, element-by-element integration by
parts shows that (∇vL,∇vB) = 0 for all vL ∈ Vh, vB ∈ VB . Hence (3.94) can
be reformulated as:

Find uL ∈ Vh and uB ∈ Bh such that for all vL ∈ Vh and all vB ∈ Bh,

ε(∇uL,∇vL) + (b · ∇(uL + uB), vL) = (f, vL), (3.95a)

ε(∇uB ,∇vB) + (b · ∇(uL + uB), vB) + Sh(uB , vB) = (f, vB). (3.95b)

Now from the representation uB =
∑

T∈Th
dT bT , where the dT , T ∈ Th,

are unknown constants, (3.95b) becomes:
Given uL ∈ Vh, find {dT ∈ R : T ∈ Th} such that for each T ∈ Th,

ε(∇dT bT ,∇bT )T + (b · ∇(uL + dT bT ), bT )T

+ Sh(dT bT , bT ) = (f, bT )T . (3.96)

An integration by parts gives, using 〈·, ·, 〉 to denote the L2(Γ ) inner product,

dT (b · ∇bT , bT )T =
dT

2

〈
b · n, b2T

〉
∂T

= 0,

πT (b · ∇)bT =
1

|T | b ·
∫

T

∇bT dx =
1

|T | b ·
∫

∂T

bT ndγ = 0

and (3.96) reduces to:

Given uL ∈ Vh, find {dT ∈ R : T ∈ Th} such that for each T ,

dT

(
ε|bT |21,T + τT ‖b · ∇bT ‖20,T

)
= (f − b · ∇uL, bT )T .

This has the solution

dT =
(1, bT )T

ε|bT |21,T + τT ‖b · ∇bT ‖20,T

(f − b · ∇uL)
∣∣
T
. (3.97)

Then (3.95a) can be rewritten as

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

dT (b · ∇bT , vL)T = (f, vL).

The term
∑

T∈Th
· · · does not appear in the standard Galerkin finite element

method applied on the space Vh. One can rearrange it as
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∑

T∈Th

dT (b · ∇bT , vL)T = −
∑

T∈Th

dT (b · ∇vL, bT )T

=
∑

T∈Th

γT (b · ∇uL − f, b · ∇vL)T ,

where, using (3.97), one sees that

γT =
1

|T |
|(1, bT )T |2

ε|bT |21,T + τT ‖b · ∇bT ‖20,T

. (3.98)

We have now eliminated the bubble component from (3.94), arriving at

ε(∇uL,∇vL) + (b · ∇uL, vL) +
∑

T∈Th

γT (b · ∇uL, b · ∇vL)T

= (f, vL) +
∑

T∈Th

γT (f, b · ∇vL)T for all vL ∈ Vh.

This is the streamline diffusion method (3.36) with the SD parameter δT ≡ γT

given by (3.98). A scaling argument shows that (1, bT ) ∼ |T |, |bT |21,T ∼ |T |/h2
T ,

and ‖b · ∇bT ‖20,T ∼ |T | ‖b‖2/h2
T , so γT ∼ h2

T /(ε + τT ‖b‖2). For τT = 0 one

has γT ∼ h2
T /ε which corresponds to the diffusion-dominated case. Clearly

γT is decreasing for increasing τT . The choice γT ∼ hT /‖b‖ in the convection-
dominated case ‖b‖hT /ε≫ 1 corresponds to τT ∼ hT /‖b‖. Letting τT →∞,
we obtain the standard Galerkin method that corresponds to γT = 0.

Comparing the residual-free bubble method with the local projection
methods applied to the model problem (piecewise constant b and f , c ≡ 0), we
see that via static condensation both methods recover the streamline diffusion
method. But to generate the correct SD parameter, the RFB method needs
to solve (at least approximately) local subproblems to find the correct bubble

functions whereas for LPS the use of the simple bubble function bT =
∏d+1

i=1 λ
T
i

suffices.

3.3.2 Continuous Interior Penalty Stabilization

Now we move on to the continuous interior penalty (CIP) stabilization method
for the convection-diffusion problem

−ε∆u+ b · ∇u+ cu = f in Ω, u = 0 on Γ, (3.99)

where Γ = ∂Ω, Ω ⊂ Rd with d = 2 or 3, the data b, c, f are sufficiently
smooth, and 0 < ε≪ 1 is a given small positive parameter. Assume as usual
that

c− 1

2
div b ≥ ω > 0,

which guarantees existence and uniqueness of a solution to (3.99). Let Th be
a shape-regular triangulation of the domain Ω into cells T ∈ Th with Eh the
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set of all inner edges (faces in the three-dimensional case). Let Yh ⊂ H1(Ω)
be a finite element space of piecewise polynomials of degree r ≥ 1.

In the continuous interior penalty stabilization method, a symmetric term
will be added to the Galerkin finite element discretization. Unlike other stabi-
lization methods the Dirichlet boundary conditions are not incorporated into
the finite element space Yh but are imposed weakly on the discrete problem.
We first discuss how Dirichlet-type boundary condition are implemented in a
weak sense and address the CIP stabilization later.

Multiplying the differential equation −ε∆u + b · ∇u + cu = f by a test
function v, integrating over Ω and integrating by parts, we get

ε(∇u,∇v) + (b · ∇u+ cu, v)− ε
〈
∂u

∂n
, v

〉

Γ

= (f, v)

where 〈·, ·〉Γ denotes the inner product in L2(Γ ). To obtain a lower bound like

(b · ∇v + cv, v) ≥ ω‖v‖20 ∀v ∈ H1
0 (Ω)

on the larger space H1(Ω), subtract the term 〈b ·nu, v〉Γ−
, which vanishes for

u ∈ H1
0 (Ω) but not for u ∈ H1(Ω). Here Γ− = {x ∈ Γ : (b · n)(x) < 0} is the

inflow part of the boundary. Then

(b · ∇v + cv, v) − 〈b · n v, v〉Γ−

=

(
c− 1

2
div b, v2

)
+

1

2
〈b · n, v2〉Γ − 〈b · n, v2〉Γ−

≥ ω‖v‖20 +
1

2
‖ |b · n|1/2 v‖20,Γ .

Furthermore, we add the term ε〈u, ∂v
∂n 〉Γ to preserve the symmetry on H1(Ω)

of the diffusion term contribution and also add a penalty term to ensure
coercivity. Then the statement of the standard Galerkin method with weakly
imposed boundary conditions is:

Find uh ∈ Yh such that for all vh ∈ Yh one has

ah(uh, vh) = (f, vh)

where

ah(u, v) = ε(∇u,∇v) + (b · ∇u+ cu, v)− ε
〈
∂u

∂n
, v

〉

Γ

− ε
〈
u,
∂v

∂n

〉

Γ

− 〈b · nu, v〉Γ−
+

∑

E⊂Γ

εγ

hE
〈u, v〉E . (3.100)

Lemma 3.78. For all vh ∈ Yh, the bilinear form ah given in (3.100) satisfies

ah(vh, vh) ≥ 1

2

(
ε|vh|21 + ω‖vh‖20 + ‖ |b · n|1/2 v‖20,Γ +

∑

E⊂Γ

ε

hE
‖vh‖20,E

)

provided that γ ≥ γ0 where γ0 is sufficiently large (independently of ε and h).
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Proof. It is already clear that

ah(vh, vh) ≥ ε|vh|21 + ω‖vh‖20 − 2ε

〈
∂vh

∂n
, vh

〉

Γ

+
1

2
‖ |b · n|1/2 v‖20,Γ + εγ

∑

E⊂Γ

1

hE
‖vh‖20,E .

For E ⊂ ∂T , the Cauchy-Schwarz inequality and a trace inequality yield

2ε

∣∣∣∣
〈
∂vh

∂n
, vh

〉

E

∣∣∣∣ ≤ 2εCh
−1/2
E |vh|1,T ‖vh‖0,E ≤

ε

2
|vh|21,T +

2εC2

hE
‖vh‖20,E .

Summing over all edges (faces) E ⊂ Γ and taking γ ≥ 1/2 + 2C2 gives the
desired result. ⊓⊔

The above derivation of the bilinear form ah shows that the standard
Galerkin method with weakly imposed boundary condition is consistent, i.e.,
for a solution u ∈ H1

0 (Ω) ∩H2(Ω) of (3.99) one has

ah(u, vh) = (f, vh) ∀vh ∈ Yh.

The CIP stabilized discrete problem is now defined to be:

Find uh ∈ Yh such that for all vh ∈ Yh one has

ah(uh, vh) + Jh(uh, vh) = (f, vh), (3.101a)

where the stabilizing term Jh has the form

Jh(u, v) :=
∑

E∈Eh

τE 〈bh · [∇u]E , bh · [∇v]E〉E . (3.101b)

Here for each E ∈ Eh the τE are user-chosen parameters, [w]E is the jump
of w across E ∈ Eh in a fixed direction nE , i.e.,

([w]E)(x) = lim
t→+0

{w(x+ tnE)− w(x− tnE)} for x ∈ E,

and bh is a continuous piecewise linear approximation of b that satisfies

‖b− bh‖0,∞,T ≤ ChT ‖b‖1,∞,T .

The form of the stabilizing term means that CIP stabilization is also called
edge stabilization. For u ∈ H2(Ω) one has [u]E = 0 for all E ∈ Eh so CIP
stabilization is consistent and enjoys the Galerkin orthogonality property.

Remark 3.79. Modifications of the stabilizing term are possible; see [BH04,
Bur05, BFH06] ♣
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A discrete bilinear form is associated with the left-hand side of (3.101a) in
the usual way. To analyse this bilinear form we introduce the mesh-dependent
norm

|||v|||CIP : =

(
ε|v|21+ω‖v‖20+Jh(v, v)+‖|b · n|1/2v‖20,Γ +

∑

E⊂Γ

ε

hE
‖v‖20,E

)1/2

.

Let
H2(Th) := {v : Ω → R : v|T ∈ H2(T ) ∀T ∈ Th}

be the space of piecewise H2 functions. Then the key step in analysing the
CIP stabilization is the following lemma.

Lemma 3.80. There exists an interpolation operator π∗h : H2(Th) → Yh and
a positive constant C (independent of the mesh size) such that for all vh ∈ Yh

and all T ∈ Th one has

hT ‖bh · ∇vh − π∗h(bh · ∇vh)‖20,T ≤ C
∑

E∈Eh(T )

∫

E

h2
E |bh · [∇vh]E |2 dγ, (3.102)

where Eh(T ) := {E ∈ Eh : E ∩ T �= ∅}.

Proof. Let N be the set of all nodes, i.e., those points pi that are associated
with the degrees of freedom vh(pi) of Yh. Thus each vh ∈ Yh is uniquely
defined by prescribing its values vh(pi) for all pi ∈ N . For each node pi ∈ N ,
let mi be the number of cells that contain pi as a node. If mi = 1 we call pi

an inner node – so a point pi ∈ Γ ∩N that does not lie on an intersection of
mesh lines is an ‘inner’ node. As in [Osw91, Sch00, Bur05, BFH06] introduce
the quasi-interpolant π∗hv ∈ Yh defined by

(π∗hv)(pi) :=
1

mi

∑

{T :pi∈T}
v|T (pi) v ∈ H2(Th).

Choose a discontinuous piecewise polynomial function Φ by setting

Φ|T := ΦT = (bh · ∇vh − π∗h(bh · ∇vh))
∣∣∣
T
∈ Pr(T ).

Then ΦT (pj) = 0 at all inner nodes pj of T , owing to the definition of π∗h.
Hence, applying the norm equivalence of finite-dimensional spaces on the ref-
erence cell and using the scaling property, for shape-regular meshes one gets

‖ΦT ‖0,T ≤ C h1/2
T ‖ΦT ‖0,∂T ∀T ∈ Th.

Next, define the (scaled) ℓ1 norm of each qh ∈ Pr(E) by

‖qh‖ℓ1,E := |E|1/2
∑

{j:pj∈E}
|qh(pj)|.
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Appealing to norm equivalence on a reference edge (face), we find that there
are positive constants C1 and C2 such that

C1‖qh‖0,E ≤ ‖qh‖ℓ1,E ≤ C2‖qh‖0,E ∀qh ∈ Pr(E), ∀E ∈ Eh.

The continuity of bh and the definition of the quasi-interpolant π∗
h imply that

for all nodes pj ∈ E ⊂ ∂T we have

ΦT (pj) =
1

mj

∑

{T ′:pj∈T ′}
bh(pj) ·

(
∇vh

∣∣
T
(pj)−∇vh

∣∣
T ′(pj)

)
,

so

|ΦT (pj)| ≤
1

mj

∑

{T ′:pj∈T ′}

∑

E′∈P (T,T ′)

|bh(pj) · [∇vh]E′(pj)|,

where P (T, T ′) denotes the set of all edges (faces) between T and T ′ (the
shortest path); see Figure 3.10. If there are two paths with the same number
of edges, choose one of them to make the definition of P (T, T ′) unique. On

T

T ′

pj

E1

E2

E3

Fig. 3.10. Set of all edges E belonging to the shortest path P (T, T ′) = {E1, E2, E3}

the skeleton Eh define the piecewise polynomial function

ΨE := bh · [∇vh]E ∈ Pr(E) ∀E ∈ Eh

and denote the subset of edges containing the node pj by

Eh,j := {E ∈ Eh : pj ∈ E}.
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The assumption that the family of meshes is shape-regular ensures that the
sets Eh,j and Eh(T ) each contain a bounded number of edges (faces). Moreover,
hE ∼ hT for all E ∈ Eh(T ) and |E′| ∼ |E| for all E′, E ∈ Eh(T ). Since

|ΦT (pj)| ≤ C
∑

E′∈Eh,j

|ΨE′(pj)|

one obtains the estimate

‖ΦT ‖ℓ1,E ≤ C
∑

E′∈Eh(T )

‖ΨE′‖ℓ1,E′ ∀E ⊂ ∂T.

Collecting the various inequalities, for each T ∈ Th we deduce that

hT ‖ΦT ‖20,T ≤ Ch2
T

∑

E⊂∂T

‖ΦT ‖20,E ≤ Ch2
T

∑

E⊂∂T

‖ΦT ‖2ℓ1,E

≤ Ch2
T

( ∑

E′∈Eh(T )

‖ΨE′‖ℓ1,E′

)2

≤ C
∑

E′∈Eh(T )

h2
E′‖ΨE′‖2ℓ1,E′ ≤ C

∑

E′∈Eh(T )

h2
E′‖ΨE′‖20,E′

where the inequality (
∑
ai)

2 ≤ C
∑
a2

i – valid for a bounded number of
summands – was used. Recalling the definitions of ΦT and ΨE′ , the proof is
complete. ⊓⊔

Remark 3.81. It can be shown (see for example [BFH06]) that a positive con-
stant C∗ exists such that the lower bound

C∗ ∑

E∈Eh(T )

∫

E

h2
E |bh · [∇vh]E |2 dγ ≤ hT ‖bh∇ · vh − π∗h(bh∇ · vh)‖20,T

also holds true. Summing this inequality and (3.102) over T we get

C1Jh(vh, vh) ≤
∑

T∈Th

hT ‖bh∇ · vh − π∗h(bh∇ · vh)‖20,T ≤ C2Jh(vh, vh)

when the parameter in (3.101b) is chosen so that τE ∼ h2
E . ♣

Remark 3.82. In local projection stabilization we added a stabilizing term of
the form

Sh(uh, vh) =
∑

T∈Th

τT (κh(bh · ∇uh), κh(bh · ∇vh))T

where κh = id − πh is the fluctuation operator and πh a local projection
onto the (discontinuous) projection space Dh. If πh is replaced by the quasi-
interpolant π∗h : H2(Th) → Yh, then Lemma 3.80 enables us to replace the
stabilizing term Sh(·, ·) on the discrete space Yh by the stabilizing term
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Jh(uh, vh) =
∑

E∈Eh

τE 〈bh · [∇uh]E , bh · [∇vh]E〉E .

The advantage of this replacement is the consistency of the CIP stabilization
method; the LPS method is not consistent. ♣

Before investigating the convergence properties of the CIP stabilization
method we describe the approximation properties of the global L2 projection
ih : L2(Ω) → Yh.

Lemma 3.83. The L2 projection ih : L2(Ω) → Yh satisfies the global approx-
imation properties

∑

T∈Th

h2m
T |u− ihu|2m,T ≤ C

∑

T∈Th

h2r+2
T |u|2r+1,T ∀u ∈ Hr+1(Ω),

∑

E⊂Γ

hE |u− ihu|20,E ≤ C
∑

T∈Th

h2r+2
T |u|2r+1,T ∀u ∈ Hr+1(Ω),

on shape-regular meshes Th where 0 ≤ m ≤ r + 1 with r ≥ 1.

Proof. Let uI ∈ Yh, u ∈ H2(Ω), be the usual nodal interpolant that satisfies

hm
T |u− uI |m,T ≤ Chr+1

T |u|r+1,T ∀u ∈ Hr+1(T )

where 0 ≤ m ≤ r + 1 and r ≥ 1. Applying the Cauchy-Schwarz inequality to
(u− ihu, u− ihu) = (u− ihu, u− uI) yields the L2(Ω) estimate

‖u− ihu‖0 ≤ ‖u− uI‖0 ≤ C
∑

T∈Th

h2r+2
T |u|2r+1,T .

Estimates for the derivatives can then be deduced via a triangle inequality
and an inverse estimate:

hm
T |u− ihu|m,T ≤ hm

T |u− uI |m,T + hm
T |uI − ihu|m,T

≤ Chr+1
T |u|r+1,T + C‖uI − u‖0,T + C‖u− ihu‖0,T

≤ Chr+1
T |u|r+1,T + C‖u− ihu‖0,T .

Squaring, summing and applying the above L2 bound, we get the first of the
desired estimates. For the second, a scaled version of a trace theorem gives

h
1/2
E ‖v‖0,E ≤ C(‖v‖0,T + hT |v|1,T ) for all v ∈ H1(T ). (3.103)

Again square, sum, and apply the global L2 and H1 bounds. �
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Remark 3.84. Lemma 3.83 does not imply that

‖u− ihu‖2m ≤ C
∑

T∈Th

h
2(r−m+1)
T |u|2r+1,T ∀u ∈ Hr+1(Ω) (3.104a)

‖u− ihu‖20,Γ ≤ C
∑

T∈Th

h2r+1
T |u|2r+1,T ∀u ∈ Hr+1(Ω) (3.104b)

for m = 1, . . . , r + 1, but on quasi-uniform meshes where ch ≤ hT ≤ h these
inequalities are valid. ♣

Remark 3.85. Assume that the L2 projection ih is Hm stable, i.e.,

‖ihu‖m ≤ CS‖u‖m ∀u ∈ Hm(Ω).

Then for the nodal interpolant uI one has

‖u− ihu‖m ≤ ‖u− uI‖m + ‖ih(uI)− ihu‖m ≤ (1 + CS)‖u− uI‖m

and (3.104a) follows. The L2 projection is H1 stable on quasi-uniform meshes
and in [BPS01] this stability has been proved for the more general case of
shape-regular meshes that satisfy a certain mesh condition. ♣

Theorem 3.86. Let the data of the problem be sufficiently smooth, let γ be
sufficiently large and assume that τE ∼ h2

E. Then there is a positive con-
stant C, which is independent of ε and the mesh, such that on quasi-uniform
meshes one has

|||u− uh|||CIP ≤ C (ε1/2 + h1/2)hr‖u‖r+1 .

Proof. The proof follows a familiar pattern: demonstrate the coercivity of the
underlying discrete bilinear form on Yh with respect to the norm ||| · |||CIP

then estimate the approximation error. By Lemma 3.78 one has

ah(vh, vh) + Jh(vh, vh) ≥ 1

2
|||vh|||2CIP ∀vh ∈ Yh,

for all nonnegative τE and γ large enough. Then, for any interpolant ihu ∈ Yh

of the weak solution u, with uh the solution of the discrete problem, we get

1

2
|||uh − ihu|||2CIP ≤ ah(u− ihu, uh − ihu) + Jh(u− ihu, uh − ihu)

whence

|||uh − ihu|||CIP ≤ 2 sup
wh∈Yh

ah(u− ihu,wh)

|||wh|||CIP
+ 2 sup

wh∈Yh

Jh(u− ihu,wh)

|||wh|||CIP
.

Consider the individual terms in ah(u− ihu,wh) for all wh ∈ Yh. Integration
by parts of the convection term gives
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ah(u− ihu, wh) = ε (∇(u− ihu),∇wh) + ((c− div b)(u− ihu), wh)

+ 〈b · n (u− ihu), wh〉Γ+
− (u− ihu, b · ∇wh)

− ε
〈
∂(u− ihu)

∂n
,wh

〉

Γ

− ε
〈
u− ihu,

∂wh

∂n

〉

Γ

+
∑

E⊂Γ

εγ

hE
〈u− ihu,wh〉E . (3.105)

Here the fourth term is the most troublesome and we estimate it first. Adding
and subtracting bh · ∇wh gives

(u− ihu, b · ∇wh) = (u− ihu, (b− bh) · ∇wh) + (u− ihu, bh · ∇wh);

for the first term here an inverse inequality gives

|(u− ihu, (b− bh) · ∇wh)| ≤ C
∑

T∈Th

‖u− ihu‖0,T hT |wh|1,T

≤ Chr+1‖u‖r+1 |||wh|||CIP ,

while for the second term choose ih to be the global L2 projection in Yh, and
then the orthogonality of u − ihu with respect to Yh and Lemma 3.80 imply
that

|(u− ihu, bh · ∇wh)| = | (u− ihu, bh · ∇wh − π∗h(bh · ∇wh)) |

≤ C
( ∑

T∈Th

h−1
T ‖u− ihu‖20,T

)1/2

|||wh|||CIP

≤ Chr+1/2‖u‖r+1 |||wh|||CIP .

The other terms in (3.105) are bounded by means of standard arguments:

ε|(∇(u− ihu),∇wh)| ≤ Cε1/2hr‖u‖r+1 |||wh|||CIP ,

|((c−∇ · b)(u− ihu), wh)| ≤ Chr+1‖u‖r+1 |||wh|||CIP ,

|〈|b · n|(u− ihu), wh〉Γ+
| ≤ Chr+1/2‖u‖r+1 |||wh|||CIP ,

where the scaled trace inequality (3.103) was used in deriving the last estimate.
The Cauchy-Schwarz inequality shows that

∣∣∣∣ε
〈
∂(u− ihu)

∂n
,wh

〉

Γ

∣∣∣∣ ≤ Cε1/2

(∑

E⊂Γ

hE

∥∥∥∥
∂(u− ihu)

∂n

∥∥∥∥
2

0,E

)1/2

|||wh|||CIP .

An invocation of the scaled trace inequality (3.103) gives

h
1/2
E

∥∥∥∥
∂(u− ihu)

∂n

∥∥∥∥
0,E

≤ C (|u− ihu|1,T + hT |u− ihu|2,T ) ∀E ⊂ ∂T ;
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squaring then summing, we get
∣∣∣∣ε
〈
∂(u− ihu)

∂n
,wh

〉

Γ

∣∣∣∣ ≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

For the penultimate term in (3.105) one proceeds similarly, using an inverse
inequality:

h
1/2
E

∥∥∥∥
∂wh

∂n

∥∥∥∥
0,E

≤ C (|wh|1,T + hT |wh|2,T ) ≤ C|wh|1,T ∀E ⊂ ∂T.

It follows that
∣∣∣∣ε
〈

(u− ihu),
∂wh

∂n

〉

Γ

∣∣∣∣ ≤
∑

E⊂Γ

(
ε

hE

)1/2

‖u− ihu‖0,E (εhE)1/2

∥∥∥∥
∂wh

∂n

∥∥∥∥
0,E

≤
(∑

E⊂Γ

ε

hE
‖u− ihu‖20,E

)1/2 (
ε
∑

T∈Th

|wh|21,T

)1/2

≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

The final term in (3.105) is handled by a Cauchy-Schwarz inequality, obtaining

∣∣∣∣∣
∑

E⊂Γ

εγ

hE
〈(u− ihu,wh〉E

∣∣∣∣∣ ≤ γ
(∑

E⊂Γ

ε

hE
‖u− ihu‖20,E

)1/2

|||wh|||CIP

≤ Cε1/2hr‖u‖r+1 |||wh|||CIP .

Finally, using similar arguments to estimate the stabilizing term from the
start of the proof, we get

|Jh(u− ihu,wh)| ≤ Chr+1/2‖u‖r+1 |Jh(wh, wh)|1/2

≤ Chr+1/2‖u‖r+1 |||wh|||CIP .

Combining the above estimates produces the desired error estimate. ⊓⊔
Remark 3.87. The proof of Theorem 3.86 assumed that the meshes were quasi-
uniform. This assumption can be relaxed slightly [BFH06]. An alternative
way of avoiding the assumption of quasi-uniformity is to replace the L2 pro-
jection ih by the standard nodal interpolation uI . Although one cannot then
appeal to an orthogonality property when estimating the convection term,
nevertheless an O(hr) error estimate (instead of the above O(hr+1/2)) can be
established; see [Sch07]. ♣
Remark 3.88. The continuous interior penalty approach is generalized to the
hp version of the finite element method in [BE07]. In [BH04] the question of
a discrete maximum principle is discussed. Local error estimates similar to
those stated for the streamline diffusion method in Theorem 3.41 have been
established in [BGL07]. ♣
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Finally, we wish to point out the close relationship between the LPS and
CIP analyses. The essential point in the error estimation of both methods is
a special treatment of the convection term.

For the LPS method, after integrating by parts, the orthogonality property
of a special interpolant jh with respect to the projection space Dh is used:

(u− jhu, b · ∇wh) = (u− jhu, b · ∇wh − πh(b · ∇wh))

where πh : L2(Ω) → Dh is a local projection into the discontinuous projection
space Dh. Control over κh(b · ∇wh) = b · ∇wh − πh(b · ∇wh) is achieved by
adding a stabilizing term like (3.86b) which causes a consistency error, but
this is sufficiently small provided that the projection space Dh is sufficiently
large.

In the CIP stabilization method, the special interpolant jh is replaced by
the standard (global) L2 projection ih : L2(Ω) → Vh into the continuous finite
element space Yh and the L2 projection πh of LPS is replaced by the quasi-
interpolant π∗h into Yh. The special construction of the quasi-interpolant π∗h
permits an L2 control of bh · ∇wh − π∗h(bh · ∇wh) by (appropriately scaled)
jumps in the gradient of wh – see Lemma 3.80 above.
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3.4 The Discontinuous Galerkin Finite Element Method

In 1973, Reed and Hill [RH73] introduced the first discontinuous Galerkin
method for hyperbolic first-order equations. Since then there has been an ac-
tive development of discontinuous Galerkin methods for hyperbolic problems;
the technique is also used in the time discretization of unsteady problems, as
we saw in Section II.4.2.2.

In the 1970s Galerkin methods using discontinuous finite elements were
proposed also for elliptic equations, but it is only recently that the discon-
tinuous Galerkin finite element method (dGFEM) for elliptic problems has
attracted the attention of many researchers. When applied to convection-
diffusion problems, like SDFEM and other stabilizations the dGFEM is much
more stable than the standard Galerkin FEM, but the details of the construc-
tion of the dGFEM bilinear form are very different from these other methods.
It has even been claimed that dGFEM has the advantage that it needs no
special stabilization for convection-diffusion problems, but in fact it includes
a natural upwinding that is equivalent to some stabilization.

The name of the method comes from its use of a standard polynomial trial
space on every element that is not required to be continuous across element
boundaries. Thus nonstandard meshes can be used: in two dimensions, trian-
gles and rectangles can be combined arbitrarily, nonconvex quadrilaterals are
allowed and in the case of mesh refinement it is not necessary to avoid hanging
nodes. The local nature of the method means it is more readily parallelizable
than the standard FEM and it clearly permits the use of polynomials of dif-
ferent degrees on different elements (one can in two dimensions use linears on
quadrilaterals and bilinears on triangles). This flexibility can be exploited to
gain increased accuracy when the solution of a problem is quite smooth on a
part of the domain – as is usually the case for convection-diffusion problems.
On the other hand, a drawback of the dGFEM is its much larger number of
degrees of freedom compared with the standard Galerkin FEM.

The following subsections introduce the dGFEM. We restrict ourselves to
simple elements (linears and bilinears) and conforming meshes. The method
can be extended to nonconforming meshes and to the hp-version of the fi-
nite element method [ABCM02, BO99, Coc03, HSS02]. For an application to
compressible flow problems, see [FFS03].

3.4.1 The Primal Formulation for a Reaction-Diffusion Problem

Consider the boundary value problem

−ε∆u+ cu = f in Ω ⊂ R
2, (3.106a)

u = 0 on Γ := ∂Ω, (3.106b)

assuming that c > 0 and Ω is a polygonal bounded domain.
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Let T be a general partition of the domain Ω into elements (disjoint closed
triangles or rectangles) κ such that

Ω̄ =
⋃

κ∈T
κ .

Assume that there are no hanging nodes; see [HSS02] where one hanging node
per element is allowed.

To each element κ ∈ T assign a nonnegative integer sκ and define the
broken Sobolev space of composite order s = {sκ : κ ∈ T } by

Hs(Ω, T ) =
{
v ∈ L2(Ω) : v|κ ∈ Hsκ(κ), ∀κ ∈ T

}
.

The corresponding broken Sobolev norm and seminorm are

|||v|||s,T =

(∑

κ∈T
‖v‖2Hsκ (κ)

) 1
2

and |v|s,T =

(∑

κ∈T
|v|2Hsκ (κ)

) 1
2

.

If sκ = s for all κ ∈ T , we then write Hs(Ω, T ), |||v|||s,T and |v|s,T . For
each v ∈ H1(Ω, T ), the broken gradient ∇T v of a function v is defined by
(∇T v)|κ = ∇(v|κ), κ ∈ T .

Assume also that each element κ ∈ T is the affine image of a fixed reference
element κ̂, viz., κ = Fκ(κ̂). Then the finite element space is defined to be

S(Ω, T ,F) =
{
v ∈ L2(Ω) : v|κ ◦ Fκ ∈ P1(κ̂)

}
,

where F = {Fκ : κ ∈ T } and P1(κ̂) is the space of linear functions defined
on κ̂. That is, the solution of (3.106) is approximated by a piecewise linear
function that is continuous on each element κ but allowed to be discontinuous
across interelement edges. (Similarly, one could use bilinears or even mixed
linear and bilinear elements.)

Let E be the set of all open one-dimensional element interfaces associated
with the partition T , and write Eint ⊂ E for the the set of all edges e ∈ E that
lie in Ω. Set Γint = {x ∈ Ω : x ∈ e for some e ∈ Eint}. Number the elements
as κ1, κ2, . . . Then for each e ∈ Eint there exist indices i and j such that i > j
where κ := κi and κ′ := κj share the interface e. The (element-numbering-
dependent) jump of a function v ∈ H1(Ω, T ) across e and the mean value of
v on e are defined by

[v]e = v|∂κ∩e − v|∂κ′∩e and 〈v〉e =
1

2
(v|∂κ∩e + v|∂κ′∩e) ,

where ∂κ denotes the union of all open edges of the element κ. With each
interface e ∈ Eint associate the unit normal vector ν pointing from κ to κ′; if
e ⊂ Γ , take ν to be the outward-pointing unit normal vector µ.

To simplify the notation, indices are sometimes omitted from the terms
[v]e and 〈v〉e.
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In formulating the discrete problem, we assume that the solution u of
(3.106) satisfies u ∈ H2(Ω) ⊂ H2(Ω, T ). Then

[u]e = 0 and 〈u〉e = u ∀e ∈ Eint .

As is standard for finite element methods, multiply the differential equa-
tion (3.106a) by a test function v ∈ H1(Ω, T ) then integrate over the do-
main Ω, obtaining

∫

Ω

(−ε∆u+ cu) v dx =

∫

Ω

fv dx. (3.107)

Let us now consider the contribution of −ε∆u to (3.107). Integrating by
parts over each element κ then summing over all κ ∈ T , some manipulations
yield (denote the normal vectors that arise from the application of Green’s
formula by µ on Γ , µκ on the boundary of κ and ν on the set of all interior
edges)
∫

Ω

(−ε∆u) v dx =
∑

κ∈T
ε

∫

κ

∇u · ∇v dx−
∑

κ∈T
ε

∫

∂κ

(∇u · µκ) v ds

=
∑

κ∈T
ε

∫

κ

∇u · ∇v dx−
∑

e∈E∩Γ

ε

∫

e

(∇u · µ) v ds

−
∑

e∈Eint

ε

∫

e

[
((∇u · µκ)v)|∂κ∩e + ((∇u · µκ′)v)|∂κ′∩e

]
ds,

where an interior edge e is common to the elements κ and κ′. The sum of the
integrals over all e ∈ Eint can be written as

∑

e∈Eint

ε

∫

e

[
((∇u · µκ)v)|∂κ∩e + ((∇u · µκ′)v)|∂κ′∩e

]
ds

=
∑

e∈Eint

ε

∫

e

[
((∇u · ν)v)|∂κ∩e − ((∇u · ν)v)|∂κ′∩e

]
ds

=
∑

e∈Eint

ε

∫

e

(
〈∇u · ν〉e[v]e + [∇u · ν]e〈v〉e

)
ds

=
∑

e∈Eint

ε

∫

e

〈∇u · ν〉e[v]eds.

Introducing the notation

∑

e∈Eint

ε

∫

e

〈∇u · ν〉e[v]e ds = ε

∫

Γint

〈∇u · ν〉[v] ds ,

∑

e∈E∩Γ

ε

∫

e

(∇u · µ) v ds = ε

∫

Γ

(∇u · µ) v ds ,



366 3 Finite Element Methods

we obtain
∫

Ω

(−ε∆u) v dx =
∑

κ∈T
ε

∫

κ

∇u · ∇v dx

− ε
∫

Γ

(∇u · µ) v ds− ε
∫

Γint

〈∇u · ν〉[v] ds .

To the right–hand side of this expression add or subtract the zero terms

ε

∫

Γ

u(∇v · µ) ds and ε

∫

Γint

[u]〈∇v · ν〉 ds

to symmetrize the formula. Also add the following penalty terms to achieve
coercivity of the bilinear form on the discrete space:

∫

Γ

σuv ds and

∫

Γint

σ[u][v] ds .

Here σ is called the discontinuity-penalization parameter and is defined by

σ|e = σe for e ∈ E ,

where σe ≥ 0 is a user-chosen constant. Recall that in the edge stabilization
or continuous interior penalty method (CIP) of the previous section, similar
arguments were used. While in a continuous finite element method it is natural
to punish jumps of the gradient, in a discontinuous method it is the jumps
of the function values that are penalised. The parallels between the CIP and
discontinuous methods allow similar error analyses [Bur05].

Returning to the derivation of the method, we get finally
∫

Ω

(−ε∆u) v dx =
∑

κ∈T
ε

∫

κ

∇u · ∇v dx

+ ε

∫

Γ

(±u(∇v · µ)− (∇u · µ)v) ds+

∫

Γ

σuv ds

+ ε

∫

Γint

(±[u]〈∇v · ν〉 − 〈∇u · ν〉[v]) ds+

∫

Γint

σ[u][v] ds.

Here either both plus or both minus signs are used. Now the primal formula-
tion of the dGFEM with interior penalties can be stated as:

{
Find uh ∈ S(Ω, T ,F) such that

B±(uh, vh) = L(vh) for all vh ∈ S(Ω, T ,F) ,

with

L(w) :=
∑

κ∈T

∫

κ

fw dx.
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Correspondingly, the bilinear form is defined by

B±(v, w) =
∑

κ∈T

(
ε

∫

κ

∇v · ∇w dx+

∫

κ

cvw dx

)

+ ε

∫

Γ

(±v(∇w · µ)− (∇v · µ)w) ds+

∫

Γ

σvw ds

+ ε

∫

Γint

(±[v]〈∇w · ν〉 − 〈∇v · ν〉[w]) ds+

∫

Γint

σ[v][w] ds.

The minus sign leads to a symmetric bilinear form, and the method is then
called symmetric with interior penalties (SIP). With the plus sign we have,
surprisingly, an asymmetric bilinear form even though we started from a sym-
metric problem; this method is called non-symmetric with interior penalties
(NIP) in the literature. The relative advantages and disadvantages of these
two approaches will be discussed later.

Note that the numbering-dependent notation for the jumps and the nor-
mal ν does not affect the final formulation since only products of them appear.

Example 3.89. Let us consider the simple problem

−u′′ = f, u(0) = u(1) = 0,

and its discretization with linear elements on an equidistant mesh of mesh
size h, using the NIP method and choosing σ = 1/h.

On the interval (xi, xi+1), set uh = u+
i φ

+
i + u−i+1φ

−
i+1. Here, for instance,

φ+
i is the restriction to the interval (xi, xi+1) of the standard hat function

associated with the mesh point xi. Using the test functions φ−i and φ+
i , at

each interior mesh point we obtain the following equations:

1

h

(
1

2
u+

i−1 − u−i + 2u+
i − u−i+1 −

1

2
u+

i+1

)
=

∫ xi

xi−1

fφ−i ,

1

h

(
− 1

2
u−i−1 − u+

i−1 + 2u−i − u+
i +

1

2
u−i+1

)
=

∫ xi+1

xi

fφ+
i .

Thus the dGFEM generates a multi-valued difference stencil. But if one sums
these two equations the classical three-point stencil for (u+

i + u−i )/2 is ob-
tained.

This multi-valued difference stencil is valid at each interior mesh point; at
the boundary the situation is different – in general the boundary conditions
are enforced weakly. ♣

Remark 3.90. (Flux formulation) Alternatively, one has the flux formulation
of the dGFEM, which starts from the formulation of (3.106) as

θ = ∇u, −ε∇ · θ + cu = f.
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A corresponding weak form is

∫

κ

θ · τ = −
∫

κ

u ∇ · τ +

∫

∂κ

uµκ · τ,

−ε
∫

κ

θ · ∇v +

∫

κ

cuv =

∫

κ

fv +

∫

∂κ

θ · µκ v.

This generates the following discretization: find uh, θh such that

∫

κ

θh · τh = −
∫

κ

uh ∇ · τh +

∫

∂κ

ûκ µκ · τh,

−ε
∫

κ

θh · ∇vh +

∫

κ

cuhvh =

∫

κ

fvh +

∫

∂κ

θ̂κ · µκ vh.

Here the choice of the numerical fluxes θ̂κ and ûκ that approximate θ = ∇u
and u on ∂κ is very important. In [ABCM02] one finds a thorough discussion

of 9 variants of the dGFEM that are characterized by different choices of θ̂κ
and ûκ. For each of these methods, the properties of the associated primal
formulation that is obtained by eliminating θh are discussed. ♣

Remark 3.91. (Discontinuous Petrov-Galerkin formulation) In the approach
just described the numerical fluxes are defined by expressing the element in-
terface fields as suitable averages of the internal fields. Following a slightly
different philosophy, the discontinuous Petrov-Galerkin formulation approxi-
mates all unknown fields by internal and boundary variables. See [CSB05] for
the application of this method to convection-diffusion problems. ♣

We shall work only with the primal form of the dGFEM. Next, the treat-
ment of the convective term is discussed.

3.4.2 A First-Order Hyperbolic Problem

Consider in this subsection the pure convection problem

b · ∇u+ cu = f in Ω , (3.108a)

u = g on Γ− , (3.108b)

with the assumption that c − (div b)/2 ≥ ω > 0. It is well known that the
standard Galerkin discretization of (3.108) by linear or bilinear elements gives
solutions that are only O(h) accurate in the L2 norm [JNP84]; moreover
the stability properties of this method are unsatisfactory. Thus the method
needs to be improved using, e.g., the streamline diffusion method – or the
discontinuous Galerkin approach as we now explain.

When discretizing the convective term, a form of upwinding is used. Define
the inflow and outflow parts of the boundary ∂κ of each κ ∈ T by
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∂−κ = {x ∈ ∂κ : b(x) · µκ(x) < 0} and ∂+κ = {x ∈ ∂κ : b(x) · µκ(x) ≥ 0}
respectively, where µκ(x) again represents the outward-pointing unit vector
normal to ∂κ at the point x ∈ ∂κ.

For each element κ ∈ T and v ∈ H1(κ), denote by v+κ the interior trace of
v|κ on ∂κ. If ∂−κ \ Γ �= ∅ for some κ ∈ T , then for each x ∈ ∂−κ \ Γ there
exists a unique κ′ ∈ T such that x ∈ ∂+κ

′. Now for a function v ∈ H1(Ω, T )
and for each κ ∈ T with the property that ∂−κ \ Γ �= ∅, define the outer
trace v−κ of v on ∂−κ \Γ relative to κ to be the inner trace v+κ′ relative to the
element κ′ such that ∂+κ

′ ∩ (∂−κ \ Γ ) �= ∅. The jump of v across ∂−κ \ Γ is
defined by

⌊v⌋κ = v+κ − v−κ .
Note that the jump ⌊·⌋ depends on the flow direction b, unlike the previous
jump [·] which depends on the numbering of elements.

Now
∫

κ

(b · ∇u) v dx =

∫

∂κ

(b · µκ)uv ds−
∫

κ

u∇ · (b v) dx

=

∫

∂−κ

(b · µκ)uv ds+

∫

∂+κ

(b · µκ)uv ds−
∫

κ

u∇ · (b v) dx.

For a continuous function it is irrelevant whether one writes u, u+ or u−.
But for a discontinuous function, in all integrals over the boundary one might
consider replacing all boundary values by their inner traces. A better idea is
to replace u on the inflow part of the boundary by u−, which introduces a
form of upwinding.

Again integrating the last term by parts (which leads to a cancellation of
the terms on ∂+κ), we get

∫

κ

(b · ∇u) v dx

=

∫

∂−κ

(b · µκ)u−v+ ds+

∫

∂+κ

(b · µκ)u+ v+ ds−
∫

κ

u∇ · (b v) dx

=

∫

κ

(b · ∇u) v dx−
∫

∂−κ∩Γ−

(b · µκ)u+v+ ds−
∫

∂−κ\Γ

(b · µκ)⌊u⌋v+ ds.

Thus (3.108) has the following weak formulation:

B0(u, v) : =
∑

κ∈T

(∫

κ

(b · ∇u+ cu) v dx

−
∫

∂−κ∩Γ

(b · µκ)u+v+ ds−
∫

∂−κ\Γ

(b · µκ)⌊u⌋v+ ds
)

=
∑

κ∈T

(∫

κ

fv dx−
∫

∂−κ∩Γ−

(b · µκ)gv+ ds

)
.
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In simple cases the corresponding discretization is an upwind scheme, as
the next example demonstrates.

Example 3.92. Let us discretize the problem

ux + u = f in (0, 1), u(0) = A,

using the above dGFEM with a piecewise constant approximation ui on every
subinterval (xi−1, xi) of length hi. In the first interval one gets

u1

h1
+ u1 =

1

h1

∫ x1

x0

f dx +
1

h1
A .

This equation corresponds to a weak enforcement of the initial condition. For
all other intervals one has

ui − ui−1

hi
+ ui =

1

hi

∫ xi

xi−1

f dx

which is an upwind scheme.
If one uses linear elements, the scheme depends as usual on the degrees

of freedom chosen. For the dGFEM there are more possibilities than for a
continuous Galerkin method; for instance, one could take the function values
and their derivatives at the midpoints of each mesh interval.

One can associate the two values u−
i and u+

i with each mesh point xi,
interpreting the method as a multivalued difference scheme. Eliminating u+

i

while assuming an equidistant mesh and constant f , on writing ui for u−
i the

scheme becomes

ui − ui−1

h
+

1

2

ui−1 + (1 + h/3)ui

1 + h/6
=

1

2

f + (1 + h/3)f

1 + h/6
.

Thus the scheme bears some resemblance to the midpoint upwind scheme and
consequently to the streamline diffusion method. ♣

What is the advantage of the bilinear form B0(·, ·) over standard Galerkin?
Setting c2

0 := c− (∇ · b)/2, after integration by parts it is easy to see that

B0(v, v) =
∑

κ∈T

[
‖c0v‖2L2(κ)

+
1

2

(
‖v+‖2∂−κ∩Γ + ‖v+ − v−‖2∂−κ\Γ + ‖v+‖2∂+κ∩Γ

)]
.

Here we used the notation

(v, w)τ =

∫

τ

|b · µκ|vw ds for τ ⊂ ∂κ, and set ‖v‖2τ = (v, v)τ .

This shows that in the dGFEM one controls not only the L2 error but also the
error in the stronger norm B0(v, v)

1/2. The Galerkin orthogonality property
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B0(u− uh, vh) = 0

then permits us to use standard techniques in the error analysis that will be
presented in the next subsection for the full convection-diffusion problem.

Remark 3.93. (Jump formulation of upwinding) Instead of using the upwind
idea described above, the upwind effect can be generated equivalently by
adding a certain jump penalty term [Coc03]. In [BMS04] it is observed that
this approach has two advantages: stability can be proved more elegantly and
one has more flexibility in tuning the amount of stabilization used. ♣

3.4.3 dGFEM Error Analysis for Convection-Diffusion Problems

The ideas of the two previous subsections will now be merged in considering
the convection-diffusion problem

−ε∆u+ b · ∇u+ cu = f in Ω, (3.109a)

u = 0 on Γ, (3.109b)

while assuming that c− (∇ · b)/2 ≥ ω > 0 and Ω has a polygonal boundary.
The dGFEM bilinear form for the problem (3.109) is

B±(v, w) :=
∑

κ∈T

(
ε

∫

κ

∇v · ∇w dx+

∫

κ

(b · ∇v + cv)w dx

−
∫

∂−κ∩Γ

(b · µ)v+w+ ds−
∫

∂−κ\Γ

(b · µκ)⌊v⌋w+ ds

)

+ ε

∫

Γ

(±v(∇w · µ)− (∇v · µ)w) ds+

∫

Γ

σvw ds

+ ε

∫

Γint

(±[v]〈∇w · ν〉 − 〈∇v · ν〉[w]) ds+

∫

Γint

σ[v][w] ds

for all v, w ∈ H1(Ω, T ). The dGFEM with interior penalties is:

{
Find uh ∈ S(Ω, T ,F) such that
B±(uh, vh) = L(vh) for all vh ∈ S(Ω, T ,F) ,

with

L(w) :=
∑

κ∈T

∫

κ

fw dx.

Assume that u ∈ H2(Ω, T ) and ∇u · ν is continuous across each inte-
rior edge e. Then one has both consistency of the method and the Galerkin
orthogonality property

B±(u− uh, v) = 0 for all v ∈ S(Ω, T ,F) .
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Define the full dGFEM norm by

|||v|||2dG =
∑

κ∈T

(
ε‖∇v‖2L2(κ) + ‖c0v‖2L2(κ)

)
+

∫

Γ

σv2 ds+

∫

Γint

σ[v]2 ds

+
1

2

∑

κ∈T

(
‖v+‖2∂−κ∩Γ + ‖v+ − v−‖2∂−κ\Γ + ‖v+‖2∂+κ∩Γ

)
.

Is B±(·, ·) coercive over S(Ω, T ,F) × S(Ω, T ,F)? For the asymmetric NIP
method it is easy to see that

B−(v, v) = |||v|||2dG

on any mesh. For the symmetric SIP version, assuming a shape-regular mesh,
an analysis proves coercivity provided that

σ =
ε

h
σ0

with a sufficiently large constant σ0. As it’s our intention to carry out an error
analysis later on an anisotropic mesh, we prefer the NIP version for its simpler
stability property. See [Geo05] for an examination of the SIP on anisotropic
meshes.

Remark 3.94. To prove optimal L2 error estimates or to apply the DWR
method of Section 3.6 in order to control some error functionals, the ad-
joint consistency of the method is important. If the dual problem formed by
transposing the arguments in the bilinear form B±(·, ·) is based on the formal
adjoint of the original differential operator, then the bilinear form B±(·, ·) is
said to be adjoint consistent. It turns out that SIP is adjoint consistent but
NIP lacks this property; see [HHSS03]. ♣

We now sketch the dG-norm error analysis on a shape-regular mesh for
NIP; one uses similar arguments for SIP. For convenience, write the bilinear
form of NIP as B(·, ·). The starting point is the error representation

u− uh = (u−Πu) + (Πu− uh) ≡ η + ξ,

using some projector Π onto the finite element space. Galerkin orthogonality
gives

|||ξ|||2dG = B(ξ, ξ) = −B(η, ξ),

and one deals with |B(η, ξ)| in such a way that eventually only the projection
error in various norms needs to be estimated. For the projection operator Π
let us take the L2 projection onto our discontinuous finite element space.
Then for linear or bilinear elements on a shape-regular mesh, one obtains as
a consequence of the Bramble-Hilbert lemma that

‖η‖L2
≤ C h2 ‖u‖H2(Ω) and ‖η‖H1(Ω,T ) ≤ C h ‖u‖H2(Ω).
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To estimate the convective terms, on applying Cauchy-Schwarz to |B0(η, ξ)|
one sees that one must estimate both

∑

κ∈T
‖η‖L2(κ) + ‖η−‖∂−κ\Γ + ‖η+‖∂−κ∩Γ

and ∑

κ∈T

∫

κ

η(b · ∇ξ) dx.

For the first of these one invokes the multiplicative trace inequality [DFS02]

‖v‖2L2(∂κ) ≤ C
(
‖v‖L2(κ)|v|H1(κ) +

1

hκ
‖v‖2L2(κ)

)
for all v ∈ H1(κ).

Regarding the second, if

b · ∇T v ∈ S(Ω, T ,F) ∀v ∈ S(Ω, T ,F),

the contribution is zero owing to the choice of Π. If b is neither piecewise
linear nor bilinear, then use the triangle inequality and an inverse inequality
to obtain ∣∣∣∣

∑

κ∈T

∫

κ

η(b · ∇ξ) dx
∣∣∣∣ ≤ C h2‖u‖H2‖ξ‖L2

for b ∈W 1,∞(Ω). Summarizing the bounds on the convective part, we get our
first important result for the pure convection problem:

Lemma 3.95. Consider the pure convection problem (3.108). Assume that
c− (∇ · b)/2 ≥ ω > 0. Let this problem be discretized on a shape-regular mesh
using the discontinuous Galerkin finite element method with linear or bilinear
elements. Then the error satisfies

|||u− uh|||dG ≤ C h3/2‖u‖H2(Ω).

For the convection-diffusion problem (3.109) it still remains to estimate
the remaining terms in B(η, ξ). The first two terms and the penalty terms
are bounded via a direct application of the Cauchy-Schwarz inequality. In
addition, two types of integrals on Γ and on Γint can be estimated in a similar
way. Let us demonstrate the technique for the integrals on Γ : introducing an
auxiliary positive parameter γ, for the expression

Z =

∫

Γ

ε
(
η(∇ξ · ν)− (∇η · ν)ξ

)
ds

one obtains the estimate
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|Z| ≤
(∑

κ∈T

ε

γ
‖η‖2L2(∂κ∩Γ )

)1/2 (∑

κ∈T
ε γ‖∇ξ‖2L2(∂κ∩Γ )

)1/2

+

(∑

κ∈T

ε2

σ
‖∇η‖2L2(∂κ∩Γ )

)1/2 (∑

κ∈T
σ‖ξ‖2L2(∂κ∩Γ )

)1/2

.

The second term involving ξ can be directly estimated by |||ξ|||dG. In the first ξ
term, apply an inverse inequality to replace the integrals over ∂κ by integrals
over κ, and to compensate for the power of h that arises choose γ|κ = O(hκ).
This yields

|Z| ≤

⎡
⎣
(∑

κ∈T

ε

hκ
‖η‖2L2(∂κ∩Γ )

)1/2

+

(∑

κ∈T

ε2

σ
‖∇η‖2L2(∂κ∩Γ )

)1/2
⎤
⎦ |||ξ|||dG.

One therefore has O(ε1/2h) and O(ε h1/2/σ1/2) error contributions. As the
penalty terms make an error contribution of O(σ1/2h3/2), an equilibration of
the various terms leads us to the choice σ = σ0ε/h for some positive con-
stant σ0.

Theorem 3.96. Let the convection-diffusion problem (3.109) be discretized
using the asymmetric (NIP) dGFEM with linear or bilinear elements on a
shape-regular mesh. Then the choice

σ = σ0
ε

h
, (3.110a)

with some arbitrary positive constant σ0, yields the error estimate

|||u− uh|||2DG ≤ C
(
εh2 + h3

)
‖u‖2H2(Ω). (3.110b)

Error estimates for the hp version of the dGFEM are derived in [HHSS03,
HSS02]. Detailed numerical studies can be found in [Cas02].

Remark 3.97. (Relationship of the SIP to SDFEM and its conditioning) In
[GK03] a modification of the bound (3.110b) is obtained. The authors consid-
ered the convection–diffusion problem where for the diffusion part a symmet-
ric version (SIP) of dGFEM is used, based on the bilinear form B−(v, w). In
terms of the slightly stronger norm

|||v|||2dG∗ = B+(v, v) +
∑

κ∈T
hκ ‖b · ∇v‖2L2(κ) ,

it is proved that on shape-regular meshes one has

|||u− uh|||2dG∗ ≤ C (εh2 + h3)‖u‖2H2(Ω).
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This estimate, in a norm similar to the SDFEM norm, shows there is some
relationship between the SDFEM and dGFEM stabilizations.

In the same paper it is proved that the condition number of the discrete
problem generated is O(h−2) and a multigrid method for solving the discrete
problem is described. ♣

Remark 3.98. (Error estimates in L∞ and local estimates) When the problem
is not singularly perturbed (i.e., when ε = 1), error estimates for the SIP
method are obtained in the L∞ norm in [KR02], based on a detailed analysis of
an approximate Green’s function. It seems difficult to analyse the dependence
of this error on ε when the problem is singularly perturbed.

In [Guz06] the author proves local error estimates similar to those we
presented for the SDFEM; these show that the dGFEM works well in regions
where the solution is smooth. ♣

Remark 3.99. (Superconvergence and a posteriori error estimates) Supercon-
vergence phenomena for the dGFEM applied to convection-diffusion problems
are discussed (for the one-dimensional case) in [CC07, XZ07].

For a posteriori error estimation for the dGFEM see [HSW07]. A conver-
gence proof of a corresponding adaptive algorithm for dGFEM is in [KP07].

♣

While most papers on discontinuous Galerkin methods consider isotropic
meshes, some extensions of the theory to general anisotropic meshes are given
in [Geo06, GHH07a, GHH07b].

On layer-adapted meshes, a special strategy is to apply a Galerkin method
on the fine mesh and a dGFEM stabilization outside the layer regions. Some
details of this approach will be examined in the next section. Another combi-
nation of continuous and discontinuous methods is also possible: on a standard
isotropic mesh one could use the dGFEM stabilization only in the regions near
layers and the standard (unstabilized) Galerkin method away from the layers
[CGJ06a].
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3.5 Uniformly Convergent Methods

Most of this section is concerned with the finite element solution of convection-
diffusion problems such as Example 1.15 whose solutions have only exponen-
tial boundary layers. Convection-diffusion problems like Example 1.16 (where
parabolic boundary layers appear) and reaction-diffusion problems (see Re-
mark 1.27) will also receive some attention.

Consider the convection-diffusion problem

Lu := −ε∆u+ b · ∇u+ cu = f on Ω := (0, 1)× (0, 1), (3.111a)

u = 0 on ∂Ω. (3.111b)

Assume that 0 < ε ≤ 1, that b = (b1(x, y), b2(x, y)) > (β1, β2) on Ω̄, where β1

and β2 are positive constants, and that b, c and f are smooth. Recall that the
solution u typically has exponential boundary layers at the sides x = 1 and
y = 1 of Ω̄ and an exponential corner layer at the point (1,1).

The hypothesis b1 > 0 implies that without loss of generality one can
assume that

c(x, y) ≥ γ > 0 and c(x, y)− ∇ · b(x, y)
2

≥ ω > 0 on Ω̄ (3.112)

for some positive constants γ and ω, since these inequalities can be ensured
via the change of variable v(x, y) := ekxu(x, y) for some suitable k.

For convenience assume also that f ∈ C1,α(Ω̄) and that

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0, (3.113)

so that u ∈ C3,α(Ω̄), as was seen in Example 1.3. Nevertheless finite element
analyses may not demand this much regularity of the solution.

The ε-weighted energy norm associated with (3.141) is

‖w‖ε :=
(
ε‖∇w‖20 + ‖w‖20

)1/2

, (3.114)

where ‖ · ‖0 is the norm on L2(Ω).
The finite element methods of Section 3.5 are uniformly convergent with

respect to the norm ‖ · ‖ε; that is, the computed solution uh satisfies

‖u− uh‖ε ≤ Cr−α (3.115)

for some positive constants C and α that are independent of ε and of the
number r of degrees of freedom in the finite element method. Using a power
of r to quantify the error u− uh is valid for the particular families of meshes
that we shall consider in Section 3.5, but such a bound would not be suitable
for all possible mesh families – see [SW96] for a general discussion of such
issues. Uniform convergence with respect to other norms (L2 and L∞) will
also be examined in Section 3.5.
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3.5.1 Operator-Fitted Methods

We begin with a generalization of the finite element methods of Section I.2.2.4,
by taking tensor products of one-dimensional exponentially-fitted elements
on rectangular axi-parallel meshes. This approach appears as a conforming
method in [OS89, OS91b], then is generalized to a nonconforming method
in [RAF96]. A conforming method that uses L̄-splines slightly different from
ours is analysed by Dörfler [Doe99b] in a more powerful framework that pro-
vides error bounds in various Lp generalizations of ‖ · ‖ε and is applicable to
other problems (including convection-diffusion with parabolic boundary layers
and reaction-diffusion), but our attention here is confined ourselves to error
estimates in ‖ · ‖ε for the solution of (3.111).

Consider tensor-product meshes with nodes (xi, yj), where xi = ih and
yj = jh for i, j = 0, . . . , M and h = 1/M . This mesh is square, but the results
below remain valid on equidistant tensor-product meshes provided that the
aspect ratio of each mesh rectangle in the family of meshes is bounded away
from zero, uniformly in ε.

The conforming and nonconforming Galerkin methods both use a space Sh

of exponentially-fitted L̄-splines (cf. Section I.2.2.4) as trial and test space.
Set Ωij = (xi−1, xi) × (yj−1, yj) for each i and j. Define the piecewise

constant function b̄k by b̄k|Ωij := bijk , where

bijk := ((bk)i−1,j−1 + (bk)i,j−1 + (bk)i−1,j + (bk)ij)/4 for k = 1, 2.

Analogously define c̄ and f̄ . A typical basis function φij(x, y) ∈ Sh satisfies
φij(x, y) = φi(x)φj(y); on each Ωmn, φi and φj are defined respectively by

− ε(φi)′′(x) + bmn
1 (φi)′(x) = 0, φi(xm−1) = δi,m−1, φi(xm) = δi,m,

and

− ε(φj)
′′(y) + bmn

2 (φj)
′(y) = 0, φj(yn−1) = δj,n−1, φj(yn) = δj,n.

Hence the support of each φij is the union of the four mesh squares that meet
at (xi, yj).

Suppose for the present that b1 = b1(x) and b2 = b2(y). Then the functions
in Sh are continuous on Ω̄ and the finite element method is conforming. We
define the bilinear form ah associated with (3.111) by

ah(w, z) =

∫

Ω

[ε∇w · ∇z + (b̄ · ∇w)z + c̄wz] dx dy (3.116)

for all w and z in H̃1 := {w : w|Ωij ∈ H1(Ωij) ∀i, j}, where b̄ := (b̄1, b̄2).
The computed solution uh is required to satisfy

ah(uh, z) = (f, z)h :=

M∑

i,j=1

∫

Ωij

f̄ z dx dy for all z ∈ Sh.
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It is easy to see that

ah(z, z) ≥ min{1, ω}‖z‖2ε for all z ∈ Sh,

so uh is well defined.
Using b1 = b1(x), b2 = b2(y) and the maximum principle property satisfied

by the differential operator L, one can show that for all (x, y) ∈ Ω, there exists
a positive constant C such that

|ux(x, y)| ≤ C[1 + ε−1 exp(−β1(1− x)/ε)], (3.117a)

|uy(x, y)| ≤ C[1 + ε−1 exp(−β2(1− y)/ε)], (3.117b)

|(−εuxx + b1ux)(x, y)| ≤ C and |(−εuyy + b2uy)(x, y)| ≤ C. (3.117c)

The bounds (3.117) are used in [OS89, OS91b] to prove the following two-
dimensional analogue of Theorem I.2.74.

Theorem 3.100. Assume that b1 = b1(x) and b2 = b2(y), that the data of
(3.111) are smooth, and that (3.112) and (3.113) hold true. Then the finite
element solution uh satisfies

‖u− uh‖ε ≤ Ch1/2.

Schieweck [Sch87] had earlier considered a conforming method that used
exponentially-fitted splines near the layers and bilinear trial functions other-
wise. He proved that

‖u− uh‖ε ≤ C(ε1/2 + h1/2) + C(m)(ε/h)m,

where m is an arbitrary positive integer. When ε ≪ h, this error bound is
similar to the bound of Theorem 3.100.

Remark 3.101. Suppose for a moment that b2(x, y) > β2 > 0 and b1 ≡ 0 in
(3.111). Then Example 1.16 tells us that the solution has parabolic boundary
layers at x = 0 and x = 1 and an exponential boundary layer at y = 1.
To solve this problem on our square tensor-product mesh, use a Galerkin
finite element method with piecewise bilinear trial functions, except in the
exponential boundary layer, where the trial functions in the y-direction have
the form of φj(y) above. Then Schieweck [Sch86] proves that

‖u− uh‖ε ≤ C[h1/2 + (ε/h)1/2],

where uh is the computed solution. ♣

We now return to the general case of (3.111) where b1 = b1(x, y) and
b2 = b2(x, y). Then each finite element basis function φij defined above may be
discontinuous as one moves between the four mesh squares that constitute its
support. Thus the method is nonconforming, which complicates the analysis
in [RAF96]. The bilinear form ah(·, ·) of (3.116) is now modified to
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ah(w, z) :=

M∑

i,j=1

∫

Ωij

[
ε∇w · ∇z +

1

2
(b̄ · ∇w)z − 1

2
(b̄ · ∇z)w

+

(
c̄− 1

2
∇ · b

)
wz

]
dx dy,

where the piecewise constant function ∇ · b is defined analogously to b̄. This
type of bilinear form is frequently used when dealing with nonconforming
methods, as it makes coercivity of the form easy to prove. It is obtained by
integrating half the convective term by parts, then applying piecewise constant
approximations.

As before, the computed solution uh is required to satisfy

ah(uh, z) = (f, z)h for all z ∈ Sh.

Clearly
ah(w,w) ≥ min{1, ω}‖w‖2ε for all w ∈ Sh; (3.118)

here we have abused the notation ‖ · ‖ε slightly by using it to mean the
piecewise ε-weighted norm defined by

‖w‖ε :=

⎡
⎣

M∑

i,j=1

∫

Ωij

(
ε|∇w|2 + w2

)
dx dy

⎤
⎦

1/2

.

By (3.118) the solution uh is well defined.
As b1 = b1(x, y) and b2 = b2(x, y), it is now more difficult to prove bounds

on the derivatives of u. A maximum principle for systems of operators is
invoked in [RAF96] to get (3.117) again, provided that

(b1)y = (b2)x ≤ 0, (b1)x + c ≥ 0, (b2)y + c ≥ 0, (3.119a)

(b1)x + c > (b2)x and (b2)y + c > (b1)y. (3.119b)

Theorem 3.102. Assume that the data of (3.111) are smooth and that the
conditions (3.112), (3.113) and (3.119) are satisfied. Then the finite element
solution uh satisfies

‖u− uh‖ε ≤ Ch1/2.

Proof. We sketch the argument. Define an interpolant uI of u in Sh by setting
uI =

∑
ij u(xi, yj)φ

ij . Using the estimates (3.117) and the maximum principle

satisfied by L on each Ωij , one can show that

‖u− uI‖L∞(Ω) ≤ Ch. (3.120)

Now (3.118) implies that

min{1, ω} ‖u− uI‖2ε ≤ ah(u− uI , u− uI)
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and the right-hand side can be estimated using (3.111a) and (3.120). This
yields

‖u− uI‖ε ≤ Ch1/2. (3.121)

Next, consider ‖uI − uh‖ε. By (3.118),

min{1, ω} ‖uI − uh‖2ε ≤ ah(uI − uh, u
I − uh)

= ah(uI − u, uI − uh) + ah(u− uh, u
I − uh).

Hence

‖uI − uh‖ε ≤ C sup
w∈Sh

|ah(uI − u,w)|
‖w‖ε

+ C sup
w∈Sh

|ah(u− uh, w)|
‖w‖ε

.

Using detailed and careful estimates, one can deduce that

‖uI − uh‖ε ≤ Ch1/2.

Combine this inequality with (3.121) to finish. ⊓⊔

Remark 3.103. Remark I.2.73 shows that the power of h in (3.121) is best
possible. Thus Theorem 3.102 proves that our finite element method has the
optimal rate of convergence with respect to ‖ · ‖ε. ♣

Theorem 3.102 implies that ‖u−uh‖0 ≤ Ch1/2. Numerical results exhibit a
uniform rate of convergence in L2(Ω) exceeding 0.6, even when the hypotheses
of Theorem 3.102 are not all satisfied. Experimental data in [HOS93] also show
that, if one replaces the test space Sh by piecewise bilinears while retaining
the same exponentially fitted trial space, this yields a Petrov-Galerkin method
that seems to have significantly better uniform convergence properties than
both the Galerkin scheme above and all other schemes considered in that pa-
per: it exhibited a uniform convergence rate greater than 1 in L2(Ω) in several
test problems. When ε = 0, it reduces to the box scheme of Example II.3.8.

Remark 3.104. Finite element methods that use exponentials on triangles
are considered in [MW94, OS91a, RF08, SGG99, SS98]. Miller and Wang’s
method [MW94] was discussed in Section 3.1. In the exponential streamline
diffusion method of [OS91a], exponential test functions upwind along the
subcharacteristics of (3.111a). Convergence of order h11/8 ln(1/h) is obtained
pointwise on regions where u is smooth (cf. (3.72)).

The method of [RF08] can be applied on triangles or quadrilaterals; it
uses test functions that are approximate solutions of a dual problem, i.e.,
that approximate a Green’s function. These test functions are combinations
of exponentials and polynomials and the method aims to achieve higher orders
of convergence in L2(Ω). Numerical results illustrate its implementation and
accuracy.

Sacco et al. [SGG99] give an elegant two-dimensional generalization of the
exponentially-fitted trial space used in one dimension (see also [Wan99]). They
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approximate b by a piecewise constant b̄, and on each triangle consider trial
functions of the form

φ(x) = k1 + k2e
b̄·x + k3(b̄× x) · ez,

where x is any point in the triangle, ez is a unit vector perpendicular to the
(x, y)-plane, and the ki are arbitrary constants. An error bound (which de-
pends on ε) is proved for the case when this trial space is used in a Galerkin
method. These trial functions were also proposed independently by Babuška
et al. [BCO94]. Numerical results are given in [SGG99] for this method and
for a Petrov-Galerkin method with the same trial space and piecewise linear
test functions. In [SS98] it is shown that this Petrov-Galerkin method is essen-
tially equivalent to the nonstandard upwinded scheme used in the well-known
PLTMG package [Ban98, BBFS90]; the method is also generalized by imbed-
ding it in a family of such methods, which enhances its ability to compute
layers accurately on coarse meshes. ♣

Exponentially-fitted finite elements are closely related (see [FNS98]) to the
residual-free bubble finite element method of Section 3.2.3.

Operator-fitted methods have two drawbacks. First, only low-order re-
sults are known for problems posed in more than one dimension. Second,
when a parabolic boundary layer is present, Shishkin’s obstacle result (see
Remark II.3.22 and page 267) applies: no operator-fitted method on a rec-
tangular equidistant mesh can achieve a positive order of convergence in the
discrete maximum norm, uniformly in ε. Consequently we now switch our at-
tention to methods based on an a priori choice of a special mesh, which can
circumvent both of these failings.

3.5.2 Layer-Adapted Meshes

The rectangular meshes considered in this section are tensor products of the
layer-adapted one-dimensional meshes (such as Shishkin-type meshes) that
we discussed in Section I.2.4.2. The use of such meshes is reasonable when
the domain is rectangular and the hypotheses of the problem ensure that the
only layers appearing in its solution are boundary layers along certain sides of
the domain together with corner layers, so interior layers are excluded. This
is the case for instance in the problem that is analysed in Theorem 1.26.

Triangular meshes are constructed from these rectangular meshes by bi-
secting each mesh rectangle into two triangles.

For non-rectangular domains, see Remarks 3.121 and 3.123 below.

Exponential Boundary Layers

We describe a Shishkin mesh for problem (3.111). Let N be an even integer.
For brevity we assume that one has N mesh intervals in each coordinate
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direction. One could more generally obtain the same results with Shishkin
meshes having M mesh intervals in the x-direction and N mesh intervals in
the y-direction, where max{M/N, N/M} ≤ C for some C; and one could
work with Shishkin-type meshes in each coordinate direction, with a similar
restriction on the numbers M and N of mesh intervals.

Set

σx = min{1/2, (kε/β1) lnN} and σy = min{1/2, (kε/β2) lnN}, (3.122)

where the positive constant k will be specified later for particular results
(usually k is greater than or equal to the rate of convergence attained, so
typically 1 ≤ k ≤ 3 for low-order methods; recall Remarks I.2.99 and I.2.104).
In fact we assume that σx = (kε/β1) lnN and σy = (kε/β2) lnN , as otherwise
one has N ≥ min{eβ1/(5ε), eβ2/(5ε)}, which is very unlikely in practice and
would enable one to analyse the method by means of classical techniques.

Define the mesh transition points on the x- and y-axes to be 1 − σx and
1 − σy respectively. Divide each of [0, 1 − σx] and [1 − σx, 1] into N/2 equal
subintervals; similarly divide the y-interval [0,1] using σy ; then take the tensor
product of these 1-dimensional meshes to get a 2-dimensional rectangular
Shishkin mesh. See Figure 2.1. Set

Ω0 = [0, 1− σx]× [0, 1− σy], Ω1 = [1− σx, 1]× [0, 1− σy],

Ω2 = [0, 1− σx]× [1− σy, 1], Ω12 = [1− σx, 1]× [1− σy, 1].

The mesh is coarse on Ω0, fine on Ω12, and highly anisotropic (“coarse/fine”)
on Ω1 ∪ Ω2. Here all coarse mesh widths are O(N−1) while the fine mesh
widths are O(εN−1 lnN).

Let Ω̃ be any measurable subset of Ω. Write ‖ · ‖m,p,Ω̃ and | · |m,p,Ω̃ for the

norm and strongest seminorm in the Sobolev space Wm,p(Ω̃). When Ω̃ = Ω
and/or p = 2 they can be omitted from the notation.

Remark 3.105. (Anisotropic interpolation estimates) In every finite element
analysis an interpolation error estimate is needed. Let K be a mesh element
(rectangle or triangle). Let v ∈ Wm,p(K), where m ≥ 1 and 1 ≤ p ≤ ∞. Let
vI denote the nodal interpolant (linear or bilinear) of v, where we assume that
mp > 2 so that this interpolant is well defined. Then the classical interpolation
error bound [Cia02, Theorem 3.1.6] is

‖v − vI‖0,p,K ≤ Ch2
∑

|α|=2

‖Dαv‖0,p,K , (3.123)

where h is the diameter of the element. Here α is the multi-index (α1, α2),
|α| := α1 + α2, and

Dα :=
∂α1+α2

∂xα1∂yα2
.
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For classical problems it follows that ‖v − vI‖0,p,K = O(h2‖u‖2,p,K) for each
K, and summing over all K produces the familiar bound ‖v−vI‖0,p = O(h2).
But with the 2-dimensional Shishkin mesh, on a highly anisotropic mesh rec-
tangle K (in Ω1 say, so the element is coarse in the y direction and fine
in the x direction) the classical bound (3.123) and the derivative bounds of
Theorem 1.26 yield

‖v − vI‖0,∞,K ≤ Ch2 max
(x,y)∈K

[
1 + ε−1e−β1(1−x)/ε

]
= O(h2ε−1)

which is unsatisfactory because ε can be very small. This failure occurs be-
cause the multiplier h2 in (3.123) takes no account of the small mesh width
in the direction in which the layer is decaying, even though one would expect
this feature to improve the accuracy of the interpolation.

Thus on Shishkin meshes one must replace (3.123) by the sharp anisotropic
interpolation estimates of [AD92, Ape99] for general meshes, which we now
describe.

Suppose that each element K (triangle or rectangle) of a mesh is contained
in a rectangle with side lengths (hx, hy) and contains a rectangle with side
lengths (C2hx, C2hy) for some fixed constant C2 > 0. In the case of triangles,
assume also a maximum angle condition: the interior angles of every mesh
triangle are bounded away from π. (Triangular Shishkin meshes have maxi-
mum angle π/2 and consequently satisfy this condition.) Then there exists a
constant C such that

‖v − vI‖0,p,K ≤ C
∑

|α|=m

hα‖Dαv‖0,p,K for m = 1, 2, (3.124a)

‖∂x(v − vI)‖0,p,K ≤ C
∑

|α|=1

hα‖Dα∂xv‖0,p,K , (3.124b)

‖∂y(v − vI)‖0,p,K ≤ C
∑

|α|=1

hα‖Dα∂yv‖0,p,K , (3.124c)

where we set hα = hα1
x h

α2
y .

In the case of a Shishkin mesh, these bounds have a small multiplier hα pre-
cisely when the corresponding derivative is large. This is a great improvement
on (3.123). Furthermore, the right-hand side of the bound (3.124b) involves
the derivatives vxx and vxy but vyy does not appear, which is crucial in certain
calculations.

More sophisticated interpolants (Clément, Scott-Zhang) are sometimes
used, e.g., when the interpolated function is not defined pointwise; these
are considered in Apel’s monograph [Ape99]. See also (III.3.157) and Re-
mark IV.3.1. ♣

To derive satisfactory interpolation error estimates from (3.124), it is help-
ful to have a decomposition of the solution u of (3.111) into smooth and layer
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components that includes bounds on the derivatives of these components. We
now give such a decomposition in a form used by several authors.

Assume that

u = S + E1 + E2 + E12, (3.125a)

and that there exists a constant C such that

∣∣∣ ∂
i+jS

∂xi∂yj
(x, y)

∣∣∣ ≤ C, (3.125b)

∣∣∣∂
i+jE1

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−ie−β1(1−x)/ε, (3.125c)

∣∣∣∂
i+jE2

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−je−β2(1−y)/ε, (3.125d)

∣∣∣∂
i+jE12

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−(i+j)e−(β1(1−x)+β2(1−y))/ε (3.125e)

for all (x, y) ∈ Ω and 0 ≤ i+ j ≤ m, where m is a non-negative integer that
will be specified each time we invoke (3.125).

When m = 2 these bounds are weaker than the derivative bounds of
Theorem 1.26 with n = 2. For m = 3 a comparison is more difficult because
the bounds of (3.125) are symmetric in x and y, unlike those of Theorem 1.26;
for example the derivative (E1)xxx is then bounded in (3.125) and (E1)xxyy

is not, while the opposite is true with regard to Theorem 1.26 when n = 2.
The following pair of lemmas, which are based on [DR97, SO97], illustrate

the different types of argument needed on different parts of the Shishkin mesh
when estimating the interpolation error in various norms. Both lemmas hold
true under the assumption that (3.125) is valid with m = 2, but we prove the
first under weaker hypotheses.

Lemma 3.106. Choose k ≥ 2 in (3.122). Assume that (3.125) hold true with
m = 0, and that there exists a constant C such that for all i and j with
i+ j = 2 and all (x, y) ∈ Ω one has

∣∣∣ ∂
i+jS

∂xi∂yj
(x, y)

∣∣∣ ≤ C, (3.126a)

∣∣∣∂
i+jE1

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−i, (3.126b)

∣∣∣∂
i+jE2

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−j , (3.126c)

∣∣∣∂
i+jE12

∂xi∂yj
(x, y)

∣∣∣ ≤ Cε−(i+j). (3.126d)

Then there exists a constant C such that

|(u− uI)(x, y)| ≤
{
CN−2 if (x, y) ∈ Ω0,

CN−2 ln2N otherwise.
(3.127)
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Proof. First, by (3.123), (3.126a) and (3.126b) one gets ‖S−SI‖0,∞ ≤ CN−2

and
‖E1 − EI

1‖0,∞,Ω12
≤ C(εN−1 lnN)2ε−2 = CN−2 ln2N.

Next, invoking (3.124a) and (3.126b) gives

‖E1 − EI
1‖0,∞,Ω1

≤ C
[
(εN−1 lnN)2‖(E1)xx‖0,∞,Ω1

+(εN−1 lnN)N−1‖(E1)xy‖0,∞,Ω1
+N−2‖(E1)yy‖0,∞,Ω1

]

≤ C[(εN−1 lnN)2ε−2 + (εN−1 lnN)N−1ε−1 +N−2]

≤ CN−2 ln2N.

A direct application of (3.124a) on Ω0 ∪Ω2 fails because (E1)xx is still large
on part of this region (recall Remark I.2.93). Instead we call upon the decay
guaranteed by (3.125c) and the choice of k in the mesh: |E1(x, y)| ≤ CN−2

for (x, y) ∈ Ω0 ∪Ω2. It follows that |EI
1 (x, y)| ≤ CN−2 on the same domain.

Combining all these results for E1, one gets

|(E1 − EI
1 )(x, y)| ≤

{
CN−2 if (x, y) ∈ Ω0 ∪Ω2,

CN−2 ln2N otherwise.

One can prove analogous results for |(E2 −EI
2 )(x, y)| and |(E12 −EI

12)(x, y)|.
From the decomposition (3.125a) and uI = SI +EI

1 +EI
2 +EI

12 it then follows
via a triangle inequality that (3.127) holds true. ⊓⊔

Lemma 3.107. Choose k ≥ 2 in (3.122). Assume that (3.125) hold true with
m = 2. Then there exists a constant C such that

‖u− uI‖0 ≤ CN−2 + Cε1/2N−2 ln2N ; (3.128a)

if ε1/2 ≤ (lnN)−2, then

‖u− uI‖0 ≤ CN−2 (3.128b)

and ‖u− uI‖ε ≤ CN−1 lnN. (3.128c)

Proof. The local L∞ bounds in the proof of Lemma 3.106 immediately yield

‖S − SI‖0 + ‖E1 − EI
1‖0,Ω0∪Ω2

≤ CN−2.

Squaring (3.124a) and adding over all K ⊂ Ω1, then substituting the bounds
from (3.125c) into each ‖ · ‖0,Ω1

and evaluating the resulting integrals, one
sees that

‖E1 − EI
1‖20,Ω1

≤ C
[
(εN−1 lnN)4‖(E1)xx‖20,Ω1

+ (N−1εN−1 lnN)2‖(E1)xy‖20,Ω1
+N−4‖(E1)yy‖20,Ω1

]

≤ C
[
(εN−1 lnN)4ε−3

+ (εN−2 lnN)2ε−1 +N−4N−1ε lnN
]

≤ C
[
εN−4 ln4N + εN−4 ln2N + εN−5 lnN

]
,
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so
‖E1 − EI

1‖0,Ω1
≤ Cε1/2N−2 ln2N.

Essentially the same calculation gives ‖E1 − EI
1‖0,Ω12

≤ Cε1/2N−2 ln2N .
Combining all these bounds yields

‖E1 − EI
1‖0 ≤ CN−2 + Cε1/2N−2 ln2N.

By kindred arguments we obtain

‖E2 − EI
2‖0 + ‖E12 − EI

12‖0 ≤ CN−2 + Cε1/2N−2 ln2N.

The decompositions of u and uI and a triangle inequality now produce
(3.128a), from which (3.128b) is an immediate consequence.

For the final bound (3.128c), ‖∇(S−SI)‖0 ≤ CN−1 follows from (3.124b),
(3.124c) and (3.125b). The estimate (3.124b) also gives

‖(E1)x − (EI
1 )x‖0,Ω1

≤ C
[
(εN−1 lnN)‖(E1)xx‖0,Ω1

+N−1‖(E1)xy‖0,Ω1

]

≤ C
[
(εN−1 lnN)ε−3/2 +N−1ε−1/2

]

≤ Cε−1/2N−1 lnN (3.129)

on substituting the bounds from (3.125c) and evaluating the integrals. A sim-
ilar calculation yields

‖(E1 − EI
1 )x‖0,Ω12

≤ Cε−1/2N−1 lnN.

Next,

‖(E1)x − (EI
1 )x‖0,Ω0∪Ω2

≤ ‖(E1)x‖0,Ω0∪Ω2
+ ‖(EI

1 )x‖0,Ω0∪Ω2

≤ ‖(E1)x‖0,Ω0∪Ω2
+ CN‖EI

1‖0,Ω0∪Ω2
,

where we used an inverse estimate that follows easily from transforming the
classical inverse estimate [Cia02, Theorem 3.2.6] to our anisotropic elements.
The first integral here is bounded, similarly to our previous calculations, by
Cε−1/2N−2, while

N‖EI
1‖0,Ω0∪Ω2

≤ N‖EI
1‖0,∞,Ω0∪Ω2

≤ N‖E1‖0,∞,Ω0∪Ω2
≤ CN−1,

since k ≥ 2. Putting all these bounds together, one obtains

‖(E1)x − (EI
1 )x‖0 ≤ Cε−1/2N−1 lnN.

The estimate ‖(E1)y − (EI
1 )y‖0 ≤ Cε−1/2N−1 lnN is immediate from

(3.124c) since (E1)y is better behaved than (E1)x. One can similarly bound
‖∇(E2 −EI

2 )‖0 and ‖∇(E12 −EI
12)‖0; the only extra complication is that an

inverse inequality and (3.125e) are invoked to give
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‖(E12)x − (EI
12)x‖0,Ω1

≤ ‖(E12)x‖0,Ω1
+ ‖(EI

12)x‖0,Ω1

≤ ‖(E12)x‖0,Ω1
+ Cε−1N(lnN)−1‖EI

12‖0,Ω1

≤ ‖(E12)x‖0,Ω1
+ Cε−1N(lnN)−1

(∫

Ω1

N−4

)1/2

≤ Cε−1/2N−1(lnN)−1/2.

Hence ε1/2‖∇(u− uI)‖0 ≤ CN−1 lnN . This inequality and (3.128b) yield
(3.128c). ⊓⊔

Remark 3.108. An inspection of the proof of Lemma 3.107 shows that the
pointwise derivative bounds of (3.125) are stronger than needed: the argument
works under the weaker hypotheses that (3.125) holds true with m = 0 and
that for i+ j = 2 one has

∥∥∥∥
∂i+jS

∂xi∂yj

∥∥∥∥
0

≤ C,
∥∥∥∥
∂i+jE1

∂xi∂yj

∥∥∥∥
0

≤ Cε−i+1/2,

∥∥∥∥
∂i+jE2

∂xi∂yj

∥∥∥∥
0

≤ Cε−j+1/2,

∥∥∥∥
∂i+jE12

∂xi∂yj

∥∥∥∥
0

≤ Cε−i−j+1/2,

with moreover

‖(E1)x‖0,Ω0∪Ω2
+ ‖(E2)y‖0,Ω0∪Ω1

≤ Cε−1/2N−1,

‖(E12)x‖0,Ω\Ω0
+ ‖(E12)y‖0,Ω\Ω0

≤ Cε−1/2N−1.

These are all L2 bounds on derivatives. ♣

The bounds of Lemma 3.107 are sharp, as can be seen by considering simple
examples. The mild condition ε1/2 ≤ (lnN)−2 that is used to prove (3.128b)
and (3.128c) is satisfied in the numerical solution of all typical convection-
diffusion problems, and we shall ignore it when we invoke Lemma 3.107 in the
future. Roos and Linß [RL99] generalize these lemmas to other layer-adapted
meshes, writing the results in terms of the mesh-characterizing function ψ of
Section I.2.4.2.

Define the bilinear form

BGAL(v, w) = (ε∇v,∇w) + (b · ∇v, w) + (cv, w) ∀v, w ∈ H1(Ω), (3.130)

where (·, ·) denotes the L2(Ω) inner product. Then (3.112) implies that

BGAL(v, v) ≥ min{1, ω}‖v‖2ε ∀v ∈ H1
0 (Ω). (3.131)

The following error bound from [SO97] (where only bilinears were consid-
ered) was the first uniform convergence result (in the sense of (3.115)) for a
finite element method on a Shishkin mesh. A Galerkin method based on the
bilinear form (3.130) was used.
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Theorem 3.109. Consider a Shishkin mesh with k ≥ 2 in (3.122). Let V N be
the space of continuous piecewise linears or bilinears on this mesh that vanish
on ∂Ω. Define uN ∈ V N by BGAL(uN , vN ) = (f, vN ) for all vN ∈ V N .
Assume that (3.125) holds true with m = 2. Then there exists a constant C
such that

‖u− uN‖ε ≤ CN−1 lnN. (3.132)

Proof. We show how (3.132) depends on the interpolation properties of V N .
Write uI for the nodal interpolant to u from V N . By (3.131) and the Galerkin
orthogonality property BGAL(u− uN , vN ) = 0 for all vN ∈ V N , one has

min{1, ω}‖uI − uN‖2ε ≤ BGAL(uI − uN , uI − uN )

= BGAL(uI − u, uI − uN )

≤ ε|uI − u|1|uI − uN |1 + |(b · ∇(uI − u), uI − uN )|
+ C‖uI − u‖0‖uI − uN‖0, (3.133)

where we recall that | · |1 is the H1(Ω) seminorm. Now

|(b · ∇(uI − u), uI − uN )| = | −
(
b(uI − u),∇ · (uI − uN )

)

−
(
∇ · b(uI − u), uI − uN

)
|

≤ C
[
|
(
b(uI − u),∇ · (uI − uN )

)
|

+ ‖uI − u‖0‖uI − uN‖0
]
.

Using a standard inverse inequality,
∣∣(b(uI − u),∇ · (uI − uN )

)∣∣ ≤ C
[
‖uI − u‖0,Ω0

‖∇ · (uI − uN )‖0,Ω0

+ ‖uI − u‖0,Ω\Ω0

]
‖∇ · (uI − uN )‖0,Ω\Ω0

≤ C
[
N‖uI − u‖0,Ω0

‖uI − uN‖0,Ω0

+ ‖uI − u‖0,Ω\Ω0
‖∇ · (uI − uN )‖0,Ω\Ω0

]

Combining these inequalities with (3.133) leads after some typical finite ele-
ment analysis manipulation to

‖uI −uN‖ε ≤ C
[
ε1/2|uI −u|1 + ε−1/2‖uI −u‖0,Ω\Ω0

+N‖uI −u‖0
]
. (3.134)

Lemma 3.107 furnishes the bounds ε1/2|uI−u|1 ≤ CN−1 lnN and ‖uI−u‖0 ≤
CN−2; also, (3.127) implies that

ε−1/2‖uI − u‖0,Ω\Ω0
≤ Cε−1/2

[∫

Ω\Ω0

(N−2 ln2N)2

]1/2

≤ CN−2 ln5/2N.

Substituting these inequalities into (3.134), one obtains

‖uI − uN‖ε ≤ CN−1 lnN (3.135)

and (3.132) then follows from (3.128c) and a triangle inequality. ⊓⊔
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Figure 3.11 shows a computed solution that is typical of those obtained
when the Galerkin method, with bilinear trial functions, is used to solve
(3.111) on a Shishkin mesh.
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Fig. 3.11. Problem with two exponential layers; solution computed by Galerkin
finite element method using bilinears on a Shishkin mesh

This figure is in stark contrast to the solution to the same problem, shown
in Figure 3.12, computed using the Galerkin method with bilinears on an
equidistant mesh.

Remark 3.110. In Theorem 3.109, the hypothesis that (3.125) holds true with
m = 2 can be weakened. Instead of this hypothesis, assume that the bounds
listed in Remark 3.108 are valid and that for i + j = 1 one has

∣∣∣∣
∂i+jE1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−i on Ω1 ∪Ω12,

∣∣∣∣
∂i+jE2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−j on Ω2 ∪Ω12,

∣∣∣∣
∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−1 on Ω12.

Then the proof of Lemma 3.106 (modified by invoking (3.124a) with m = 1
instead of m = 2) yields |(u− uI)(x, y)| ≤ CN−1 lnN on Ω \Ω0, which leads
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Fig. 3.12. Problem with two exponential layers; solution computed by Galerkin
finite element method using bilinears on an equidistant mesh

to a slightly weaker result in Theorem 3.109: ‖u− uN‖ε ≤ CN−1 ln3/2 N . (In
fact a more detailed argument will again yield (3.132).) ♣

The bound (3.132) could be written as ‖u − uN‖ε ≤ Ch| ln h|, but for
layer-adapted meshes with N intervals in each coordinate direction one usu-
ally states convergence results in terms of N . This theorem is generalized in
[RL99, Lin00a] from Shishkin meshes to more general layer-adapted meshes;
in particular when certain features of the Shishkin and Bakhvalov meshes are
combined, it is shown that ‖u− uN‖ε ≤ CN−1. In [DL06] the same Galerkin
method with bilinears is used on a tensor-product recursively-defined graded
mesh but the convergence result (‖u − uN‖ε ≤ CN−1| ln ε|2) is not quite
uniform in ε.

Remark 3.111. It is noteworthy that uniform convergence is achieved in this
theorem without stabilizing the method by means of the bilinear form or
the choice of finite element spaces: the only mechanism preventing excessive
oscillations in the solution is the Shishkin mesh.

In fact the bound (3.135) is not sharp for bilinears: if k ≥ 2.5 in (3.122),
so that the layer components have decayed sufficiently when they reach the
coarse mesh, then [Lin00b, Zha03] one has

‖uI − uN‖ε ≤ CN−2 ln2N (3.136)
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and hence ‖u − uN‖0 ≤ CN−2 ln2 N . Superclose properties such as (3.136)
will be discussed later in this section. A generalization of (3.136) to general
layer-adapted meshes is proved in [Lin00b], where it is also shown that

|(u− uN )(x, y)| ≤
{

C min{1, ε−1/2N−1 lnN}N−1 ln5/2N if (x, y) ∈ Ω0,

CN−3/2 ln3N otherwise,

provided that ε ≤ CN−1 for some C.
Despite the accuracy guaranteed by these results, the computed solution

exhibits small oscillations, as can be inferred from [LS01b, Figure 8]. More
seriously, the stiffness matrix has eigenvalues with large imaginary parts, so
standard iterative methods do not solve the discrete linear system in an ef-
ficient manner and one must resort to direct factorization, as was done in
[LS01b]; see also [ESW05, p.197].

While Theorem 3.109 holds true for both bilinears and linears, numerical
results [LS01b] reveal that bilinears give a much better pointwise convergence
rate than linears inside the boundary layers. See Remark 3.118. ♣

To obtain a stabler method that nevertheless generates an accurate solu-
tion, we turn to the SDFEM of Section 3.2.1, using piecewise bilinears. Let
the user-chosen piecewise constant SDFEM parameter δK be specified on the
Shishkin mesh by

δK =

⎧
⎨
⎩
N−1 if K ⊂ Ω0 and ε ≤ N−1,
ε−1N−2 if K ⊂ Ω0 and ε > N−1,
0 otherwise.

The choices of δK made here on Ω0, where the mesh is shape-regular, are
the values recommended in (3.38). On the highly anisotropic rectangles or
triangles in Ω\Ω0, we cannot invoke (3.38); here one takes δK = 0 as heuristic
analysis and numerical experience show that this gives satisfactory results.

Let uN be the piecewise bilinear SDFEM solution on the Shishkin mesh,
where k ≥ 2.5. Then the following result is proved in [ST03].

Theorem 3.112. Let assumptions (3.125c)–(3.125e) hold true for m = 3.
Assume also that S lies in the Sobolev space H3(Ω) with ‖S‖H3(Ω) ≤ C. Write
uI for the nodal bilinear interpolant to u. Then there exists a constant C such
that

|||uI − uN |||SD ≤ C(εN−3/2 +N−2 ln2N), (3.137)

where the norm ||| · |||SD was defined in Section 3.2.1.

Proof. To prove this result, one uses the coercivity inequality of Lemma 3.25:

1

2
|||uN − uI |||2SD

≤ BSD(uN − uI , uN − uI) = BSD(u− uI , uN − uI)

= BGAL(u− uI , uN − uI) +BSTAB(u− uI , uN − uI), (3.138)



392 3 Finite Element Methods

where, writing (·, ·)K for the L2(K) inner product over each mesh element K,

BSTAB(w, v) =
∑

K⊂Ω0

δK(−ε∆w + b · ∇w + cw, b · ∇v)K

for all (w, v) ∈ H̃1(Ω) × H1(Ω) and H̃1(Ω) denotes the set of functions in
H1(Ω) that lie in H2(K) for each K.

The two terms in (3.138) are bounded by a calculation that is too long
to reproduce in full here, but we shall give a sample to impart some of the
flavour of the argument.

After splitting u = S + E1 + E2 + E12 as in (3.125a), when bounding
BSTAB(u − uI , uN − uI) one must deal with BSTAB(E − EI , vN ), where E
can be E1, E2 or E12 and vN = uN − uI (in fact vN can be any piecewise
bilinear function in what follows). In the case ε ≤ N−1 one gets

∣∣BSTAB(E − EI , vN )
∣∣

≤ CN−1 [ε‖∆E‖1,Ω0
+ ‖∇E‖1,Ω0

] ‖b · ∇vN‖0,∞,Ω0

+ C N−1/2
(
‖∇EI‖0,Ω0

+ ‖E − EI‖0,Ω0

)
|||vN |||SD. (3.139)

Clearly ‖E‖0,∞,Ω0
≤ CN−5/2 follows from the decay properties (3.125c)–

(3.125d) and the choice of k. Consequently ‖EI‖0,∞,Ω0
≤ CN−5/2 and hence

‖E − EI‖0,Ω0
≤ CN−5/2. By a standard inverse inequality, ‖∇EI‖0,Ω0

≤
CN‖EI‖0,Ω0

≤ CN−3/2. Thus in (3.139) one obtains

CN−1/2(‖∇EI‖0,Ω0
+ ‖E − EI‖0,Ω0

) ≤ CN−2.

For E = E1 (the proof for the other layer functions is similar), inequality
(3.125c) yields

ε‖∆E1‖1,Ω0
+ ‖∇E1‖1,Ω0

≤ Cε−1

∫ 1−σy

0

∫ 1−σx

0

e−β1(1−x)/ε dx dy

≤ Ce−β1σx/ε

≤ C N−5/2.

Invoking the inverse inequality ‖b · ∇vN‖0,∞,Ω0
≤ CN‖b · ∇vN‖0,Ω0

and the
bounds just proved in (3.139), we finally arrive at

∣∣BSTAB(E − EI , vN )
∣∣ ≤ CN−5/2‖b · ∇vN‖0,Ω0

+ CN−2|||vN |||SD

≤ CN−2|||vN |||SD,

which suffices when proving (3.137). ⊓⊔

The other main ingredients in the proof of (3.137) are the useful identities
of Lin [Lin91], which are used in [Lin00b, Zha03] – see also [GRS07] – to
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sharpen the Galerkin bound (3.135) to (3.136). For each mesh rectangle K,
set

GK(x) =
1

2

[
(x− xK)2 −

(
hx,K

2

)2
]

, FK(y) =
1

2

[
(y − yK)2 −

(
hy,K

2

)2
]

.

Denote the east, north, west and south edges of K by li,K for i = 1, . . . , 4
respectively.

Lemma 3.113. (Lin identities) Let K be a mesh rectangle with sides paral-
lel to the coordinate axes. Let w ∈ H3(K) and let wI be its bilinear nodal
interpolant on K. Then for each bilinear function vN defined on K one has
∫

K

(w − wI)xvN
x dx dy =

∫

K

wxyy

(
FKvN

x −
1

3

(
F 2

K

)′
vN

xy

)
dx dy,

∫

K

(w − wI)xvN
y dx dy =

∫

K

(
FKwxyy(vN

y −G′
KvN

xy) + GKwxxyvN
x

)
dx dy

−
∫

l2,K

GKwxxvN
x dx +

∫

l4,K

GKwxxvN
x dx,

∫

K

(w − wI)yvN
x dx dy =

∫

K

(
GKwxxy(vN

x − F ′
KvN

xy) + FKwxyyvN
y

)
dx dy

−
∫

l1,K

FKwyyvN
y dy +

∫

l3,K

FKwyyvN
y dy,

∫

K

(w − wI)yvN
y dxdy =

∫

K

wxxy

(
GKvN

y −
1

3

(
G2

K

)′
vN

xy

)
dx dy.

Proof. Start from the right-hand side of each identity. Since (wI)xx, (wI)yy

and all third-order derivatives of wI vanish, these terms can be introduced at
appropriate places in the right-hand side; then one integrates by parts and
takes into consideration the definitions of FK and GK . For more details see
[Lin91] or [Zha03]. ⊓⊔

Zhang [Zha03] gives further identities of this type, originally from [Lin91,
LY96], for the integrals

∫
K

(w − wI)xvN dx dy and
∫

K
(w − wI)yvN dx dy.

As an illustration of the power of Lemma 3.113, consider the estimate

|ε(∇(uI − u),∇wN )| ≤ ε|uI − u|1|wN |1 ≤ C(N−1 lnN)ε1/2|wN |1,

which (with wN = uI − uN ) was used in the derivation of (3.135). If u is
replaced by E1, this still produces the same final bound since (3.129) delivers
only

∣∣∣∣ε
∫

Ω1

(EI
1 − E1)xw

N
x

∣∣∣∣ ≤ ε‖(EI
1 )x − (E1)x‖0,Ω1

‖wN
x ‖0,Ω1

≤ C(N−1 lnN)ε1/2‖wN
x ‖0,Ω1

. (3.140)
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On the other hand Lemma 3.113 gives

∣∣∣∣ε
∫

Ω1

(EI
1 − E1)xw

N
x

∣∣∣∣

= ε

∣∣∣∣∣
∑

K⊂Ω1

(
−FKw

N
x +

1

3
(F 2

K)′wN
xy, (E1)xyy

)

K

∣∣∣∣∣

≤ Cε
∑

K⊂Ω1

(
N−2|wN

x |+N−3|wN
xy|, |(E1)xyy|

)
K

≤ Cε
∑

K⊂Ω1

N−2
(
‖wN

x ‖0,K +N−1‖wN
xy‖0,K

)
‖(E1)xyy‖0,K

≤ CεN−2
∑

K⊂Ω1

‖wN
x ‖0,K‖(E1)xyy‖0,K

≤ CεN−2‖wN
x ‖0,Ω1

‖(E1)xyy‖0,Ω1
,

where we used the inverse inequality ‖wN
xy‖0,K ≤ CN‖wN

x ‖0,K , which follows
from a transformation of the classical inverse estimate to K. Hence

∣∣∣∣ε
∫

Ω1

(EI
1 − E1)xw

N
x

∣∣∣∣ ≤ CN−2ε1/2‖wN
x ‖0,Ω1

by (3.125c). This is a gain of a full order of convergence over (3.140).

Remark 3.114. When Lemma 3.113 is applied in the error analysis of any finite
element method, one replaces w by various components of u. This requires
a knowledge of the third-order derivatives of the components of u, unlike
the analysis leading for instance to (3.135), which uses only second-order
derivatives. Thus sharper bounds such as (3.136) can be proved only when
one has extra regularity of the components of the solution u. ♣

Combining (3.137) with (3.128c) gives immediately

‖u− uN‖ε ≤ CN−1 lnN (3.141)

for the SDFEM solution uN . While this rate is optimal, it is a lower rate
of convergence than in (3.137) even though the norm ‖ · ‖ε is weaker than
||| · |||SD. This discrepancy will be exploited later when a postprocessing of
the computed solution uN is shown to yield a more accurate approximation
of u with respect to ‖ · ‖ε.

Remark 3.115. For the L2 norm, (3.137) and (3.128b) yield

‖u− uN‖0 ≤ C
(
εN−3/2 +N−2 ln2N

)
,

so
‖u− uN‖0 ≤ CN−2 ln2N if ε ≤ N−1/2 ln2N,
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which by (3.128b) is optimal up to the factor ln2 N . It is likely that for more
general problems one could use cut-off functions to prove a similar result
for rectangular locally uniform meshes in regions that extend downstream
from an inflow boundary and on which the solution u is smooth. Thus in the
SDFEM piecewise bilinears attain the same order of convergence in L2 as the
interpolation error, unlike piecewise linears (see Remark 3.118 below). ♣

Superconvergence

The term “superconvergence” is used in different ways by different authors,
so we begin with some definitions to establish our terminology.

Let u be the solution of a boundary value problem and uN its computed
solution in some finite-dimensional finite element space SN . Suppose that the
error of the finite element method, measured in some norm or seminorm ‖ · ‖,
satisfies ‖u− uN‖ ≤ CN−α for some constant α > 0.

• If there exists uI ∈ SN that is an interpolant (in some sense) or projection
of u and for which ‖uI − uN‖ ≤ CN−β for some constant β > α, we say
that the finite element method has the superclose property .

• If at special known points in elements (e.g., barycentres) the rate of con-
vergence, measured in some discrete norm ‖ · ‖d, is greater than is implied
by the bound ‖u−uN‖ ≤ CN−α, we say that uN is ‖ ·‖d superconvergent .

• If there is a higher-order finite element space S̃N and an interpolant or
projection ũN ∈ S̃N of uN such that ‖u− ũN‖ ≤ CN−γ for some constant
γ > α, we say that ũN is interpolantwise superconvergent .

For a general introduction to superconvergence in its various forms and a
summary of known results for classical problems, see [BK01, LL06, Wah95]
and their references.

Let us examine again the convection-diffusion problem (3.111), whose so-
lution has two exponential boundary layers at the sides x = 1 and y = 1 of
the unit square Ω and an exponential corner layer at the point (1,1). Consider
the Galerkin finite element method based on (3.130) and using piecewise bilin-
ears on a tensor-product Shishkin mesh. In (3.136) we quoted the result from
[Lin00b, Zha03] that ‖uI − uN‖ε ≤ CN−2 ln2N , where uI is the nodal inter-
polant of u and the energy norm ‖·‖ε is defined in (3.114). A triangle inequality
and (3.128c) – which is in general sharp – then yield ‖u−uN‖ε ≤ CN−1 lnN .
Thus the computed solution has the superclose property with respect to the
nodal interpolant and ‖ · ‖ε.

These bounds are proved under the assumption that (3.125) holds true
with m = 2. Under the additional hypothesis that (3.125b) holds true for
i+ j = 3, Zhang [Zha03] also proves that

‖u− uN‖ε,d ≤ C(εN−3/2 +N−2 ln2N). (3.142)

Here ‖ · ‖ε,d is a discrete but weaker analogue of ‖ · ‖ε defined by
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‖w‖ε,d :=

[
ε
∑

K

(area K)|∇w(xK , yK)|2 + ‖w‖20
]1/2

, (3.143)

where the sum is over all mesh rectangles K and (xK , yK) is the barycentre
of K. One can show that ‖u−uI‖ε,d ≤ CN−2 ln2N . The improvement in the
rate of convergence of (3.142) over ‖u−uN‖ε ≤ CN−1 lnN is due to discrete-
L2 superconvergence of ∇uN at the barycentres of the mesh rectangles.

In [ST03] some related results are established for the SDFEM solu-
tion uN , computed on a Shishkin mesh. Inequality (3.137), when compared
with (3.128c), shows that the computed solution has the superclose property.
When ε ≤ N−1, so δK = N−1 for K ⊂ Ω0, one has in particular

( ∑

K⊂Ω0

‖b · ∇(uI − uN )‖20,K

)1/2

≤ CN−3/2 ln2N,

although
[∑

K⊂Ω0
‖b ·∇(u−uI)‖20,K

]1/2 ≤ CN−1 is the best possible general
result predicted by approximation theory. If, imitating (3.143), the error is
measured in the discrete analogue of ||| · |||SD defined by

|||v|||SD,d =

[∑

K⊂Ω

ε (areaK)|∇v(xK , yK)|2

+
∑

K⊂Ω0

δK |(areaK)(b · ∇v)(xK , yK)|2 + ‖v‖20

]1/2

,

then [ST03, Theorem 5.3]

|||u− uN |||SD,d ≤ C
(
εN−3/2 +N−2 ln2N

)

although (3.137) and (3.128c) yield only ‖u − uN‖ε ≤ CN−1 lnN ; the SD-
FEM attains discrete-L2 superconvergence of the gradient of the error at the
barycentres of the mesh rectangles. This increased order of convergence occurs
because ||| · |||SD,d is a weaker norm than ||| · |||SD and one can prove that
|||u− uI |||SD,d ≤ CN−2 ln2N – compare (3.128c).

Postprocessing and Recovery

Ainsworth and Oden [AO00] present a general theory of recovery operators
that encompasses some of the special cases to be discussed below.

We shall attain a higher order of convergence by applying a local post-
processing technique to a computed solution uN to construct a new discrete
solution PuN in a higher-order space for which ‖u − PuN‖ε ≪ ‖u − uN‖ε,
i.e., PuN is interpolantwise superconvergent. Our analysis of this approach
requires uN to possess a superclose property.
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Postprocessing is applied in the following way in [ST03] to the solution
uN ∈ V N computed by the SDFEM, where V N is the space of piecewise
bilinears on a Shishkin mesh. Consider a family of Shishkin meshes TN with
meshpoints (xi, yj) for i, j = 0, . . . , N , where we require N/2 to be even.

Fig. 3.13. Macroelements formed from four mesh rectangles

Form a coarser mesh composed of disjoint macrorectangles M , each com-
prising 4 mesh rectangles from TN , where M belongs to only one of the four
domains Ω0, Ω1, Ω2, and Ω12. See Figure 3.13. Associate with each macrorec-
tangle M an interpolation operator PM : C(M̄) → Q2(M) defined by the
standard biquadratic interpolation at the barycentre, nodes, and midpoints
of edges of the macrorectangle. Then PM can be extended to a continuous
global interpolation operator P : C(Ω̄) → WN , where WN is the space of
piecewise biquadratic finite elements, by setting

(Pv)
∣∣∣
M

:= PM (v|M ) ∀M.

It is straightforward to derive the consistency property

P (vI) = P (v) ∀v ∈ C(Ω̄) (3.144a)

and the stability bound

‖PvN‖ε ≤ C‖vN‖ε ∀vN ∈ V N . (3.144b)

A detailed investigation similar to the proof of Lemma 3.107 yields
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‖u− Pu‖ε ≤ C
(
εN−3/2 +N−2 ln2N

)
. (3.145)

Theorem 3.116. Let the a priori bounds (3.125) hold true with m = 3. Then
after postprocessing by P , the numerical solution uN generated by the SDFEM
satisfies

‖u− PuN‖ε ≤ C
(
εN−3/2 +N−2 ln2N

)
.

Proof. The triangle inequality and (3.144)–(3.145) yield

‖u− PuN‖ε = ‖u− Pu+ P (uI)− PuN‖ε

≤ ‖u− Pu‖ε + ‖P (uI − uN )‖ε

≤ C
(
εN−3/2 +N−2 ln2N + ‖uI − uN‖1,ε

)

≤ C(εN−3/2 +N−2 ln2N),

where we used the superclose property (3.137). ⊓⊔
Theorem 3.116 exhibits a higher rate of convergence than (3.141) at only a

minor additional computational cost since PuN can be computed very cheaply
from uN .

A related analysis appears in [RL01b], which is concerned with gradi-
ent recovery from the solution uN computed using the Galerkin method
BGAL(uN , vN ) = (f, vN ) for all vN ∈ SN , the space of piecewise bilinears on a
general layer-adapted tensor-product mesh with nodes (xi, yj). The construc-
tion is as follows: compute the gradient of uN at the barycentre of each mesh
rectangleK, then by means of bilinear interpolation between these barycentric
values generate a recovered gradient at the (xi, yj); finally, again apply bilin-
ear interpolation – now with the (xi, yj) as nodes – to extend the recovered
gradient RuN to all of Ω. (Near the boundary the method is modified slightly
so that values are defined by extrapolation.) In the case of a tensor-product
Shishkin mesh where k = 3 in (3.122), if we assume that (3.125) is valid with
m = 3, then by an argument like that of Theorem 3.116 one can improve the
estimate ε1/2‖∇(u − uN )‖0 ≤ CN−1 lnN , which follows from (3.128c) and
(3.136), to

ε1/2‖∇u−RuN‖0 ≤ CN−2 ln2N.

Under the mild extra hypothesis that ε ≤ CN−1/2 ln2N we get an identi-
cal bound on ε1/2‖∇(u − PuN )‖0 from Theorem 3.116, but ∇(PuN ) is only
piecewise continuous on Ω while RuN ∈ C(Ω̄).

To conclude this section, we temporarily leap forward to the reaction-
diffusion problem (3.147). When a piecewise biquadratic postprocessing P
(similar to that described above for convection-diffusion) is applied to the
computed solution uN of (3.150), one obtains [Li01] the improved convergence
rate ε1/2|u − PuN |1 ≤ CN−2. A local postprocessing S can also be applied
to the computed solution vN of (3.151) to yield [LW00]

ε1/2|u− SvN |1 + ‖u− SvN‖0 ≤ CN−2.
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Remark 3.117. Gradient recovery is an important technique in adaptive meth-
ods, as will be seen in Section 3.6.1. ♣

L∞ Error Bounds

Now we move on to error bounds in L∞. From (3.137) and (3.127) one can de-
duce bounds on the pointwise error (u−uN )(x, y) for the SDFEM solution uN

when (x, y) lies in each of the regions Ωi, as will now be demonstrated.
Consider first Ω1. Let (xi, yj) be any mesh node in Ω1 with j ≥ 1, as the

case j = 0 is trivial. Then

|(uI − uN )(xi, yj)| =
∣∣∣∣∣

N∑

k=i+1

∫ xk

x=xk−1

(uI − uN )x(x, yj) dx

∣∣∣∣∣

≤ CN

N∑

k=i+1

∫ xk

x=xk−1

∫ yj

y=yj−1

|(uI − uN )x(x, y)| dy dx,

since (uI − uN )x is a linear function of only y on [xk−1, xk] × [yj−1, yj ]. Set
Ωij = [xi, 1]× [yj−1, yj ]. Hence, by the Cauchy-Schwarz inequality one has

|(uI − uN )(xi, yj)| ≤ CN

∫

Ωij

|(uI − uN )x|

≤ CN(meas Ωij)1/2‖(uI − uN )x‖0,Ωij

≤ CN(εN−1 lnN)1/2‖∇(uI − uN )‖0
≤ C(εN−1 ln1/2N +N−3/2 ln5/2N)

where we used (3.137). Now (3.127) and a triangle inequality give

‖u− uN‖0,∞,Ω1
≤ C(εN−1 ln1/2N +N−3/2 ln5/2N).

A similar argument yields the same bound for ‖u− uN‖0,∞,Ω2
.

In particular these bounds are valid for all (x, y) on the boundary of Ω12.
Now consider the restriction of our SDFEM to Ω12. Here the fineness of the
mesh in both coordinate directions ensures that the associated difference op-
erator is inverse-monotone. If we assume more regularity of the solution u,
viz., that the bounds (3.125c)–(3.125e) are valid for 0 ≤ i + j ≤ 4 and that
ε|∂3S(x, y)/(∂ix∂jy)| ≤ C for i + j = 3, then a barrier function argument
on Ω12 (cf. [LS99]) shows that

‖u− uN‖0,∞,Ω12
≤ C(εN−1 ln1/2N +N−3/2 ln5/2N).

Finally, consider the coarse mesh Ω0. Apply a standard inverse estimate
to the L2 error component of (3.137), then invoke a triangle inequality and
(3.127); we obtain
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‖u− uN‖0,∞,Ω0
≤ C(εN−1/2 +N−1 ln2N).

Piecewise linears on a triangular Shishkin mesh are used in the SDFEM
in [LS01c]. Take k ≥ 2. For theoretical reasons O(N−3/2) artificial crosswind
diffusion is added to the method on Ω0, imitating [JSW87]. Pointwise error
bounds are derived via weighted estimates for discrete Green’s functions; these
bounds are quite detailed and we give only some of the results here.

Assume that ε ≤ N−3/2 and u satisfies the assumptions (3.125) with
m = 2. Then for any (x, y) ∈ Ω,

∣∣(u− uN )(x, y)
∣∣ ≤

{
CN−1/2 ln3/2N if (x, y) ∈ Ω12,

CN−3/4 ln(2+δ)/2N if (x, y) ∈ Ω \Ω12,

where

δ =

{
0 if (x, y) ∈ Ω0,
1 if (x, y) ∈ Ω2 ∪Ω1.

Furthermore, on subregions “away from” layers ([LS01c] gives a precise defi-
nition) one has

|(u− uN )(x, y)| ≤ CN−11/8 ln1/2N.

Remark 3.118. (Bilinears versus linears) Numerical pointwise convergence re-
sults on Shishkin meshes in [LS01b] (see also [TMS00]) show that both the
bilinear and linear SDFEM are second-order accurate on Ω0, but on Ω \ Ω0

the linear SDFEM is much less accurate than the bilinear method, which
achieves better than first-order accuracy. Should we be surprised that bilin-
ears are superior to linears on Shishkin meshes? A clue is given by the fact
that for linears on triangles the analogue of the Lin identities of Lemma 3.113
(see Lemma 3.35 or [BX03]) includes line integrals over the boundary ∂K and
these can be controlled in the subsequent error analysis only when the union
of each pair of neighbouring triangles forms an approximate parallelogram –
a condition that is not satisfied on a Shishkin mesh where the coarse and fine
meshes meet. For bilinears, the analysis on each mesh rectangle is indepen-
dent of all other mesh rectangles so abrupt changes in mesh size are not an
obstacle. Thus while the analysis leading to (3.135) can easily be replicated
for piecewise linears, our proof of the stronger result (3.136), which draws on
Lemma 3.113, seems to work only for bilinears. ♣
Remark 3.119. Several numerical methods for a test problem of the form
(3.111) are compared on the same Shishkin mesh in [LS01b]. The methods
tested are central differencing, the simple upwind scheme of Section 2.1.1, the
hybrid difference scheme of [LS99], defect correction (see, e.g., [AL90]), linear
and bilinear Galerkin FEMs, and the linear and bilinear SDFEMs. Graphs
of the computed solutions and errors and convergence rates are given with
respect to the discrete L∞(Ω) norm. The authors conclude that, taking into
account certain difficulties that arise in solving the discrete linear systems for
some of the methods (see Remark 3.111), the methods that perform best for
this problem are the defect correction method and the two SDFEMs. ♣
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Remark 3.120. (Other stabilization techniques) In [RZ03] an asymmetric inte-
rior penalty version (NIP) of the discontinuous Galerkin finite element method
(see Section 3.4) is used to solve (3.111) with piecewise bilinears on the
Shishkin mesh described at the start of this section. The value k = 2 is chosen
in (3.122). The analysis of the dGFEM in Section 3.4 is inapplicable to long
thin elements such as those appearing in Ω1 ∪Ω2, but in [RZ03] this analysis
is extended to such elements; to this end a new choice of the discontinuity
penalization parameter σe is made on part of the mesh. It is shown that the
computed solution uN satisfies

|||u− uN |||dG ≤ CN−1 ln3/2N.

The norm ‖·‖dG is not directly comparable with |||·|||SD, but numerical results
in [RZ03] indicate that when bilinears are used and the error is measured in
the discrete L∞ norm, both the Galerkin FEM and the SDFEM are more
accurate than the dGFEM.

A related method is considered in [RZ07]: a Galerkin method with bilinears
is used on the fine part of the Shishkin mesh and an NIP version of the
dGFEM is used on the coarse mesh. The authors prove the supercloseness
result |||πu − uN |||dG ≤ C(ε1/2N−1 + N−3/2) for a certain interpolant πu
of u.

Compared with the case of a computed continuous solution discussed on
page 397, it is less clear whether one can postprocess a superclose piecewise
discontinuous solution to generate a new finite element solution that achieves
a higher order of convergence in a norm associated with the original finite
element method. The key issue is how to specify the degrees of freedom for
the postprocessed solution in a way that uniquely defines that solution and
yields consistency and stability properties analogous to (3.144a) and (3.144b).
In [FTZ08] the authors show how to do this for superclose discontinuous
piecewise polynomial solutions generated by the dGFEM.

Local projection stabilization (see Section 3.3.1) for (3.111) on Shishkin
meshes is examined in [Mat]. For arbitrary r ≥ 2, the standard Qr element is
enriched by six additional functions, yielding an element that contains Pr+1.
For (3.111) it is shown that

‖u− uN‖ε + |||πu− uN |||LPS ≤ C(N−1 lnN)r+1,

where πu is a certain interpolant of u and uN is the computed solution.
In [FLRS08] the continuous interior penalty stabilization method (CIP) of

Section 3.3.2 is applied to (3.111) on a Shishkin mesh, using bilinears on the
fine mesh and linears elsewhere, and a proof is given of the superclose result

|||πu− uN |||CIP ≤ C(ε1/2N−1 +N−3/2)

where πu is a certain interpolant of u and uN is the computed solution.
As is apparent to the reader by now, different discretization techniques

often call upon different interpolants in their analyses. ♣
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Remark 3.121. (hp fem, curvilinear boundaries) The approximation, uniformly
with respect to ε, of exponential and parabolic boundary layer functions by
the p and hp versions of the finite element method using anisotropic meshes
on domains with curvilinear boundaries is considered in [SSX98] and at much
greater length in the monograph [Mel02].

The SDFEM is analysed in a hp fem context in [GMSS01], where Ω is
a curvilinear Lipschitzian polygon. After decomposing the solution u into
smooth and finitely many (exponential and parabolic) layer components, this
leaves a small remainder – caused for example by corner singularities – that
is ignored in the analysis. When the layers are resolved by suitable meshes,
an exponential rate of convergence is proved for the computed solution uN :

|||u− uN |||SD ≤ C|T |1/2e−Cp,

where |T | denotes the number of mesh elements and p is the degree of piecewise
polynomials used in the SDFEM trial space. If only exponential layers are
present then the factor |T |1/2 can be discarded, but when parabolic layers are
present then the mesh construction leads to |T | = O(| ln ε|2).

For extensions of these ideas to problems posed in 3-dimensional domains,
see [TS03] and its references. ♣

Parabolic Boundary Layers

Consider now the problem

−ε∆u+ b1(x, y)ux + c(x, y)u = f on Ω := (0, 1)× (0, 1), (3.146a)

u = 0 on ∂Ω. (3.146b)

This is obtained by setting b2 ≡ 0 in (3.111a). As before, b1(x, y) ≥ β1 > 0 and
c ≥ 0 on Ω̄. Assume that the data of the problem are smooth. The solution u
usually has an exponential boundary layer at x = 1 and parabolic boundary
layers at y = 0 and y = 1; see Section 1.4.

The quantity of published analysis on layer-adapted meshes for (3.146) is
much less than for (3.111).

A typical Shishkin mesh for (3.146) is a tensor product of one-dimensional
Shishkin meshes: in the x-direction the convection-diffusion mesh of Sec-
tion I.2.4.2 is used, while in the y-direction, where a boundary layer appears at
both ends of the interval, one applies the mesh used for the reaction-diffusion
problem of Remark I.2.106. These one-dimensional meshes are fine at x = 1
and at y = 0 and y = 1 respectively. The corresponding mesh transition
parameters are

σx = min{1/2, kxε lnN} and σy = min{1/4, ky

√
ε lnN}.

Here N is the number of mesh intervals in each coordinate direction and kx

and ky are user-chosen parameters. The final two-dimensional mesh is shown
in the second diagram of Figure 2.2.
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Provided that one has a decomposition of the solution u whose components
satisfy certain reasonable bounds, it is shown in [Roo02] that when a Galerkin
finite element method based on the bilinear form (3.130) with piecewise linears
or bilinears is applied on this mesh (with b1 ≡ 1 and σx = σy = 2) one obtains

ε1/2|u− uN |1 ≤ CN−1 lnN,

where uN is the computed solution. See Figure 3.14 for a typical computed
solution. In [FL08] Franz and Linß prove that the solution also has a superclose
property:

||uI − uN ||ε ≤ CN−2 ln2N,

where uI is the bilinear nodal interpolant. Consequently a simple local
postprocessing of uN yields a piecewise quadratic solution PuN for which
||u− PuN ||ε ≤ CN−2 ln2N ; see [FL08].
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Fig. 3.14. Problem with one exponential and two parabolic layers; solution com-
puted by Galerkin finite element method using bilinears on a Shishkin mesh

The SDFEM with piecewise bilinears on a Shishkin mesh is used to solve
(3.146) in [FLR]; it is shown that one obtains the superclose bound

‖uI − uN‖ε ≤ CN−2 ln2N

where uI is the bilinear nodal interpolant and uN is the computed solution.
The analysis reveals that the correct choice for the SDFEM parameter on each
mesh rectangle in the parabolic layer fine Shishkin mesh is δT ≤ Cε−1/4N−2,
which is unexpected.
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The local convergence results of [JSW87, Nii90] (see Section 3.2.1) for
piecewise linears on a triangular mesh are of course applicable here and show
for example that one can expect close to O(N−3/2) pointwise convergence
away from all layers. On the other hand, Kopteva [Kop04] considers piecewise
linears and bilinears and argues that inside characteristic boundary layers,
when one makes the choice δT = CN−1 for the streamline-diffusion para-
meter – as many authors have advocated since the local mesh diameter of
the Shishkin mesh in this region is O(N−1) – the SDFEM can at best give
first-order pointwise convergence.

The application and analysis of Galerkin least squares finite element meth-
ods (see Section 3.2.2) on certain layer-adapted anisotropic meshes is exam-
ined in [AL96], for problems posed in 2 and 3 dimensions whose solutions ex-
hibit exponential and parabolic boundary layers. The meshes used are uniform
near the boundary of the domain then graded until they become equidistant
and coarse far from the boundary, so in concept they lie between Shishkin and
Bakhvalov meshes. Under various technical hypotheses, it is shown that

|||u− uh|||GLS ≤ Ch2k| ln ε|,

where uh is the computed solution, h is the mesh diameter, and piecewise
polynomials of degree at most k are used.

Using the NIP variant of the dGFEM with piecewise bilinears on a Shishkin
mesh, in [ZR05] it is proved that the numerical solution uN of (3.146) satisfies

|||u− uN |||dG ≤ CN−1 ln3/2N.

The theory of n-widths is used in [KS01a] to examine the approximability
of the solution u of (3.146) (with b1 ≡ c ≡ 1) in L2(Ω). It is shown that, when
ε2n ≤ 1, if we know only that f ∈ L2(Ω) then O(ε−1/3n−2/3) is the best rate
of convergence to u in L2(Ω) that can be attained in general by any numerical
method that employs n degrees of freedom.

Reaction-diffusion Problems

The linear reaction-diffusion problem

−ε∆u+ c(x, y)u = f on Ω := (0, 1)× (0, 1), (3.147a)

u = 0 on ∂Ω, (3.147b)

where c(x, y) ≥ γ > 0 on Ω̄, is considered by various authors. Its solution u
typically has exponential boundary layers on all sides of Ω and corner layers at
the corners of Ω; for a decomposition of u into smooth and layer components,
together with bounds on its derivatives, see Remark 1.27 and its references.

For this problem a standard finite element analysis of the Galerkin method
(with any trial space V N and on any mesh) shows quickly that the computed
solution uN has the quasi-optimality property
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‖u− uN‖ε ≤ C inf
vN∈V N

‖u− vN‖ε. (3.148)

Consequently the analysis reduces to combining a decomposition of u with
some approximation theory.

When piecewise linears and bilinears are used on a Shishkin mesh, (3.148)
and calculations like those of Lemma 3.107 yield

‖u− uN‖ε ≤ C(ε1/4N−1 lnN +N−2). (3.149)

In [LMSZ08] the authors consider a sparse grid variant of this method, for
which one obtains the same convergence result while reducing the number of
degrees of freedom from O(N2) to O(N3/2). If instead of bilinears, piecewise
polynomials of degree k ≥ 1 are used (i.e., the space Pk on triangles or Qk on
rectangles), then it is shown in [Ape99, p.198] that on a Shishkin mesh one
has

‖u− uN‖ε ≤ C(ε1/4N−k lnk+1N +N−k−1),

where uN is the computed solution.

Remark 3.122. (Asymptotic mesh) In Remark 2.12 we discussed a piece-
wise uniform mesh where the transition points of the Shishkin mesh, which
for (3.147) are O(

√
ε lnN) distant from the boundary, are repositioned to

O(
√
ε | ln ε|) distant from the boundary. We shall refer to this mesh as the

asymptotic mesh or A-mesh. It is satisfactory for reaction-diffusion problems,
despite its deficiencies in the convection-diffusion case; in fact for reaction-
diffusion the convergence analysis on this mesh is slightly simpler than on the
Shishkin mesh and no lnN factor appears in the error estimates. (Such factors
cannot be avoided in energy-norm estimates when Shishkin meshes are used
– see [Xen03].) Consider the standard Galerkin finite element method defined
by BGAL(uN , vN ) = (f, vN ) for all vN ∈ SN , the space of piecewise bilinears
on a tensor product of two one-dimensional A-meshes of this type with N
mesh intervals in each coordinate direction, where we set b = 0 in the bilinear
form (3.130). It is proved in [Li01] that the computed solution uN satisfies

N−1ε1/2|u− uN |1 + ‖u− uN‖0 ≤ CN−2. (3.150)

If instead of bilinears, piecewise polynomials of degree k ≥ 1 are used (i.e.,
the space Pk on triangles or Qk on rectangles), then [Ape99, p.198] on the
A-mesh one obtains

‖u− uN‖ε ≤ C(ε1/4N−k| ln ε|k+1/2 +N−k−1),

where uN is the computed solution. The solution vN of a mixed finite element
method using lowest-order Raviart-Thomas rectangular elements on a similar
mesh is shown in [LW00] to yield

ε1/2|u− vN |1 + ‖u− vN‖0 ≤ CN−1. (3.151)

In the methods associated with (3.150) and (3.151) one obtains first-order
pointwise convergence away from the boundary layers. ♣
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Remark 3.123. (Nonrectangular domains) All the two-dimensional domains to
which we applied layer-adapted meshes to solve (3.147) have been rectangu-
lar. Xenophontos and Fulton [XF03] consider general domains with smooth
boundary and use boundary-fitted coordinates to construct suitable Shishkin
meshes. The standard Galerkin finite element method based on (3.130) is used.
In a typical situation where O(N2) mesh elements and piecewise polynomials
of degree p are used, one has

ε1/2|u− uN |1 + ‖u− uN‖0 ≤ CN−p lnpN

for the computed solution uN , under the hypothesis that c(x, y) in (3.147a)
is constant.

Melenk [Mel02] derives detailed regularity estimates for the solutions of
reaction-diffusion problems on curvilinear polygonal domains. To solve such
problems numerically he concentrates on hp finite element methods, for which
he designs special meshes that employ a minimal number of degrees of freedom
yet are able to deal with exponential layers and corner singularities; further-
more, in [Mel02, Section 2.6] he considers the h fem (as we have done) and
discusses suitable boundary layer meshes for reaction-diffusion problems on,
e.g., L-shaped domains, whose re-entrant corner requires a special mesh. In
[Mel02, Theorem 2.6.15] a bound related to (3.149) is presented in a more
general setting. ♣

Finally, we mention some results for reaction-diffusion problems on general
meshes. In [KS99, Mel00] the theory of n-widths sheds light on the approxima-
bility of the solution u of (3.147) in various Sobolev norms: if f ∈ Hs(Ω), then
any numerical method that employs n degrees of freedom can in general at-
tain at best O(n−s/2(1+εn)−1) convergence in L2(Ω). In [Ley08] (cf. [SW83])
the author considers (3.147a) with c ≡ 1 and Neumann boundary conditions
where Ω ⊂ Rm (m ≥ 2) has a smooth boundary; he applies the Galerkin
method with piecewise polynomials of any fixed degree and expresses the lo-
cal pointwise error in the solution in terms of ε and the mesh diameter.
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3.6 Adaptive Methods

3.6.1 Adaptive Finite Element Methods for Non-Singularly
Perturbed Elliptic Problems: an Introduction

In Section I.2.5 an adaptive finite difference method for problems in one di-
mension was examined at length. Two adaptive techniques for one-dimensional
parabolic problems were presented in Chapter II.5. In the context of adaptive
techniques in several space dimensions, the theoretical basis underpinning the
finite element method is much more secure than for any other class of methods.
We shall therefore concentrate here on the finite element method and related
techniques such as the finite volume and discontinuous Galerkin methods.

In adaptive finite element methods, the mesh is refined wherever an a
posteriori error estimator indicates the presence of large local errors in the
computed solution. In this way one hopes to place fine meshes in those regions
affected by local singularities, shocks, or interior or boundary layers, and to
achieve a balance between refined and unrefined regions so that satisfactory
global accuracy is attained without the introduction of too many mesh points.

Given an a posteriori error estimator, each adaptive mesh-refinement al-
gorithm has the following general structure:

1. Construct an initial coarse mesh T0 that is a sufficiently good approxima-
tion of the geometry of the problem. Put k = 0.

2. Solve the discrete problem on Tk.
3. Compute an a posteriori error estimate for each element T in Tk .
4. If the estimated global error is sufficiently small, then stop. Otherwise

decide which elements have to be refined and hence construct a mesh Tk+1.
Replace k by k + 1 and return to Step 2.

Let Th be the triangulation of the given domain. Write ηT for the estima-
tor associated with each element T ∈ Th. Then ηT is called an a posteriori
estimator if its evaluation depends on the computed numerical solution as well
as on the given data of the problem. Set

η2 =
∑

T∈Th

η2
T .

An estimator is equivalent to an error norm || · ||err if one has

dlη ≤ ||u− uh||err ≤ duη (3.152)

for some positive constants dl and du. (The H1 norm is often used for second-
order elliptic problems, but other norms such as the L2 norm also play an
important rôle.) To obtain a numerical solution whose accuracy is less than a
prescribed tolerance, it is sufficient in practice to use upper error estimators
or refinement indicators that satisfy only ||u − uh||err ≤ duη. But there is
then the risk of over-refinement of the mesh. To avoid this, the estimator
used should satisfy local lower bounds of the form
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d∗l ηT ≤ ||u− uh||err,ω(T ), (3.153)

where ω(T ) is some small neighborhood of the element T . If the number of
elements in ω(T ) is bounded independently of T and h, then we can sum
(3.153) over all T and obtain the left-hand inequality of (3.152).

The quality of an a posteriori error estimator is often measured by its
efficiency index, i.e., the ratio of the estimated error to the true error. An
error estimator is said to be efficient if the efficiency index and its inverse
remain bounded for all meshsizes. The inequalities (3.152) guarantee efficiency.
An error estimator is asymptotically exact if its efficiency index approaches
unity as the meshsize converges to zero. In fact, asymptotical exactness is too
strong a requirement: it holds true only for special uniform meshes and is
certainly not true of the meshes that are used in practical computations – see
[DMR91, DR92, DMR92].

We shall describe briefly four popular types of estimators:

• residual estimators
• estimators based on the solution of local problems
• estimators based on higher recovery of the gradient
• goal-oriented estimators (or the DWR method: dual weighted residuals).

For other estimators and more detailed investigations see [Ver96, AO00]; for
the DWR method see in particular [BR03].

Let us study the model problem

−△u = f in Ω, u = 0 on Γ, (3.154)

whose solution u lies in V := H1
0 (Ω). It is discretized using Vh, the space

of piecewise linear conforming finite elements on a shape-regular triangula-
tion Th. The discrete solution uh ∈ Vh ⊂ V satisfies

(∇(u− uh),∇v) = (f, v)− (∇uh,∇v) ∀v ∈ V. (3.155)

This residual equation is the starting point for the first two classes of estima-
tors presented here.

From the Poincaré-Friedrichs inequality

‖v‖0 ≤ cPF ‖∇v‖0 ∀v ∈ V,

one has
1

1 + c2PF

‖v‖1 ≤ sup
w∈V, ‖w‖1=1

(∇v,∇w) ≤ ‖v‖1.

Combining this estimate with (3.155) yields

Q ≤ ‖u− uh‖1 ≤ (1 + c2PF )Q, (3.156)

where
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Q = sup
w∈V, ‖w‖1=1

{(f, w)− (∇uh,∇w)} .

(Alternatively, start from

|u− uh|1 = sup
w∈V, |w|1=1

{(f, w)− (∇uh,∇w)} ,

and invoke Poincaré-Friedrichs later.) Now we try to find an upper bound for
Q and hence for the right-hand side of (3.156). The projection property of the
Galerkin method gives

(∇(u− uh),∇vh) = 0 ∀vh ∈ Vh.

Let Πh : V → Vh be an operator that is specified later. Define

Q∗(w) := (f, w)− (∇uh,∇w) = (f, w −Πhw)− (∇uh,∇(w −Πhw))

for each w ∈ V . Integrate by parts on each triangle then sum the terms:

Q∗(w) =
∑

T∈Th

(f +△uh, w −Πhw)T −
∑

T∈Th

∫

∂T

(nT · ∇uh)(w −Πhw).

Here nT is the outward-pointing unit normal vector on ∂T . The term f+△uh

reduces to f for our piecewise linear elements, but for more complex elements
this would not be the case. Next, write the ∂T terms as a sum over the edges
E ∈ Eh of the triangulation and introduce the jump [nE ·∇uh]E of the normal
derivative of uh along each edge E. This leads to

Q∗(w) =
∑

T∈Th

(f, w −Πhw)T −
∑

E∈Eh

∫

E

[nE · ∇uh]E(w −Πhw). (3.157)

Choose Πh to be the interpolation operator of Clément [Clé75]. (Recall that
w lies only in H1, so the simpler pointwise interpolant may not be defined.)
The Clément operator is defined similarly to the Scott-Zhang operator that is
discussed in Remark IV.3.1; see [EG04] for a general introduction to the inter-
polation of non-smooth functions. For the Clément interpolant, the following
estimates are valid:

‖w −Πhw‖0,T ≤ C1hT ‖w‖1,ω̃T
, (3.158a)

‖w −Πhw‖0,E ≤ C2h
1/2
E ‖w‖1,ω̃E

. (3.158b)

Here hT is the diameter of the element T and hE is the length of the edge E,
while ω̃T is the collection of all triangles sharing a vertex with the given
triangle T and ω̃E is the collection of all triangles sharing a vertex with E.
Combining (3.158) with (3.157), we get
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Q∗(w) ≤
∑

T∈Th

C1hT ‖f‖0,T ‖w‖1,ω̃T
+

∑

E∈Eh

C2h
1/2
E ‖[nE · ∇uh]E‖0,E‖w‖1,ω̃E

≤ C3‖w‖1
{ ∑

T∈Th

h2
T ‖f‖20,T +

∑

E∈Eh

hE‖[nE · ∇uh]E‖20,E

}1/2

. (3.159)

Here C3 depends on max{CτC1, C2}, where Cτ is the maximum number of
triangles that meet at any vertex. Set

η2
R,T = h2

T ‖rT ‖20,T +
1

2

∑

E(T )

hE‖rE‖20,E (3.160a)

and define the element and edge residuals

rT : = f +△uh|T , rE := [nE · ∇uh]E . (3.160b)

The estimates (3.159) and (3.156) prove that ηR,T is an upper error esti-
mator. This residual estimator was first proposed and analysed for problems
in one space dimension in the classic paper [BR78]. It is also possible [Ver96]
to derive a local lower bound related to this estimator. The lower bound relies
on the fact that the residuals rT and rE are discrete; if f is not piecewise
constant, then an additional data error indicator comes into the game.

We now move on to estimators based on the solution of local problems.
These come from approximate solutions of the residual equation (3.155). Let
us describe three important representatives of this class without going into
excessive detail.

Assume that VT is a low-dimensional space defined on a subdomain ωT

that is a small neighbourhood of the element T . Let vT ∈ VT be the solution
of the local residual problem

(∇vT ,∇w)ωT
= (f, w)ωT

− (∇uh,∇w)ωT
∀w ∈ VT

and set
ηLP,T = ‖∇vT ‖0,ωT

.

It can be shown that for a good choice of the pair (ωT , VT ), the quantity
ηLP,T will be a good approximation of ‖u − uh‖1,T . Different choices of the
pair (ωT , VT ) lead to different estimators. To give some concrete examples,
consider the triangle-bubble function

bT =

{
27λT,1λT,2λT,3 on T,
0 on Ω \ T,

where λT,1, λT,2 and λT,3 are the barycentric coordinates of T . Given any
edge E, let the vertices of the triangles T1 and T2 that contain E be enu-
merated in such a way that the vertices of E are numbered first. Define the
edge-bubble function bE by
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bE =

{
4λTi,1λTi,2 on Ti for i = 1, 2,
0 on Ω \ (T1 ∪ T2).

We can now describe three well-known estimators.

1. Babuška-Rheinboldt estimator:
ωT is the union of those triangles T ′ that share a given vertex x, and
VT = span{bT ′ , bE : T ′ ⊂ ωT , E ∩ x �= ∅} ⊂ H1

0 (ωT );
2. Verfürth estimator:
ωT comprises the 4 triangles T ′ that have a common edge with the given
triangle T , and VT = span{bT ′ , bE : T ′ ⊂ ωT , E ⊂ ∂T} ⊂ H1

0 (ωT );
3. modified Bank-Weiser estimator:

for this estimator Neumann boundary conditions, instead of Dirichlet
boundary conditions, are imposed on the auxiliary problem. Set ωT = T
and VT = span{bT , bE : E ⊂ ∂T}. Let vT be the unique solution of

(∇vT ,∇w)T = (f, w)T −
1

2

∑

E∈T

∫

E

[nE · ∇uh]Ew ∀w ∈ VT .

This local problem is a discrete analogue of the Neumann problem

−∆ϕ = f in T,
∂ϕ

∂n
= −1

2
[nE · ∇uh]E on E.

The related equilibrated residual method (ERM) is discussed in detail in
[AO00].

Because the dimensions of the local auxiliary problems for the last two es-
timators are small (7 and 4, respectively), they are often used in practice.
See also [BW90, Ver89] for extensions of these estimators to the Stokes and
Navier-Stokes equations; in the case of the model problem (3.154), it is easy to
see that the auxiliary problems have unique solutions, but for more complex
problems this property is far less obvious.

As a third category we sketch the basic idea for an estimator based on
higher-order recovery of the gradient. Suppose that one has an easily-computed
approximation Guh of ∇u such that

‖∇u−Guh‖0 ≤ β‖∇(u− uh)‖0

for some constant β ∈ [0, 1). Then

1

1 + β
‖Guh −∇uh‖0 ≤ ‖∇(u− uh)‖0 ≤

1

1− β ‖Guh −∇uh‖0,

so ‖Guh−∇uh‖0 can be used as an error estimator for the energy norm. Now
for some finite elements (e.g., linear elements), a superconvergent approxima-
tion Guh of the gradient is known [KN87], but details are not given here. For
each fixed node x of the triangulation, define the weighted average (recall that
∇uh is piecewise constant)
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Guh(x) :=
∑

T∈ωx

|T |
|ωx|

∇uh|T ,

where ωx is the collection of all triangles containing x. Interpolation to these
nodal values defines a piecewise linear approximation Guh ∈ Vh. Now set

ηZ,T = ‖Guh −∇uh‖0,T .

This is the Zienkiewicz-Zhu estimator. Carstensen [CB02a, CB02b] has pointed
out that the success of averaging here can also be explained without using
superconvergence. Furthermore, it is important to note that Zhang [Zha04,
ZN05] introduces new averaging techniques that preserve polynomials.

So far we have sketched estimators only for the model problem (3.154).
These estimators can be extended to more general elliptic problems provided
that the diffusion terms dominate the convection terms. All the estimators
discussed are interrelated [Ver96] and have been tested numerically on a wide
class of elliptic problems [BSU94].

In recent years there has been a flurry of activity around a posteriori
error estimates for the discontinuous Galerkin method; see [KP07] and its
bibliography.

Finally, we outline the DWR method for goal-oriented error estimation.
This relies on duality arguments, which appeared in residual-based a posteriori
error estimation only recently. The relevance of duality has been highlighted
in the review articles by Eriksson et al. [EEHJ95] and Becker and Rannacher
[BR01]. See also [BR03, GS02].

Suppose that we wish to control the linear error functional J(u − uh).
Bangerth and Rannacher [BR03] discuss typical practical examples of error
functionals such as the mean normal flux and the drag coefficient in compu-
tational fluid mechanics. It is also possible to control global norms by setting

J(ϕ) = (∇ϕ,∇e) or J(ϕ) = (ϕ, e).

Given a variational equation with bilinear form a(·, ·), define the adjoint aux-
iliary problem

a(v, w) = J(v) for all v ∈ V. (3.161)

Appealing to Galerkin orthogonality, one obtains the error representation

J(u− uh) = a(u− uh, w) = a(u− uh, w − wh).

This formula is the basis of the DWR method. Now standard arguments in
deriving residual estimators (like those sketched above) yield

|J(u− uh)| ≤
∑

T

‖rT ‖0,T ‖w − wh‖0,T +
∑

E

‖rE‖0,E‖w − wh‖0,E .

The determination of the weights multiplying the element and edge residuals
here requires the solution of the adjoint problem (3.161). The advantage of
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using these weights is that, analogously to a Green’s function, they quantify
the influences of the local residuals on the error in the target quantity J .

The DWR method can also be applied in conjunction with the discontin-
uous Galerkin finite element method [KR02, RW03].

For many years no proof of convergence of an adaptive algorithm was
known. The first rigorous result of this type is due to Dörfler [Doe96], who
used a residual error estimator and a special refinement criterion . His analy-
sis assumes that the initial mesh is already sufficiently fine to control data
oscillations, which are defined by

osc(f, Th) :=

{ ∑

T∈Th

‖h(f − fT )‖20,T

}1/2

,

where fT is the mean value of f on each element T .
Later it became clear that error reduction requires conditions on the refine-

ment, and an extended refinement criterion also takes data oscillations into ac-
count [Noc95]. Examples in [Noc95] show how significant for the convergence
behaviour it is to generate new interior mesh points during the refinement
process.

Binev, Dahmen and DeVore [BDdV04] prove optimal convergence rates
for an adaptive algorithm with optimal complexity. In their algorithm both
mesh-coarsening and mesh-refinement steps are taken into account. Stevenson
[Ste07] simplifies the algorithm by combining [BDdV04] and [Noc95] in such
a way that – at least for our linear model problem – coarsening steps are
unnecessary.

Recently, the convergence of an adaptive discontinuous Galerkin approxi-
mation has been proved [KP07]. The first convergence results for an adaptive
scheme based on the DWR method are in [DKV06].

Remark 3.124. When error estimators or refinement indicators are applied
to singularly perturbed problems, they often detect layers and force mesh
refinement in theses regions. But spurious global oscillations may appear if
non-upwinded finite element methods are used on too coarse a mesh, and this
incorrect solution will lead the estimator to suggest global mesh refinement.

John [Joh00] gives a detailed numerical study of the behaviour of sev-
eral estimators when applied to problems with layers, using the SDFEM as
a stable basic discretization. The meshes generated often turned out to be
qualitatively very different from each other. None of the estimators examined
(the gradient of the numerical solution, the Zienkiewicz-Zhu estimator, stan-
dard residual estimators for the H1 norm and L2 norms, estimators based
on the solution of local Neumann problems using Galerkin or SDFEM, and
the “robust” estimator of Verfürth [Ver98a] that we shall meet in the next
section) worked satisfactorily in all tests although the test problems were not
particularly difficult. It seems that when different types of layers appear in
the same problem, this presents difficulties for adaptive methods. ♣
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Remark 3.125. From theoretical considerations it is clear that any good mesh
for boundary or interior layers must be anisotropic. Thus an adaptive pro-
cedure designed for problems with layers should include an anisotropic re-
finement strategy. While several anisotropic mesh adaptation strategies are
extant (see [DF04] and its bibliography), all are more or less heuristic. We do
not know of any strategy for convection-diffusion problems in two dimensions
where it is proved that, starting from some standard mesh, the refinement
strategy is guaranteed to lead to a mesh that allows robust error estimates.

Of course, such a result would requires an error estimator suitable for an
anisotropic mesh. Here some progress has been achieved in recent years – see
[Kuh99, Kuh05, Pic03] – but many open problems remain.

Micheletti, Perotto and others [DMP07, FMP04] combine SDFEM, the
DWR method and anisotropic interpolation error estimates to get an a poste-
riori error estimate for some target functional. They then use this information
to implement a metric-based algorithm for mesh generation [CLGD06] that
creates an “optimal” mesh. The numerical results obtained are interesting but
the second step of the approach has a heuristic flavour. ♣

In the singularly perturbed case the analysis of indicators is difficult be-
cause the constants occurring in the estimates usually depend on the small
diffusion parameter. This is linked to the question: which norm should be
used to measure the error? So far we have focussed on the H1 norm, which is
natural for second-order elliptic problems that are not singularly perturbed.
But for singularly perturbed problems a weaker norm would be appropriate
and we shall present some first proposals.

The next two subsections contain descriptions of several approaches spe-
cially designed for singularly perturbed problems. First, following in the foot-
steps of [Ang95a, San08, Ver05], we present robustness results for certain
residual-type estimators in various norms. Second, we describe an estimator
from [EJ93b] for the streamline-diffusion method of Section 3.2.1 (see also
Section II.5 for the corresponding time-dependent version). The technique is
a variant of the DWR method for which more recent results are also available,
especially for pure transport problems [Ran98, HRS00].

We do not discuss recent results on upwinded mixed finite element schemes.
See [KP08] for residual-type a posteriori estimates for our standard convection-
diffusion problem and [Voh07] for a discussion of more general convection-
diffusion problems that have an anisotropic diffusion-dispersion tensor.

3.6.2 Robust and Semi-Robust Residual Type Error Estimators

If the constants occurring in the estimates (3.152) are independent of ε we
say the estimator is robust. The first robustness result for a residual-type
error estimator applied to a convection-diffusion problem is due to Angermann
[Ang95a]. We start our excursion into robust estimators with his approach.
Consider again the singularly perturbed boundary value problem
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−ε△u+ b · ∇u+ cu = f in Ω, (3.162a)

u = 0 on Γ, (3.162b)

where Ω is a two-dimensional polygonal bounded domain with boundary Γ .
Assume that the coefficients b and c and the right-hand side f are sufficiently
smooth, and that c(x) ≥ 0.

Angermann proves robustness of an estimator with respect to the “graph
norm”

||v||gr := sup
w∈H1

0 (Ω)

a(v, w)

‖w‖1
,

where a(·, ·) is the bilinear form from the standard weak formulation of (3.162).

Remark 3.126. Under the hypothesis that c− 1
2∇ · b ≥ ω > 0, there exist two

constants C1 and C2 that are independent of ε, such that

a(w,w) ≥ C1‖w‖2ε and |a(v, w)| ≤ C2ε
−1/2‖v‖ε‖w‖ε ∀v, w ∈ H1

0 (Ω),

where, as usual, ‖ · ‖ε is the ε-weighted H1 norm. These inequalities imply
that

ε1/2C1‖w‖ε ≤
C1‖w‖2ε
‖w‖1

≤ a(w,w)

‖w‖1
≤ ||w||gr ≤ C2‖w‖ε.

Thus || · ||gr seems weaker than the ε-weighted H1 norm on H1
0 (Ω). ♣

Angermann develops his theory for the inverse-monotonicity-preserving fi-
nite volume technique of Section 3.1, when applied to (3.162). But as we shall
see, in principle the approach also works for a standard Galerkin discretiza-
tion. The inverse-monotonicity-preserving finite volume technique generates
the system (3.17) of discrete equations

∑

j∈Λi

εmij

dij
B

(
Nijdij

ε

)
[u(Pi)− u(Pj)] + Cimiu(Pi) = fimi

for i = 1, . . . , N . The a posteriori error estimator for this method is based on
a reformulation of the discrete problem as a Galerkin finite element method
with a perturbed bilinear form and right-hand side. Thus we restate (3.17)
above in the following way:

Find uh ∈ Vh (the space of piecewise linear finite elements on a weakly-
acute triangulation of Ω) such that

ah(uh, vh) = fh(vh) ∀vh ∈ Vh

where



416 3 Finite Element Methods

ah(uh, vh) := ε(∇uh,∇vh) + bh(uh, vh),

bh(uh, vh) :=
∑

i∈Λ

vhi

⎧
⎨
⎩
∑

j∈Λi

(1− rij)Nij(uhj − uhi)mij + Ciuhimi

⎫
⎬
⎭ ,

fh(vh) :=
∑

i∈Λ

fivhimi,

rij := 1− z−1
ij +

1

exp(zij)− 1
, zij :=

Nijdij

ε
,

where Λ is the set of all interior nodes and Λi was defined during the derivation
of (3.17). For simplicity, we use the notation

vhi = vh(Pi), fi = f(Pi).

To describe the error estimator, some additional notation is needed. In
the circumcentric case of Figure 3.3, one can choose a triangle Tij that has
Γij as an edge with Pi as the opposite vertex – this triangle is the union

of two triangles T
(1)
ij and T

(2)
ij that have in common both the vertex Pi and

exactly one half of the straight-line segment PiPj . Set Γ k
ij := T

(k)
ij ∩ Γij and

m
(k)
ij := meas(Γ

(k)
ij ) for k = 1, 2. Let ψhi be the piecewise linear continuous

function on the original triangulation that satisfies ψhi(Pj) = δij .
Angermann’s estimator [Ang95a] (see [Ang91a, Ang92] for earlier slightly

different versions) has the following structure:

ηl =

{∑

i∈Λ

η2
li

}1/2

for l = 0, 1, 2, 3,

where

η0i := sup
v∈H1

0 (Ω)

a(u− uh, ψhiv)

‖ψhiv‖1
,

η1i :=

⎧
⎨
⎩
∑

j∈Λi

2∑

k=1

[
d2ij
4

+ (m
(k)
ij )2

]∫

T
(k)
ij

[f − b · ∇uh − cuh]2dx

⎫
⎬
⎭

1/2

,

η2i :=
1√
mi

∣∣∣∣
∫

Di

[f − fi + (∇ · b− c)uh + Ciuhi]dx−
∑

j∈Λi

uhiNijmij

∣∣∣∣,

η3i :=

{∑

j∈Λi

2∑

k=1

dij

m
(k)
ij

[∫

Γ
(k)
ij

[(rijuhi + (1− rij)uhj)Nij

− (nij · b)uh]ds

]2
}1/2

.
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Roughly speaking, the estimator η0 corresponds to the classical Section 3.6.1
approach for residual estimators or estimators based on the solution of local
problems. On the other hand, the indicators η1i, η2i and η3i correspond to the
special kind of discretization used: the estimator η1 reflects the lumping of the
test functions, η2 gives information about the approximation of the reaction
term (c−∇ · b)u and the right-hand side, and η3 deals with the upwinding in
the discretization of the convection term ∇ · (bu).

Using the graph norm, we have the following robustness result:

Theorem 3.127. [Ang95a] Let c− 1
2∇ · b ≥ ω > 0. Assume that all interior

angles of all triangles of the triangulation are bounded from below by some
positive constant and that the triangulation is weakly acute. Then there exist
five constants C(−1), C(0), ..., C(3), which are independent of ε and the mesh,
such that

C(−1)η0 ≤ ||u− uh||gr ≤
3∑

l=0

C(l)ηl.

Remark 3.128. The definition

η0i := sup
v∈H1

0 (Ω)

a(u− uh, ψhiv)

‖ψhiv‖ε

and the use of the ‖ · ‖ε norm lead to the unbalanced estimate

ε1/2C [−1]η0 ≤ ||u− uh||ε ≤ ε−1/2
3∑

l=0

C [l])ηl ;

see [Ang91a]. ♣

Unlike the indicators η1i, η2i, η3i, which can either be computed exactly
or approximated by quadrature rules, the indicator η0i cannot be computed
directly and has to be approximated. Nevertheless, we have already seen that
such indicators can often be implemented through the solution of local bound-
ary value problems; but in the present context it is very important that any
such implementation uses auxiliary boundary value problems that are not sin-
gularly perturbed.

Let ωPi
be, as in the Babuška-Rheinboldt estimator, the collection of all

triangles with a given vertex Pi. Consider the following local problem:
Find ePi

∈ H1
0 (ωPi

) such that

(∇ePi
,∇w) + (ePi

, w) = (f, w)− a(uh, w) ∀w ∈ H1
0 (ωPi

). (3.163)

Lemma 3.129. [Ang95a] One has

η0i = ‖ePi
‖1,ωPi

. (3.164)
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Proof. First rewrite ‖ePi
‖1,ωPi

as follows:

‖ePi
‖1,ωPi

= sup
w∈H1

0 (ωPi
)

(∇ePi
,∇w) + (ePi

, w)

‖w‖1,ωPi

= sup
w∈H1

0 (ωPi
)

(f, w)− a(uh, w)

‖w‖1,ωPi

= sup
w∈H1

0 (ωPi
)

a(u− uh, w)

‖w‖1,ωPi

.

The definition of η0i implies that

η0i ≤ sup
w∈H1

0 (ωPi
)

a(u− uh, w)

‖w‖1,ωPi

. (3.165)

We now establish the opposite inequality. Let w ∈ H1
0 (ωPi

) be a function for
which the supremum in (3.165) is attained (if no such function exists, choose
a w that almost attains the supremum and modify the argument slightly).
Then there exists a sequence {w(k)} ∈ C∞

0 (ωPi
) with w(k) → w in H1(ωPi

)
as k → ∞. The functions v(k) = w(k)/ψih, extended by zero to the whole
domain Ω, clearly lie in H1

0 (Ω). The continuity of the bilinear form a(·, ·)
yields

η0i ≥
a(u− uh, ψihv

(k))

‖ψihv(k)‖1
=
a(u− uh, w

(k))

‖w(k)‖1
→ a(u− uh, w)

‖w‖1
as k →∞. The result follows. ⊓⊔

Note that the local problem (3.163) is not singularly perturbed, so one
can apply standard methods to approximate η0i. Of course one then loses the
equality of (3.164). On the other hand, the symmetry of the local problem
allows us to formulate both primal and complementary variational principles
for (3.163) and to apply corresponding numerical methods, which leads to
computable lower and upper bounds for η0i; see [Ang95a] and the general
discussion in [AC92] on the use of complementary variational principles for a
posteriori error estimation.

Remark 3.130. Without referring to Angermann’s work, Araya et al. [APS05,
ABR07] use a related idea that introduces auxiliary problems similar to
(3.163). In both these papers a variant of the SDFEM is used for stabiliza-
tion. In [APS05] the residual equation is solved in a hierarchical way and in
[ABR07] the estimator is based on the solution of local problems. ♣

Can one combine the ε-weighted H1 norm with a standard residual esti-
mator of the type

η2
R,T := w2

T ‖rT ‖20,T +
1

2

∑

E(T )

wE‖rE‖20,E
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for a posteriori error estimation? First, a careful determination of the de-
pendence of the residual weights wT and wE on ε is necessary. It emerges
[Ver98a, Ver05] that

η2
T := α2

T ‖rT ‖20,T +
∑

E(T )

ε−1/2αE‖rE‖20,E (3.166a)

with the usual edge residual rE , the element residual

rT := (f + ε△uh − b · ∇uh − cuh)
∣∣
T

(3.166b)

and for S = T,E the weights

αS = min{hSε
−1/2, ω−1/2}. (3.166c)

Here hT and hE are the element and edge diameters, while ω ≥ 0 is a constant
with c − (1/2) div b ≥ ω and ‖c‖∞ ≤ c∗ω. For simplicity let us assume that
f, b, c are piecewise linear (like our finite element space) as otherwise additional
data error terms are present.

For the Galerkin or SDFEM discretizations with linear elements on a
shape-regular mesh, under the hypothesis that ω = 1, Verfürth [Ver98a]
proved in the ε-weighted H1 norm the estimates

‖u− uh‖ε ≤
{∑

T

η2
T

}1/2

, ηT ≤ (C1 + C2ε
−1/2αT )‖u− uh‖ε,ωT

.

The estimate is not robust with respect to ε, but owing to the relatively weak
dependence on ε we say the estimator is semi-robust.

A similar technique was used in [IW99] to study the GLSFEM, resulting
in weights slightly different from (3.166c), but the result was not robust with
respect to Angermann’s graph norm. In [AEB07] the authors construct a
semi-robust estimator for the non-conforming Crouzeix-Raviart element, using
stabilization by edge penalization (the CIP method).

In [San01] Sangalli proves the robustness of a certain a posteriori error
estimator for the residual-free bubble method applied to convection-diffusion
problems. The analysis uses the unusual norm

||w||San := ‖w‖ε + ‖b · ∇w‖∗, where ‖ϕ‖∗ = sup
〈ϕ, v〉
‖v‖ε

. (3.167)

Although Sangalli’s approach is devoted to residual-free bubbles, the same
analysis works for the Galerkin method and the SDFEM. For the convection-
diffusion problem, the residual error estimator (3.166) is robust with respect
to the norm (3.167); see [Ver05].

Angermann’s graph norm and the norm || · ||San above are defined only
implicitly by an infinite-dimensional variational problem and cannot be com-
puted exactly in practice. Recently, Sangalli [San08] pointed out that the norm
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(3.167) seems to be inappropriate in the convection-dominated regime; recall
the discussion of Section I.2.2.3. He proposes an improved estimator that is
robust with respect to his natural norm [San05] for the advection-diffusion
operator in the one-dimensional case.

Sangalli’s result bears some resemblance to the results in [BC04] for
wavelet methods, which rely on a non-standard variational formulation of the
given problem and use an anisotropic wavelet decomposition of the residual.
The associated norm, which is stronger than the standard energy norm, pro-
vides robust control over the streamline derivative of the solution. It is proved
that the proposed lower error estimator is both accurate and robust. The up-
per estimator deviates from the true error by a factor at most O(ε−1/4), so
once again semi-robustness is achieved.

Remark 3.131. (Robustness for reaction-diffusion problems) The theoretical
situation is clearer for reaction-diffusion problems. The residual-based esti-
mator (3.166) and the related estimator based on the solution of auxiliary
local problems are both robust with respect to the associated energy norm
[Ver98b]. A modification of the equilibrated residual method of Ainsworth and
Babuska is also robust for reaction-diffusion problems [AB99].

Stevenson proved in [Ste05] the uniform convergence of a special adap-
tive method for the reaction-diffusion equation in the energy norm but it is
unclear that the energy norm is a suitable norm for these problems because
for small ε it is unable to distinguish between the typical layer function of
reaction-diffusion problems and zero. It would be desirable to get robust a
posteriori error estimates in a stronger norm.

The only result in this direction is the a posteriori error estimate of
Kopteva [Kop08] in the L∞ norm. For the standard finite difference method
on an arbitrary rectangular mesh, she proves (with techniques closely related
to finite element analyses; cf. [Noc95]) that

‖uh − u‖∞ ≤ C
(

max
i
{h2

iM1,ij}+ max
j
{k2

jM2,ij}
)
.

Here a typical mesh rectangle has size hi×kj and uh is the bilinear interpolant
to the discrete approximations uij at the mesh points; furthermore,

M1,ij ≈ |D2
xuij | ln(2 + ε/κ) + 1, M2,ij ≈ |D2

yuij | ln(2 + ε/κ) + 1

with κ = min{mini hi, minj kj}. Thus we recognize the jump of the normal
derivatives on edges in the a posteriori error estimate. The proof uses the
representations

L(uh − u) = f0 − (f1)x − (f2)y

and

uh − u = (G, f0) + (Gx, f1) + (Gy, f2),
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with a precise analysis of the dependence on ε of various norms of the Green’s
function G of the continuous problem. ♣

3.6.3 A Variant of the DWR Method for Streamline Diffusion

In this section we examine an adaptive streamline diffusion finite element
method (SDFEM) from [EJ93b] for the convection-diffusion problem

−ε△u+ ux = f in Ω, (3.168a)

u = 0 on Γ := ∂Ω, (3.168b)

where Ω is a two-dimensional bounded convex polygonal domain.
Suppose that Ω is partitioned by a shape-regular triangulation Th. Let V

be the space of continuous piecewise linear functions on Th that vanish on Γ .
We seek a solution uh of the problem

ah(uh, vh) = fh(vh) ∀vh ∈ Vh, (3.169)

where

ah(w, v) :=
∑

T∈Th

(ε̂∇w,∇v)T −
∑

T∈Th

(div(ε̂∇w), δvx)T + (wx, v + δvx),

fh(v) := (f, v) +
∑

T∈Th

δT (f, vx)T ,

hT := diam(T ), ε̂|T = ε̂(uh)|T := max{ε, C2h
2
T |f − (uh)x|},

δT := C1 max{0, hT − ε̂}.

Here (·, ·)T denotes the L2(T ) inner product, (·, ·) is the L2(Ω) inner product,
δ is the SD parameter, and C1 and C2 are user-chosen positive constants.

This SDFEM is similar to that of Section II.5.1. It is a variant of the
standard SDFEM of Section 3.2.1 that is nonlinear because the piecewise
constant function ε̂ depends on the computed solution uh.

We treat ε̂ as a smoothly varying function (this can be achieved by local
averaging and approximation). In practice, when ε ≪ h := maxT hT , one
expects for example that ε̂ = O(h3) away from layers and ε̂ = O(h) inside an
exponential boundary layer.

To begin the analysis, express the error u− uh as

u− uh = ρ+ θ, (3.170)

where ρ := u− û, θ := û− uh, and û is the solution of

−div(ε̂∇û) + ûx = f in Ω, (3.171a)

û = 0 on Γ. (3.171b)
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Since ε̂ ≥ ε, (3.171) is a regularization of (3.168). Regarding ε̂ as known a
priori, note that uh is the solution obtained when the standard SDFEM is
applied to (3.171). Thus θ is the error when (3.171) is solved by a linear
method. Furthermore, the choice of ε̂ is so suited to the mesh that one can
prove almost optimal a posteriori estimates for θ. The estimates available
for ρ are less satisfactory.

Let n be the outward-pointing unit normal to Γ . Set Γ = Γ− ∪ Γ0 ∪ Γ+,
where Γ−, Γ0 and Γ+ denote the parts of Γ where the x-component of n is
negative, zero and positive, respectively. Then Γ− is the inflow boundary for
the reduced problem ux = f , while Γ+ is the outflow boundary. The analysis
assumes that dist(Γ−, Γ+) > 0.

Lemma 3.132. [EJ93b] Assume that, for some generic positive constant C,
the inequality ε̂x ≤ Cε̂ holds true in some neighbourhood of Γ− and one has
−Cmin{1, ε̂} ≤ ε̂x ≤ C on Ω. Then

‖θ‖0 ≤ Eθ(uh, h, f) := C
[
‖min ∗{1, h2ε̂−1}R(uh)‖0 + (max

Γ−

ε̂1/2)‖f‖0
]
,

(3.172)
where for each T ∈ Th,

min ∗{1, s}|T :=

{
1 if T ∩ Γ− is nonempty,

min{1, s} otherwise,

R(uh)|T :=
(
|f − (uh)x +∇ε̂ · ∇uh|

)∣∣
T

+ ε̂
∣∣
T

[
1

2

∑

λ∈∂T

(
[∇uh]λ/hλ

)2
]1/2

,

hλ is the length of the edge λ of T , and [·]λ is the jump across λ.

Proof. There are too many technical details to be given in full, so only the
main ingredients of the proof are presented here. Let z be the solution of the
dual problem

L∗
ε̂z := −div(ε̂∇z)− zx = θ on Ω, z = 0 on Γ. (3.173)

Because the functional J(ϕ) = (ϕ, θ) is used we recognize the DWR method
for estimating the L2 error. One has as usual the error representation

‖θ‖20 = (θ, θ) = (θ, L∗
ε̂z) = (f, z)− (ε̂∇uh,∇z)− ((uh)x, z).

Instead of using some approximation zh of z, the interpolant zI to z from V
is introduced. Using the projection property implied by (3.169), one obtains

‖θ‖20 = (f − (uh)x +∇ε̂ · ∇uh, z − zI − δzI
x)

+
∑

T∈Th

∑

λ∈∂T

∫

λ

ε̂
∂uh

∂nT
(z − zI) dλ,
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where nT is the outward-pointing unit normal to ∂T .
The rest of the proof entails careful estimates of the above terms, invoking

interpolation error estimates and an analogue of the stability bound (1.14)
that is applied to (3.173). ⊓⊔

In practice R(uh) will be small away from layers. Inside a layer, where
f − (uh)x is large, one envisages that R(uh) ≈ |f − (uh)x|, so locally

min{1, h2ε̂−1}R(uh) ≈ min{R(uh), C−1
2 } ≤ C−1

2 .

Hence it is reasonable to expect that Eθ will be small.
The next lemma bounds ρ. No proof is given here – it proceeds analogously

to the proof above via the dual problem L∗
ε̂w = ρ.

Lemma 3.133. [EJ93b] Assume that |ε̂y| ≤ Cε̂1/2 and |ε̂x| ≤ Cε̂ in Ω. Then

‖ρ‖0 ≤ Eρ(û, ε̂, f) := C
[
‖(ε̂− ε)ûx‖0 + ‖((ε̂− ε)ûy)yd+‖0

+ (max
Γ−

ε̂1/2)‖f‖0
]
,

where d+ is the distance to the outflow boundary Γ+ in the direction (1,0).

Since û is unknown we are not quite able to compute Eρ, so this is not a
true a posteriori estimate.

Theorem 3.134. Assume that the hypotheses of Lemmas 3.132 and 3.133 are
satisfied. Then

‖u− uh‖0 ≤ Eθ(uh, h, f) + Eρ(û, ε̂, f), (3.174)

where Eθ and Eρ are defined in these lemmas.

Proof. Combine (3.170) with Lemmas 3.132 and 3.133. ⊓⊔

Remark 3.135. Suppose that the SDFEM is applied to (3.168). If instead of the
strong stability bound (1.14) one uses the L2-stability bound ‖u‖0 ≤ C‖f‖0,
one can then prove the a posteriori estimate

‖u− uh‖0 ≤ C‖R(uh)‖0,

where R(uh) is as in Lemma 3.132. Nevertheless, on meshes that are coarse
relative to ε, the quantity ‖R(uh)‖0,T is typically large for triangles T that lie
near layers. Thus ‖R(uh)‖0 (without the min ∗ factor of (3.172)) increases as
the mesh is refined even though the actual solution becomes more accurate.
It is thus an unsuitable refinement indicator for an adaptive algorithm. ♣
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Eriksson and Johnson [EJ93b] consider two adaptive methods based on
the above analysis. Their first method uses Eθ(uh, h, f) as a refinement indi-
cator, and refines the mesh until Eθ is below a prescribed tolerance and ε̂ = ε
everywhere. Assuming that the algorithm terminates, the requirement ε̂ = ε
implies that ρ = 0 for the final solution computed, so Lemma 3.132 shows
that Eθ will then provide a computable upper bound on ‖u−uh‖0. If T is any
triangle of the final mesh that meets an exponential boundary layer, then

ε = ε̂|T ≥ C2h
2
T max

T
|f − (uh)x| ≥ ChT ,

so the layer (which has width O(ε| ln ε|)) will be resolved. Along a parabolic
boundary layer, we expect that |f − (uh)x| is O(1), whence ε ≥ Ch2

T and the
layer (now of width O(ε1/2| ln ε|)) is again resolved.

The second adaptive method from [EJ93b] uses the refinement indicator

TOL := Eθ(uh, h, f) + C
[
‖(ε̂− ε)(uh)x‖0 + ‖(ε̂− ε)d+Dh

y (uh)y‖0

+ (max
Γ−

ε̂1/2)‖f‖0
]
,

where Dh
y (uh)y is a discrete analogue of (uh)yy. The indicator is clearly based

on (3.174), but with a computable discrete approximation replacing Eρ(û, ε̂, f).
This replacement means that we do not have a rigorous upper bound on
‖u − uh‖0. Heuristic arguments [EJ93b] lead us to believe that ‖u − uh‖0
will be of order h3/8 and that, depending on the value of TOL prescribed by
the user, the method may or may not resolve layers. For instance, suppose
that only an exponential boundary layer is present and that each triangle T
that meets this layer has diameter hT . Then (|f − (uh)x|)|T = O(h−1

T ), so
ε̂|T = O(hT ). Now if the boundary layer computed occupies a region Ωγ of

width γ, then ‖(uh)x‖0 = O(1) +
[ ∫

Ωγ
(1/hT )2

]1/2
= O(

√
γ/hT ). Hence

TOL ≥ C‖(ε̂− ε)(uh)x‖0 ≥ ChT (
√
γ/hT ) = O(

√
γ ).

Thus the layer is resolved, i.e., γ ≤ O(ε) if TOL ≤ O(ε1/2). More generally, if
TOL is O(ε1/4), then no layers are resolved; if TOL is between O(ε1/2) and
O(ε1/4), then only parabolic layers are resolved; if TOL is O(ε1/2), then all
layers are resolved.

Remark 3.136. The case of a homogeneous Neumann boundary condition
on Γ+, so u has a weak outflow boundary layer, is also considered in [EJ93b].
Furthermore, the authors allow ε to be a variable function of x and y. ♣

The above approach defines the dual problem on the basis of the non-
stabilized problem. In more recent papers [HRS00, Ran98] for stabilized finite
element approximations of first-order hyperbolic problems that correspond to
ε = 0, the authors consider two alternative dual problems: the formal adjoint
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of the given problem and the transpose of the bilinear form for the stabilized
method. It it found that the second approach is superior in the sense that it
leads to sharper a posteriori error bounds and more economical adaptively
refined meshes. We do not know any detailed studies of the related question
for the SDFEM or GLSFEM applied to our standard convection-diffusion
problem in the case ε �= 0. It seems that the structure of the problem that is
dual to the stabilized problem causes difficulties.

In [CS07] the authors consider the residual-free bubble approach and de-
fine the dual problem using the non-stabilized problem. The dual solution is
approximated by the solution of a local problem on a refined mesh. The error
that arises is estimated by applying the dual approach again and invoking
stability estimates.

The DWR method can also be applied to the dGFEM. It turns out
that it is fruitful to use the SIP version of the dGFEM for a posteriori er-
ror estimation because (unlike the NIP version) it is adjoint consistent; see
[GHH07b, HHSS03]. In [HGH08] the authors sketch an adaptive strategy for
anisotropic mesh generation; in two dimensions, a simple Cartesian refine-
ment is used where an element marked for refinement is subdivided either
anisotropically or isotropically in one of three possible ways. To choose the
“optimal” refinement a trial and error philosophy is used: local error indica-
tors are computed on the possible refinements and a decision is taken based
on which of these is predicted to give the smallest error indicator.



4

Time-Dependent Problems

In this chapter we discuss convection-diffusion and reaction-diffusion prob-
lems whose solutions are time-dependent (as in Part II) and are functions of
more than one space variable (as in the preceding chapters of Part III). The
analysis and numerical methods used are often combinations and extensions
of techniques that appeared in this earlier material, so the chapter is relatively
short, but new ideas such as dimension-splitting will also make their debuts.

Let Ω = (0, 1)× (0, 1) be the unit square in the (x, y)-plane, with bound-
ary ∂Ω, and set Q = Ω × (0, T ], where T is a positive constant. Consider the
initial-boundary value problem

Lu := ut − ε∆u+ b · ∇u+ cu = f on Q, (4.1a)

where ∆u := uxx + uyy and ∇u = (ux, uy), with initial-boundary conditions

u(x, y, 0) = s(x, y) on Ω, (4.1b)

u(x, y, t) = 0 on ∂Ω × (0, T ]. (4.1c)

As usual ε is a parameter satisfying 0 < ε ≪ 1. The function s is assumed
to be smooth on Ω̄ := [0, 1] × [0, 1] and b = (b1, b2), c and f are assumed
to be smooth on Q̄ := Ω̄ × [0, T ]. For simplicity we have taken homogeneous
Dirichlet boundary conditions on the lateral surface Qℓ := ∂Ω× (0, T ], but it
is straightforward to extend most of the contents of the chapter to the case of
inhomogeneous Dirichlet boundary conditions given by some smooth function.

Without loss of generality, one may assume that c ≥ γ > 0 on Q̄ for
some constant γ since this can easily be obtained by the change of variable
u(x, t) = v(x, t)eCt with some suitable constant C.

When b is not identically zero, L is a convection-diffusion operator, where
−ε∆u models diffusion while ut + b · ∇u represents convection. If b ≡ (0, 0)
on Q, then L is a reaction-diffusion operator.

Our discussion in this chapter will be largely confined to (4.1), which
is posed in terms of two space variables. Nevertheless this will provide an
adequate preparation for the reader who wishes to work with time-dependent
problems with a larger number of space variables.
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4.1 Analytical Behaviour of Solutions

In the convection-diffusion case, initial data from Ω and boundary data from
those parts of Qℓ where b points into Q are transported across Q by the
convective operator ut + b · ∇u, while exponential boundary layers typically
form at those parts of Qℓ where b points out of Q; cf. Theorem II.2.6.

To justify this statement, we follow Clavero et al. [CJLS98, Appendix A] in
sketching a proof of an S-decomposition of the solution u of (4.1). More details
can be found in [Shi92b, Shi], and in fact the spatial domains Ω considered
there are n-dimensional with n ≥ 2.

Assume that b = (b1, b2) > (β1, β2) > (0, 0) on Q̄, where β1, β2 are some
constants. Then Ω ∪ (Qℓ ∩ {(x, y, t) : xy = 0}) is the inflow boundary of Q̄;
the remaining two sides of Qℓ, where x = 1 or y = 1, form the outflow
boundary. That is, the inflow boundary is where the subcharacteristics of L
in (x, y, t)-space enter Q̄ and the outflow boundary is where they leave Q̄.

Assume that the data b, c, f, s are sufficiently smooth and that enough
compatibility conditions are satisfied on ∂Ω so that u(x, y, t) lies in the
Hölder space Cl+α(Q), which is defined analogously to the space C2+α of
Section II.2.1. (Here l is a positive integer and 0 < α < 1.) See [LSU67, Sec-
tion IV.5] for a precise version of this assertion under the hypothesis that ∂Ω
is smooth.

The solution u will be decomposed as u = U + V , where U is the smooth
component of u and V comprises various layers. First, extend Ω beyond x = 1
and y = 1 to a larger domain Ω∗ whose boundary is smooth except at the
point (0, 0). Set Q∗ = Ω∗ × [0, T ]. Form smooth extensions b∗, c∗, f∗ of the
functions b, c, f to Q̄∗ and a smooth extension s∗ of s to Ω̄∗. Define U∗ on Q̄∗

as the solution of the initial-boundary value problem

U∗
t − ε∆U∗ + b∗ · ∇U∗ + c∗U∗ = f∗ on Q∗,

U∗(x, y, 0) = s∗(x, y) on Ω∗,

U∗(x, y, t) = g∗(x, y, t) on ∂Ω∗ × (0, T ],

where the function g∗ is smooth, compatible with the other data, and satisfies
g(x, y) = 0 when xy = 0. Now U∗ will have layers near the outflow boundary
of Q̄∗ but will otherwise be smooth; since this outflow boundary lies outside
Q by our construction, defining U to be the restriction of U∗ to Q̄ yields a
smooth function that satisfies LU = f on Q, U = s on Ω, and U = 0 on
Qℓ ∩ {(x, y, t) : xy = 0}, the lateral part of the inflow boundary.

The layer component V satisfies V = V1 + V2 + V12, where V1 and V2 are
exponential boundary layers at the sides x = 1 and y = 1 respectively of Qℓ

and V12 is an edge layer lying along {(1, 1, t) : 0 ≤ t ≤ T}. To define V1,
enlarge Ω slightly to Ω∗∗ while removing the corner at (1,1) by extending the
line x = 1 beyond (1,1) then joining it in a smooth way with the line y = 1.
Define ∂Ω∗∗

x to be the line segment obtained when this extension is made.
Form smooth extensions b∗∗ etc. of our various functions to Ω∗∗. Define V ∗∗

1
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on Q̄∗∗ := Ω̄∗∗ × [0, T ] as the solution of the problem

(V1)
∗∗
t − ε∆V ∗∗

1 + b∗∗ · ∇V ∗∗∗
1 + c∗∗V ∗∗

1 = 0 on Q∗∗,

V ∗∗
1 (x, y, 0) = 0 on Ω∗∗,

V ∗∗
1 (x, y, t) = −U∗∗(x, y, t) on ∂Ω∗∗

x × (0, T ],

V ∗∗
1 (x, y, t) = 0 on ∂Ω∗∗ \ ∂Ω∗∗

x × (0, T ].

Then V1 is the restriction of V ∗∗
1 to Q̄. Similarly define V2 by focussing on the

line y = 1.
Finally, V12 is defined as the solution of the problem

(V12)t − ε∆V12 + b · ∇V12 + cV12 = 0 on Q,

V12(x, y, 0) = 0 on Ω,

V12(x, y, t) = −(U + V1 + V2)(x, y, t) on ∂Ω × (0, T ].

Clearly u = U + V1 + V2 + V12. It can be shown [Shi92b, Shi] that there
exists a constant C such that

∣∣∣∣
∂i+j+kU(x, y, t)

∂xi∂yj∂tk

∣∣∣∣ ≤ C, (4.2a)

∣∣∣∣
∂i+j+kV1(x, y, t)

∂xi∂yj∂tk

∣∣∣∣ ≤ Cε−i exp−β1(1−x)/ε, (4.2b)

∣∣∣∣
∂i+j+kV2(x, y, t)

∂xi∂yj∂tk

∣∣∣∣ ≤ Cε−j exp−β2(1−y)/ε, (4.2c)

∣∣∣∣
∂i+j+kV12(x, y, t)

∂xi∂yj∂tk

∣∣∣∣ ≤ Cε−i−j min
{

exp−β1(1−x)/ε, exp−β2(1−y)/ε
}
, (4.2d)

for i+ j + 2k ≤ l and (x, y, t) ∈ Q̄. Bounds like (4.2) exclude the presence of
interior layers.

If b ≡ (0, 0) so (4.1a) is of reaction-diffusion type, then the asymp-
totic structure of the solution u is quite different; cf. Remark II.2.11. An
S-decomposition of u is given in [CJLS00, Shi93] which shows that u has an
essentially one-dimensional parabolic boundary layer along each of the four
faces of Qℓ and a corner parabolic layer along each of the four edges of Qℓ.

4.2 Finite Difference Methods

For general discussions of the ramifications that moving from one to two
space variables introduces into the analysis and construction of finite dif-
ference methods for time-dependent problems, see the limpid exposition in
Strikwerda [Str04, Sections 7.2 and 7.3] (though some of the comments there
apply only to systems of partial differential equations) and the wide-ranging
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presentation of Hundsdorfer and Verwer [HV03, Section III.6 and Chapter IV],
which explicitly considers the solution of convection-dominated problems.

Much of the theory and terminology of Chapter II.3 carries over to (4.1). In
particular the von Neumann L2-stability analysis of Section II.3.1.3 can still be
applied on equidistant meshes: in the difference scheme, replace the computed
solution at each mesh point (xj , yk, tm) by ξmeı(jθ1+kθ2) then require that
|ξ| ≤ 1 for stability. Hindmarsh et al. [HGG84] perform a von Neumann
stability analysis of various numerical methods for (4.1). Examples will also
be found in [HV03] and [Str04].

In [DRH98], Donea et al. systematically examine various ways of con-
structing finite difference methods that are high-order accurate in time for
the numerical solution of (4.1): explicit Taylor-Galerkin methods, explicit and
implicit multistage methods based on Padé approximations of the exponen-
tial function, explicit and implicit Runge-Kutta-based methods, and implicit
methods based on Newton-Cotes quadrature approximation of the integrated
time derivative. The formal order of accuracy of each method (i.e., its rate of
convergence when ε is regarded as a constant – cf. Remark II.3.15) and its
stability, phase accuracy and damping error are analysed.

On Q̄, consider tensor-product meshes

{(xi, yj , tk) : i = 0, . . . ,M, j = 0, . . . , N, k = 0, . . . ,K}

that are equidistant in the t-direction with spacing τ . Set hx = maxi{xi−xi−1}
and hy = maxj{yj − yj−1}. Write uk

i,j for the solution computed by some
difference scheme at the mesh point (xi, yj , tk).

Shishkin meshes for (4.1) are constructed as follows. Assume that b =
(b1, b2) > (β1, β2) on Q̄ for some positive constants β1 and β2. Given an even
positive integer N , set

λx = (κε/β1) lnN and λy = (κε/β2) lnN,

where one typically takes κ ≥ 2 (see Remarks I.2.99 and I.2.104). Then along
the x axis, divide each of [0, 1 − λx] and [1− λx, 1] into N/2 equal intervals.
Divide the y-axis similarly using λy. A tensor product of these one-dimensional
meshes yields a Shishkin mesh on Ω̄; this is the same as Figure 2.1. Take a
tensor product of this two-dimensional mesh with the equidistant mesh on
[0, T ] to yield the final mesh.

In [Shi90a] Shishkin applies a form of upwinding on this mesh and proves,
under certain regularity hypotheses on the data, that the computed solution
{uk

i.j} satisfies

|u(xi, yj , tk)− uk
i,j | ≤ C

(
N−1 ln2N + τ

)
for all i, j and k.

The problem considered in [Shi90a] is in fact much more general than (4.1):
it is posed in n (≥ 1) space dimensions and allows the coefficients of the dif-
ferential equation to have discontinuities along a finite number of hyperplanes
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parallel to the t-axis. These discontinuities cause interior layers in the solution
that are handled by a generalization of the grid described above.

Generalizations to systems of two equations are examined in [Shi98b,
Shi98c]. Each equation has its own small diffusion coefficient and the rela-
tive sizes of these govern the types of layer in the true solution, and also affect
the rates of convergence that are proved for the computed solutions.

Boglaev [Bog05] solves a semilinear generalization of (4.1) using upwind-
ing and a Schwarz method based on a decomposition of Ω into overlapping
parallel strips; upper and lower solutions are computed that enclose the true
solution u. Several theoretical results are proved but these do not include
uniform convergence although numerical results are encouraging.

When the domain Ω is multi-dimensional as in (4.1), one can seek to
split the problem into smaller components for reasons of efficiency when time-
stepping. An encyclopedic discussion of the many ways in which this can be
done is given in [HV03, Chapter IV].

We now discuss dimension-splitting . This concept has no previous coun-
terpart in our book. Its basic idea, when applied to (4.1), is that instead of
solving a two-dimensional (in space) problem at each discrete time step, one
solves a sequence of two problems each of which is one-dimensional in space.

The particular form of dimension-splitting that we now derive, following
the description in [Str04, Section 7.3], is the alternating direction implicit
(ADI) method , which is suited to rectangular (x, y)-domains such as Ω. Write
(4.1a) as ut = A1u + A2u, where A1 and A2 are linear operators; for example
one could take the splitting

A1u = εuxx − b1ux − c1u+ f1, A2u = εuyy − b2uy − c2u+ f2 (4.3)

with c1 + c2 = c and f1 + f2 = f . Let uk denote the solution to (4.1) at each
discrete time level kτ . Then

uk+1 − uk

τ
=

1

2

(
A1u

k+1 +A1u
k
)

+
1

2

(
A2u

k+1 +A2u
k
)

+O(τ2),

where by O(τ2) we mean an error for fixed ε. Rewrite this as
(
I − τ

2
A1 −

τ

2
A2

)
uk+1 =

(
I +

τ

2
A1 +

τ

2
A2

)
uk +O(τ3).

Add τ2A1A2u
k+1/4 to both sides; one can then factor, obtaining

(
I − τ

2
A1

)(
I − τ

2
A2

)
uk+1 =

(
I +

τ

2
A1

)(
I +

τ

2
A2

)
uk

+
τ2

4
A1A2(u

k+1 − uk) +O(τ3)

=
(
I +

τ

2
A1

)(
I +

τ

2
A2

)
uk +O(τ3).

This equation is solved numerically by choosing discrete approximations A1d

and A2d of A1 and A2, yielding the ADI method
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(
I − τ

2
A1d

)(
I − τ

2
A2d

)
uk+1

h,τ =
(
I +

τ

2
A1d

)(
I +

τ

2
A2d

)
uk

h,τ , (4.4)

where uk
h,τ is the computed solution at the time level t = kτ . The advantage of

(4.4) is that uk+1
h,τ can be computed by sequentially inverting I−(τ/2)A1d and

I−(τ/2)A2d, each of which usually can be inverted much more easily than any
typical discretization of the full two-dimensional differential operator in (4.1a).

One popular ADI method is the Peaceman-Rachford algorithm [PR55],
where the iteration used to compute uk+1

h,τ from uk
h,τ is

(
I − τ

2
A1d

)
u

k+1/2
h,τ =

(
I +

τ

2
A2d

)
uk

h,τ , (4.5a)
(
I − τ

2
A2d

)
uk+1

h,τ =
(
I +

τ

2
A1d

)
u

k+1/2
h,τ . (4.5b)

Here one first computes u
k+1/2
h,τ , then uk+1

h,τ . These formulas clarify the origin
of the terminology ADI: the two steps alternate the coordinate direction that
implicitly determines uh,τ . To see that (4.5) yields the same solution as (4.4),
use (4.5b) then (4.5a):

(
I − τ

2
A1d

)(
I − τ

2
A2d

)
uk+1

h,τ =
(
I − τ

2
A1d

)(
I +

τ

2
A1d

)
u

k+1/2
h,τ

=
(
I +

τ

2
A1d

)(
I − τ

2
A1d

)
u

k+1/2
h,τ

=
(
I +

τ

2
A1d

)(
I +

τ

2
A1d

)
uk

h,τ .

Note that commutativity of the operators A1d and A2d was not needed in this
argument, unlike in some ADI methods.

We now describe some methods for (4.1) that are based on dimension-
splitting. All assume that b = (b1, b2) ≥ (β1, β2) > (0, 0) on Q̄.

In [CGJ06b], Clavero et al. assume that the a priori bounds (4.2) hold
true with l = 6 and that b = b(x, y) and c = c(x, y) are independent of t.
A Peaceman-Rachford ADI method based on the splitting (4.3) is applied,
then a polynomial-based HODIE technique on a one-dimensional Shishkin
mesh with N intervals is used to generate the discrete operators A1d and A2d.
Assuming that N−q ≤ τ2 with 0 < q < 1, it is shown in [CGJ06b] that

|u(xi, yj , tk)− uk
i,j | ≤ C(N−2+q ln2N + τ) for all mesh points (xi, yj , tk),

where C is some positive constant, but the analysis is very intricate and the
amount of compatibility assumed is perhaps excessive.

A related dimension-splitting method is considered in [CJLS98] under the
hypothesis that (4.2) hold true with l = 4. The discretization employs the
fractional-step scheme
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(I + τA1d)u
k+1/2
h,τ = uk

h,τ + τf1(x, y, tk+1),

u
k+1/2
h,τ (0, y, tk+1/2) = u

k+1/2
h,τ (1, y, tk+1/2) = 0,

(I + τA2d)u
k+1
h,τ = u

k+1/2
h,τ + τf2(x, y, tk+1),

uk+1
h,τ (x, 0, tk) = uk+1

h,τ (x, 1, tk) = 0,

where A1 and A2 are defined by (4.3) then discretized by simple upwinding on
a one-dimensional Shishkin mesh with N intervals. At each time step one need
only solve a set of uncoupled tridiagonal systems. Assuming that N−q ≤ τ
with 0 < q < 1, the analysis leads to the inequality

|u(xi, yj , tk)− uk
i,j | ≤ C(N−1+q lnN + τ)

at all mesh points, where {uk
i,j} is the computed solution and C is some

constant.
The dimension-splitting of [CJL93] is also based on (4.3), but in discretiz-

ing A1 and A2 a one-dimensional equidistant mesh is used and on it a HODIE
technique is applied to generate exponentially fitted schemes. It is shown that

|u(xi, yj , tk)− uk
i,j | ≤ C(N−1 + τ)

at all mesh points. The analysis uses a consistency error estimate and a barrier
function (compare the proof of Theorem I.2.18).

Reaction-diffusion problems

Consider now the case b ≡ (0, 0) in (4.1a), i.e., the differential equation be-
comes the time-dependent reaction-diffusion problem

Lu := ut − ε∆u+ cu = f on Q, (4.6)

with the same initial-boundary conditions as before.
In [Shi93], Shishkin considers a time-dependent reaction-diffusion problem

with n ≥ 2 space variables. Each discrete time interval [tk, tk+1] is divided into
n equal subintervals by the points {tk,m : tk,m = tk +mτ/n, m = 0, . . . , n}.
Splittings f =

∑n
m=1 fm and c =

∑n
m=1 cm are introduced. Then on each

time subinterval [tk,m, tk,m+1] one solves the problem

1

n
ut − εuxmxm

+ cmu = fm (4.7)

using the original boundary data from Qℓ and initial data at tk,m output
by the previous computation on [tk,m−1, tk,m]. To solve (4.7) numerically, a
standard difference scheme on a suitable one-dimensional Shishkin mesh with
N subintervals (see Remark I.2.106) approximates uxmxm

and Euler backward
differencing approximates ut. Assuming sufficient regularity and compatibility
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of the data (in particular, interior layers are excluded), it is proved that there
exists a constant C such that

|u(xi, yj , tk)− uk
i,j | ≤ C(N−2 ln2 N + τ)

at all mesh points.
In [CG05] the authors consider (4.6). It is assumed that c = c(x, y) is

independent of t, and smoothness and compatibility assumptions are made to
justify an S-decomposition of u. Then an A-stable fractional-step Runge-Kutta
method is used for the time derivative, while dimension-splitting with (4.3)
enables the use of a standard difference scheme on one-dimensional Shishkin
meshes to generate A1d and A2d. Assuming that ε ≤ N−2, the inequality

|u(xi, yj , tk)− uk
i,j | ≤ C(N−4 ln4N + τ3) at all mesh points

is derived, where C is some constant.
The method of [BCGJ07] solves (4.6) by combining Peaceman-Rachford

ADI splitting with a HODIE discretization of the spatial derivatives on a
one-dimensional Shishkin mesh with N intervals. Under various hypotheses
including the assumptions that c(x, y) is independent of t and the operators
εuxx − c1u and εuyy − c2u commute, where c1 + c2 = c with each ci > 0, the
analysis leads to

|u(xi, yj , tk)− uk
i,j | ≤ C(N−3 + τ2)

at all mesh points, for some constant C.
Sequential and parallel Schwarz methods for numerically solving a semilin-

ear generalization of (4.6) on two-dimensional Shishkin meshes are analysed
in [Shi97a]. Certain regularity and compatibility assumptions are made. Then
at all mesh points the computed solutions satisfy

|u(xi, yj , tk)− uk
i,j | ≤ C(N−1 lnN + τ).

Shishkin meshes can also be used to handle transient layers in u at t = 0;
these arise in the reaction-diffusion problem discussed in [Shi98a] where small
parameters multiply both ∆u and ut.

4.3 Finite Element Methods

Consider now finite element methods for solving (4.1). Without loss of gener-
ality assume that

c− 1

2
div b > 0 on Q̄,

since this can be easily be obtained by making a change of dependent variable
to v(x, y, t) = u(x, y, t)e−Ct for some C > 0. Also assume for simplicity in this



4.3 Finite Element Methods 435

section that b ≥ (β, β) > (0, 0) on Q̄, although some results below hold true
in more general situations.

We introduce some norm notation that is widely used for time-dependent
problems. Let g(x, y, t) be a suitable function defined on Q. Given a standard
Sobolev norm ‖ · ‖m,p in Wm,p(Ω) with m ≥ 0 and 1 ≤ p ≤ ∞, for 1 ≤ q ≤ ∞
define the Lq(0, T ;Wm,p(Ω)) norm by

‖g‖Lq(0,T ;W m,p(Ω)) =
∥∥(‖g(·, ·, t)‖m,p

)∥∥
Lq [0,T ]

. (4.8)

The finite element methods examined here are taken in the order of the
corresponding finite element methods from earlier in the book: first, methods
similar to those of Part II but with more than one space dimension, then
methods based on combining time-dependence with the techniques of Chap-
ter III.3, and finally dimension-splitting methods.

When solving (4.1) numerically, there is little current interest in the con-
struction of analogues of the space-based methods of Section II.4.1.

The streamline diffusion finite element method of Section II.4.2.1 was
based on space-time finite elements while the SDFEM of Section III.3.2.1,
which dealt with stationary problems, used finite elements in space only. In
the space-time framework, the first-order time and space derivatives of (4.1a)
are combined into a single first-order derivative uz := ut + b · ∇u acting
in 3-dimensional (x, y, t)-space: the material derivative. The same technique
was used in one space dimension in Section II.4.2.1. The material derivative
approach is advocated by Johnson et al. [JNP84] and by Hughes and Stew-
art [HS96]. It is easy to generalize the SDFEM defined in equation (II.4.30)
to (4.1), as we now describe, following [JNP84, Näv82].

Let 0 = t0 < t1 < · · · < tJ = T be a subdivision of [0, T ], and on each
strip Qj := {(x, t) : x ∈ Ω, tj < t < tj+1} let V j ⊂ H1(Qj) be a finite
element subspace comprising piecewise polynomials of degree k ≥ 1 on a
quasi-uniform mesh of diameter h. Set V j

0 = {vh ∈ V j : v = 0 on ∂Ω}. The
SDFEM is applied to (4.1) on each strip Qj successively, imposing the initial
condition at t = tj weakly and the boundary condition (4.1c) strongly: for

j = 1, . . . , J , find ûj ∈ V j
0 such that

Bh(ûj , φ) := ε(ûj
x, φx)Qj

− ε
∑

K⊂Qj

(ûj
xx, δKφz)K

+ (ûj
z + cûj , φ+ δKφz)Qj

+ 〈ûj
+, φ+〉j−1

= (f, φ+ δKφz)Qj
+ 〈ûj−1

− , φ+〉j−1 for all φ ∈ V j
0 . (4.9)

Here the L2(Ω) inner product for t = tj−1 is denoted by 〈·, ·〉j−1, the function
û0
−(x, y) is defined to be s(x, y), and w±(x, y, tj−1) := limθ→0+ w(x, y, tj−1±θ)

for (x, y) ∈ Ω. The SD parameter δK is user-chosen and constant on each
element K. The computed solution is in general discontinuous at each time
level t = tj .
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For this SDFEM based on material derivatives one has the Galerkin or-
thogonality property Bh(u − ûj , φ) = 0 for all φ ∈ V j

0 , which is a useful
identity in convergence analyses.

The following analogues of Theorems II.4.11 and II.4.12 are derived in
[Näv82] for (4.9). For each set Q̂ ⊂ Q that is the closure of a union of space-
time elements K, and each w that lies in H1(K) for all K ⊂ Q̂, define

|||w|||Q̂ :=

⎧
⎨
⎩ε

∑

K⊂Q̂

‖∇w‖20,K +
∑

K⊂Q̂

δK‖wz‖20,K + ‖w‖2
0,Q̂

⎫
⎬
⎭

1/2

.

Write uh,τ for the solution computed by (4.9).

Theorem 4.1. (Global error bound) Assume that ε ≤ h and δK ≤ C ′h for all
K and some sufficiently small constant C ′. Then for all sufficiently small h
(independently of ε), there exists C > 0 such that

|||u− uh,τ |||Q ≤ Chk+1/2|u|Hk+1(Q).

Theorem 4.2. (Local error bound) Assume the hypotheses of Theorem 4.1.
Let Q′ and Q′′ be unions of space-time elements in Q, with Q′ ⊂ Q′′. Assume
that the inflow boundary of Q′′ is a subset of the inflow boundary of Q, that
the subcharacteristic direction (b1, b2, 1) satisfies |(b1, b2, 1) · ν| ≥ C > 0 on
the inflow and outflow boundaries of Q′′ where ν is a unit normal on ∂Q′′,
and that all points in Q that are upstream of any point on the characteristic
boundary of Q′′ (which may be empty) also lie in the characteristic boundary
of Q′′. Assume that the distance from Q′ to the outflow boundary of Q′′ is at
least C2h| lnh| and to the characteristic boundary of Q′′ is at least C2

√
h | lnh|,

where C2 is a fixed positive constant chosen in the proof. Then there exists
C > 0 such that

|||u− uh,τ |||Q′ ≤ C
{
hk+1/2|u|Hk+1(Q′′) + hk

[
‖f‖L2(Q) + ‖s‖L2(Ω)

]}
.

The assumptions on Q′′ in Theorem 4.2 ensure that all points in Q that lie
upstream of any point in Q̄′′ also lie in Q̄′′, so there is no “upstream cut-off”.

Remark 4.3. (SDFEM applied only in space) Despite the theoretical attrac-
tion of SDFEM methods based on the material derivative, many authors pre-
fer numerical methods that deal separately with the spatial and temporal
derivatives in (4.1a): first the SDFEM of Section 2.2.3 is used to discretize
−ε∆u+ b · ∇u+ cu = f on some partition of Ω, which yields a system of or-
dinary differential equations in the independent variable t; this is then solved
by some standard method for stiff systems. (Similarly, one could combine the
other stabilized methods of Chapter 3 with some suitable temporal discretiza-
tion.) Although Galerkin orthogonality is lost, one can now quickly extend an
existing code for elliptic convection-diffusion problems to the time-dependent
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situation; furthermore, the number of unknowns at each time step is in gen-
eral less than when space-time elements are used. But the stability analysis of
these spatial SDFEM/temporal finite difference methods raises some subtle
issues, as illustrated in [BGS04], where a certain CFL condition is shown to
be sufficient but unnecessary for stability. ♣

Although one might expect the adaptive SDFEM of Section II.5.1 to gen-
eralize to higher-dimensional problems, no analysis of this seems to have been
published.

Time-dependent versions of the GLSFEM of Section 3.2.2 appear in Lube
et al. [LW95, LOM98] and their references. In [LW95] two forms of the stabi-
lizing least-squares terms are analysed: one where stabilization is applied to
the full differential operator L and one where it is applied only to the space
derivatives. The first choice corresponds to the merging of the first-order space
and time derivatives into a material derivative and yields Galerkin orthogo-
nality, while the second is a stabilization in space followed by a separate time
discretization, just like the two approaches in use for the SDFEM that we de-
scribed above. Error estimates at each discrete time level are proved in [LW95]
for both methods in the norm defined by

{∑

K∈K

[
ε‖∇v‖2L2(K) + ‖v‖2L2(K) + δK‖ − ε∆v + b · ∇v + cv‖2L2(K)

]}1/2

,

where Ω is triangulated by {K : K ∈ K} and δK is the local GLS stabilization
parameter.

Discontinuous Galerkin finite element methods for (4.1) – recall Sec-
tion 3.4, where elliptic problems were examined – are still in a stage of rapid
development. The examples that follow do not use a special mesh, exponential
upwinding, or any other device designed to achieve uniform convergence, so
their global error estimates are not uniform in ε.

In [DP01] a dGFEM is generated from a mixed formulation of (4.1) with
(4.1c) modified to a homogeneous Neumann condition on the outflow bound-
ary. The authors partition Ω by an arbitrary shape-regular mesh of diameter h
and consider the semidiscrete solution uh of their dGFEM. It is shown that

‖u− uh‖L2(0,T ;L2(Ω)) ≤Mhk+1

but the dependence of M on ε is not made clear. The analysis leading to
this result exploits the adjoint differential operator and shows clearly how
the order of magnitude chosen for the discontinuity-penalization parameter
affects the theoretical convergence rate.

A hp finite element method based on a mixed formulation of the dGFEM
is used in [CCSS02] to construct a numerical method for the solution of the
time-dependent problem in one space dimension that is stated in (4.1) of
Part II. The differential operator has constant coefficients. An arbitrary space
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mesh of diameter h is placed on [0, 1] and piecewise polynomials of degree
p are used on each mesh interval. Let uh denote the resulting semidiscrete
solution. The authors prove that there exists a constant C such that

‖(u− uh)(·, T )‖L2[0,1] +
√
ε

(∫ T

t=0

∫ 1

x=0

(u− uh)2xdx dt

)1/2

≤ C hmin{r,p}+1

max{1, p}r+1
‖u(r+1)‖E,T

for any r such that ‖u(r+1)‖E,T is defined, where we set

‖w‖E,T = max
0≤t≤T

‖w(·, t)‖L2(0,1)) +

∫ 1

t=0

‖wt(·, t)‖L2(0,1)

+
√
ε

(∫ T

t=0

∫ 1

x=0

w2
x(·, ·) dx dt

)1/2

.

This result has optimal order in terms of h and p.
A dGFEM of asymmetric interior penalty (NIP) form with upwind-

ing (cf. Section 3.4) is applied to (4.1) in [FŠ04], where Ω can be two-
dimensional or three-dimensional; the authors consider a semidiscrete approx-
imation (i.e., a method of lines) with piecewise polynomials of degree p on a
shape-regular mesh of diameter h and it is demonstrated inter alia that the
computed semidiscrete solution uh satisfies

‖u− uh‖L∞(0,T ;L2(Ω)) +
√
ε ‖u− uh‖L2(0,T ;H1(Ω,T ))

≤Mhp(
√
ε+

√
h ),

where H1(Ω, T ) is the broken H1 norm (see Section 3.4) corresponding to the
triangulation T of Ω. Here M depends on max0≤t≤T |u(·, ·, t)|Hp+1(Ω), which
is in general large when ε is small.

The time-discretization of this method by means of a dGFEM with piece-
wise polynomials of degree q is considered in [FHŠ07] and it is shown that

‖u− uh‖L2(0,T ;L2(Ω)) +
√
ε

[
M∑

m=1

∫

Im

‖u− uh‖2H1(Ω,Th,m))

]1/2

≤ Chp
[
|u|L2(0,T ;Hp+1(Ω)) + |u|L∞(0,T ;Hp+1(Ω))

]

+ Cτ q
[
|u|Hq+1(0,T ;L2(Ω)) + |u|Hq+1(0,T ;H1(Ω))

]
,

where uh is the computed fully discrete solution, τ is the maximum time step
and H1(Ω, Th,m) is the broken H1 norm defined on the triangulation Th,m of
Ω at each time-slab Im := Ω×(tm−1, tm) form = 1, . . . ,M . Other functionals
of the error u − uh that arise naturally in the dGFEM formulation are also
bounded in [FHŠ07].
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Sun and Wheeler [SW05] consider domains in two and three space dimen-
sions and analyse three discontinuous Galerkin methods with interior penal-
ties: symmetric (SIP), asymmetric (NIP) and incomplete (IIP) – this last
method simply omits those terms whose sign in Section 3.4 distinguishes SIP
from NIP. In (4.1c) a Robin condition is imposed at the inflow boundary
and a homogeneous Neumann condition at the outflow. An arbitrary quasi-
uniform mesh is used on Ω and piecewise polynomials of degree p ≥ 1 are
used in the dGFEM. The trial space is discontinuous in space but continuous
in time. Writing uh for the semidiscrete solution of any of these three locally
conservative methods, it is shown that there exists a constant C such that

‖u− uh‖L∞(0,T ;L2(Ω)) +
√
ε ‖u− uh‖L2(0,T ;H1(Ω))

≤ Ch
min{p+1,r}−1

pr−1

[
‖u‖L2(0,T ;Hr(Ω)) + ‖ut‖L2(0,T ;Hr−1(Ω)) + ‖s‖Hr−1(Ω))

]

and for the SIP it is proved that

‖u− uh‖L2(0,T ;L2(Ω))

≤ Chmin{p+1,r}
[‖u‖L2(0,T ;Hr(Ω))

pr−1
+
‖ut‖L2(0,T ;Hr−1(Ω))

pr
+
‖s‖Hr−1(Ω))

pr−1/2

]
.

These bounds hold true for any r ≥ 2 such that the norms of the right-hand
sides are defined. The second estimate is of optimal order in h. Error bounds
are also proved in [SW05] for negative norms and when the mesh has hanging
nodes, and numerical results illustrate the rates of convergence attained in
practice by the various methods.

In [EP05] an a posteriori error bound in the L2(0, T ;L2(Ω)) norm is proved
for an NIP dGFEM applied to a variant of (4.1) where a homogeneous Neu-
mann condition is imposed at the outflow boundary.

For the application of the dGFEM to time-dependent nonlinear problems
such as the Euler equations, consult the monograph [FFS03] and subsequent
papers of Feistauer et al.

Remark 4.4. The SDFEM and GLSFEM have the drawbacks that lumping
of the mass matrix is not feasible and space-time elements are needed for
consistency. Methods such as stabilization by the penalization of jumps of
gradients along edges [Bur05] and dGFEM permit lumping and give more
flexibility in the choice of time-stepping.

Recent innovations related to these methods such as multiscale (subgrid)
modelling are emerging but have not yet reached maturity; see [Cod98, CB02c,
HS07] and their references. ♣

The ELLAM of Section II.4.2.3 also generalizes to (4.1). In [Wan00], where
in the spatial domain piecewise bilinear trial functions are used on an equidis-
tant rectangular mesh with dimensions (hx, hy) and the discrete time-step
is τ , Wang derives the L∞(0, T ;L2(Ω)) optimal-order error estimate
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‖u(·, ·, tj)− uh,τ (·, ·, tj)‖L2(Ω) ≤ K(h2
x + h2

y + τ) for all j;

this is a generalization of the bound (4.59) of Part II. Numerical results and
implementation issues are examined in [WDE+99].

In [BNV06a, BNV06b] a high-order Lagrange-Galerkin method is analysed
in two and three space dimensions for an analogue of (4.1) where b vanishes
on ∂Ω × (0, T ] and error estimates are derived.

We now describe an adaptive Lagrange-Galerkin finite element method
from [HS01a] that is designed for (4.1). Like the ELLAM, this method makes
explicit use of the space-time subcharacteristics of (4.1a). Take c = 0 in (4.1a).
Each subcharacteristic X(x, y, t′; ·) : [0, T ] → Ω, where (x, y, t′) ∈ Ω × (0, T ],
satisfies

d

dt
X(x, y, t′; t) = b(X(x, y, t′; t), t), X(x, y, t′; t′) = (x, y).

The material derivative Dt is defined by

Dtu(x, y, t) =
∂

∂t
u(x, y, t) + b(x, y, t) · ∇u(x, y, t).

Write (4.1) in the following weak form: find u(x, y, t) ∈ V such that

ε(∇u(·, ·, t),∇v) + (Dtu(·, ·, t), v) = (f(·, ·, t), v) ∀v ∈ V and 0 < t ≤ T,
(u(·, ·, 0), v) = (s(·, ·), v) ∀v ∈ V,

where V := H1
0 (Ω) and (·, ·) is the L2(Ω) inner product. Let 0 = t0 < t1 <

· · · < tM = T be some subdivision of [0, T ]. Suppose that at each discrete
time level tm we have a triangulation Ωm of Ω and a space Sm of piecewise
polynomials defined on Ωm. Now apply a Galerkin finite element method on
each Ωm, while approximating the material derivative by the backward Euler
method: for m = 1, . . . ,M find um

h,τ ∈ Sm such that

ε(∇um
h,τ ,∇v) +

(
um

h,τ − um−1
h,τ (X(·, ·, tm; tm−1))

tm − tm−1
, v

)

= (fm, v) ∀v ∈ Sm, (4.10a)

(u0
h,τ , v) = (s, v) ∀v ∈ S0, (4.10b)

where fm(·, ·) = f(·, ·, tm). An a posteriori error bound for (4.10) is proved
in [HS01a] in the L2(0, T ;L2(Ω)) norm defined in (4.8) and an adaptive
method based on this estimate is constructed to yield a solution uh,τ for which
‖u − uh,τ‖L2(0,T ;L2(Ω)) achieves a desired tolerance. The proof of the a pos-
teriori estimate uses the methodology of [EEHJ95], which relies on Galerkin
orthogonality and strong stability estimates for a problem dual to (4.10).

For further discussion of the ELLAM and its variants see [EW01].
Versions of the moving mesh method (r-refinement) of Section II.5.2

have been developed for higher dimensions; see in particular [AF90, Bai94,
LBD+02].
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Several moving mesh techniques have been considered by Huang, Russell
and their coworkers (see the references in [LCHR03]). Most of these methods
are concerned with elliptic problems where artificial time-stepping is intro-
duced to drive the mesh movement. In [LCHR03] a problem similar to (4.1)
is considered, except that the spatial domain Ω is assumed to be bounded
and open with a smooth boundary. A variant of Rothe’s method is used to
solve the problem numerically: the parabolic differential equation (4.1a) is
first discretized in time, yielding a system of spatial problems, each of which
is solved by a finite element method with rh-refinement (i.e., mesh points are
moved and in addition can be added or deleted). The r-refinement aspect of
this method is based on [Hua01], whose approach we now outline.

Let x = (x1, x2) denote the physical coordinates in Ω and ξ = (ξ1, ξ2) the
computational coordinates in some reference domain Ωc. Adaptive moving
meshes for Ω can be generated as images of a reference mesh in Ωc through a
one-to-one time-dependent transformation x = x(ξ, t′); here t′ is not the time
variable of (4.1) but instead an artificial time-like variable that will facilitate
r-refinement. Define the mesh adaptation functional

I[ξ] =
1

2

∫

Ω

2∑

i=1

(∇ξi)TG−1∇ξi dx,

where ∇ is the gradient operator with respect to the x variables and the
monitor function G (cf. Section I.2.5) is a user-chosen 2× 2 symmetric posi-
tive definite matrix that interconnects the mesh and the physical solution. (A
general discussion of the use of monitor functions in multidimensional prob-
lems can be found in [Hua06].) One seeks to minimize this functional. The
Euler-Lagrange equations associated with I[ξ] are

∇ · (G−1∇ξi) = 0 for i = 1, 2.

Then the moving mesh partial differential equations (MMPDE) that control
the mesh movement are chosen to be the modified gradient flow equations

∂ξi
∂t′

=
p

τ ′
∇ · (G−1∇ξi), for i = 1, 2,

where the user-chosen quantities τ ′ and p are, respectively, the artificial time
step and a positive function designed to make all mesh points move with a
common time scale (which makes the MMPDE easier to integrate). This sys-
tem of equations determines ξ; for practical purposes it is better to transform
it into a system that determines x, and after some manipulation one gets

τ ′
∂x

∂t′
= − p

J

∑

i,j

∂x

∂ξi

∂

∂ξj
(J∇ξj ·G−1∇ξi),

where J is the Jacobian of the mapping ξ �→ x. In [Hua01] Huang discusses
the choices of G and p and other computational considerations, and numerical
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results for the Burgers’ equation analogue of (4.1) are scrutinized. For a related
investigation of criteria for the optimality of constructed meshes see [CSX07].

Returning to [LCHR03], the choice of time discretization should be able
to handle the addition and deletion of mesh points associated with the h-
refinement. Consequently one-step time integrators are preferred to multi-step
methods. Collecting the MMPDE and (4.1) – the first of which is associated
with mesh movement, while the second yields the solution u – into a single
system, a Galerkin finite element method applied to a weak form of the system
then generates the discrete system that must be solved at each time level.
Further enhancements of the method are discussed in [LCHR03] and numerical
results for Burgers’ equation are presented. The same problem is investigated
numerically in [BMRS02], whose less technical approach also draws on the
methodology of [Hua01] with monitor functions related to the one that we
used in Section I.2.5.

Moving finite element methods that are closer in spirit to the method
of Section II.5.2 appear in [DL02], where an error bound is proved, and in
[Jim96] where Jimack shows that if both the solution of (4.1) and the solution
of the moving finite element equations have steady-state solutions, then the
steady-state moving finite element solution is a locally best approximation
of the true steady-state solution. More recent work by the same author and
coworkers (see [BHJJ06] and its references) applies similar methods to scale-
invariant problems such as the porous medium equation.

In Section 4.2 we discussed dimension-splitting methods in the context of
finite differences. Such methods appear much less often in a finite element
framework. The reader can consult [LR95] for some general theory. The solu-
tion of a nonlinear variant of (4.1) by means of an ADI finite volume method
is discussed in [WZ03].

A semilinear time-dependent reaction-diffusion problem in two space di-
mensions is considered in [BH07] and convergence results are proved on
Shishkin meshes and on the A-meshes of Remark 3.122.

Much remains to be done in the area of numerical methods for time-
dependent singularly perturbed problems; there are many unanswered ques-
tions. Surveys of previous work can be found in, e.g., [Cod98, EW01].



Part IV

The Incompressible Navier-Stokes Equations



The unsteady incompressible Navier-Stokes equations,

ut − ν△u + (u · ∇)u +∇p = f in Ω × (0, T ],

∇ · u = 0 in Ω × (0, T ],

u = ub on ∂Ω × (0, T ],

u(0) = u0 in Ω,

are widely studied as a valuable model in the highly significant research area of
Computational Fluid Dynamics (CFD); see, e.g., [Fei93, FŠ04, KL04, Gal94,
GR86, GS00a, GS00b, Gun89, Tem83]. In these equations ν := 1/Re is the
inverse of the Reynolds number, u = (u1, . . . , ud) is the unknown velocity, p is
the pressure field, f = (f1, . . . , fd) a given body force, ub a prescribed velocity
field at the boundary, u0 the velocity field at time t = 0, Ω a bounded domain
in Rd (where d = 2 or 3) with Lipschitz-continuous boundary, and (0, T ] the
time interval considered.

Throughout Part IV boldface letters will be used (as above) to denote
vector-valued quantities. For notational convenience when discussing spaces
like L2

0(Ω) we write L2 instead of L2, unlike Parts I–III. Furthermore, we
sometimes use the notation ‖ · ‖m,p and | · |m,p for the norm and highest-order
seminorm in the Sobolev space Wm,p(Ω); thus for example | · |1,2 ≡ | · |1 and
‖ · ‖0,2 ≡ ‖ · ‖0.

Written out in full, these differential equations are

∂ui

∂t
− ν∆ui +

d∑

j=1

uj
∂ui

∂xj
+
∂p

∂xi
= fi in Ω × (0, T ], for i = 1, . . . , d,

d∑

i=1

∂ui

∂xi
= 0 in Ω × (0, T ].

The first d equations here model conservation of momentum while the final
equation states that mass is conserved.
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Implicit time discretizations of the Navier-Stokes equations lead at each
time step to the Oseen problem

−ν△u + (b · ∇)u + σu +∇p = f̃ in Ω,

∇ · u = 0 in Ω,

u = ũb on ∂Ω,

where f̃ and ũb depend on the solution at the previous time step, b is a given
vector field with ∇ · b = 0, and σ ∼ 1/△t. The Oseen problem also arises
when solving the nonlinear stationary Navier-Stokes equations

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = ub on ∂Ω

by a fixed-point iteration. In this case b corresponds to the previous iterate
uold of the velocity field and σ = 0.

Part IV will show how methods developed for convection-diffusion prob-
lems can be applied to this more complex system of equations. Compared
with Parts I–III, there are additional difficulties in the numerical solution of
the Oseen and Navier-Stokes problems:

• in two space dimensions, the Navier-Stokes equations with Dirichlet bound-
ary data have, on any time interval [0, T ], a unique solution that is also a
classical solution provided that all data of the problem are smooth enough;
but in three dimensions, the existence of such solutions has been proved
only for sufficiently small data or on sufficiently short intervals of time.

• to prove uniqueness of any solution of the stationary version of the Navier-
Stokes equation, a smallness restriction on the data such as (1.5) below is
needed in both two and three dimensions; uniqueness cannot be guaranteed
for all positive ν and all data f and ub.

• the incompressibility constraint ∇ · u = 0 does not, in general, allow ar-
bitrary approximations of the velocity and pressure fields – the approxi-
mation spaces must satisfy an inf-sup condition (the Babuška-Brezzi con-
dition) or an additional “pressure stabilization” (like those considered in
Chapters 3 and 4) has to be introduced.

• the nonlinear convection term (u · ∇)u couples different components ui of
the solution.

• the Newton linearization of the momentum equation fails in general to be
coercive; moreover, the dependence on ν of the norm of its inverse is a
priori unknown; see Remark 1.3 below for more details.

These complications make the analysis of numerical methods for the
Navier-Stokes equations a formidable task. In particular, some familiar and
useful theoretical tools – e.g., the maximum principle – cannot be used. Dis-
cretizations of the incompressible Navier-Stokes problem by finite element
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methods suffer in general from two main shortcomings. First, the discrete
inf-sup (Babuška-Brezzi) condition is violated. Second, spurious oscillations
occur because of the predominantly convective nature of the equations. Both
these shortcomings are present also in the Oseen problem which is linear and
uniquely solvable for all positive ν and all data f and ub. It is thus unsur-
prising that in the research literature, the Oseen problem is seen as a suitable
test bed for the development of robust and efficient numerical methods for
the incompressible Navier-Stokes equations.

Our investigation in Part IV will confine itself mainly to the Oseen equa-
tion (linear) and the stationary Navier-Stokes equations (nonlinear) with
the homogeneous Dirichlet boundary condition ub = 0. For inhomogeneous
boundary conditions, see [GP83, Gun96]. As regards the various stabiliza-
tion techniques of Part III, we shall restrict ourselves to upwind finite el-
ement methods, methods of streamline diffusion (SDFEM) type, and local
projection stabilization (LPS) methods. For the application of the continuous
interior penalty (CIP) method we refer to [BFH06, BH06, Bur07] and the dis-
continuous Galerkin (dGFEM) approach is considered in [CKS04, CKS05b,
CKS05a, CKS07].

For the unsteady Navier-Stokes equations, standard finite element meth-
ods are analysed in [HR82, HR86, HR88, HR90] and the survey papers
[Ran94, Ran00, Ran04] also discuss stability issues. Applications of the SD-
FEM in a space-time setting are investigated in [JS86] and [HS90]. The semi-
discretization of the unsteady Navier-Stokes equations using the CIP approach
is studied in [BF07].



1

Existence and Uniqueness Results

We begin with the stationary incompressible Navier-Stokes equations and de-
rive their weak formulation for the case of homogeneous boundary conditions
ub = 0. Multiplying the momentum equation by a function v = (v1, . . . , vd),
where v = 0 on ∂Ω, then integrating over Ω and integrating the highest-order
terms by parts, one obtains

ν(∇u,∇v) + n(u,u,v)− (p,∇ · v) = (f ,v).

Here the convective term is

n(w,u,v) :=

∫

Ω

d∑

i,j=1

wi
∂uj

∂xi
vj dx (1.1)

and (·, ·) is used to denote the inner product in both L2(Ω) and its vector-
valued versions. The mass conservation law ∇ · u = 0 is required to hold true
in L2(Ω), which means that for arbitrary q ∈ L2(Ω) one has

(q,∇ · u) = 0.

The pressure p can be determined only up to an additive constant, since
(1,∇ · v) = 0 for all v that vanish on the boundary ∂Ω; we fix this constant
by seeking a pressure p whose mean value is zero, i.e., (p, 1) = 0. That is, the
pressure p lies in the space

L2
0(Ω) = { r ∈ L2(Ω) : (r, 1) = 0 }.

Now L2(Ω) = L2
0(Ω) ⊕ span{1}. If v ∈ H1

0 (Ω)d, then (1,∇ · v) = 0. Conse-
quently, given v ∈ H1

0 (Ω)d, the condition (q,∇ · v) = 0 for all q ∈ L2
0(Ω) is

equivalent to the condition (q,∇ · v) = 0 for all q ∈ L2(Ω).

Setting V := H1
0 (Ω)d and Q := L2

0(Ω), a weak formulation is:

Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has
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ν(∇u,∇v) + n(u,u,v)− (p,∇ · v) = (f ,v), (1.2a)

(q,∇ · u) = 0. (1.2b)

Sobolev’s embedding theorem implies that the space H1
0 (Ω) is continuously

embedded in L6(Ω) for d ≤ 4, so the trilinear form n defined in (1.1) is
continuous on V ×V ×V. The pressure p can be eliminated. To do this, we
introduce the subspace of divergence-free functions

W := {v ∈ V : (q,∇ · v) = 0 for all q ∈ Q }.
Equation (1.2b) implies that the component u of the solution (u, p) of (1.2)
belongs to W. Thus if (u, p) ∈ V×Q is a solution of (1.2), then u must also
be a solution of the following simpler problem:

Find u ∈W such that for all v ∈W one has

ν(∇u,∇v) + n(u,u,v) = (f ,v). (1.3)

Conversely, if u ∈ W is a solution of (1.3), then there exists a unique
p ∈ Q such that (u, p) is a solution of (1.2). Given u, this function p is a
solution of the following problem:

Find p ∈ Q such that for all v ∈W⊥ one has

(p,∇ · v) = ν(∇u,∇v) + n(u,u,v)− (f ,v).

The Babuška-Brezzi condition

inf
q∈Q

sup
v∈V

(q,∇ · v)

‖q‖0 |v|1
≥ β > 0 (1.4)

guarantees that this problem is well posed [GR86, Lemma 4.1, p. 58]. Denote
the norm in the dual space W∗ of W by ‖ · ‖∗ and denote by γ the continuity
constant of the trilinear form n : W ×W ×W → R; that is,

‖f‖∗ := sup
v∈W

(f ,v)

|v|1
and γ := sup

w,u,v∈W

n(w,u,v)

|w|1 |u|1 |v|1
.

Then we have the following existence and uniqueness result:

Theorem 1.1. [GR86] Given a continuous linear form f : V → R, there is
at least one solution (u, p) of (1.2). Moreover, if in addition

(γ/ν2)‖f‖∗ < 1, (1.5)

then this solution is unique.

To solve the nonlinear problem (1.2), a simple iterative technique can be
applied:

Choose u0 ∈ V. For each k ≥ 0, given uk ∈ V, find (uk+1, pk+1) ∈ V×Q
such that for all (v, q) ∈ V ×Q one has

ν(∇uk+1,∇v) + n(uk,uk+1,v)− (pk+1,∇ · v) = (f ,v), (1.6a)

(q,∇ · uk+1) = 0. (1.6b)
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Theorem 1.2. If f : V → R is a continuous linear form and uk ∈ V, then the
linear problem (1.6) has a solution and this solution is unique. Furthermore, if
(1.5) is satisfied, then the sequence (uk,pk) converges in V×Q to the unique
solution (u, p) of (1.2) as k →∞.

Proof. First, uk+1 ∈ W by (1.6b). Now we can eliminate the pressure from
(1.6a) by restricting the test functions v to the subspace W. This yields the
linear convection-diffusion problem:

Find uk+1 ∈W such that for all v ∈W one has

ν(∇uk+1,∇v) + n(uk,uk+1,v) = (f ,v). (1.7)

Given a solution uk+1 ∈ W of (1.7), the inf-sup condition (1.4) implies that
there is a unique pk+1 ∈ Q such that (uk+1, pk+1) is a solution of (1.6). Thus
(1.7) is equivalent to (1.6).

The Lax-Milgram Lemma implies that (1.7) has a unique solution uk+1.
For as uk ∈W, for all v ∈W we have

n(uk,v,v) =
1

2

∫

Ω

2∑

i,j=1

uk
i

∂v2j
∂xi

dx = −1

2

∫

Ω

v2 ∇ · uk dx = 0,

which implies that the corresponding bilinear form ν(∇·,∇·) + n(uk, ·, ·) is
coercive.

Defining the solution operator P : W →W by uk+1 = Puk, one can show
that P maps the closed ball B(0, ‖f‖∗/ν) into itself and is contractive with
contraction factor (γ/ν2)‖f‖∗ (see [GR79] for more details). Then an appeal
to Banach’s fixed-point theorem completes the argument. ⊓⊔
Remark 1.3. The above theorems prove that for ν ≥ ν0 > 0, solutions exist
and are unique. To analyse finite element methods when ν is arbitrarily small,
the theory of nonsingular solution branches can be applied; see Section 3.2.
The basic assumption of this theory is the well-posedness of the linear problem

Find u ∈W such that for all v ∈W

B(u,v) := ν(∇u,∇v) + n(u∗,u,v) + n(u,u∗,v) = (f ,v), (1.8)

which is the Newton linearization of (1.3) at a branch of solutions u∗ = u∗(ν).
Unfortunately the coercivity of the bilinear form B cannot be guaranteed a
priori since we do not know if n(v,u∗,v) > 0. Consequently, it is difficult
in practice to check the assumption that a branch of nonsingular solutions
exists. Moreover, this technique draws on estimates of the Lipschitz constant
of the solution operator of (1.8), whose dependence on ν is unknown a priori.
Indeed, in special cases these constants can blow up exponentially – see the
one-dimensional Example 3.16 in Section 3.2. These difficulties are the main
obstacles to the construction of superior discretization methods for the Navier-
Stokes equations in the significant regime when the Reynolds number Re =
1/ν is large. ♣
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Remark 1.4. From the above results where uniqueness of solutions fails only
when ν is small, one might hope that standard finite element methods are
adequate for moderate values of the Reynolds number, but numerical ex-
periments show that even in this case some stabilization technique such as
upwinding, streamline diffusion or local projection is still needed in order to
get satisfactory results. ♣

Finally, we consider the solvability of the weak formulation of the Oseen
problem with a nonnegative constant σ, homogeneous boundary conditions
ub = 0, and a given vector field b for which ∇ · b = 0. The weak formulation
is:

Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has

ν(∇u,∇v) + ((b · ∇)u,v) + σ(u,v)− (p,∇ · v) = (f ,v), (1.9a)

(q,∇ · u) = 0. (1.9b)

Theorem 1.5. Given a continuous linear form f : V → R, there is a unique
solution (u, p) of (1.9) for each ν > 0.

Proof. First, eliminate the pressure by seeking a solution of the problem

Find u ∈W such that for all v ∈W one has

ν(∇u,∇v) + ((b · ∇)u,v) + σ(u,v) = (f ,v). (1.10)

Here the Lax-Milgram lemma implies existence of a unique solution because
of the coercivity that follows from

ν(∇v,∇v) + ((b · ∇)v,v) + σ(v,v) = ν|v|21 + σ‖v‖20 .

Then the reconstruction of a pressure p ∈ Q such that the pair (u, p) ∈ V×Q
satisfies (1.9) relies on the inf-sup condition (1.4). ⊓⊔



2

Upwind Finite Element Method

In this chapter we consider the stationary Navier-Stokes problem. Any con-
forming finite element method based on the weak formulation (1.3) would
require the construction of divergence-free trial functions, which is often dif-
ficult. Thus our starting point for the numerical solution of the stationary
incompressible Navier-Stokes equations will be the weak formulation (1.2),
which is formulated in terms of the primitive variables u and p. For ease
of notation only the two-dimensional case is presented here but our results
can be extended to problems in three dimensions. Assume that Ω ⊂ R2 is
a bounded convex polygonal domain. The solution spaces V and Q will be
approximated by discrete spaces Vh and Qh respectively. Then the standard
Galerkin discretization is:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

ν(∇uh,∇vh) + n(uh,uh,vh)− (ph,∇ · vh) = (f ,vh),

(qh,∇ · uh) = 0.

We assume that the reader is familiar with the standard discretization tech-
niques [GR86] used for the Navier-Stokes equations when the Reynolds num-
ber is small (i.e., when convection does not dominate). For this analysis one
needs the discrete Babuška-Brezzi condition (cf. (1.4))

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

‖qh‖0 |vh|1
≥ β > 0 (2.1)

where the positive constant β is independent of h. If the method is noncon-
forming (i.e., when Vh �⊂ V), the integrals in (2.1) will be computed element
by element. Pairs of suitable finite element spaces (Vh, Qh) can be found, e.g.,
in [BF91, GR86, GS00a, GS00b].

We shall use the nonconforming (P1, P0) element pair of Crouzeix and
Raviart [CR73] which yields a relatively small number of unknowns since
the shape functions are of low order. It satisfies the Babuška-Brezzi stability
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condition (2.1) – modified by computing the integrals element by element –
where β is independent not only of h but also of all mesh parameters, including
the minimum angle in any mesh triangle [Dor95]. When the Reynolds number
is large (i.e., when the convective term dominates), numerical stability will
be ensured through the special upwind discretization of the convection term
that was introduced in Section III.3.1; see (III.3.20c) and Figure 3.4.

Let Th be a shape-regular decomposition of the domain Ω into triangles T .
Denote the edges of the triangles T ∈ Th by {Γi : i = 1, . . . , N +M}, where
the Γi are inner edges for i = 1, . . . , N and boundary edges (i.e., Γi ⊂ ∂Ω)
for i = N + 1, . . . , N +M . For each i let Bi be the midpoint of the edge Γi.

The discrete spaces Vh and Qh, which approximate the solution spaces V
and Q in (1.2), are defined by

Vh :=
{
vh : vh

∣∣
T
∈ P 2

1 (T ) for all T, vh continuous at Bi for i = 1, . . . , N,

vh(Bi) = 0 for i = N + 1, . . . , N +M
}
,

Qh :=
{
qh ∈ Q : qh

∣∣
T
∈ P0(T ) for all T

}
.

A typical vector-valued function vh ∈ Vh will be discontinuous on the edges Γi

of the elements T , so Vh �⊂ V. The method is therefore nonconforming and
one must extend to Vh the definitions of the bilinear and trilinear forms
that appear in the weak formulation (1.2). This is done in a natural way by
calculating the integrals element by element: for each T ∈ Th, if the functions
u and v lie in H1(T )2 and q lies in L2(T ), then set

(∇u,∇v)h :=
∑

T∈Th

∫

T

∇u · ∇v dx and (q,∇ · v)h :=
∑

T∈Th

∫

T

q∇ · v dx.

For the discretization of the trilinear form n(·, ·, ·) we do not use the element-
by-element formula

ñh(z,u,v) :=
∑

T∈Th

∫

T

(z·∇)uv dx, (2.2)

but instead apply the upwind technique of [OU84, ST96] that was described
in Section III.3.1. This approach makes a secondary decomposition of the
domain Ω into so-called lumping regions Rl where each Rl is associated with
the edge Γl; see Figure III.3.4. Let CT be the barycentre of the element T ∈ Th.
Let ST,l be the triangle contained in T that has Γl as one of its edges and CT

as its other vertex. As in Part III, denote by Λl the set of all indices k �= l
for which the nodes Bk and Bl belong to a common T ∈ Th; furthermore,
in this case we define Γlk := ∂ST,l ∩ ∂ST,k to be the common edge of the
triangles ST,l and ST,k. For each inner edge Γl, the triangulation Th contains
two elements T and T ′ with Γl = ∂T ∩ ∂T ′, and we define the lumping region
to be Rl := ST,l ∪ ST ′,l. In the case of a boundary edge Γl ⊂ ∂T ⊂ ∂Ω, one
sets Rl := ST,l. Define a lumping operator Lh, which maps a given function
v ∈ Vh into a piecewise constant function on ∪lRl, by
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(Lhv)(x) := v(Bl) if x ∈ Rl.

To derive the upwind discretization nh(·, ·, ·) of the convective term, one in-
troduces the lumping operator Lh then appeals to Green’s theorem to rewrite
n(·, ·, ·) in terms of fluxes over the boundaries Γlk of the lumping regions Rl:

n(z,u,v) =

N+M∑

l=1

( (z · ∇)u,v)Rl

=

N+M∑

l=1

[ (∇ · (z⊗ u),v)Rl
− (∇ · z,u · v)Rl

]

≈
N+M∑

l=1

[ (∇ · (z⊗ u), Lhv)Rl
− (∇ · z, Lhu · Lhv)Rl

]

=
N+M∑

l=1

∑

k∈Λl

v(Bl) ·
∫

Γlk

(z · nlk) (u− u(Bl)) dγ.

Here nlk is the unit normal on Γlk that points away from Rl and the notation
∇ · (z⊗ u) means a vector whose ith component is

(∇ · (z⊗ u))i := ∇ · (zui) =
2∑

j=1

∂(zjui)

∂xj
.

As in Part III, upwinding is achieved by replacing u on Γlk by a fixed upwind
value uupw, i.e.,

u ≈ uupw := λlk(z)u(Bl) + (1− λlk(z))u(Bk)

for some λlk(z). This yields the discretization

nh(z,u,v) :=

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

]
(1− λlk(z))

[u(Bk)− u(Bl) ] · v(Bl). (2.3)

Our discrete Navier-Stokes problem is now:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

ν(∇uh,∇vh)h + nh(uh,uh,vh)− (ph,∇ · vh)h = (f ,vh), (2.4a)

(qh,∇ · uh)h = 0 . (2.4b)

The function λlk(·) is defined as in Section III.3.1 by

λlk(z) = Φ

(
βlk

2ν

)
with βlk :=

∫

Γlk

z · nlk dγ.
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The weighting function Φ(·) must satisfy the following assumptions (see Sec-
tion III.3.1):

(B1) Φ(t) = 1− Φ(−t) ∀ t > 0 and 0 ≤ Φ(t) ≤ 1 ∀ t ∈ R,

(B2) t

[
Φ(t)− 1

2

]
≥ 0 ∀ t ∈ R,

(B3) g(t) := t Φ(t) is Lipschitz continuous on R.

Choices for Φ(·) that have been used in practical computations [GRS90, RS89,
Tur91, Tur99] are

Φ1(t) =

{
1 if t ≥ 0,
0 if t < 0,

and Φ2(t) =

{
(1 + 2t)/(2 + 2t) if t ≥ 0,

1/(2− 2t) if t < 0,

where Φ1(·) corresponds to simple and Φ2(·) to Samarskĭı upwinding (see
Section I.2.1.2). Both functions satisfy assumptions (B1)–(B3).

We now study the convergence properties of the method (2.4). Assume that
the triangulation Th of the domain Ω into elements T ∈ Th is shape-regular.
Define the discrete H1 norm ‖ · ‖h on V + Vh by

‖v‖h := (∇v,∇v)
1/2
h .

Finally, let

Wh := {vh ∈ Vh | (qh,∇ · vh)h = 0 ∀ qh ∈ Qh}

be the subspace of discretely divergence-free functions.
Let us take from [ST89, TT89] two lemmas and two theorems that deal

with the existence of solutions and the convergence of our upwind discretiza-
tion (2.4) for arbitrary Reynolds number Re = 1/ν. The first lemma is vital
in obtaining a stability estimate for the discrete solution uh.

Lemma 2.1. Assume that (B1) and (B2) hold true. Then we have

nh(zh,vh,vh) ≥ 0 for all zh ∈Wh and all vh ∈ Vh.

Proof. To simplify the notation the subscript h is omitted from zh and vh

during the proof. The definition of nh in (2.3) implies that

nh(z,v,v) =
1

2

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

]
(1− λlk(z))

[v(Bk)− v(Bl) ] · v(Bl)

+
1

2

N+M∑

k=1

∑

l∈Λk

[ ∫

Γkl

(z · nkl) dγ

]
(1− λkl(z))

[v(Bl)− v(Bk) ] · v(Bk) .
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Recalling that Γkl = Γlk and nkl = −nlk, (B1) implies that 1 − λkl = λlk.
Since both sums are over the same pairs of indices, we obtain

nh(z,v,v) =
1

2

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

]

[(1− λlk(z))v(Bl) + λlk(z)v(Bk)] · [v(Bk)− v(Bl)]

=
1

2

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

](
λlk(z)− 1

2

)
[v(Bk)− v(Bl)]

2

+
1

4

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

]
v2(Bk)

− 1

4

N+M∑

l=1

∑

k∈Λl

[ ∫

Γlk

(z · nlk) dγ

]
v2(Bl)

where the square of a vector means the inner product of the vector with itself.
Now (B2) implies that the first sum is nonnegative. In the second sum, set
nlk = −nkl and Γlk = Γkl then change the order of summation; on swopping
the indices (k, l) for (l, k) one now sees that the second and third terms are
identical. Thus

nh(z,v,v) ≥ −1

2

N+M∑

l=1

{∑

k∈Λl

∫

Γlk

(z · nlk) dγ

}
v2(Bl).

But if T and T ′ are the two triangles in Th that share the common node Bl,
then

∑

k∈Λl

∫

Γlk

(z · nlk) dγ =

∫

ST,l

∇ · z dx+

∫

ST ′,l

∇ · z dx

+

∫

Γl

(
z
∣∣
T ′ − z

∣∣
T

)
· nT,l dγ,

where nT,l is the unit normal on Γl that points out from T . The first two
summands here are zero since z is discretely divergence-free, while the last
vanishes because z is piecewise linear and continuous at the midpoint Bl.
Consequently, the inner sum

∑

k∈Λl

∫

Γlk

(z · nlk) dγ

in the lower bound on nh(z,v,v) is zero. �

Remark 2.2. A careful inspection of the proof of Lemma 2.1 shows that we
have the nonnegative lower bound
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nh(z,v,v) ≥ 1

2

N+M∑

l=1

∑

k∈Λl

∫

Γlk

(z · nlk) dγ

(
λlk(z)− 1

2

)
[v(Bk)− v(Bl)]

2

for all z ∈ Wh and all v ∈ Vh. In fact the right-hand side can be zero only
if for each pair (l, k) either

∫
Γlk

(z · nlk) dγ = 0 (i.e., the flux vanishes) or

λlk = 1/2 (i.e., there is no upwinding). In the standard Galerkin method one
would instead work with the trilinear form

nGAL
h (z,u,v) :=

1

2

∑

T∈Th

∫

T

((z · ∇)uv − (z · ∇)vu) dx

for which

nGAL
h (z,v,v) = 0 for all z ∈Wh and all v ∈ Vh,

which explains the improved stability properties of the upwind finite element
method. ♣

The next lemma shows that nh(·, ·, ·) is continuous on Vh×Vh×Vh and
will be used to estimate the consistency error.

Lemma 2.3. Assume that (B1) and (B3) hold true. Then nh (which is linear
in its second and third arguments) is continuous, i.e.,

|nh(z1
h,uh,vh) − nh(z2

h,uh,vh) | ≤ C ‖z1
h − z2

h‖h ‖uh‖h ‖vh‖h

for all z1
h, z

2
h,uh,vh ∈ Vh, where C is independent of h and ν.

Proof. The proof is rather technical and uses the discrete version of Sobolev’s
embedding inequality (see [Dor95, HR82]) that gives

‖zh‖0,s ≤ C ‖zh‖h for all zh ∈ Vh and 1 ≤ s ≤ 6, (2.5)

where C depends on s and Ω. More details can be found in [ST89, ST96]. ⊓⊔

The solvability of the discrete Navier-Stokes problem (2.4) is guaranteed
by the next result.

Theorem 2.4. Assume that (B1),(B2) and (B3) hold true. Let f ∈ (L2(Ω))2.
Then the discrete problem (2.4) has at least one solution (uh, ph) ∈ Vh×Qh.

Proof. See [ST89]. �

The first-order derivatives of a function vh ∈ Vh do not in general lie
in (L2(Ω))2, so to formulate the next convergence result we introduce the
embedding operator Eh : Vh → (L2(Ω))6 defined by

(Ehv) (x) := (v(x),∇v(x) ) for all x /∈
⋃

T∈Th

∂T.
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Theorem 2.5. Let the assumptions of Theorem 2.4 be satisfied. Let {(uh, ph)}
be a sequence of solutions of the discrete problem (2.4), where h tends to zero
through a discrete set of values. Then there exists a subsequence {(uh′ , ph′)}
and a solution (u, p) ∈ V × Q of the continuous problem (1.2) such that
{Eh′uh′} converges to (u,∇u) in (L2(Ω))6 and {ph′} converges to p weakly in
L2(Ω) as h′ → 0. If (u, p) belongs to (H2(Ω))2×H1(Ω), then the subsequence
{ph′} converges to p strongly in L2(Ω).

Proof. See [ST89]. �

To quantify the rate of convergence, one must estimate how well nh (de-
fined by (2.3)) approximates the more straightforward discretization ñh of the
convective part described in (2.2). For this we need a suitable interpolation op-
erator ih : V → Vh that satisfies ihu ∈Wh whenever u ∈ V is a divergence-
free function. Such an operator can be constructed as follows. Given u ∈ V,
define the values of ihu ∈ Vh at the nodes Bl, for l = 1, . . . , N + M , by

ihu (Bl) =
1

meas(Γl)

∫

Γl

u ds. (2.6)

This determines the interpolant ihu ∈ Vh uniquely. The interpolant is stable
in the broken H1 norm, i.e.,

‖ihu‖h =

( ∑

T∈Th

‖ihu‖1,T

)1/2

≤ C‖u‖1 ∀u ∈ V,

and it satisfies the usual interpolation error estimates.
The next lemma is crucial for the proof of our error estimate. It says that

the consistency error introduced by using the upwind discretization nh of the
convective term instead of the Galerkin discretization ñh is of order O(h).

Lemma 2.6. Assume that u ∈ (H2(Ω))2 with ∇ · u = 0. Let ihu ∈ Wh be
the interpolant to u from Wh. Then for all wh ∈Wh one has

|ñh(u,u,wh)− nh(ihu, ihu,wh)| ≤ C h ‖u‖22‖wh‖h. (2.7)

Proof. For the details of this technical proof see [ST96]. ⊓⊔

Now we come to the main result in this section. It gives an optimal-order
error estimate for our nonconforming (P1, P0) finite element approximation.

Unlike the results above, our analysis now needs the assumption that ν is
bounded away from zero. For if ν tends to zero, then uniqueness of the solution
of (1.2) is no longer guaranteed by Theorem 1.1, which forces us to perform
a local analysis. But a basic assumption for local analysis is the existence of
a branch of nonsingular solutions – which implies that the linearized problem
(1.8) is stable. The authors know of no sufficient conditions that, for arbitrary
ν > 0, guarantee that the linearized Navier-Stokes equations (1.8) are stable
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and provide concrete estimates of the dependence of the solution u of (1.8)
on ν and f . We therefore restrict our investigation at this stage to the case
where uniqueness can be proved and for a local analysis refer the reader to
the streamline diffusion method of Section 3.2.

Theorem 2.7. Assume that (B1), (B2) and (B3) hold true. Let f ∈ (L2(Ω))2.
Suppose that ν > ν0, where ν0 = ν0(Ω, f) > 0 is sufficiently large. Then the
continuous problem (1.2) and the discrete problem (2.4) have unique solutions
(u, p) and (uh, ph) respectively. Under the additional regularity assumption
that (u, p) ∈ (H2(Ω))2 ×H1(Ω), one obtains the error estimates

‖u− uh‖h ≤
C

ν0
Mh, ‖p− ph‖0 ≤

C

ν2
0

Mh,

where M = M(‖u‖2, ‖p‖1) is a polynomial of degree two whose coefficients
are independent of h and ν0.

Proof. By Theorem 1.1 the continuous problem (1.2) has a unique solution.
We shall show that the discrete problem (2.4) also has a unique solution

provided that ν is sufficiently large. Theorem 2.4 ensures existence of a solu-
tion to the discrete problem. Take vh = uh and qh = ph in (2.4) and sum,
then apply Lemma 2.1 and the estimate (2.5) with s = 2. Hence one can see
that any solution of (2.4) must satisfy the a priori bound

‖uh‖h ≤
C

ν
‖f‖0 .

Now suppose that the discrete problem has two different solutions, (u1
h, p1

h)
and (u2

h, p2
h), say. Setting vh = u1

h − u2
h and qh = p1

h − p2
h in (2.4) yields

0 = ν‖vh‖2h + nh(u1
h,u1

h,vh)− nh(u2
h,u2

h,vh)

≥ ν‖vh‖2h + nh(u1
h,u2

h,vh)− nh(u2
h,u2

h,vh) ,

by Lemma 2.1. Recalling the continuity of nh (Lemma 2.3) and the a priori
estimate for u2

h, one infers that

(
ν − C

ν
‖f‖0

)
‖vh‖2h ≤ 0.

Hence, for sufficiently large ν > ν0(Ω, f), it follows that ‖vh‖h = 0, i.e.,
u1

h = u2
h. This implies that

(p1
h − p2

h,∇ ·wh)h = 0 ∀wh ∈ Vh.

The uniqueness of the pressure now follows directly from the discrete Babuška-
Brezzi condition (2.1), which is satisfied for our nonconforming (P1, P0) ele-
ment pair (see, e.g., [Dor95]).
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Under the regularity assumption (u, p) ∈ (H2(Ω))2 × H1(Ω), the exact
solution satisfies the equations

ν (∇u,∇wh)h + ñh(u,u,wh)− (p,∇ ·wh)h = (f ,wh) + ℓh(wh), (2.8a)

(qh,∇ · u)h = 0, (2.8b)

for all wh ∈ Vh and all qh ∈ Qh, where

ℓh(wh) =
∑

T∈Th

(
ν

∫

∂T

∂u

∂n
wh ds −

∫

∂T

p (wh ·n) ds

)
.

Choosing wh = uh−vh, where vh ∈Wh is arbitrary, (2.4) and (2.8) together
yield the identity

ν ‖wh‖2h = ν (∇(u− vh),∇wh)h + ñh(u,u,wh)− nh(uh,uh,wh)

− (p− ph,∇ ·wh)h − ℓh(wh)

= ν (∇(u− vh),∇wh)h + [ñh(u,u,wh)− nh(vh,vh,wh)]

+ [nh(vh,uh,wh)− nh(uh,uh,wh)]

− (p− ph,∇ ·wh)h − nh(vh,wh,wh) − ℓh(wh). (2.9)

We now estimate the terms on the right-hand side of (2.9). For each p ∈ Q
let jhp ∈ Qh be the piecewise constant interpolant defined by

jhp(x) :=
1

meas(T )

∫

T

p dx ∀x ∈ T ∈ Th .

Then

ν (∇(u− vh),∇wh)h ≤ ν ‖u− vh‖h ‖wh‖h,

−nh(vh,wh,wh) ≤ 0 by Lemma 2.1,

(p− ph,∇ ·wh)h = (p− jhp,∇ ·wh)h ≤ Ch|p|1‖wh‖h,

|nh(vh,uh,wh)− nh(uh,uh,wh)| ≤ C

ν
‖f‖0 ‖wh‖2h ≤

ν

2
‖wh‖2h

for ν ≥ ν0, provided that ν0 is sufficiently large. It is shown in [CR73] that

| ℓh(wh) | ≤ C h (ν|u|2 + |p|1) ‖wh‖h ∀ wh ∈ Vh . (2.10)

Taking vh = ihu ∈Wh (as defined in (2.6)) and using the usual interpolation
error estimates, we deduce from (2.9) by means of Lemma 2.6 that

‖wh‖h ≤
C

ν
Mh, (2.11)

where M = M(‖u‖2, ‖p‖1) is a polynomial of degree two. This implies that
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‖u− uh‖h ≤ ‖u− vh‖h + ‖wh‖h ≤
C

ν
Mh ≤ C

ν0
Mh.

To derive the bound on ‖p − ph‖0, set qh := ph − jhp and, for arbitrary
wh ∈ Vh, estimate term by term the expression

−(qh,∇ ·wh)h =− (p− jhp,∇ ·wh)h + ν (∇(u− uh),∇wh)h

+ ñh(u,u,wh)− nh(uh,uh,wh)− ℓh(wh).

Once again we have

|(p− jhp,∇ ·wh)h| ≤ Ch|p|1‖wh‖h,

|ν (∇(u− uh),∇wh)h| ≤ CMh‖wh‖h,

and, taking vh = ihu,

ñh(u,u,wh)− nh(uh,uh,wh)

= {ñh(u,u,wh)− nh(vh,vh,wh)}+ nh(uh,vh − uh,wh)

+ {nh(vh,vh,wh)− nh(uh,vh,wh)}
≤ CMh‖wh‖h + C(‖uh‖h + ‖vh‖h)‖vh − uh‖h‖wh‖h

≤ C

ν2
Mh‖wh‖h ;

in deriving this estimate we invoked (2.11) to bound ‖vh−uh‖h, the stability
inequality ‖vh‖h ≤ ‖u‖h of the interpolation operator, and a priori estimates
for ‖uh‖h and ‖u‖h (viz., |u|1 ≤ Cν−1|f |∗, which follows from (1.4)). Combin-
ing these estimates with (2.10) and the discrete Babuška-Brezzi condition (2.1)
yields

‖qh‖0 ≤
C

βν2
Mh.

Hence

‖p− ph‖0 ≤ ‖p− jhp‖0 + ‖qh‖0 ≤
C

ν2
Mh ≤ C

ν2
0

Mh,

i.e., first-order convergence of the pressure has been established. ⊓⊔

Remark 2.8. The above proof reveals that three properties of the discrete tri-
linear form are needed to deliver the convergence result: (i) semidefiniteness
(Lemma 2.1), (ii) Lipschitz continuity (Lemma 2.3), and (iii) linear consis-
tency (Lemma 2.6). Angermann [Ang00] develops a general finite volume ap-
proach for the discretization of the trilinear form that is guaranteed to have
these three properties. ♣

Remark 2.9. Theorem 2.7 shows that we get first-order convergence for the
velocity in the discrete H1 norm and for the pressure in the L2 norm. This is
an optimal-order result for the nonconforming (P1, P0) element pair; in other
words, the introduction of upwinding did not reduce the order of convergence
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of the scheme. Our proof does however assume that the Reynolds number
Re = ν−1 is not too large, i.e., that ν > ν0, where ν0 depends on the continuity
constant C of Lemma 2.3, the constant C in (2.5), and ‖f‖0. ♣
Remark 2.10. For the special case where f = ∇Ψ with Ψ ∈ H1(Ω) ∩ L2

0(Ω),
the solution of the continuous problem (1.2) is uniquely determined for all
ν > 0 since

(f ,v) = (∇Ψ, v) = −(Ψ,∇ · v) = 0 for all v ∈W,

which implies that ‖f‖∗ = 0. Consequently (1.5) is satisfied for every ν > 0.
We can therefore study the estimates of Theorem 2.7 for the whole range
0 < ν ≤ 1. A careful analysis (see [DGT94] for details) shows that in this
special case we now have

‖u− uh‖h ≤
C

ν
Mh and ‖p− ph‖0 ≤ CMh

(
1 +

h

ν2

)

with C independent of ν and h, and M = M(‖u‖2, ‖p‖1). This observation
is supported by a numerical example, with a discretization similar to ours
but based on nonconforming quadrilateral finite elements, from [Sch94]: the
H1 error of the velocity is indeed O(Re) for a wide range of Re = 1/ν when
the mesh size h is fixed. ♣
Remark 2.11. An L2-norm error estimate for the velocity can be derived from
the proof of Theorem 2.7. The interpolant ihu defined by (2.6) satisfies the
interpolation error estimate ‖u − ihu‖0 ≤ C h2 |u|2. Using (2.11), which was
proved for wh = uh − vh, and the estimate (2.5) with s = 2, one gets the
first-order L2-norm error estimate

‖u− uh‖0 ≤ CMh,

where M = M(‖u‖2, ‖p‖1). In [Tob89] it is shown that for the simple upwind
discretization the L2-norm error of the velocity is in general no better than
O(h). ♣
Remark 2.12. A similar upwind method can be constructed for the noncon-
forming “rotated bilinear” finite element; see [Tur91], where thorough numer-
ical tests of this method agree with the O(h) convergence of velocity and
pressure that is forecast in Theorem 2.7. ♣
Remark 2.13. An alternative upwind method based on a streamfunction-
vorticity formulation of the Navier-Stokes equations is developed in [For78]
and analyzed in [GR82, GR86]. ♣
Remark 2.14. The method presented in this section can be extended to more
general fluid-flow models. In [Dor95] the same technique is used to derive a
stable finite element method for solving the Boussinesq approximation of the
temperature-dependent formulation of the Navier-Stokes equations. ♣



3

Higher-Order Methods of Streamline Diffusion
Type

Sections III.3.2.1 and III.3.2.2 dealt with streamline diffusion (SDFEM)
and Galerkin least squares (GLSFEM) finite element methods for scalar
convection-diffusion problems. These methods try to achieve stability when
convection dominates while obtaining high accuracy in subdomains that ex-
clude boundary and interior layers. We shall now study the application of
the streamline diffusion finite element method to the linearized variant of the
Navier-Stokes equations, viz., the Oseen problem:

−ν∆u + (b · ∇)u + σu +∇p = f in Ω, (3.1a)

∇ · u = 0 in Ω, (3.1b)

u = 0 on ∂Ω. (3.1c)

Our method will also be applied to the full nonlinear problem

−ν∆u + (u · ∇)u + σu +∇p = f in Ω, (3.2a)

∇ · u = 0 in Ω, (3.2b)

u = 0 on ∂Ω. (3.2c)

Here we assume that b is a smooth, divergence-free function and the constant
σ is non-negative. As was pointed out in the introduction to Part IV, the term
σu arises in the time-discretization of the unsteady variants of (3.1) and (3.2);
thus our analysis is relevant to these problems also. The present chapter looks
only at conforming finite elements, i.e., the discrete spaces Vh and Qh that
approximate the velocity u and the pressure p are subspaces of the solution
spaces in which u and p respectively lie.

An SDFEM based on the nonconforming (P1, P0) element is applied in
[LT90] to (3.2) with σ = 0. See [FF92, Fra94, Lub94] for the solution of (3.1)
and (3.2) by the GLSFEM.

We shall learn that the SDFEM can handle two types of instability – that
caused by the dominance of convection, and that induced by discrete velocity
and pressure spaces that fail to satisfy the discrete Babuška-Brezzi condition
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(2.1). Thus when the SDFEM is applied to (3.1) or (3.2), the discrete spaces
that approximate the velocity and the pressure can be chosen independently
of each other. In Section 3.1 we obtain optimal error estimates for (3.1) for all
mesh Péclet numbers, using natural norms that include in particular the L2

norm of the pressure. Section 3.2 demonstrates that similar results are valid
for the nonlinear problem, provided that it is close to a regular branch of
solutions, i.e., that a linearized operator is an isomorphism; but the norm of
the inverse of this linear operator will still depend on the Reynolds number and
consequently the dependence of our error constants on the Reynolds number
is not completely settled in the nonlinear case.

3.1 The Oseen Problem

The Oseen problem (3.1) is a linearization of the steady (σ = 0) and the
unsteady (σ > 0) time-discretised Navier-Stokes equations in the bounded
polyhedral domain Ω ⊂ Rd, where d = 2 or 3. Assume that b ∈ W1,∞(Ω)
and ∇ · b = 0. Set V = H1

0(Ω) and Q = L2
0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}.

Define the bilinear form A on the product space V ×Q by

A
(
(u, p); (v, q)

)
:= ν(∇u,∇v)+

(
(b · ∇)u,v

)
+ σ(u,v)

−(p,∇ · v) + (q,∇ · u).

A weak formulation of the Oseen problem (3.1) reads:

Find (u, p) ∈ V ×Q such that one has

A
(
(u, p); (v, q)

)
= (f ,v) ∀(v, q) ∈ V ×Q. (3.3)

The identity

(
(b · ∇)v,v

)
=

1

2

(
(b · ∇)(v · v), 1

)
= −1

2
(∇ · b,v · v) = 0 ∀v ∈ V

allows us to apply the Lax-Milgram Lemma in the subspace of divergence-
free functions and to find a unique velocity field u. Then the Babuška-Brezzi
condition for the pair (V, Q) [GR86] implies existence of a unique pressure
p ∈ Q such that (u, p) is a solution of (3.3). This uniqueness result was already
stated in Theorem 1.5.

Let Vh ⊂ V and Qh ⊂ Q be two families of finite element spaces that
correspond to a family of partitions Th of Ω into polyhedral elements with
maximum diameter h. Assume that each triangulation Th is shape-regular. In
particular, this permits the use of locally-refined meshes. Let Eh be the set of
all inter-element boundaries in Th and define

hω := diam(ω) = sup
x,y∈ω

| x− y | for each ω ∈ Th ∪ Eh.
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The shape-regularity of the triangulation Th implies that the ratio hT /hE

(where E ∈ Eh, T ∈ Th, and E ⊂ ∂T ) is bounded independently of h, T
and E. For any E ∈ Eh with E = T1E ∩ T2E , where T1E , T2E ∈ Th, and any
q ∈ L2(Ω) with q|Ti

∈ C(Ti) for i = 1, 2, we use [q]E to denote the jump of q
across E (in a fixed direction).

Regarding the approximation properties of the finite element pair (Vh, Qh),
we assume that the following interpolation error estimates and local inverse
inequalities are fulfilled. Let k ≥ 1 and l ≥ 0 and let two interpolation oper-
ators Ih : V → Vh and Jh : Q → Qh exist such that for all T ∈ Th and all
E ∈ Eh (where E = T1E ∩ T2E with T1E , T2E ∈ Th) one has for 0 ≤ m ≤ 2,
max{m, 2} ≤ s ≤ k + 1, 0 ≤ i ≤ 1 and 2 ≤ j ≤ l + 1 the bounds

‖u− Ihu‖m,T ≤ c1hs−m
T |u|s,T for all u ∈ Hs(T )d, (3.4a)

‖u− Ihu‖0,E ≤ c2hs−1/2
E |u|s,T1E∪T2E

for all u ∈ Hs(T1E ∪ T2E)d, (3.4b)

‖p− Jhp‖i,T ≤ c3hj−i
T |p|j,T for all p ∈ Hj(T ), (3.4c)

‖p− Jhp‖0,E ≤ c4hj−1/2
E |p|j,T1E∪T2E

for all p ∈ Hj(T1E ∪ T2E), (3.4d)

‖∆vh‖0,T ≤ µinvh
−1
T ‖∇vh‖0,T for all vh ∈ Vh, (3.4e)

‖∇mph‖0,T ≤ c5h−m
T ‖ph‖0,T for all ph ∈ Qh, (3.4f)

‖[ph]E‖0,E ≤ c6h−1/2
E ‖ph‖0,T1E∪T2E

for all ph ∈ Qh. (3.4g)

These conditions are satisfied if Vh and Qh comprise piecewise polynomials
of degrees at most k and l respectively, while Ih : H2(Ω)d → Rd and Jh :
H2(Ω) → R are the standard nodal interpolation operators. To prove the
inf-sup condition of Lemma 3.4, however, one needs an interpolation operator
ih : H1(Ω)d → Rd that is defined on the larger space H1(Ω)d. For non-
smooth functions, the existence theory of interpolation operators that yield
estimates like (3.4) is well established in the literature [Ape99, Clé75, SZ90].
One example is discussed in the next remark.

Remark 3.1. (Scott-Zhang interpolant) As an example of an interpolation op-
erator for non-smooth functions, let us construct the Scott-Zhang operator
for a space Yh that comprises continuous piecewise polynomial functions of
degree at most k on a simplicial mesh. Let ϕi, i ∈ I, be the standard nodal
basis functions with respect to the nodes pi in the finite element space Yh and
define

ihu(x) :=
∑

i∈I

aiϕi(x)

where the real numbers ai, i ∈ I, are yet to be specified. The standard La-
grange interpolant of a continuous function u is given by ai := u(pi), i ∈ I, but
we are interested in interpolation operators that are defined on a larger set of
functions. For inner nodes pi of a cell T , replace ai := u(pi) by ai := (πTu)(pi)
where πT : L2(T ) → Pr(T ) is the L2(T ) projection. If pi is a boundary node
of one or more cells T ∈ Th, choose some (d − 1)-dimensional face Ei of one
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of these elements. In the case of a boundary node pi ∈ ∂Ω, we restrict the
choice of Ei to boundary faces Ei ⊂ ∂Ω. Then, for all boundary nodes pi

of one or more cells we set ai := (πEi
u)(pi) where πEi

: L2(Ei) → Pr(Ei)
is the L2(Ei) projection. Unlike the Lagrange interpolant this L2-based in-
terpolation is defined for each function u ∈ H1(Ω), since the trace of each
such function on Ei ⊂ T belongs to L2(Ei). Moreover, if u|∂Ω is a continuous

T

Fig. 3.1. A possible neighbourhood ω(T ) of a cell T for the Scott-Zhang operator

piecewise polynomial function of degree at most k, then ihu = u on ∂Ω. This
property guarantees that homogeneous Dirichlet data will be interpolated in
the correct manner. The Scott-Zhang operator satisfies

‖u− ihu‖m,T ≤ c1hs−m
T |u|s,ω(T ) for all u ∈ Hs(ω(T ))d, (3.5a)

‖u− ihu‖0,E ≤ c2h1/2
E |u|1,ω(T ) for all E ⊂ ∂T, u ∈ H1(ω(T ))d, (3.5b)

for max{1,m} ≤ s ≤ k, 0 ≤ m ≤ 2, where ω(T ) is a certain local neighbour-
hood of a cell T as drawn in Figure 3.1 [SZ90].

An alternative interpolant is the Clément operator of Section III.3.6. ♣

The streamline diffusion finite element method (SDFEM) for solving the
Oseen problem (3.3) is obtained by adding to (3.3) both a least-squares con-
trol of the divergence and, on each element, a weak form of the momentum
equation using test functions of the form (b · ∇)v +∇q for (v, q) ∈ V ×Q:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

Aδ ((uh, ph), (vh, qh)) = Lδ ((vh, qh)) , (3.6)

where
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Aδ ((w, r), (v, q)) := ν(∇w,∇v) + ((b · ∇)w + σw,v)− (r,∇ · v)

+ (q,∇ ·w) + µ(∇ ·w,∇ · v) + γ
∑

E∈Eh

hE([r]E , [q]E)E

+
∑

T∈T
δT (−ν∆w + (b · ∇)w + σw +∇r, (b · ∇)v +∇q)T ,

Lδ ((v, q)) := (f,v) +
∑

T∈Th

δT (f , (b · ∇)v +∇q)T ,

and µ ≥ 0, δT > 0, δ := maxT δT and γ > 0 are parameters that will be
determined later.

Remark 3.2. The pressure jumps across inter-element boundaries E ∈ Eh

are present in Aδ(·, ·) to allow discontinuous pressure approximations. As in
[FS91], they can be omitted if one has k ≥ d, where k is the polynomial degree
of the velocity space Vh. ♣

Remark 3.3. On setting b = µ = 0, the SDFEM (3.6) reduces to the Petrov-
Galerkin discretization of the Stokes equations considered in [HFB86, HFB87].
If we add a term −ν∆v to the (·, ·)T inner products in Aδ(·, ·) and Lδ(·), and
choose suitable signs for the coefficients, then in the case ν = 1 and b = µ = 0
the SDFEM (3.6) corresponds to the Petrov-Galerkin discretizations of the
Stokes problem considered in [DW89, FH88]. ♣

The SDFEM (3.6) is a residual-based method and so is consistent, i.e.,

Aδ((u, p), (wh, rh)) = Lδ((wh, rh)) for all (wh, rh) ∈ Vh ×Qh,

provided that the exact solution (u, p) of (3.3) satisfies the local regularity
condition

f + ν∆u− (b · ∇)u− σu−∇p ∈ L2(T )d for each T ∈ Th.

In this case one has the projection property

Aδ((u− uh, p− ph), (wh, rh)) = 0 for all (wh, rh) ∈ Vh ×Qh. (3.7)

We introduce the mesh-dependent norm

|||(v, q)|||h :=

{
ν|v|21 + σ‖v‖20 + ν‖q‖20 + µ‖∇ · v‖20

+ γ
∑

E∈Eh

hE‖[q]E‖20,E +
∑

T∈Th

δT ‖(b · ∇)v +∇q‖20,T

}1/2

.

Lemma 3.4. Assume that σ ≥ 0, µ ≥ 0, γ > 0 and that for a fixed positive
constant δ0 the local SD parameter δT is chosen such that
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0 < δ0h
2
T ≤ δT ≤ min

{
δ,

h2
T

2νµ2
inv

}
and 0 ≤ σ δT ≤

1

2
.

Then
inf

(vh,qh)∈Vh×Qh
|||(vh,qh)|||h=1

sup
(wh,rh)∈Vh×Qh
|||(wh,rh)|||h=1

Aδ((vh, qh), (wh, rh)) ≥ β,

where the positive constant β is independent of ν and h. Moreover, β = O(δ0)
as δ0 → 0.

Proof. Consider an arbitrary point (vh, qh) ∈ Vh ×Qh and for brevity put

X :=

{ ∑

T∈Th

δT ‖(b · ∇)vh +∇qh‖20,T

}1/2

,

Y :=

{
γ
∑

E∈Eh

hE‖[qh]E‖20,E

}1/2

, Z := µ1/2‖∇ · vh‖0.

Then

Aδ((vh, qh), (vh, qh)) =ν|vh|21 + ((b · ∇)vh,vh) + σ‖vh‖20 +X2 + Y 2 + Z2

+
∑

T∈Th

δT (σvh − ν∆vh, (b · ∇)vh +∇qh)T .

Applying the inverse estimate (3.4e) and the hypothesis on the upper bound
of δT , we can absorb the last sum into the other terms:

∣∣∣∣
∑

T∈Th

δT (σvh − ν∆vh, (b · ∇)vh +∇qh)T

∣∣∣∣

≤ σ
∑

T∈Th

σδT ‖vh‖20,T + ν
∑

T∈Th

νδTh
−2
T µ2

inv|vh|21,T +
1

2
X2

≤ 1

2

(
σ‖vh‖20 + ν|vh|21 +X2

)
.

Recalling that ∇ · b = 0, one obtains

Aδ((vh, qh), (vh, qh)) ≥ 1

2

[
ν|vh|21 + σ‖vh‖20 +X2 + Y 2 + Z2

]
. (3.8)

This inequality shows that Aδ is coercive over Vh×Qh with respect to the
norm defined by the square root of the right-hand side. Nevertheless we are
interested in proving error estimates in a more natural norm for this problem
– for example, one that includes the L2 norm of the pressure, which is missing
from (3.8).

It will be shown that there exists a constant M , which is independent of
ν and h, such that for each (vh, qh) ∈ Vh × Qh one can choose an element
(wh, 0) ∈ Vh ×Qh for which
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Aδ((vh, qh), (wh, 0)) ≥ 3

8
‖qh‖20 − 2M2

(
|vh|21 + σ‖vh‖20 +X2 + Y 2 + Z2

)
.

(3.9)

By [GR86, Chapter I, Lemma 4.1], there exist w ∈ V and a constant
cΩ that depends only on the geometry of Ω, such that ∇ · w = −qh and
‖w‖1 ≤ cΩ‖qh‖0. Set wh = ihw where ih is the Scott-Zhang operator of
Remark 3.1. By (3.5a) with m = s = 1, one has ‖wh‖1 ≤ c′Ω‖qh‖0 with
c′Ω := (1+ c1)cΩ . Moreover, the convective term is a continuous trilinear form
on V ×V ×V, so

|((u · ∇)v,w)| ≤M0|u|1|v|1|w|1 for all u,v,w ∈ V,

where the constant M0 depends only on the geometry of Ω.
Integrating by parts on each element, one obtains

Aδ

(
(vh, qh),(wh, 0)

)
=

σ(vh,wh) + ν(∇vh,∇wh) + ((b · ∇)vh,wh)− (qh,∇ ·w)

−
∑

T∈Th

(∇qh,w −wh)T +
∑

E∈Eh

([qh]E , (w −wh) · nE)E

+
∑

T∈Th

δT (σvh − ν∆vh + (b · ∇)vh +∇qh , (b · ∇)wh)T

+ µ(∇ · vh,∇ ·wh).

Now

|σ(vh,wh)| ≤ σc′Ω‖vh‖0 ‖qh‖0,
|ν(∇vh,∇wh)| ≤ c′Ω |vh|1 ‖qh‖0,
|((b · ∇)vh,wh)| ≤M0c

′
Ω |b|1 |vh|1 ‖qh‖0,

and −(qh,∇ · w) = ‖qh‖20. Furthermore, recalling the properties (3.5) of the
interpolation operator and the choice of δT , we get

∣∣∣
∑

T∈Th

(∇qh,w −wh)T

∣∣∣

≤
∑

T∈Th

(
‖(b · ∇)vh‖0,T + ‖(b · ∇)vh +∇qh‖0,T

)
c1hT |w|1,T

≤ c1cΩh‖b‖∞ |vh|1 ‖qh‖0 +Xc1

( ∑

T∈Th

δ−1
T h2

T |w|21,T

)1/2

≤ c1cΩh‖b‖∞ |vh|1 ‖qh‖0 + c1δ
−1/2
0 cΩ X ‖qh‖0,

∣∣∣
∑

E∈Eh

([qh]E , (w −wh) · nE)E

∣∣∣ ≤
∑

E∈Eh

‖[qh]E‖0,E c2h
1/2
E |w|1,T1E∪T2E

,

≤ 3Y c2γ
−1/2cΩ‖qh‖0,
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∣∣∣
∑

T∈Th

δT (σvh − ν∆vh + (b · ∇)vh +∇qh , (b · ∇)wh)T

∣∣∣

≤ σ δc′Ω‖b‖∞ ‖vh‖0 ‖qh‖0 + (2µinv)−1c′Ωh‖b‖∞ |vh|1 ‖qh‖0
+Xc′Ωδ

1/2‖b‖∞ ‖qh‖0,

and
|µ(∇ · vh,∇ ·wh)| ≤ Zµ1/2‖∇ ·wh‖0 ≤ Zµ1/2d1/2c′Ω ‖qh‖0.

Combining all the above estimates, we arrive at

Aδ

(
(vh, qh), (wh, 0)

)
≥ ‖qh‖20 −M‖qh‖0

(
σ1/2‖vh‖0 + |vh|1 +X + Y + Z

)

≥ 3

8
‖qh‖20 − 2M2

(
|vh|21 + σ‖vh‖20 +X2 + Y 2 + Z2

)
,

where M = M1 +M2δ
1/2, and M1 and M2 are independent of ν, h and δ but

depend on µ, γ, σ, ‖b‖∞ and |b|1. This completes the proof of (3.9).
Next, multiply (3.8) by 1− ρν and (3.9) by ρν, where ρ ≥ 0, then add the

ensuing inequalities. This yields

Aδ

(
(vh, qh), (zh, rh)

)
≥ 3

8
ρν‖qh‖20 +

(
1− ρν

2
− 2M2ρ

)
·

(
ν|vh|21 + σ‖vh‖20 +X2 + Y 2 + Z2

)

≥ min

{
3

8
ρ,

1− ρν
2

− 2M2ρ

}
|||(vh, qh)|||2h,

where
(zh, rh) :=

(
(1− ρν)vh + ρνwh, (1− ρν)qh

)
.

The minimum is maximized by taking ρ = 4/(3 + 4ν + 16M2). Then

Aδ

(
(vh, qh), (zh, rh)

)
≥ 3

6 + 8ν + 32M2
|||(vh, qh)|||2h

≥ 3

14 + 32M2
|||(vh, qh)|||2h. (3.10)

On the other hand, a careful study of M shows that

|||(zh, rh)|||h ≤ (1− ρν)|||(vh, qh)|||h + ρν|||(wh, 0)|||h
≤ |||(vh, qh)|||h + 4ρνM‖qh‖0
≤ (1 + 4ρM)|||(vh, qh)|||h
≤ 2|||(vh, qh)|||h, (3.11)

where we used the bound ρM ≤ 1/(2
√

3) < 1/4. Combining (3.10) and (3.11)
yields the desired estimate

Aδ

(
(vh, qh), (zh, rh)

)
≥ β |||(vh, qh)|||h |||(zh, rh)|||h, with β =

3

28 + 64M2
.



3.1 The Oseen Problem 473

A detailed investigation of M shows that M2 = O(δ−1
0 ); the asymptotic be-

haviour of β relative to δ0 follows. ⊓⊔
Remark 3.5. If we use continuous pressure approximations (i.e.,Qh ⊂ H1(Ω)),
then the pressure jumps across inter-element boundaries vanish. In this case
Lemma 3.4 is still valid with γ = 0. ♣

Lemma implies that problem (3.6) has a unique solution (uh, ph). We now
derive an error estimate for this solution. To this end, assume that the solution
of the Oseen problem (3.3) is sufficiently regular.

Theorem 3.6. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be the unique
solutions of problems (3.3) and (3.6) respectively. Assume that δT satisfies

0 < δ0h
2
T ≤ δT ≤ min

{
δ,

h2
T

2νµ2
inv

}
and 0 ≤ σ δT ≤

1

2

for some positive constant δ0, that µ > 0, γ > 0 and that (u, p) lies in
Hk+1(Ω)d × H l+1(Ω) for some k ≥ 1 and some l ≥ 0. Then one has the
error estimate

|||(u− uh, p− ph)|||h ≤ Eu h
k‖u‖k+1 + Ep h

l‖p‖l+1 (3.12)

where

Eu ≤ C
(
ν1/2 + σ1/2h+ µ1/2 + δ1/2 + δ

−1/2
0 + γ−1/2 + δ1/2σh

)
,

Ep ≤ C
(
ν1/2h+ γ1/2h+ δ1/2 + ηhmin

{
µ−1/2, ν−1/2

})
.

Here C is independent of ν and h. Moreover, η = 0 if ∇·Vh ⊂ Qh; otherwise
η = 1.

Proof. Put vh = Ihu and denote by qh the L2 projection of p onto Qh.
Since k ≥ 1, the interpolant Ih can be the standard nodal interpolant; it
is unnecessary to introduce the Scott-Zhang interpolant as in the proof of
Lemma 3.4. Comparing p − qh with p − Jhp and using the inverse estimates
(3.4f) and (3.4g), one checks easily that p − qh satisfies the error estimates
(3.4c) and (3.4d) with modified constants. Thus we have the interpolation
error estimate

|||(u− vh, p− qh)|||h ≤ Chk(ν1/2 + σ1/2h+ µ1/2 + δ1/2)‖u‖k+1

+ Chl(ν1/2h+ γ1/2h+ δ1/2)‖p‖l+1.

On the other hand, Lemma 3.4 and the projection property (3.7) imply that

|||(uh − vh, ph − qh)|||h
≤ 1

β
sup

(wh,rh)∈Vh×Qh
|||(wh,rh)|||h=1

Aδ((uh − vh, ph − qh), (wh, rh))

=
1

β
sup

(wh,rh)∈Vh×Qh
|||(wh,rh)|||h=1

Aδ((u− vh, p− qh), (wh, rh)).
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To bound the right-hand side of this inequality, consider an arbitrary element
(wh, rh) ∈ Vh×Qh with |||(wh, rh)|||h = 1 and estimate separately the various
terms in Aδ((u− vh, p− qh), (wh, rh)):

σ(u− vh,wh) ≤ C σ1/2hk+1‖u‖k+1|||(wh, rh)|||h,

ν(∇(u− vh),∇wh) ≤ C ν1/2hk‖u‖k+1|||(wh, rh)|||h,
∑

T∈Th

δT (σ(u− vh)− ν∆(u− vh), (b · ∇)wh +∇rh)T

≤ C hk(δ1/2σh+ ν1/2)‖u‖k+1|||(wh, rh)|||h,
∑

T∈Th

δT ((b · ∇)(u− vh) +∇(p− qh), (b · ∇)wh +∇rh)T

≤ C δ1/2{hk‖u‖k+1 + hl‖p‖l+1}|||(wh, rh)|||h,

γ
∑

E∈Eh

hE([p− qh]E , [rh]E)E

≤ {γ
∑

E∈Eh

hE‖[p− qh]E‖20,E}1/2|||(wh, rh)|||h

≤ C γ1/2hl+1‖p‖l+1|||(wh, rh)|||h,

((b · ∇)(u− vh),wh) + (rh,∇ · (u− vh))

= −
∑

T∈Th

((b · ∇)wh +∇rh,u− vh)T +
∑

E∈Eh

((u− vh) · nE , [rh]E)E

≤ C hk(δ
−1/2
0 + γ−1/2)‖u‖k+1|||(wh, rh)|||h,

µ(∇ · (u− vh),∇ ·wh) ≤ C µ1/2hk‖u‖k+1|||(wh, rh)|||h,

−(p− qh,∇ ·wh) ≤ η‖p− qh‖0 min{d1/2 |wh|1 , ‖∇ ·wh‖0}
≤ C η min{µ−1/2, ν−1/2}hl+1‖p‖l+1|||(wh, rh)|||h.

These estimates and a triangle inequality complete the proof. ⊓⊔

Remark 3.7. The mesh-dependent norm |||(·, ·)|||h controls the quantities

ν1/2|u|1 + σ1/2‖u‖0 and µ1/2‖∇ · u‖0.

If l = k−1, i.e., if Vh and Qh consist of piecewise polynomials of degrees k and
k− 1 respectively, then (3.12) implies that the choices δT ∼ h2

T , µ ∼ constant
and σ ∼ constant are optimal. For these choices, the right-hand side of the
error estimate (3.12) has the form

C hk
[(

1 + ν1/2 + h+ h2
)
‖u‖k+1 +

(
1 + ν1/2

)
‖p‖k

]
, (3.13)
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so the estimate is optimal, independently of the mesh Péclet number ν−1h.
Of course the Sobolev norms ‖u‖k+1 and ‖p‖k still, in general, depend on ν.
The above choice of the SD parameter δT differs from that made in scalar
convection-diffusion equations where (see (III.3.38) in Section III.3.2.1) the
usual choice of δT is

δT ∼
{
h2

T /ν if ν ≥ hT ,
hT if ν < hT .

This change is due to the coupling of two different phenomena – dominant
convection and the incompressibility condition. See also Remark 3.8 below.

If σ = Ch−ρ with ρ > 0, which occurs when the Oseen problem (3.3)
is generated by a time-discretization of the corresponding unsteady problem,
then provided ρ < 2 (so that the hypotheses on δT in Theorem 3.6 are satisfied)
one sees that (3.12) gives a better L2-error estimate for the velocity than the
case σ = 1 because of the σ-weighting in ||| · |||h. ♣

Remark 3.8. When using equal-order interpolation (i.e., k = l), the estimate
(3.12) implies that the choices µ ∼ h, σ ∼ h−1 and δT ∼ min{hT , h

2
T /ν} are

optimal. This recovers the “classical” choice (III.3.38) of the SD parameter
for scalar convection-diffusion problems. In the interesting case ν < h, setting
δT ∼ hT in the proof of Theorem 3.6 yields an estimate of the form

|||(u− uh, p− ph)|||h ≤ C hk+1/2 (‖u‖k+1 + ‖p‖k+1),

which is better than the bound of (3.13). Thus equal-order interpolation is
suitable for situations where the pressure is sufficiently smooth. In general,
however, regularity theory tells us that ‖u‖m+1 and ‖p‖m are comparable.
Equal-order interpolation with k = l = m− 1 then yields only an O(hm−1/2)
error estimate, which is inferior to the choice k− 1 = l = m− 1 for which one
has an O(hm) error estimate. ♣

Remark 3.9. When continuous pressure approximations are used, i.e., when
Qh ⊂ H1(Ω), the pressure jumps across inter-element boundaries vanish.
One can then repeat the proof of Theorem 3.6 with γ = 0 and derive the error
estimate (3.12) without the terms that contain γ. ♣

Remark 3.10. Discontinous pressure approximations of degree k − 1 and con-
tinuous velocity approximations of degree k usually give ∇ · Vh ⊂ Qh, so
η = 0 in Theorem 3.6. Thus one can choose µ = 0, i.e., the least-squares
term of the divergence can be removed from the SDFEM (3.6). Note that
such pairs of finite elements do not in general satisfy the Babuška-Brezzi
condition on shape-regular families of meshes. It has been shown recently
[Qin94, SV85, Zha05] that the Scott-Vogelius element of continuous velocity
approximations of degree k ≥ d and discontinuous pressure approximations
of degree k − 1 satisfies the Babuška-Brezzi condition on special macro-type
triangulations. ♣
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3.2 The Navier-Stokes Problem

This section extends our analysis of the SDFEM to the nonlinear Navier-
Stokes equations written in velocity-pressure form:

σ̃u− ν∆u + (u · ∇)u +∇p̃ = f̃ in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded polyhedral domain in Rd, d = 2 or 3, and f̃ ∈ L2(Ω)d.
The restriction to polyhedral domains and homogeneous Dirichlet boundary
conditions is made only to simplify the exposition.

In contrast to the linear case of Section 3.1, we shall consider here a scaled
form of the Navier-Stokes equations that is better suited to the approximation
of non-singular branches of solutions to nonlinear problems [BRR80]. Thus set
p̃ = νp, f̃ = νf , σ̃ = σν and λ = ν−1, and the above equations become

σu−∆u + λ((u · ∇)u) +∇p = f in Ω, (3.14a)

∇ · u = 0 in Ω, (3.14b)

u = 0 on ∂Ω . (3.14c)

Define the spaces V and Q by

V := H1
0 (Ω)d and Q := L2

0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}.

Then the weak formulation of the scaled Navier-Stokes problem (3.14) is:

Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has

σ(u,v) + (∇u,∇v) + λ((u · ∇)u,v)− (p,∇ · v) = (f ,v), (3.15a)

(q,∇ · u) = 0. (3.15b)

Let the finite element trial and test spaces Vh ⊂ V and Qh ⊂ Q satisfy
the interpolation error and inverse inequalities (3.4). We also assume that a
discrete Sobolev inequality of type

‖vh‖∞ ≤ c7 h−ρ‖∇vh‖0 ∀vh ∈ Vh (3.16)

with ρ > 0 for d = 2 and ρ = 1/2 for d = 3 holds. Indeed, in [OR79] for
piecewise linears on a quasiuniform mesh

‖vh‖∞ ≤ c7 | lnh|−1/2‖∇vh‖0 ∀vh ∈ Vh

when d = 2 has been proven. The generalization to piecewise polynomials of
degree less than or equal to r is given in [Kop98] with a constant c7 depending
on r. Moreover, when replacing h by hmin = minTh

hT this inequality is true
on any mesh [Kop98]. The three-dimensional case, d = 3 is studied in [HR82]
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on quasi uniform meshes for conforming and nonconforming finite element
spaces.

The SDFEM for (3.14) is obtained by adding to (3.14) both a least-squares
control of the divergence and, on each element, a weak form of the momentum
equation, using test functions of the form λ(u · ∇)v +∇q:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

σ(uh,vh) + (∇uh,∇vh) + λ((uh · ∇)uh,vh)− (ph,∇ · vh) + (qh,∇ · uh)

+δ
∑

T∈Th

h2
T (σuh −∆uh + λ(uh · ∇)uh +∇ph, λ(uh · ∇)vh +∇qh)T

+δ
∑

E∈Eh

hE([ph]E , [qh]E)E + µ(∇ · uh,∇ · vh)

= (f ,vh) + δ
∑

T∈Th

h2
T (f , λ(uh · ∇)vh +∇qh)T . (3.17)

Here the case δ = µ = 0 corresponds to the standard finite element method
for problem (3.14). Note that, unlike that method, no Babuška-Brezzi condi-
tion is imposed on the spaces Vh and Qh.

To obtain the unscaled form of (3.17), multiply (3.17) by ν then set p̃h =
νph, f̃ = νf , σ̃ = νσ, δ̃ = λδ, µ̃ = νµ, σ̃ = νσ and q̃h = νqh:

Find (uh, p̃h) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

σ̃(uh,vh) + ν(∇uh,∇vh) + ((uh · ∇)uh,vh)− (p̃h ,∇ · vh) + (q̃h,∇ · uh)

+ δ̃
∑

T∈Th

h2
T (σ̃uh − ν∆uh + (uh · ∇)uh +∇p̃h , (uh · ∇)vh +∇q̃h)T

+ δ̃
∑

E∈Eh

hE([p̃h]E , [q̃h]E)E + µ̃(∇ · uh,∇ · vh)

= (f̃ ,vh) + δ̃
∑

T∈Th

h2
T (f̃ , (uh · ∇)vh +∇q̃h)T . (3.18)

Comparing (3.18) with its linear analogue (3.6), one observes that in (3.6) we
have σ = δ̃ and δT = δ̃h2

T . This agrees with the parameter choices discussed in
Remarks 3.7 and 3.8. Corresponding to the linear case (Lemma 3.4), assume
in (3.17) that µ ≥ 0, δ > 0 and that δ satisfies

δ ≤ 1

2
µ−2

inv and δσh2
T ≤

1

2
. (3.19)

Theorem 3.11. Assume that the finite element spaces Vh ⊂ V and Qh ⊂ Q
satisfy (3.4) and inequality (3.16), and that δ satisfies (3.19). Assume that
for some constant C̃ one has

λh1−ρ

(
|f‖2−1 + δ

∑

T∈Th

h2
T ‖f‖20,T

)1/2

≤ C̃,
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where ρ is as in inequality (3.16). Then there exists a constant C, which is
independent of h and λ, such that the SDFEM problem (3.17) has at least one
solution (uh, ph). Moreover, the solution of (3.17) is unique if λ is sufficiently
small.

Proof. Define an operator P : Vh → Qh by

δ
∑

T∈Th

h2
T (∇P(uh),∇qh)T + δ

∑

E∈Eh

hE([P(uh)]E , [qh]E)E (3.20)

= −(qh,∇ · uh)− δ
∑

T∈Th

h2
T (σuh −∆uh + λ(uh · ∇)uh − f , ∇qh)T

for all uh ∈ Vh and all qh ∈ Qh, and an operator N : Vh → Vh by

(N (uh),vh) = σ(uh,vh) + (∇uh,∇vh) + λ((uh · ∇)uh,vh) (3.21)

− (P(uh),∇ · vh)− (f ,vh) + µ(∇ · uh,∇ · vh)

+ δ
∑

T∈Th

h2
T (σuh −∆uh + λ(uh · ∇)uh +∇P(uh)− f , λ(uh · ∇)vh)T

for all uh and vh ∈ Vh. Clearly (uh, ph) ∈ Vh ×Qh is a solution of (3.17) if
and only if N (uh) = 0 and ph = P(uh).

Let uh ∈ Vh satisfy σ‖uh‖20 + |uh|21 = R2, where R > 0 is arbitrary, and
use the abbreviations

F :=
[
‖f‖2−1 + δ

∑

T∈Th

h2
T ‖f‖20,T

]1/2
, Y :=

[
δ
∑

E∈Eh

hE‖[P(uh)]E‖20,E

]1/2

,

X :=

[
δ
∑

T∈Th

h2
T ‖λ(uh · ∇)uh +∇P(uh)‖20,T

]1/2

.

Equations (3.20) and (3.21) and the conditions (3.19) then imply that
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(N (uh),uh)

= σ‖uh‖20 + |uh|21 + λ((uh · ∇)uh,uh)

− (P(uh),∇ · uh)− (f ,uh) + µ‖∇ · uh‖20
+ δ

∑

T∈Th

h2
T (σuh −∆uh + λ(uh · ∇)uh +∇P(uh)− f , λ(uh · ∇)uh)T

≥ R2 − λ
2
(∇ · uh,uh · uh)− (f ,uh) + Y 2

+ δ
∑

T∈Th

h2
T (σuh−∆uh+λ(uh ·∇)uh+∇P(uh)−f , λ(uh ·∇)uh+∇P(uh))T

≥ R2 − λ
2
(∇ · uh,uh · uh)− ‖f‖−1R+X2 + Y 2

− δ
∑

T∈Th

h2
T

[
σ‖uh‖0,T + µinvh

−1
T ‖∇uh‖0,T + ‖f‖0,T

]
.

‖λ(uh ·∇)uh+∇P(uh)‖0,T

≥ 1

4
R2 +

1

4
X2 + Y 2 − F 2 − λ

2
(∇ · uh,uh · uh). (3.22)

Next, we estimate the term (∇·uh,uh ·uh). From (3.4), (3.16), (3.20) and
the continuity of uh, one sees that

|(∇ · uh,uh · uh)|
≤ |(∇ · uh,uh · uh − Jh(uh · uh))|+ |(∇ · uh, Jh(uh · uh))|
≤ d1/2Rc3h|uh · uh|1
+
∣∣∣δ

∑

T∈Th

h2
T (σuh −∆uh + λ(uh · ∇)uh +∇P(uh)− f , ∇Jh(uh · uh))T

∣∣∣

+
∣∣∣δ

∑

E∈Eh

hE([P(uh)]E , [uh · uh − Jh(uh · uh)]E)E

∣∣∣

≤ d1/2c3c7h
1−ρR3 + c4h|uh · uh|1δ1/2Y

+ (1 + c3)h|uh · uh|1{δ1/2X + δ1/2F + δµinv|uh|1 + δσh‖uh‖0}
≤ 2Mh1−ρR3 + γh1−ρR2[X + Y + F ], (3.23)

where

M := max

{
1

2
c7[δ(1 + c3)(µinv + hσ1/2) + d1/2c3], δ

1/2c7(1 + c3 + c4)

}
.

Combining (3.22) and (3.23), we obtain

(N (uh),uh) ≥ 1

4
R2 −Mλh1−ρR3 −M2λ2h2(1−ρ)R4 − 2F 2.

Now assume that 64Mλh1−ρF ≤ 1 and put R =
1

8Mλh1−ρ
. Then
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(N (uh),uh) ≥ 7

4096M2λ2h2(1−ρ)
− 2F 2

=
1

4096M2λ2h2(1−ρ)

[
7− 2(64Mλh1−ρF )2

]
> 0 .

Using this inequality, a variant of Brouwer’s fixed-point theorem implies ex-
istence of a uh ∈ Vh with σ‖uh‖20 + |uh|21 ≤ R2 and N (uh) = 0. Thus the
SDFEM problem (3.17) has at least one solution (uh, ph). The remaining part
of the theorem follows from Banach’s fixed-point theorem using the same ar-
guments as for standard finite element methods; cf. [GR86]. ⊓⊔

Remark 3.12. If one replaces the term λ((uh ·∇)uh,vh) in the SDFEM (3.17)
by its anti-symmetric analogue

λ

2
[((uh · ∇)uh,vh)− ((uh · ∇)vh,uh)],

the hypothesis on λh1−ρ in Theorem 3.11 can be dropped. ♣

Theorem 1.1 informs us that the problem (3.15) has at least one solution,
which is unique provided λ is sufficiently small, and that it can be written in
the operator form

F (λ,uλ, pλ) := (uλ, pλ) + TG(λ,uλ, pλ) = 0. (3.24)

Here the linear functional G(λ,u, p) ∈ V∗ ×Q is defined by

< G(λ,u, p), (v, q) > := λ((u · ∇)u,v)− (f ,v)

for all (v, q) ∈ V×Q, and the generalized Stokes operator T : V∗×Q→ V×Q
associates with each (w, r) ∈ V∗ ×Q the unique solution (u, p) = T (w, r) in
V ×Q of

σ(u,v) + (∇u,∇v)− (p,∇ · v) = < w,v >,

(q,∇ · u) = (r, q),

for all (v, q) ∈ V ×Q.
In what follows, we assume that one has a compact interval Λ ⊂ R and a

continuous branch λ �→ (uλ, pλ) of solutions of the problem (3.24) that is regu-
lar, in the sense that for each λ ∈ Λ the Fréchet derivative D(u,p)F (λ,uλ, pλ)
of F (λ, ·, ·) at (uλ, pλ) is a homeomorphism of V × Q onto itself. We shall
prove that the SDFEM problem (3.17) has a unique solution (uh,λ, ph,λ) in a
neighbourhood of the solution branch (uλ, pλ) and derive error estimates for
(uλ − uh,λ, pλ − ph,λ). The analysis follows [BRR80] for the approximation
of non-singular branches of solutions to nonlinear problems and [GR86] for
standard finite element methods applied to the Navier-Stokes equations.

Let Th : L2(Ω)d×Q→ Vh×Qh be the discrete Stokes operator that asso-
ciates with each (w, r) ∈ L2(Ω)d×Q the unique solution (uh, ph) = Th((w, r))
in Vh ×Qh of
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σ(uh,vh) + (∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)

+ δ
∑

T∈Th

h2
T (σuh −∆uh +∇ph,∇qh)T

+ δ
∑

E∈Eh

hE([ph]E , [qh]E)E + µ(∇ · uh,∇ · vh)

= (w,vh) + δ
∑

T∈Th

h2
T (w,∇qh)T + (r, qh) for all (vh, qh) ∈ Vh ×Qh.

Define the operator Gh : Λ×Vh ×Qh → Vh ×Qh by

(Gh(λ,uh, ph), (vh, qh)) :=< G(λ,uh, ph), (vh, qh) >

+ δ
∑

T∈Th

h2
T (−f+σuh−∆uh+λ(uh ·∇)uh+∇ph, λ(uh ·∇)vh)T

− δ2
∑

T∈Th

h4
T (−f+σuh−∆uh+λ(uh ·∇)uh+∇ph, λ(uh ·∇)∇qh)T (3.25)

for all (uh, ph), (vh, qh) ∈ Vh×Qh. Using these operators, the SDFEM prob-
lem (3.17) can be written, analogously to (3.24), as

Fh(λ,uh,λ, ph,λ) := (uh,λ, ph,λ) + ThGh(λ,uh,λ, ph,λ) = 0 . (3.26)

To formulate our main result, introduce the mesh-dependent norm

|(v, q)|h :=

(
σ‖v‖20 + |v|21 + ‖q‖20

+ δ
∑

T∈Th

h2
T |q|21,T + δ

∑

E∈Eh

hE‖[q]E‖20,E

)1/2

.

The assumption λ ∈ Λ, where Λ is compact, implies that ν is bounded away
from zero, so we do not consider the behaviour of (3.17) as ν → 0. Thus
|(·, ·)|h resembles the norm |||(·, ·)|||h that was used in Section 3.1.

Lemma 3.13. [TV96] Assume that (uλ, pλ) ∈ Hk+1(Ω)d ×Hk(Ω) for some
k ≥ 1. Then there exists a constant C, which is independent of h and λ, such
that

|Fh(λ, Ihuλ, Jhpλ)|h ≤ Chk{Kk + λK2
k + λ2h2K3

k}, (3.27a)

‖D(u,p)F (λ,uλ, pλ)−D(u,p)F (λ, Ihuλ, Jhpλ)‖L(V×Q) ≤ CλhK1, (3.27b)

‖D(u,p)Fh(λ, Ihuλ, Jhpλ)−D(u,p)F (λ, Ihuλ, Jhpλ)‖L(Vh×Qh)

≤ CλhK1{1 + λhK1}, (3.27c)

‖D(u,p)Fh(λ,uh, ph)−D(u,p)Fh(λ, vh, qh)‖L(Vh×Qh)

≤ Cλ |(uh − vh, ph − qh)|h, (3.27d)
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where

Kl := sup
λ∈Λ

max{‖f‖l−1, ‖uλ‖l+1, ‖pλ‖l} for 1 ≤ l ≤ k .

In this lemma the operator norms ‖ · ‖L(V×Q) and ‖ · ‖L(Vh×Qh) are induced

by the norm |(v, q)| = (|v|21 + ‖q‖20)1/2 on V×Q and by our mesh-dependent
norm |(·, ·)|h on Vh ×Qh.

Theorem 3.14. Let Λ ⊂ R be a given compact interval. For λ ∈ Λ, assume
that the problem (3.24) has a regular branch of solutions λ �→ (uλ, pλ) and
that (uλ, pλ) ∈ Hk+1(Ω)d ×Hk(Ω) for some k ≥ 1. Then there is a positive
constant h0(Λ) such that for all h ∈ (0, h0(Λ)] the problem (3.17) has a unique
branch of solutions λ �→ (uh,λ, ph,λ) in a neighbourhood of (uλ, pλ). Moreover,
the error estimate

sup
λ∈Λ

|(uh,λ − uλ , ph,λ − pλ)|h ≤M(K,Λ) hk (3.28)

holds true, where K = max
1≤l≤k

Kl.

Proof. From (3.27b) and (3.34) one can deduce that D(u,p)Fh(λ, Ihuλ, Jhpλ),
the Fréchet derivative of Fh(λ, ·, ·) at (Ihuλ, Jhpλ), is a homeomorphism of
Vh × Qh onto itself for each λ ∈ Λ, provided that h supλ∈Λ λ is sufficiently
small. Thus (3.26) can be recast as a fixed-point equation for the operator Φ
defined by

Φ(uh,λ, ph,λ) := (uh,λ, ph,λ) +D(u,p)Fh(λ, Ihuλ, Jhpλ)−1 Fh(λ,uh,λ, ph,λ).

The bounds (3.27a) and (3.27d) imply that Φ : Vh×Qh → Vh×Qh is contrac-
tive and maps the ball B((Ihuh,λ, Jhph,λ), R) of radius R(h,Λ) = O(hk) into
itself. Hence, by Banach’s fixed-point theorem, (3.26) has a unique solution
(uh,λ, ph,λ) in this ball. The triangle inequality

|(uh,λ−uλ , ph,λ − pλ)|h
≤ |(uh,λ − Ihuλ , ph,λ − Jhpλ)|h + |(Ihuλ − uλ , Jhpλ − pλ)|h

and the estimates (3.4a)–(3.4d) then yield (3.28). ⊓⊔

Remark 3.15. For fixed λ, instead of (3.28) one obtains the estimate

|(uh,λ − uλ , ph,λ − pλ)|h ≤M(K,λ) hk.

Now M(K,λ) ∼ ‖D(u,p)F (λ,uλ, pλ)−1‖λ2K3, but unfortunately the behav-
iour of ‖D(u,p)F (λ,uλ, pλ)−1‖ as a function of λ = 1/ν is in general un-
known. The simple one-dimensional Example 3.16 shows that in the worst
case ‖D(u,p)F (λ,uλ, pλ)−1‖ may depend exponentially on λ. On the other
hand, results of [JR94, JRB95a, JRB95b] show that – for certain classes of
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flow problems and particular perturbations – the norm of the solution of the
linearized problem may depend only linearly on λ. This operator norm was
estimated in [Tob81] for a class of scalar convection-diffusion equations, using
the maximum principle in a framework of Hölder spaces; in the worst case a
linear dependence on λ was proved.

Example 3.16. Consider Burgers’ equation, which is the one-dimensional ver-
sion of the Navier-Stokes equations:

−νu′′ + uu′ = f in (−1, 1), u(−1) = 1, u(1) = −1.

If f ≡ 0 then the exact solution of this problem is u(x) = −2ναν tanh(ανx),
where αν is the unique positive solution of 2ναν tanh(αν) = 1. When lin-
earized about u, the original problem becomes

Lv := −νv′′ + uv′ + vu′ = f in (−1, 1), v(−1) = v(1) = 0.

This has the unique solution

v(x) = −λeλU(x)

∫ x

−1

e−λU(t)

(∫ t

0

f(s)ds+ c

)
dt,

where U is a primitive of u, c is determined by the condition v(1) = 0, and
λ = 1/ν. For the particular choice

f(s) = cosh(ανs)

the solution is

v(x) =
cosh3(αν)− cosh3(ανx)

3να2
ν cosh2(ανx)

.

Now L : H1
0 → H−1, with

‖L−1‖ = sup
g∈H−1

|L−1g|1
‖g‖−1

≥ |v|1
‖f‖−1

.

But ‖v‖∞ ≤
√

2 |v|1 and ‖f‖−1 ≤
√

2 ‖f‖∞, so

‖L−1‖ ≥ ‖v‖∞
2‖f‖∞

≥ sinh2 αν

6να2
ν

.

Hence, in the most interesting and challenging case when λ ≫ 1, the lower
bound behaves like 2eλ/(3λ), i.e., it grows exponentially in λ. ♣

Remark 3.17. If λ((uh · ∇)uh,vh) in the SDFEM (3.17) is replaced by its
anti-symmetric analogue

λ

2
[((uh · ∇)uh,vh)− ((uh · ∇)vh,uh)],
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then the condition that λh1−ρ be small can be omitted from the existence
result of Theorem 3.11. This does however introduce an additional term

λ

2
δ
∑

T∈Th

h2
T

[(
(uh · ∇)∇qh,uh)T + ((uh · ∇)uh,∇qh

)
T

]

into the operator Gh of (3.25) and an additional term λhd/2K2
1 in (3.27a).

Theorem 3.14 consequently gives only an O(hd/2) error estimate. This order
of convergence cannot be improved by assuming higher-order regularity of the
solution of problem (3.15), so there is no point in using high-order finite el-
ement spaces. Note that these additional terms vanish when using piecewise
constant approximations of the pressure. A more detailed analysis of the ad-
ditional terms in the case of piecewise linear pressure approximations yields
an O(h2−κ) error estimate, where κ > 0 can be arbitrarily small if d = 2, and
κ = 0 if d = 3. ♣



4

Local Projection Stabilization for Equal-Order
Interpolation

Local projection stabilization (LPS) was introduced in Part III, Chapter 3 for
a scalar convection-diffusion equation. It will now be extended to the Oseen
system

−ν∆u + (b · ∇)u + σu +∇p = f in Ω ⊂ R
d, (4.1a)

∇ · u = 0 in Ω, (4.1b)

u = 0 on ∂Ω. (4.1c)

As we saw in Chapter 3, the streamline diffusion method (SDFEM) can
handle two types of instabilities: that caused by a violation of the discrete inf-
sup (Babuška-Brezzi) condition (2.1) and that due to dominant convection.
The SDFEM combines the Pressure Stabilized Petrov-Galerkin (PSPG) ap-
proach (testing the residual against ∇q) with the Streamline Upwind Petrov-
Galerkin (SUPG) technique (testing the residual against (b · ∇)v); see for
example [BH82, FF92, HFB86, TBA+92].

Despite the extensive theoretical and practical development of the SD-
FEM, a fundamental flaw in the method – in particular for higher-order in-
terpolations – is that various terms must be added to the weak formulation to
guarantee its consistency. Moreover, the requirement of consistency leads to
undesirable effects when using residual-based stabilization methods like the
SDFEM in optimal control problems; see the discussion at the beginning of
Section III.3.3. LPS relaxes the consistency requirement while preserving the
main features of the SDFEM approach; in particular, one can use equal-order
interpolation without worrying about the Babuška-Brezzi condition. Further-
more, LPS allows us to separate velocity and pressure in the stabilization
terms, which for systems of equations means that one can avoid non-physical
couplings.

Stabilization by local projection is introduced for the Stokes problem
in [BB01], extended to the transport equation in [BB04], and analysed for low-
order discretizations of the Oseen equations in [BB06]. Some variants and ap-
plications are discussed in [BR06a, BR06b]. The method has been sucessfully
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used in many different areas; see for example [EAE06, BB01, BB06, BR06a,
BR06b, BR07, BV07, EG04, GMQ06, Gue99a, Gue99b, Gue01a, Gue01b,
JK06a, JKL06, KR05].

In LPS, one uses a projection πh : Yh → Dh from the finite element
space Yh, which approximates velocity and pressure, into a discontinuous
space Dh. Stabilization of the standard Galerkin method is then achieved by
adding terms that give a weighted L2 control over the fluctuations (id− πh)
of the gradients of the quantity of interest. In the error analysis of the LPS,
the key idea – as expounded in Section III.3.3.1 – is the construction of an in-
terpolant operator that maps into Yh and possesses a particular orthogonality
property with respect to the discontinuous space Dh.

Our exposition here begins by recalling in Section 4.1 the weak formula-
tion of the Oseen equations, its standard Galerkin discretization and LPS in
an abstract setting. In the same setting, Section 4.2 is devoted to the conver-
gence analysis of LPS; a special interpolant will be constructed that satisfies
a local inf-sup condition. On proving the independence of its stability from
the Reynolds number and an approximate Galerkin orthogonality identity,
we deduce optimal a priori error estimates. The application of this theory
in a framework of two-level methods is studied in Section 4.3, where the fo-
cus is on defining pairs of finite element spaces that satisfy the local inf-sup
condition of Section 4.2. The analysis is extended in Section 4.4 to spaces
that are defined on the same mesh; one begins from the space Dh then con-
structs the space Yh by enriching standard finite element spaces. It is well
known that stabilized methods can also be derived in a variational multiscale
framework [HS07, Hug95, Tob06] – a scale separation of the underlying fi-
nite element spaces shows that it is sufficient to stabilize only the fine scale
fluctuations. This produces a stabilizing term that gives a weighted L2 con-
trol over the gradients of fluctuations instead of the fluctuations of gradients
[EG04, Gue99a]. The relation between this subgrid modelling approach and
LPS will be discussed in Section 4.5.

4.1 Local Projection Stabilization in an Abstract Setting

We briefly recall the weak formulation and unique solvability of the Oseen
problem (4.1). Assume that b ∈ W1,∞(Ω) with ∇ · b = 0. Set V = H1

0(Ω)
and Q = L2

0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}. On the product space V × Q,
introduce the bilinear form

A
(
(u, p); (v, q)

)
:= ν(∇u,∇v)+

(
(b · ∇)u,v

)
+ σ(u,v)

−(p,∇ · v) + (q,∇ · u).

Then a weak formulation of the Oseen problem (4.1) is:

Find (u, p) ∈ V ×Q such that
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A
(
(u, p); (v, q)

)
= (f ,v) ∀(v, q) ∈ V ×Q. (4.2)

Recall from Theorem 1.5 that (4.2) has a unique solution for all positive ν.

The LPS is based on two finite element spaces, the approximation space Yh

and the projection space Dh, which can be defined on different families of
meshes. Here the projection space Dh is associated with a shape-regular de-
composition Mh of Ω into macro-elements M ∈ Mh. Then we use certain
refinement rules to generate from the family of macro-elements Mh a fam-
ily of shape-regular decompositions T ∈ Th, in such a way that for each cell
T ∈ Th there is a macro-element M ∈Mh with T ⊂ M and

hT ∼ hM ∀T ⊂ M, ∀M ∈Mh.

The spaces used for the approximation of the velocity u ∈ V and the pres-
sure p ∈ Q will be based on the decomposition Th. Our analysis allows the
possibility that Mh = Th.

Let Yh ⊂ H1(Ω) be a finite element space of continuous piecewise poly-
nomial functions defined over Th. For simplicity of presentation we consider
the case of equal-order interpolation, so the velocity and pressure are approx-
imated by the respective spaces Vh := Y d

h ∩V and Qh := Yh ∩Q. Let Dh be
a discontinuous finite element space defined on the macro-decomposition Mh

and set Dh(M) = {qh

∣∣
M

: qh ∈ Dh}. Let πM : L2(M) → Dh(M)

be a local projection then define the projection πh : L2(Ω) → Dh by
(πhw)

∣∣
M

:= πM

(
w
∣∣
M

)
. The fluctuation operator κh : L2(Ω) → L2(Ω) associ-

ated with the projection πh is κh := id−πh, where id : L2(Ω) → L2(Ω) is the
identity mapping. These operators will be applied to vector-valued functions
component by component, and this usage is indicated by boldface notation,
e.g., πh : L2(Ω) → Dh and κh : L2(Ω) → L2(Ω).

Our stabilized scheme is:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

A
(
(uh, ph); (vh, qh)

)
+ Sh

(
(uh, p); (vh, qh)

)
= (f ,vh) (4.3a)

where the stabilization term is

Sh

(
(uh, ph); (vh, qh)

)
:=

∑

M∈Mh

(
τM (κh(b · ∇)uh,κh(b · ∇)vh)M

+ µM (κh∇ · uh, κh∇ · vh)M + αM (κh∇ph,κh∇qh)M

)
, (4.3b)

and the user-chosen constants τM , µM , and αM are yet to be specified –
an optimal mesh-dependent choice will follow from the error analysis of the
method. Existence, uniqueness, and convergence properties of discrete solu-
tions (uh, ph) ∈ Vh ×Qh will be studied in the next section.
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4.2 Convergence Analysis

4.2.1 The Special Interpolant

In Section III.3.3.1 we saw that the crucial ingredient in the error analysis of
the LPS applied to convection-diffusion equations is the existence of an inter-
polant jh : H2(Ω) → Yh such that the error w − jhw is L2-orthogonal to Dh

and the standard approximation properties hold true. In Theorem III.3.71
the existence of such an interpolation operator was established provided that
one has existence of an interpolation operator ih : H2(Ω) → Yh with the de-
sired approximation properties and the pair (Yh, Dh) satisfies the local inf-sup
condition (3.90). For the stability of the LPS method (4.3) we need interpola-
tion operators jh : H1(Ω) → Yh that are defined on the larger space H1(Ω),
have the standard approximation properties, and exhibit the orthogonality
(w− jhw) ⊥ Dh in L2(Ω). The first two requirements can be satisfied by em-
ploying interpolation operators for non-smooth functions such as the Scott-
Zhang operator of Remark III.3.1. Modifying this operator as in the proof
of Theorem III.3.71 yields a interpolation operator jh that satisfies all three
requirements. When applied to vector-valued functions component by compo-
nent, we indicate this by using boldface notation, e.g., jh : V → Y d

h ∩ V.
Thus for an approximation space Yh that contains piecewise polynomials
of degree r ∈ N, one can assume the existence of interpolation operators
jh : H1(Ω) → Yh and jh : V → Vh that satisfy the orthogonality and approx-
imation properties

(w − jhw, qh) = 0 ∀qh ∈ Dh, ∀w ∈ H1(Ω), (4.4a)

(w − jhw,qh) = 0 ∀qh ∈ Dh, ∀w ∈ V. (4.4b)

For all w ∈ H l(Ω), 1 ≤ l ≤ r + 1, ∀M ∈Mh, one has

‖w − jhw‖0,M + hM |w − jhw|1,M ≤ C hl
M‖w‖l,Λ(M).

For all w ∈ V ∩Hl(Ω), 1 ≤ l ≤ r + 1, ∀M ∈Mh one has

‖w − jhw‖0,M + hM |w − jhw|1,M ≤ C hl
M‖w‖l,Λ(M). (4.5)

Here Λ(M) := ∪T∈Mω(T ) is a local neighbourhood of M that is gen-
erated from the local neighbourhoods ω(T ) that appear in the interpo-
lation error estimates (3.5) of the Scott-Zhang operator; see Remark 3.1
and [Ape99, Clé75, SZ90] for more details.

Remark 4.1. On setting qh = 1 in (4.4a), it follows that (jhw, 1) = (w, 1) for
all w ∈ H1(Ω). Thus jh : H1(Ω) ∩Q→ Qh. ♣
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4.2.2 Stability

On the product space V ×Q, define the mesh-dependent norm

|||(v, q)||| :=
(
ν|v|21 + σ‖v‖20 + (ν + σ)‖q‖20 + Sh

(
(v, q); (v, q)

))1/2

. (4.6)

Lemma 4.2. Assume that max{ν, σ, τM , µM , h
2
M/αM} ≤ C for all M ∈Mh

and that there are interpolation operators jh : H1(Ω) → Yh and jh : V → Vh

satisfying (4.4)–(4.5). Then there is a positive constant β2, which is indepen-
dent of ν and h, such that

inf
(vh,qh)∈Vh×Qh

sup
(wh,rh)∈Vh×Qh

(A+ Sh)
(
(vh, qh); (wh, rh)

)

|||(vh, qh)||| |||(wh, rh)||| ≥ β2 > 0. (4.7)

Proof. Consider an arbitrary pair (vh, qh) ∈ Vh × Qh. Choosing (wh, rh) =
(vh, qh), one has

(A+ Sh)
(
(vh, qh); (vh, qh)

)
= ν|vh|21 + σ‖vh‖20 + Sh

(
(vh, qh); (vh, qh)

)

since ∇ · b = 0 and vh = 0 on ∂Ω.
Now we make a different choice of (wh, rh) to get some L2-norm control

over the pressure. For each qh ∈ Qh, the continuous Babuška-Brezzi condition
guarantees the existence of a function vqh

∈ V such that

(∇ · vqh
, qh) = −(qh, qh) and ‖vqh

‖1 ≤ C‖qh‖0. (4.8)

Choose (wh, rh) = (jhvqh
, 0) where jh satisfies (4.4b) and (4.5). This yields

A
(
(vh, qh); (jhvqh

, 0)
)

= ‖qh‖20−(qh,∇ · (jhvqh
− vqh

)) +
(
(b · ∇)vh, jhvqh

)

+ν(∇vh,∇jhvqh
) + σ(vh, jhvqh

). (4.9)

We estimate the last four terms on the right-hand side. Integrating the first
by parts gives

−
(
qh,∇ · (jhvqh

− vqh
)
)

=
(
∇qh, jhvqh

− vqh

)
=
(
κh∇qh, jhvqh

− vqh

)
,

so

∣∣(qh,∇ · (jhvqh
− vqh

)
)∣∣ ≤

( ∑

M∈Mh

αM‖κh∇qh‖20,M

)1/2

·

( ∑

M∈Mh

1

αM
‖jhvqh

− vqh
‖20,M

)1/2

≤ C
[
Sh

(
(vh, qh); (vh, qh)

)]1/2 ‖vqh
‖1

≤ C
[
Sh

(
(vh, qh); (vh, qh)

)]1/2 ‖qh‖0

≤ ‖qh‖20
8

+ C Sh

(
(vh, qh); (vh, qh)

)
. (4.10)
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Integrating the third term in (4.9) by parts, invoking the H1 stability of jh
which follows from (4.5) for l = 1, and taking (4.8) into account, we obtain

|((b · ∇)vh, jhvqh
)| = |(vh, (b · ∇)jhvqh

)| ≤ C ‖vh‖0 |jhvqh
|1

≤ ‖qh‖20
8

+ C ‖vh‖20. (4.11)

To estimate the remaining terms in (4.9), use max{ν,σ} ≤ C to get

∣∣ν(∇vh,∇jhvqh
) + σ(vh, jhvqh

)
∣∣ ≤

(
ν|vh|1 + σ‖vh‖0

)
‖jhvqh

‖1
≤ C

(
ν1/2|vh|1 + σ1/2‖vh‖0

)
‖qh‖0

≤ ‖qh‖20
8

+ C
(
ν|vh|21 + σ‖vh‖20

)
.

The Cauchy-Schwarz inequality and the L2 stability of κh give

∣∣Sh

(
(vh, qh); (jhvqh

, 0)
)∣∣ ≤ C

(
Sh

(
(vh, 0); (vh, 0)

))1/2 |jhvqh
|1

≤ C
(
Sh

(
(vh, qh); (vh, qh)

))1/2 ‖qh‖0

≤ ‖qh‖20
8

+ C Sh

(
(vh, qh); (vh, qh)

)
. (4.12)

Let

X :=
(
ν|vh|21 + σ‖vh‖20 + Sh

(
(vh, qh); (vh, qh)

))1/2

denote the part of the triple norm without L2 control over the pressure. Com-
bining (4.10)–(4.12) with (4.9), one has

(A+ Sh)
(
(vh, qh); (jhvqh

, 0)
)
≥ ‖qh‖20

2
− C X2 − C ‖vh‖20. (4.13)

Now multiply (4.13) by 2(ν + σ) and invoke Poincaré’s inequality to get

2(ν + σ)‖vh‖20 ≤ C
(
ν|vh|21 + σ‖vh‖20

)
.

Hence

(A+ Sh)
(
(vh, qh); 2(ν + σ)(jhvqh

, 0)
)
≥ (ν + σ)‖qh‖20 − C1X

2

with a suitable constant C1.
For an arbitrary (vh, qh) ∈ Vh ×Qh, choose

(wh, rh) := (vh, qh) +
2(ν + σ)

1 + C1
(jhvqh

, 0) ∈ Vh ×Qh.

Then
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(A + Sh)
(
(vh, qh); (wh, rh)

)
≥ (ν + σ)

1 + C1
‖qh‖20 +

(
1− C1

1 + C1

)
X2

=
1

1 + C1
|||(vh, qh)|||2 (4.14)

and

|||(wh, rh)||| ≤ |||(vh, qh)|||+ 2(ν + σ)

1 + C1
|||(jhvqh

, 0)|||

≤ |||(vh, qh)|||+ C(ν + σ)‖jhvqh
‖1

≤ |||(vh, qh)|||+ C(ν + σ)‖qh‖0 ≤ C2|||(vh, qh)|||. (4.15)

Now (4.7) follows from (4.14) and (4.15) with β2 = 1/(C2(1 + C1)). ⊓⊔

Remark 4.3. For σ > 0 we have control over the L2 norms of pressure and
velocity uniformly in ν > 0. In the case σ = 0 this control is lost as ν → 0
because of the presence of the convection term: now (4.11) is no longer useful
since ‖qh‖0 has disappeared from |||(vh, qh)|||. If we consider the Stokes prob-
lem (i.e., set b ≡ σ ≡ 0 in (4.1)), then a careful investigation shows that one
still has control over the L2 norm of the pressure with a constant independent
of ν and h. ♣

Remark 4.4. The unique solvability of the stabilized discrete problem (4.3) is
immediate from Lemma 4.2. ♣

4.2.3 Consistency Error

Unlike residual-based stabilization schemes, LPS does not have the Galerkin
orthogonality property. Consequently we investigate its consistency error.

Lemma 4.5. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be the solutions
of (4.2) and (4.3) respectively. Then for all (vh, qh) ∈ Vh ×Qh one has

(A+ Sh)((u− uh, p− ph); (vh, qh)) = Sh((u, p); (vh, qh)).

Proof. Simply subtract (4.3a) from (4.2). ⊓⊔

To estimate the consistency error, assume that b is sufficiently smooth in
the sense that

b
∣∣
M
∈Wr,∞(M) ∀M ∈Mh, max

M∈Mh

‖b‖r,∞,M ≤ C. (4.16)

Lemma 4.6. Suppose that for the fluctuation operator κh one has

‖κhq‖0,M ≤ C hl
M |q|l,M ∀q ∈ H l(M), ∀M ∈Mh, 0 ≤ l ≤ r. (4.17)

and b satisfies (4.16). Assume that (u, p) ∈ Hr+1(Ω)×Hr+1(Ω). Then
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∣∣Sh

(
(u, p); (vh, qh)

)∣∣ ≤ C

( ∑

M∈Mh

h2r
M

[(
τM‖b‖2r,∞,M + µM

)
‖u‖2r+1,M

+ αM‖p‖2r+1,M

])1/2

|||(vh, qh)||| (4.18)

for all (vh, qh) ∈ Vh ×Qh.

Proof. From the definition of the stabilizing term we get

|Sh((u, p); (vh, qh))| ≤
(
Sh((u, p); (u, p))

)1/2(
Sh((vh, qh); (vh, qh))

)1/2

≤
(
Sh((u, p); (u, p))

)1/2

|||(vh, qh)|||.

The approximation properties of κh imply that

Sh

(
(u, p); (u, p)

)

≤ C
∑

M∈Mh

h2r
M

(
τM |(b · ∇)u|2r,M + µM |∇ · u|2r,M + αM |∇p|2r,M

)

and (4.18) follows. ⊓⊔

Remark 4.7. The assumption b|M ∈ Wr,∞(M) is rather restrictive in the
framework of the Navier-Stokes model, since b corresponds to a finite element
function that is in general non-smooth across element borders. But in the case
Mh = Th the macro-cells are element cells and this assumption should not
be a problem. Another way to relax the smoothness assumption on b is by
means of a modified stabilization term; see Theorem 4.10. ♣

4.2.4 A priori Error Estimate

Stability and consistency engender an a priori error estimate in the usual
way. An important aspect of this bound is that the constant multiplier C is
independent of the viscosity ν and the mesh size h.

Theorem 4.8. Let (u, p) ∈
(
H1

0(Ω) ∩ Hr+1(Ω)
)
×
(
L2

0(Ω) ∩ Hr+1(Ω)
)

be
the solution of (4.2) and (uh, ph) ∈ Vh × Qh be the solution of the LPS
method (4.3). Then there is a positive constant C, which is independent of ν
and h, such that

|||(u−uh, p− ph)||| ≤ C
[ ∑

M∈Mh

h2r
M

(
ν + h2

M σ + h2
M τ−1

M + τM‖b‖2r,∞,M

+ h2
M µ−1

M + µM + h2
M α−1

M + αM

)(
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

)]1/2

.
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The choices τM ∼ hM/‖b‖r,∞,M , µM ∼ hM , and αM ∼ hM are asymptoti-
cally optimal and lead to

|||(u− uh, p− ph)|||

≤ C
( ∑

M∈Mh

(ν + hM )h2r
M

(
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

))1/2

.

Proof. Lemma 4.2 implies that

|||(jhu− uh, jhp− ph)|||

≤ 1

β2
sup

(wh,rh)∈Vh×Qh

(A+ Sh)
(
(jhu− uh, jhp− ph); (wh, rh)

)

|||(wh, rh)|||

≤ 1

β2
sup

(wh,rh)∈Vh×Qh

(A+ Sh)
(
(u− uh, p− ph); (wh, rh)

)

|||(wh, rh)|||

+
1

β2
sup

(wh,rh)∈Vh×Qh

(A+ Sh)
(
(jhu− u, jhp− p); (wh, rh)

)

|||(wh, rh)||| .

Using Lemmas 4.5 and 4.6, we bound the first term as follows:

(A+ Sh)
(
(u− uh, p− ph); (wh, rh)

)

|||(wh, rh)||| =
Sh

(
(u, p); (wh, rh)

)

|||(wh, rh)|||

≤ C
( ∑

M∈Mh

h2r
M

[(
τM‖b‖2r,∞,M + µM

)
‖u‖2r+1,M + αM‖p‖2r+1,M

])1/2

.

To estimate the second term above, consider separately each individual term
in the expression (A+ Sh)

(
(jhu− u, jhp− p); (wh, rh)

)
. The treatment of

∣∣ν(∇(jhu− u),∇wh) + σ(jhu− u,wh)
∣∣

is standard and leads to the bound

C

( ∑

M∈Mh

h2r
M

(
ν + σ h2

M

)
‖u‖2r+1,Λ(M)

)1/2

|||(wh, rh)||| .

When dealing with the next three terms, we use the special interpolants that
satisfy (4.4)–(4.5). Integrating by parts, one gets
∣∣∣
(
(b · ∇)(jhu− u),wh

)∣∣∣ =
∣∣(jhu− u, (b · ∇)wh

)∣∣

=
∣∣(jhu− u,κh(b · ∇)wh

)∣∣ (4.19)

≤ C
( ∑

M∈Mh

h2r+2
M τ−1

M ‖u‖2r+1,Λ(M)

)1/2(
Sh

(
(wh, 0); (wh, 0)

))1/2

,
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∣∣(p− jhp,∇ ·wh)
∣∣ =

∣∣(p− jhp,κh∇ ·wh)
∣∣ (4.20)

≤ C
( ∑

M∈Mh

h2r+2
M µ−1

M ‖p‖2r+1,Λ(M)

)1/2(
Sh

(
(wh, 0); (wh, 0)

))1/2

,

∣∣(rh,∇ · (jhu− u))
∣∣ =

∣∣(∇rh, jhu− u)
∣∣ =

∣∣(κh∇rh, jhu− u)
∣∣

≤ C
( ∑

M∈Mh

h2r+2
M α−1

M ‖u‖2r+1,Λ(M)

)1/2(
Sh

(
(0, rh); (0, rh)

))1/2

.

Finally, one has

∣∣Sh

(
(jhu− u, jhp− p); (wh, rh)

)∣∣
|||(wh, rh)|||

≤
[
Sh

(
(jhu− u, jhp− p); (jhu− u, jhp− p)

)]1/2

(
Sh

(
(wh, rh); (wh, rh)

))1/2

|||(wh, rh)|||

≤ C
( ∑

M∈Mh

h2r
M

[(
τM ‖b‖20,∞,M + µM

)
‖u‖2r+1,Λ(M) + αM ‖p‖2r+1,Λ(M)

])1/2

.

Collecting all the above estimates, we have shown that

|||(jhu− uh, jhp− ph)|||

≤ C
( ∑

M∈Mh

h2r
M

[
ν + h2

M σ + h2
M τ−1

M + τM‖b‖2r,∞,M + h2
M µ−1

M + µM

+ h2
M α−1

M + αM

](
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

))1/2

.

By using the triangle inequality

|||(u− uh, p− ph)||| ≤ |||(u− jhu, p− jhp)|||+ |||(jhu− uh, jhp− ph)|||

and the approximation property

|||(u− jhu, p− jhp)||| ≤ C
( ∑

M∈Mh

h2r
M

[
ν + h2

M σ + (ν + σ)h2
M

+ τM ‖b‖20,∞,M + µM + αM

](
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

))1/2

,

one arrives at
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|||(u− uh, p− ph)||| ≤ C

[ ∑

M∈Mh

h2r
M

(
ν + h2

M σ + h2
M τ−1

M + τM‖b‖2r,∞,M

+ h2
M µ−1

M + µM + h2
M α−1

M + αM

)(
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

)]1/2

which proves the first estimate of the theorem. Minimizing the upper bound
results in the choices τM ∼ hM/‖b‖r,∞,M , µM ∼ hM , and αM ∼ hM , which
together imply the second error bound. ⊓⊔

Remark 4.9. Comparing LPS with the SDFEM, in terms of the norm

(v, q) �→
[
ν|v|21 + σ‖v‖20 + (ν + σ)‖q‖20

]1/2

both approaches attain the same rate of convergence in the case of equal-order
interpolation [TV96]. Moreover, the LPS gives additional control over

[ ∑

M∈Mh

(
τM‖κh((b · ∇)v)‖20,M + αM‖κh(∇q)‖20,M + µM‖κh(∇ · v)‖20,M

)
]1/2

whereas for the SDFEM one controls

[ ∑

T∈Th

(
δT ‖(b · ∇)v +∇q‖20,T + µT ‖∇ · v‖20,T

)
]1/2

.

It has been shown recently [ML07] that the SDFEM also gives control over
the terms ‖(b · ∇)v‖0,T and ‖∇q‖0,T if σ > 0 and the parameters δT are cho-
sen appropriately. This corresponds to the LPS method where an additional
(separate) control is guaranteed over the fluctuations of these quantities. ♣

Finally, we discuss two slightly modified approaches that produce the same
error estimates as those of Theorem 4.8. The first of these is to replace the
stabilizing term Sh from (4.3b) by

S1
h((uh, ph); (vh, qh))

:=
∑

M∈Mh

(
τM (κh(∇uh),κh(∇vh))M + αM (κh∇ph,κh∇qh)M

)
(4.21)

which gives control over the fluctuations of the gradients of the velocities in-
stead of separate control over the fluctuations of the derivatives in the stream-
line direction and the divergence. In the second modification, we replace the
stabilizing term Sh from (4.3b) by a term S2

h that is spectrally equivalent, i.e.,
S2

h ∼ Sh. Note that the choice of the parameters τM , µM , and αM defining Sh

influences the selection of possible stabilizing terms S2
h. When replacing Sh

by Si
h in (4.6) for i = 1, 2, two new mesh-dependent norms appear which will

be denoted by |||(·, ·)|||1 and |||(·, ·)|||2.
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Theorem 4.10. Let (u, p) ∈
(
H1

0(Ω) ∩Hr+1(Ω)
)
×
(
L2

0(Ω) ∩ Hr+1(Ω)
)

be
the weak solution of (4.2) and let (uh, ph) ∈ Vh × Qh be the solution of the
LPS method (4.3) with Sh replaced by S1

h. Then for σ > 0 there is a positive
constant C, which is independent of ν, such that

|||(u− uh, p− ph)|||1 ≤ C
( ∑

M∈Mh

h2r
M

[
ν + h2

M (σ + σ−1|b|21,∞,M ) + h2
M α−1

M

+ αM + h2
M τ−1

M (1 + ‖b‖20,∞,M ) + τM

](
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

))1/2

.

The choices τM ∼ hM

√
1 + ‖b‖20,∞,M and αM ∼ hM are asymptotically op-

timal and lead to

|||(u− uh, p− ph)|||1

≤ Cσ

[ ∑

M∈Mh

(ν + hM )h2r
M

(
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

)]1/2

(4.22)

with a constant Cσ that is independent of ν but depends on σ.

Proof. A careful check shows that Lemma 4.2, with Sh and |||(·, ·)||| replaced
by S1

h and |||(·, ·)|||1, remains valid. Furthermore, the additional smoothness
hypothesis on b in Lemma 4.6 can be discarded since now the approximation
properties of the fluctuation give already

S1
h

(
(u, p); (u, p)

)
≤ C

∑

M∈Mh

h2r
M

(
τM |∇u|2r,M + αM |∇p|2r,M

)
.

The estimates (4.19) and (4.20) in the proof of Theorem 4.8 have to be mod-
ified. Consider first (4.20):

∣∣(p− jhp,∇ ·wh)
∣∣ =

∣∣(p− jhp, κh∇ ·wh)
∣∣

≤ C
∑

M∈Mh

hr+1
M τ

−1/2
M ‖p‖r+1,Λ(M) τ

1/2
M ‖κh∇ ·wh‖0,M

≤ C
( ∑

M∈Mh

h2r+2
M τ−1

M ‖p‖2r+1,Λ(M)

)1/2(
S1

h((wh, 0); (wh, 0))
)1/2

.

The treatment of (4.19) needs more care. Begin as in the proof of Theorem 4.8:

∣∣((b · ∇)(jhu− u),wh

)∣∣ =
∣∣(jhu− u, (b · ∇)wh

)∣∣ =
∣∣(jhu− u,κh(b · ∇)wh

)∣∣

≤ C
∑

M∈Mh

hr+1
M ‖u‖r+1,Λ(M)

∥∥κh(b · ∇)wh

∥∥
0,M

.
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Let b be the L2 projection of b into the space of piecewise constant functions
with respect to the macro-decomposition Mh. Using the L2 stability of κh,
an inverse inequality, and κh(b · ∇)wh = b · κh(∇wh), we get

∥∥κh(b · ∇)wh

∥∥
0,M

≤
∥∥κh((b− b) · ∇)wh

∥∥
0,M

+
∥∥κh(b · ∇)wh

∥∥
0,M

≤ C hM |b|1,∞,M‖∇wh‖0,M + ‖b‖0,∞,M

∥∥κh(∇wh)
∥∥

0,M

≤ C|b|1,∞,M‖wh‖0,M + ‖b‖0,∞,M

∥∥κh(∇wh)
∥∥

0,M
.

Substituting this into our previous inequality and recalling that σ > 0, we
obtain
∣∣∣
(
(b · ∇)(jhu− u),wh

)∣∣∣ ≤ C
∑

M∈Mh

hr+1
M ‖u‖r+1,Λ(M)

(
|b|1,∞,M‖wh‖0,M + ‖b‖0,∞,M‖κh(∇wh)‖0,M

)

≤ C
[ ∑

M∈Mh

h2r
M

(
h2

Mσ
−1 |b|21,∞,M + h2

M τ−1
M ‖b‖20,∞,M

)
‖u‖2r+1,Λ(M)

]1/2

[
σ‖wh‖20 + S1

h

(
(wh, 0); (wh, 0)

)]1/2

.

The remaining terms can be estimated as in the proof of Theorem 4.8. The
calculation culminates in

|||(u− uh, p− ph)|||1 ≤ C
{ ∑

M∈Mh

h2r
M

[
ν + h2

M (σ + σ−1 |b|21,∞,M ) + h2
M α−1

M

+ αM + h2
M τ−1

M (1 + ‖b‖20,∞,M ) + τM

][
‖u‖2r+1,Λ(M) + ‖p‖2r+1,Λ(M)

]}1/2

which is the first statement of the theorem. Minimizing the upper bound gives

τM ∼ hM

√
1 + ‖b‖20,∞,M and αM ∼ hM , which implies (4.22). �

We return to the second modification which replaces Sh by a spectrally
equivalent stabilization term S2

h ∼ Sh. Assume that the consistency estimate

∣∣S2
h

(
(u, p); (vh, qh)

)∣∣ ≤ C hr+1/2
(
‖u‖r+1 + ‖p‖r+1

)
|||(vh, qh)||| (4.23)

and the approximation property

∣∣∣S2
h

(
(jhu− u, jhp−p); (vh, qh)

)∣∣∣

≤ C hr+1/2
(
‖u‖r+1 + ‖p‖r+1

)
|||(vh, qh)||| (4.24)

are satisfied for all (vh, qh) ∈ Vh ×Qh.
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Theorem 4.11. Let (u, p) ∈
(
H1

0(Ω) ∩Hr+1(Ω)
)
×
(
L2

0(Ω) ∩ Hr+1(Ω)
)

be
the solution of (4.2) and let (uh, ph) ∈ Vh × Qh be the solution of the LPS
method (4.3a) with Sh replaced by an S2

h that satisfies S2
h ∼ Sh, (4.23),

and (4.24). Assume also that τM , µM , αM ∼ hM for all M ∈ Mh. Then
there is a positive constant C, which is independent of ν and h, such that

|||(u− uh, p− ph)|||2 ≤ C
(
ν1/2 + h1/2

)
hr

(
‖u‖r+1 + ‖p‖r+1

)
.

Proof. A careful check shows that Lemma 4.2, with Sh and |||(·, ·)||| replaced
by S2

h and |||(·, ·)|||2 , retains its validity. Lemma 4.6 is replaced by (4.23).
Now following the line of argument of Theorem 4.8 and bounding Sh by CS2

h,
one gets

|||(jhu− uh, jhp− ph)|||2 ≤ C(ν1/2 + h1/2)hr
(
‖u‖r+1 + ‖p‖r+1

)
.

The desired result then follows from the triangle inequality. ⊓⊔

4.3 Local Projection onto Coarse-Mesh Spaces

The next two sections examine a particular implementation of LPS: we specify
an approximation space Yh and a projection space Dh for which special inter-
polants satisfying (4.4)–(4.5) exist. Recall that the velocity space and pressure
space are defined by Vh = Y d

h ∩V and Qh = Yh ∩ Q, respectively. For sim-
plicity of notation we assume that the fluctuation operator κh : L2(Ω) → Dh

is given by κh = id− πh where πh : L2(Ω) → Dh is the L2 projection.
The notation Mh = T2h will be used to indicate that the partition Th of

the domain Ω is generated by a suitable refinement of a given, shape-regular
macro-decomposition Mh. For more details and for the proofs we refer to
[MST07]. The method has been extended to anisotropic meshes in [Bra].

4.3.1 Simplices

Refine each macro-simplex M ∈ Mh in Rd through the common simplicial
subdivision by means of (d− 1)-dimensional simplices whose vertices are the
barycentre and each subset of d − 1 vertices of M ; see Figure III.3.8 for the
cases d = 2, 3. For the approximation of velocity and pressure, choose the
finite element space of continuous piecewise polynomials of degree at most r
on Th. The projection space comprises discontinuous piecewise polynomials
of degree at most r − 1 on T2h. These choices are summarized by writing
(Yh, Dh) = (Pr,h, P

disc
r−1,2h) where

Pr,h : = {v ∈ H1(Ω) : v|K ∈ Pr(K) ∀K ∈ Th} ,
P disc

r−1,2h : = {v ∈ L2(Ω) : v|M ∈ Pr−1(M) ∀M ∈ T2h} .
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Lemma 4.12. Define the LPS method by setting (Yh, Dh) = (Pr,h, P disc
r−1,2h)

with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
simplicial meshes there exist interpolation operators that satisfy (4.4)–(4.5)
and the fluctuation operator satisfies (4.17).

Fig. 4.1. Degrees of freedoms for the approximation space (left) and projection
space (right) when d = 2 and r = 2

4.3.2 Quadrilaterals and Hexahedra

Let M̂ = (−1, 1)d be the reference hypercube with barycentre â0 and vertices

âi, i = 1, . . . , 2d. Refine M̂ into 2d congruent cubes T̂i, i = 1, . . . , 2d. Let
FM : M̂ → M be the bijective multilinear reference mapping onto a macro-
element M ∈ Mh. The refinement of M̂ induces a refinement of M into 2d

cells T ∈ Th; see Figure 4.2 for the two-dimensional case. Of course, each of the
T̂i, i = 1, . . . , 2d, can be mapped bijectively onto a unique reference cube T̂ by
a linear mapping. The resulting bijective multilinear reference mapping from
T̂ onto T ∈ Th will be denoted by FT .

T̂i

FM

Ti ∈ Th

Fig. 4.2. Reference macro-element M̂ (left) and macro-element M = FM (M̂) ∈ Mh

(right) in the two-dimensional case

The projection space Dh can be defined in two ways: either as an image of a
space on the reference macro-element M̂ or directly on the macro-element M .
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In general this leads to different finite element spaces, so we distinguish be-
tween them. We say the projection space Dh is mapped if it is defined on the
reference macro-element M̂ . If the projection space is defined directly on the
macro-element it is said to be unmapped, and this is indicated by an extra
superscript “unm”. The space Yh that is used to approximate the velocity
components and the pressure is constructed by continuous piecewise polyno-
mials of degree at most r in each variable on the children T̂i of the reference
macro-element M̂ , i.e., by the standard mapped quadrilateral or hexahedral
elements.

Projection Spaces Based on Mapped Finite Elements

First consider the standard continuous and discontinuous (mapped) finite el-
ement spaces for the approximation and projection spaces, respectively. The
approximation space comprises continuous piecewise mapped polynomials of
degree at most r in each variable on Th. The projection space is built from
discontinuous piecewise mapped polynomials of degree at most r − 1 on T2h.
This is summarized as (Yh, Dh) = (Qr,h, Qdisc

r−1,2h) where

Qr,h : = {v ∈ H1(Ω) : v|K ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

Qdisc
r−1,2h : = {v ∈ L2(Ω) : v|M ◦ FM ∈ Qr−1(M̂) ∀M ∈ T2h} .

Lemma 4.13. Define the LPS method by setting (Yh, Dh) = (Qr,h, Qdisc
r−1,2h)

with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
meshes there exist interpolation operators satisfying (4.4)-(4.5) and the fluc-
tuation operator satisfies (4.17).

Alternatively, one can choose smaller projection spaces Dh without losing
the approximation property of the fluctuation operator (cf. Lemma 4.6) on
families of uniformly-refined meshes. Indeed, let us choose Dh to be

P disc
r−1,2h := {v ∈ L2(Ω) : v|M ◦ FM ∈ Pr−1(M̂) ∀M ∈ T2h} .

This choice gives more stabilization in the sense that the stabilizing term van-
ishes on the smaller subset P disc

r−1,2h ⊂ Qdisc
r−1,2h. The existence of the special

interpolations still holds without any modification, but to ensure the consis-
tency estimate we have to restrict ourselves to families of uniformly-refined
meshes; see [ABF02] for quadrilaterals and [Mat01] for hexahedra. These fam-
ilies are generated by successively refining a given initial mesh.

Lemma 4.14. Define the LPS method by setting (Yh, Dh) = (Qr,h, P disc
r−1,2h)

with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
meshes there exist interpolation operators that satisfy (4.4)–(4.5). The fluctu-
ation operator satisfies (4.17) on families of uniformly-refined meshes.
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Fig. 4.3. Two variants of choosing the projection space. Degrees of freedom for
the approximation space Qr,h (left), the projection space Qdisc

r−1,2h (middle), and the

projection space P disc
r−1,2h (right) for d = 2 and r = 2

Projection Spaces Based on Unmapped Finite Elements

Now choose for the projection space Dh the space of discontinuous piecewise
unmapped polynomials of degree at most r−1 on T2h; that is, any qh ∈ Dh is
on each M ∈ T2h a polynomial of degree at most r−1. We use this projection
space with the approximation space comprising continuous piecewise mapped
polynomials of degree at most r in each variable on Th, i.e.,

(Yh, Dh) = (Qr,h, P disc,unm
r−1,2h )

where

Qr,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qr(T̂ ) ∀T ∈ Th} ,

P disc,unm
r−1,2h : = {v ∈ L2(Ω) : v|M ∈ Pr−1(M) ∀M ∈ T2h} .

Lemma 4.15. Define the LPS method by setting (Yh, Dh) = (Qr,h, P disc
r−1,2h)

with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
meshes there exist interpolation operators that satisfy (4.4)–(4.5) and the fluc-
tuation operator satisfies (4.17).

4.4 Schemes Based on Enrichment of Approximation
Spaces

In the previous section, stabilization was achieved by local projection onto
coarser meshes. As a result, for each basis function ϕ ∈ Yh, the fluctuation
κhϕ = ϕ−πhϕ has in general a support larger than the support of ϕ. This gen-
erates a larger stencil in the stiffness matrix, which might not fit into the data
structure of a given computer code. In the present section we demonstrate
that the key property of LPS – the existence of interpolants with additional
orthogonality properties – can also be guaranteed by enriching the approxi-
mation space instead of thinning out the projection space. The main benefit of
this alternative approach is a smaller stencil of the stiffness matrix compared
with the two-level approach of Section 4.3. Both simplicial and hexahedral
families of meshes will be considered here. For more details and for the proofs
see [MST07].
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4.4.1 Simplices

Let T̂ be the reference simplex. Use barycentric coordinates λ̂i, i = 1, . . . , d+1,
on T̂ . Let

b̂(x̂) := (d+ 1)d+1
d+1∏

i=1

λ̂i(x̂)

denote the bubble function that takes the value 1 at the barycentre of T̂ . Our
approximation space will be based on the enriched space

P bubble
r (T̂ ) := Pr(T̂ ) + b̂ · Pr−1(T̂ )

while the projection space is the space of discontinuous piecewise polynomials
of degree at most r − 1 on the same mesh, i.e., (Yh, Dh) := (P bubble

r,h , P disc
r−1,h)

where

P bubble
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ P bubble

r (T̂ ) ∀T ∈ Th} ,
P disc

r−1,h : = {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th} .

Lemma 4.16. Define the LPS method by setting (Yh, Dh) = (P bubble
r,h , P disc

r−1,h)
with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
simplicial meshes there are interpolation operators satisfying (4.4)–(4.5) and
the fluctuation operator satisfies (4.17).

4.4.2 Quadrilaterals and Hexahedra

As in Section 4.3.2 we consider mapped

P disc
r−1,h := {v ∈ L2(Ω) : v|T ◦ FT ∈ Pr−1(T̂ ) ∀T ∈ Th}

and unmapped

P disc,unm
r−1,h := {v ∈ L2(Ω) : v|T ∈ Pr−1(T ) ∀T ∈ Th}

finite element spaces for the projection space Dh. Note that in order to guar-
antee the optimal order of the consistency error for the mapped projection
space, we have to restrict our attention to families of uniformly-refined quadri-
lateral/hexahedral meshes – see [ABF02, Mat01]. For unmapped projection
spaces the consistency error is of the required order on general shape-regular
meshes and one constructs the approximation spaces by (preferably minimal)
enrichment of standard finite element spaces.
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Projection Spaces Based on Mapped Finite Elements

Let

b̂(x̂) =

d∏

i=1

(1− x̂2
i ) ∈ Q2(T̂ ) , x̂ = (x̂1, . . . , x̂d) ∈ T̂ , d = 2, 3 , (4.25)

denote a bubble function associated with the reference cell T̂ = (−1, 1)d. The
enriched finite element space is defined on the reference cell by

Qbubble,1
r (T̂ ) := Qr(T̂ )⊕ span

{
b̂ x̂r−1

i : i = 1, . . . , d
}

and mapped onto the cell T = FT (T̂ ) ∈ Th. Thus

Qbubble,1
r,h : = {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,1

r (T̂ ) ∀T ∈ Th} .

Our approximation space comprises continuous piecewise mapped enriched
polynomials of degree at most r in each variable while the projection space is
the standard space of discontinuous piecewise mapped polynomials of degree
at most r − 1, i.e., (Yh, Dh) := (Qbubble,1

r,h , P disc
r−1,h). In general neither space is

polynomial.

Lemma 4.17. To define the LPS method, set (Yh, Dh) = (Qbubble,1

r,h , P disc
r−1,h)

with an arbitrary but fixed polynomial degree r ∈ N. Then on shape-regular
meshes there exist interpolation operators that satisfy (4.4)–(4.5). The fluctu-
ation operator satisfies (4.17) on families of uniformly-refined meshes.

Remark 4.18. For r ≥ 2, the space Qbubble,1
r (T̂ ) has precisely d basis functions

more than Qr(T̂ ), independently of r. ♣

To get an impression of the efficiency of the enrichment approach compared
with the two-level approach, consider the matrix block that corresponds to one
scalar component. We follow [MST07] in comparing asymptotically the num-
bers of non-zero entries for a decomposition of Ω = (0, 1)d into squares/cubes
of edge size 1/N . Since the inner degrees of freedom dominate for high-order el-
ements (i.e., when r ≫ 1), in the two-dimensional case one has asymptotically
O(4N2r4) non-zero entries for the two-level approach whereas the enrichment
technique produces only O(N2r4) non-zero entries. In the three-dimensional
case these numbers are O(8N3r6) and O(N3r6). This effect is less striking for
moderate r. For example, in the case r = 2 and d = 2, one has asymptotically
O(144N2) versus O(75N2) non-zero entries.

Projection Spaces Based on Unmapped Finite Elements

To relax the assumption that the families of meshes are uniformly refined, we
turn to unmapped projection spaces. Choose the space
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Qbubble,2
r (T̂ ) := Qr(T̂ ) + b̂ ·Qr−1(T̂ )

with the bubble function b̂ of (4.25), and define the enriched space

Qbubble,2
r,h := {v ∈ H1(Ω) : v|T ◦ FT ∈ Qbubble,2

r (T̂ ) ∀T ∈ Th} .

Now our choice is (Yh, Dh) = (Qbubble,2
r,h , P disc,unm

r−1,h ).

Lemma 4.19. Choose (Yh, Dh) = (Qbubble,2

r,h , P disc,unm
r−1,h ) in the LPS method,

where the polynomial degree r ∈ N is arbitrary but fixed. Then on shape-regular
simplicial meshes there exist interpolation operators that satisfy (4.4)–(4.5)
and the fluctuation operator satisfies (4.17).

Remark 4.20. The dimension of the space Qbubble,2
r,h is larger than that of

Qbubble,1
r,h . Comparing the dimensions of spaces Yh(T ) and Dh(T ), we surmise

that the enriched space could be reduced, but the question of constructing
interpolants with additional orthogonality properties remains open. ♣

4.5 Relationship to Subgrid Modelling

The idea of subgrid modelling is due to Guermond [Gue99a] and was first
applied to a scalar transport equation. It is based on a scale separation of the
underlying finite element space, viz.,

Yh = YH ⊕ Y H
h

where YH represents the space of large scales and Y H
h the space of small

scales. Associated with this scale separation is a suitable projection operator
PH : Yh → YH ⊂ Yh that is the identity mapping on the subspace YH . Let
κh := id−PH denote the fluctuation operator. Assume that the finite element
space YH is based on a shape-regular decomposition of the domain into cells
M ∈ Mh of diameter hM . Then it is proposed [Gue99a, EG04] to add a
stabilizing term of the form

S(uh, vh) =
∑

M∈Mh

hM

(
∇κhuh,∇κhvh

)
M

or

S(uh, vh) =
∑

M∈Mh

hM

(
(b · ∇)κhuh, (b · ∇)κhvh

)
M

to the standard Galerkin method. These stabilization terms can be interpreted
as an artificial diffusion in the streamline direction for the subscales that
are represented by Y H

h . This approach has been developed in different ways;
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for an extension to time-dependent convection-diffusion problems see, e.g.,
[JKL06]. Scale separation also plays an important role in large eddy simulation
of turbulent flows – see [Joh06].

Scale separation can be implemented in various ways. In the two-level
approach, Yh and YH are standard finite element spaces on different refinement
levels (which we indicate by writing YH = Y2h) and Y H

h is spanned by those
hierarchical basis functions that need to be added to the coarse space Y2h

to generate Yh. An alternative viewpoint is to consider Yh as a finite element
space YH that is enriched by a space Y H

h that contains suitable functions, e.g.,
higher-order polynomials. Both variants differ from LPS since the stabilization
term in the subgrid modelling approach is based on gradients of fluctuations
– viz., ∇(id− PH)uh – whereas the local projection method uses fluctuations
of the gradients – viz., (id− πh)∇uh.

In applications, the projection PH : Yh → Y2h in the two-level approach
has often been chosen as the global Lagrange interpolant I2h,r that maps
into Y2h [BB01, BB06, BBJL07, BR06a, BR06b, Lub06]. This generates a
stabilizing term of the form

S3
h

(
(uh, ph); (vh, qh)

)

=
∑

M∈Mh

(τM (∇κhuh,∇κhvh)M + αM (∇κhph,∇κhqh)M ) (4.26)

instead of the Sh and S1
h of (4.3b) and (4.14). In the following subsections,

we study the relationship between the stabilizing terms S1
h and S3

h.

4.5.1 Two-Level Approach with Piecewise Linear Elements

Consider first the case where Th is generated from a refinement of a shape-
regular triangulation T2h in Rd through simplicial subdivision by joining the
barycentre to its vertices; see Figure III.3.8 for the cases d = 2, 3. Let Yh and
Y2h denote the spaces of continuous piecewise linear finite elements associated
with the triangulations Th and T2h respectively.

Lemma 4.21. Let d ≥ 1. Let π2h,0 be the L2 projection onto the space P disc
0,2h

of piecewise constant functions and I2h,1 : Yh → Y2h the Lagrange interpolant
into the space P1,2h of continuous piecewise linear functions. Then

π2h,0(∇vh)
∣∣
M

= ∇I2h,1

(
vh

∣∣
M

)
∀vh ∈ P1,h, ∀M ∈ T2h.

Hence LPS and subgrid modelling are identical at the discrete level.

Proof. We restrict ourselves to the scalar case since the assertion for the
vector-valued case then follows immediately by considering each component
separately.

Let vh|M be the restriction of an arbitrary function vh ∈ Yh to a macro-
simplex M ∈ T2h. Denote the barycentre of M by a0 and its vertices by
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ai, i = 1, . . . , d + 1. Let the barycentric coordinates on the simplex M be
λi, i = 1, . . . , d + 1, where λi(ai) = 1 for each i. When M is subdivided into
simplices, each having for its vertices the barycentre and d− 1 vertices of M ,
denote these new simplices by Ti, i = 1, . . . , d + 1, where ai /∈ Ti for each i.
Define a continuous piecewise linear function on M by

ϕ0(x) = (d+ 1)λi(x) for x ∈ Ti, i = 1, . . . , d+ 1.

One can then use the nodal functionals Ni(v) = v(ai), i = 0, . . . , d + 1, to
write

vh

∣∣
M

=

d+1∑

i=1

Ni(vh)λi + Ñ0(vh)ϕ0 (4.27)

where

Ñ0(v) = N0(v)−
1

d+ 1

d+1∑

i=1

Ni(v).

Since Ni(ϕ0) = 0 for i = 1, . . . , d + 1, we have I2h,1vh =
∑d+1

i=1 Ni(vh)λi,
whence

∇I2h,1vh =

d+1∑

i=1

Ni(vh)∇λi.

Let ∇h denote the gradient operator that is applied piecewise. As ∇hvh is
constant on each subdomain Tj for j = 1, . . . , d+ 1, and |Tj | = |M |/(d + 1),
we compute the L2 projection onto P0(M) to be

π2h,0(∇hvh) =
1

d+ 1

d+1∑

j=1

∇hvh

∣∣
Tj
.

For j = 1, . . . , d+ 1, from (4.27) one has

∇vh

∣∣
Tj

=

d+1∑

i=1

Ni(vh)∇λi + (d+ 1)Ñ0(vh)∇λj ,

1

d+ 1

d+1∑

j=1

∇vh

∣∣
Tj

=

d+1∑

i=1

Ni(vh)∇λi + Ñ0(vh)∇
d+1∑

j=1

λj =

d+1∑

i=1

Ni(vh)∇λi.

This equation says that π2h,0(∇vh)|M = ∇I2h,1(vh|M ). It follows that the
stabilizing terms in the two approaches are identical. ⊓⊔

Remark 4.22. In general

π2h,r−1∇hvh

∣∣∣
M
�= ∇I2h,rvh ∀vh ∈ Pr,h, r ≥ 2,

where π2h,r−1 is the L2 projection onto the space P disc
r−1,2h of discontinuous

piecewise polynomials of degree at most r − 1 on the coarse mesh T2h and
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I2h,r : Yh → Pr,2h is the Lagrange interpolant in the space of continuous
piecewise polynomials of degree at most r on the coarse mesh T2h. Similarly,
in general on quadrilateral or hexahedral meshes T2h one has

π2h,r−1∇hvh

∣∣∣
M
�= ∇I2h,rvh ∀vh ∈ Qd

r,h, d ≥ 2, r ≥ 1,

where π2h,r−1 is the L2 projection onto the space Qdisc
r−1,2h of discontinuous

piecewise polynomials of degree at most r − 1 in each variable, while I2h,r :
Yh → Qr,2h is the Lagrange interpolant in the space of continuous piecewise
polynomials of degree at most r in each variable. As an example, consider the
case r = 2, d = 1. For the reference macro-element M̂ = (−1,+1) and the
piecewise quadratic function

v̂(x̂) =

{
4x̂(1− x̂) if 0 ≤ x̂ ≤ 1,

0 if − 1 ≤ x̂ < 0,

one can see that
π̂2h,1∇̂v̂ = −x̂ �= 0 = ∇̂Î2h,2v̂.

Thus in general subgrid modelling and LPS do not construct identical stabi-
lization terms. But as we shall see later, this does not exclude the possibility
of spectral equivalence of the stabilization terms. ♣

4.5.2 Enriched Piecewise Linear Elements

The previous subsection demonstrated that LPS and subgrid modelling em-
ploy the same stabilization term in the two-level approach with Yh = P1,h and
Dh = P disc

0,2h. We now show that the same is true for enriched piecewise linear

elements, i.e., when Yh = P bubble
1,h and Dh = P disc

0,h .

Lemma 4.23. Let d ≥ 1. Let πh,0 be the L2 projection onto the space P disc
0,h

of piecewise constant functions and let Ih,1 : Yh → P1,h be the Lagrange
interpolant in the space P1,h of continuous piecewise linear functions. Then

πh,0(∇vh)
∣∣
T

= ∇Ih,1

(
vh

∣∣
T

)
∀vh ∈ P bubble

1,h , ∀T ∈ Th.

Hence LPS and subgrid modelling are identical at the discrete level.

Proof. For simplicity of notation we present the proof for the scalar case
as its extension to the vector-valued case in the space Y d

h is straightforward.
Consider a simplex T ∈ Th with vertices ai, i = 1, . . . , d+1, barycentre a0, and
barycentric coordinates λi, i = 1, . . . , d+ 1, where λi(ai) = 1 for each i. The
restriction vh

∣∣
T

of a finite element function vh ∈ Yh to T can be represented
through its nodal functionals Ni(v) = v(ai), i = 0, . . . , d+ 1, as
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vh

∣∣
T

=
d+1∑

i=1

Ni(vh)λi + Ñ0(vh) b = Ih,1vh + Ñ0(vh) b

where

Ñ0(v) = N0(v)−
1

d+ 1

d+1∑

i=1

Ni(v) and b = (d+ 1)d+1
d+1∏

i=1

λi.

Hence
∇vh

∣∣
T

= ∇(Ih,1vh) +N0(vh)∇b.
Since ∇(Ih,1vh) is constant on T , one has πh,0∇(Ih,1vh) = ∇(Ih,1vh). Thus it
remains only to show that

πh,0(∇b) =
1

|T |

∫

T

∇b dx = 0.

But this identity follows immediately from Gauss’s theorem as b vanishes
on ∂T . That is, πh,0(∇vh)

∣∣
T

= ∇Ih,1

(
vh

∣∣
T

)
and it follows that the stabilizing

terms in both approaches are identical. ⊓⊔

4.5.3 Spectral Equivalence of the Stabilizing Terms on Simplices

The spectral equivalence of the stabilizing terms S3
h given by (4.26) and S1

h

given by (4.21) will now be shown on simplices. To this end, it is sufficient to
prove the existence of positive constants C3 and C4 such that

C3‖κh∇wh‖0,M ≤ ‖∇κhwh‖0,M ≤ C4‖κh∇wh‖0,M (4.28)

for all wh ∈ Yh and M ∈Mh.
Consider first the two-level approach.

Lemma 4.24. Let (Yh, Dh) = (Pr,h, P
disc
r−1,2h). Write π2h,r−1 for the L2 pro-

jection onto Dh, κh = id − π2h,r−1 and I2h,r for the Lagrange interpolant
in Pr,2h. Set κh = id− I2h,r. Then the stabilizing terms S3

h and S1
h are spec-

trally equivalent.

Proof. For each M ∈ T2h let FM : M̂ → M be the affine mapping from
the reference macro-cell M̂ onto the cell M . Thus FM (x̂) = BM x̂ + bM for

all x̂ ∈ M̂ , where BM is a d × d matrix and bM is a column vector. The
L2 projection π2h,r−1 and the Lagrange interpolant I2h,r are invariant with
respect to affine transformations, i.e., denoting the corresponding operators
on the reference cell by π̂ and Î, one has

̂(π2h,r−1w) = π̂ŵ, Î2h,rw = Îŵ

and the corresponding relations
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κ̂h∇w = κ̂ ∇̂w, κ̂hw = κ̂ ∇̂w

for the fluctuation operators. Now the transformation formulas ∇̂v = B−T
M ∇̂v̂

and ∇̂v̂ = BT
M∇̂v [Cia02, Chapter 3.1] yield

‖κh∇w‖0,M = |detBM |1/2 ‖κ̂h∇w‖0,M̂
= |detBM |1/2 ‖κ̂B−T

M ∇̂ŵ‖
0,M̂

≤ |detBM |1/2 ‖B−1
M ‖ ‖κ̂∇̂ŵ‖

0,M̂
, (4.29a)

‖∇̂κ̂ŵ‖
0,M̂

= ‖∇̂κ̂hw‖0,M̂
= |detBM |−1/2‖BT

M∇κhw‖0,M

≤ |detBM |−1/2‖BM‖ ‖∇κhw‖0,M , (4.29b)

where ‖BM‖ and ‖B−1
M ‖ are the matrix norms of BM and B−1

M that are
induced by the Euclidean vector norm. For shape-regular meshes one has
‖B−1

M ‖ ‖BM‖ ≤ C.

If there is a constant C such that ‖κ̂∇̂ŵ‖
0,M̂

≤ C ‖∇̂κ̂ŵ‖
0,M̂

, then

from (4.29) we get

‖κh∇w‖0,M ≤ C−1
3 ‖∇κhw‖0,M

which is the left-hand inequality of (4.28). The proof of the right-hand in-
equality follows from ‖∇̂κ̂ŵ‖

0,M̂
≤ C ‖κ̂∇̂ŵ‖

0,M̂
by similar arguments.

To derive these hypothesized inequalities on the reference element, consider
the mappings

ŵ �→ ‖κ̂∇̂ŵ‖
0,M̂

and ŵ �→ ‖∇̂κ̂ŵ‖
0,M̂

.

Each is a norm on the respective finite-dimensional factor spaces

Pr(M̂)
/
{ŵ : κ̂∇̂ŵ = 0} and Pr(M̂)

/
{ŵ : ∇̂κ̂ŵ = 0}.

Suppose that κ̂∇̂ŵ = 0. Then

∇̂ŵ = π̂∇̂ŵ ∈
(
Pr−1(M̂)

)d ⇒ ŵ ∈ Pr(M̂) ⇒ Îŵ = ŵ ⇒ ∇̂κ̂ŵ = 0.

Conversely, suppose that ∇̂κ̂ŵ = 0. Recalling that ŵ is continuous on M̂ , we
obtain

ŵ = Îŵ + const ∈ Pr(M̂) ⇒ ∇̂ŵ = ∇̂Îŵ ∈
(
Pr−1(M̂)

)d

⇒ π̂∇̂ŵ = ∇̂ŵ
⇒ κ̂∇̂ŵ = 0.

Thus the two factor spaces coincide and the desired inequalities follow imme-
diately from the equivalence of norms on finite-dimensional spaces. ⊓⊔

Let us turn to the case of enriched finite element spaces Yh.
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Lemma 4.25. Choose Yh = P bubble
r,h , which was defined in Section 4.4.1. Set

Dh = P disc
r−1,h. Let πh,r−1 be the L2 projection onto Dh and Ih,r the Lagrange

interpolant in Pr,h. Set κh = id−πh,r−1 and κh = id−Ih,r. Then the stabilizing
terms S3

h and S1
h are spectrally equivalent.

Proof. By using the affine transformation FT : T̂ → T from the reference cell
T̂ onto T , one can show – as in the proof of Lemma 4.24 – that it suffices to
establish the corresponding estimates on the reference cell. As before, this is
done by showing that the mappings

ŵ �→ ‖κ̂∇̂ŵ‖0,T̂ , ŵ �→ ‖∇̂κ̂ŵ‖0,T̂

are norms on the corresponding factor spaces

Pr(M̂)
/
{ŵ : κ̂∇̂ŵ = 0} and Pr(M̂)

/
{ŵ : ∇̂κ̂ŵ = 0}.

Suppose that κ̂∇̂ŵ = 0. Then

∇̂ŵ = π̂∇̂ŵ ∈
(
Pr−1(T̂ )

)d ⇒ ŵ ∈ Pr(T̂ ) ⇒ Îŵ = ŵ ⇒ ∇̂κ̂ŵ = 0.

Conversely, suppose that ∇̂κ̂ŵ = 0. We obtain

ŵ = Îŵ + const ∈ Pr(T̂ ) ⇒ ∇̂ŵ = ∇̂Îŵ ∈
(
Pr−1(T̂ )

)d

⇒ π̂∇̂ŵ = ∇̂ŵ
⇒ κ̂∇̂ŵ = 0.

Hence there exist two constants C3 and C4 such that

C3‖κh∇wh‖0,T ≤ ‖∇κhwh‖0,M ≤ C4‖κh∇wh‖0,T ∀wh ∈ Yh, ∀T ∈ Th,

and the stabilizing terms S3
h and S1

h are spectrally equivalent. ⊓⊔

Remark 4.26. For quadrilateral and hexahedral elements one does not have in
general the spectral equivalence of the stabilizing terms. For example, consider
the case d = 2, r = 1. In the two-level approach, for the function ŵ(x̂) = x̂1x̂2

on the macro-element M̂ = (−1,+1)2 one has

∇̂ŵ − π̂∇̂ŵ = ∇̂ŵ = (x̂2, x̂1)
T ,

but the Lagrange interpolant Î in Q1(M̂) gives

Îŵ = ŵ ⇒ ∇̂(ŵ − Îŵ) = (0, 0)T .

The situation is the same for enriched approximation spaces Yh on a reference
cell T̂ . ♣



5

Local Projection Method for Inf-Sup Stable
Elements

The previous chapter showed that local projection stabilization (LPS) for
equal-order interpolation can handle two types of instabilities – that caused
by a violation of the discrete inf-sup condition and that due to dominant
convection in the case of high Reynolds number. But the flow problem is
often only part of a coupled flow-transport problem; in the next chapter we
shall see that mass conservation in the transport equation depends on the
properties of the discrete velocity and in particular on the satisfaction of the
incompressibility constraint. Unfortunately, when LPS is applied with equal-
order interpolation, the discrete divergence-free property of the velocity field
is disturbed by the term

∑

M∈Mh

αM (κh∇ph,κh∇qh)M

that stabilizes the pressure. For inf-sup stable finite element pairs, this pres-
sure stabilization is unnecessary and we are faced only with the instability
caused by dominant convection. Thus it is of interest to consider local projec-
tion stabilization for inf-sup stable finite elements.

The main objective of this chapter is an analysis of convergence properties
of LPS applied to inf-sup stable discretizations of the Oseen problem. We shall
restrict our attention to the enrichment variant of LPS and to a stabilizing
term that controls separately fluctuations of the derivative in the streamline
direction and fluctuations of the divergence. An interesting point is that for
inf-sup stable finite element pairs one does not need anH1-stable interpolation
operator with additional orthogonality properties to prove the stability of the
discrete problem, unlike the case of equal-order interpolation (Lemma 4.2). As
a consequence, one has much more flexibility in choosing the approximation
and projection spaces. Most of the known inf-sup stable finite element pairs
approximate the velocity components by elements of order r and the pressure
by elements of order r−1, which yields error estimates of order r, so compared
to LPS with equal-order interpolation by elements of order r, half an order
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of convergence is lost. Recently, in [MT07], new inf-sup stable finite element
pairs have been proposed that approximate both velocity and pressure by
elements of order r. Here, in contrast to “classical” equal-order interpolation,
the velocity components and the pressure are discretized by different finite
elements. We prove that the discrete inf-sup condition holds true for these
finite element spaces and derive an error estimate of order r + 1/2 uniformly
in the viscosity and reaction coefficients. In the case of discontinuous pressure
approximations, an additional term controlling the jumps of the pressure over
inner cell faces must be added.

5.1 Discretization by Inf-Sup Stable Elements

The Oseen problem is

−ν△u + (b · ∇
)
u + σu +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ Rd is bounded with a Lipschitz-continuous boundary, ν > 0 and

σ ≥ 0 are constants, and b ∈
(
W 1,∞(Ω)

)d
is a given velocity field for which

∇ · b = 0. Set V =
(
H1

0 (Ω)
)d

and Q = L2
0(Ω). Then a weak formulation of

this problem is:

Find (u, p) ∈ V ×Q such that one has

A
(
(u, p); (v, q)

)
= (f ,v) ∀(v, q) ∈ V ×Q (5.1)

where

A
(
(u, p); (v, q)

)
= ν(∇u,∇v) +

(
(b · ∇)u,v

)
+ σ(u,v)

− (p,∇ · v) + (q,∇ · u).

As stated previously in Theorem 1.5, (5.1) has a unique solution for all ν > 0.
We use a family {Th} of shape-regular decompositions ofΩ into d-simplices,

quadrilaterals, or hexahedra. The set of all inner element faces E �⊂ ∂Ω
is denoted by Eh. Associate with each face E ∈ Eh an arbitrary but fixed
unit normal vector nE , and let TE be a fixed element from Th such that
E ⊂ ∂TE . If T1, T2 ∈ Th are two different cells from Th that share a common
face E = ∂T1 ∩ ∂T2, then the jump of each piecewise smooth function rh
across the face E is defined by

[rh]E = (rh|T1
)
∣∣
E
− (rh|T2

)
∣∣
E

where nE is directed from T1 into T2.
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Let Yh ⊂ H1
0 (Ω) be a scalar finite element space of continuous piecewise

mapped polynomial functions over Th. The finite element space Vh for ap-
proximating the velocity field is Vh := Y d

h . The pressure is discretized using a
finite element space Qh ⊂ Q of continuous or piecewise continuous functions
on Th. In this chapter we consider inf-sup stable pairs (Vh, Qh): assume that
there exists a positive constant β0 such that

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)

|vh|1 ‖qh‖0
≥ β0 > 0 (5.2)

uniformly in h.
Let Di

h(T ), i = 1, 2, be finite-dimensional spaces on each cell T ∈ Th and
let πi

T : L2(T ) → Di
h(T ) be the associated local L2 projections into Di

h(T ).
The global projection spaces Di

h are defined by

Di
h :=

⊕

T∈Th

Di
h(T ), i = 1, 2.

These spaces are discontinuous with respect to the family Th. For i = 1, 2,
the mapping πi

h : L2(Ω) → Di
h defined by (πi

hv)|T := πi
T (v|T ) for all T ∈ Th

is the L2 projection into the projection space Di
h. Associate with each πi

h the
fluctuation operators κi

h := id− πi
h where id : L2(Ω) → L2(Ω) is the identity

mapping. Note that the case Di
h = {0} is allowed, which means that κi

h is then
the identity mapping. The operators πi

h and κi
h will be applied component by

component to vector-valued and tensor-valued arguments.
The stabilizing term is

Sh(u,v) :=
∑

T∈Th

(
τT
(
κ1

h(b · ∇)u,κ1
h(b · ∇)v

)
T

+ γT

(
κ2

h(∇ · u), κ2
h(∇ · v)

)
T

)
, (5.3)

which controls the fluctuations of the derivatives in the streamline direction
and the fluctuations of the divergence. Other stabilization terms are consid-
ered in [MT07]. On the product space V ×Q define the bilinear form

Ah

(
(u, p); (v, q)

)
:= ν(∇u,∇v) +

(
(b · ∇)u,v

)
+ σ(u,v)

+ Sh(u,v)− (p,∇ · v) + (q,∇ · u)

and the mesh-dependent norm

|||(v, q)||| :=
(
ν|v|21 + σ‖v‖20 + (ν + σ)‖q‖20 + Sh(v,v)

)1/2
.

Then our stabilized discrete problem is

Find (uh, ph) ∈ Vh ×Qh such that one has

Ah

(
(uh, ph), (vh, qh)

)
= (f ,vh) ∀(vh, qh) ∈ Vh ×Qh. (5.4)

Existence, uniqueness and convergence properties of solutions of (5.4) will be
studied in the sections that follow.
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5.2 Stability and Consistency

Consider first the solvability of the discrete problem (5.4).

Lemma 5.1. Let max{ν, σ, τT , γT } ≤ C. Then there exists a positive con-
stant β, which is independent of ν, σ, and h, such that

inf
(vh,qh)∈Vh×Qh

sup
(wh,rh)∈Vh×Qh

Ah

(
(vh, qh); (wh, rh)

)

|||(vh, qh)||| |||(wh, rh)||| ≥ β > 0.

Proof. Let (vh, qh) be an arbitrary element of Vh ×Qh. Integrating the con-
vection term by parts, one obtains

Ah

(
(vh, qh); (vh, qh)

)
= ν|vh|21 + σ‖vh‖20 + Sh(vh,vh).

The discrete inf-sup condition (5.2) ensures that for each qh ∈ Qh there exists
zh = zh(qh) ∈ Vh such that

(∇ · zh, qh) = −‖qh‖20 and ‖zh‖1 ≤ C1‖qh‖0, (5.5)

where C1 depends only on the inf-sup constant β0 and the Friedrichs constant
for the domain Ω. Hence

Ah

(
(vh, qh); (zh, 0)

)
= ν(∇vh,∇zh) +

(
(b · ∇)vh, zh

)
+ σ(vh, zh)

+ Sh(vh, zh) + ‖qh‖20 (5.6)

on using the first property from (5.5). We shall estimate the first four terms
of (5.6). Of these, the first and third can be bounded in a standard way: using
the hypothesis that ν, σ ≤ C, one has

∣∣ν(∇vh,∇zh) + σ(vh, zh)
∣∣ ≤ ν|vh|1 |zh|1 + σ‖vh‖0 ‖zh‖0
≤ C

(
ν|vh|21 + σ‖vh‖20

)1/2‖qh‖0

≤ ‖qh‖20
6

+ C
(
ν|vh|21 + σ‖vh‖20

)
,

where the second property from (5.5) was invoked. An integration by parts
shows that the second term of (5.6) satisfies

∣∣((b · ∇)vh, zh

)∣∣ =
∣∣((b · ∇)zh,vh

)∣∣ ≤ C|zh|1‖vh‖0 ≤
‖qh‖20

6
+ C‖vh‖20

where the boundedness of b and (5.5) were used. It remains to consider the
stabilizing term Sh. Since πh is the L2 projection onto the discontinuous
finite element space Dh, the corresponding fluctuation operator κh is locally
L2 stable. Thus the boundedness of the user-chosen parameters τT , γT and
of b imply that
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∣∣Sh(vh, zh)
∣∣ ≤

(
Sh(vh,vh)

)1/2(
Sh(zh, zh)

)1/2 ≤ C
(
Sh(vh,vh)

)1/2 |zh|1

≤ ‖qh‖20
6

+ CSh(vh,vh).

Combining the above estimates, we obtain

Ah

(
(vh, qh); (zh, 0)

)
≥ ‖qh‖20

2
− C

[
ν|vh|21 + σ‖vh‖20 + Sh(vh,vh)

]
− C‖vh‖20.

Multiply this inequality by 2(ν+σ) then use Friedrichs’s inequality to get the
bound

2(ν + σ)‖vh‖20 ≤ C
(
ν|vh|21 + σ‖vh‖20

)
;

this yields

Ah

(
(vh, qh); 2(ν + σ)(zh, 0)

)
≥ (ν + σ)‖qh‖20

− C2

[
ν|vh|21 + σ‖vh‖20 + Sh(vh,vh)

]

with a certain constant C2. For each (vh, qh) ∈ Vh × Qh, define the pair
(wh, rh) ∈ Vh ×Qh by

(wh, rh) := (vh, qh) +
2(ν + σ)

1 + C2
(zh, 0).

Then

Ah

(
(vh, qh); (wh, rh)

)

≥ ν + σ

1 + C2
‖qh‖20 +

(
1− C2

1 + C2

)[
ν|vh|21 + σ‖vh‖20 + Sh(vh,vh)

]

≥ 1

1 + C2
|||(vh, qh)|||2.

It remains to show that |||(wh, rh)||| ≤ C|||(vh, qh)|||. Towards this we have

|||(wh, rh)||| ≤ |||(vh, qh)|||+ 2(ν + σ)

1 + C2
|||(zh, 0)|||

≤ |||(vh, qh)|||+ 2(ν + σ)

1 + C2
C‖zh‖1

≤ |||(vh, qh)|||+ C(ν + σ)‖qh‖0 ≤ C3|||(vh, qh)|||.

Hence the desired inf-sup condition holds true with β = 1/
(
C3(1 + C2)

)
. ⊓⊔

Remark 5.2. Lemma 5.1 implies existence and uniqueness of a solution for
the discrete problem (5.4), together with a stability bound on that solu-
tion. Note that the mapping w �→ ‖κTw‖0,T vanishes on the local projec-
tion space Dh(T ). Thus the stability of the discrete problem increases as the
dimension of the projection space decreases, since the norm ||| · ||| becomes
stronger. In other words, we can control the stability of the discrete problem
by choosing an appropriate projection space. ♣
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Next we study the consistency error caused by adding the LPS terms to
the standard Galerkin discretization. Assume that the fluctuation operator κ1

h

provides local approximation properties of order s, i.e., that

‖κ1
hw‖0,T ≤ Chs

T |w|s,T ∀w ∈ Hs(T ), ∀T ∈ Th. (5.7)

Note that (5.7) is always satisfied for s = 0 since (κ1
hw)|T = w|T − π1

T (w|T )
and π1

T is the L2 projection on D1
h(T ). It is fulfilled for s > 0 if for example

D1
h(T ) ⊂ Ps−1(T ); this follows from the Bramble-Hilbert lemma.

Lemma 5.3. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be the solutions
of (5.1) and (5.4), respectively. Furthermore, assume that u ∈ Hs+1(Ω)d

for some integer s ∈ [0, r]. Assume that the fluctuation operator κ1
h satisfies

assumption (5.7) and b|T ∈ W s,∞(T )d with maxT ‖b‖s,∞,T ≤ C. Then for
all (vh, qh) ∈ Vh ×Qh one has

∣∣Ah

(
(u− uh, p− ph); (vh, qh)

)∣∣ ≤ C
( ∑

T∈Th

τT h
2s
T ‖u‖2s+1,T

)1/2

|||(vh, qh)||| .

Proof. Using (5.4) and

Ah

(
(u, p); (vh, qh)

)
= Sh(u,vh) + (f ,vh) ∀(vh, qh) ∈ Vh ×Qh,

we see that only Sh(u,vh) has to be estimated. The definition (5.3) gives

∣∣Sh(u,vh)
∣∣ ≤

(
Sh(u,u)

)1/2(
Sh(vh,vh)

)1/2 ≤
(
Sh(u,u)

)1/2|||(vh, qh)|||.

The boundedness of maxT ‖b‖s,∞,T and the properties of the fluctuation op-
erator κ1

h now yield

Sh(u,u) ≤ C
∑

T∈Th

h2s
K τT

∣∣(b · ∇)u
∣∣2
s,T
≤ C

∑

T∈Th

τTh
2s
T ‖u‖2s+1,T

where ∇ · u = 0 has been used. ⊓⊔

5.3 Convergence

To study the order of convergence of our method, we couch the approximation
properties of the spaces Vh and Qh in terms of the existence of correspond-
ing interpolation operators. First, we consider the usual inf-sup stable pairs
(Vh, Qh) that approximate the velocity components and the pressure by ele-
ments of order r and r − 1 respectively. In general, the constant in the error
estimate is independent of ν and the mesh size h but may depend on σ. Then
we show that under additional assumptions one can construct interpolation
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operators that enjoy certain orthogonality properties. These interpolation op-
erators allow us to establish estimates with error constants that are indepen-
dent of the data ν, σ and h. Finally, we turn to the case of inf-sup stable pairs
(Vh, Qh) that approximate both the velocity components and the pressure
by elements of order r. An example for the lowest-order case (r = 1) with
continuous pressure approximation will be the Mini-element [ABF84, BF91].
For each case considered we give several examples of approximation spaces
Vh, Qh and projection spaces Di

h, i = 1, 2 that satisfy all the assumptions of
our convergence theory.

5.3.1 Methods of Order r in the Case σ > 0

Consider inf-sup stable pairs (Vh, Qh) of finite element spaces of polynomial
order r and r − 1 respectively. Assume in this subsection that r ≥ 2. Assume
that interpolation operators jh : V∩H2(Ω)d → Vh and ih : Q∩H2(Ω) → Qh

exist such that for all w ∈ Hℓ(T )d, 2 ≤ ℓ ≤ r + 1, one has

‖w − jhw‖0,T + hT |w − jhw|1,T ≤ Chℓ
T ‖w‖ℓ,T ∀T ∈ Th, (5.8a)

and for all q ∈ Hℓ(T ), 2 ≤ ℓ ≤ r,

‖q − ihq‖0,T + hT |q − ihq|1,T ≤ Chℓ
T ‖q‖ℓ,T ∀T ∈ Th. (5.8b)

Furthermore, let the pressure interpolation ih satisfy the orthogonality con-
dition

(q − ihq, rh) = 0 ∀rh ∈ D2
h, ∀q ∈ Q ∩H2(Ω). (5.8c)

Theorem 5.4. Assume that the spaces Vh, Qh satisfy (5.2) and (5.8) and
the function b satisfies the regularity assumption of Lemma 5.3. Choose the
projection space D1

h so that the associated fluctuation operator κ1
h fulfils (5.7)

for some integer s ∈ [0, r]. Let the user-chosen parameters satisfy γT ∼ 1 and

τT ≤ Ch2(r−s)
T for some positive constant C. Let (u, p) ∈

(
V ∩Hr+1(Ω)d

)
×(

Q ∩ Hr(Ω)
)

and (uh, ph) ∈ Vh × Qh be the solutions of (5.1) and (5.4).
Then for each σ > 0 there exists a positive constant Cσ, which is independent
of ν and h, such that

|||(u− uh, p− ph)||| ≤ Cσ

[ ∑

T∈Th

h2r
T

(
‖u‖2r+1,T + ‖p‖2r,T

)
]1/2

. (5.9)

Proof. By Lemma 5.1 one has
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|||(jhu− uh, ihp− ph)|||

≤ 1

β
sup

(wh,rh)∈Vh×Qh

Ah

(
(jhu− uh, ihp− ph); (wh, rh)

)

|||(wh, rh)|||

≤ 1

β
sup

(wh,rh)∈Vh×Qh

Ah

(
(u− uh, p− ph); (wh, rh)

)

|||(wh, rh)|||

+
1

β
sup

(wh,rh)∈Vh×Qh

Ah

(
(jhu− u, ihp− p); (wh, rh)

)

|||(wh, rh)||| .

Invoking Lemma 5.3, the consistency error can be bounded:

sup
(wh,rh)∈Vh×Qh

Ah

(
(u− uh, p− ph); (wh, rh)

)

|||(wh, rh)||| ≤ C
( ∑

T∈Th

τT h
2s
T ‖u‖2s+1,T

)1/2

.

The terms in Ah

(
(jhu − u, ihp − p); (wh, rh)

)
will be estimated individually.

For the stabilizing term Sh, one has

Sh(jhu− u,wh) ≤
(
Sh(jhu− u, jhu− u)

)1/2(
Sh(wh,wh)

)1/2

≤ C
[ ∑

T∈Th

(τT + γT )h2r
T ‖u‖2r+1,T

]1/2

|||(wh, rh)|||

where the L2 stability of the fluctuation operators κi
h, i = 1, 2, the bounded-

ness of b, and the interpolation properties of jh were used. Furthermore,

∣∣ν
(
∇(jhu− u),∇wh

)
+ σ(jhu− u,wh)

∣∣

≤
(
ν|jhu− u|21 + σ‖jhu− u‖20

)1/2 (
ν|wh|21 + σ‖wh‖20

)1/2

≤ C
[ ∑

T∈Th

(ν + σh2
T )h2r

T ‖u‖2r+1,T

]1/2

|||(wh, rh)|||

via the Cauchy-Schwarz inequality and the interpolation properties of jh. Now
consider the pressure-related terms. We have

(
rh,∇ · (jhu− u)

)
≤ ‖rh‖0 ‖∇ · (jhu− u)‖0

≤ C
( ∑

T∈Th

h2r
T

ν + σ
‖u‖2r+1,T

)1/2

|||(wh, rh)||| (5.10)

and, by (5.8c),

(p− ihp,∇ ·wh) = (p− ihp, κ2
h∇ ·wh)

≤ C
( ∑

T∈Th

γ−1
T h2r

T ‖p‖2r,T

)1/2

|||(wh, rh)|||. (5.11)
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The convective term is handled by

∣∣((b · ∇)(jhu− u),wh

)∣∣ ≤ C

( ∑

T∈Th

h2r
T ‖u‖2r+1,T

)1/2

‖wh‖0

≤ C

( ∑

T∈Th

h2r
T

ν + σ
‖u‖2r+1,T

)1/2

|||(wh, rh)||| (5.12)

where the boundedness of b and, in the final inequality, Friedrichs’s inequality

have been used. Putting together all these estimates and using τT ≤ Ch2(r−s)
T ,

γT ∼ 1 and max{ν, σ} ≤ C, we obtain

|||(jhu− uh, ihp− ph)||| ≤ C
[ ∑

T∈Th

h2r
T

(
‖u‖2r+1,T + ‖p‖2r,T

)
]1/2

.

The interpolation properties of jh, ih and the upper bounds on τT , γT yield

|||(u− jhu, p− ihp)||| ≤ C
( ∑

T∈Th

h2r
T

(
‖u‖2r+1,T + ‖p‖2r,T

)
)1/2

.

Finally, the triangle inequality

|||(u− uh, p− ph)||| ≤ |||(u− jhu, p− ihp)|||+ |||(jhu− uh, ihp− ph)|||

gives the statement of the theorem. ⊓⊔
Next we give – without attempting to be exhaustive – examples of ap-

proximation spaces Vh, Qh and projection spaces D1
h, D2

h that satisfy all the

hypotheses of Theorem 5.4. For a simplex T ∈ Th, let T̂ denote the reference
unit simplex in Rd. For a quadrilateral/hexahedron T , let T̂ be the reference

cube (−1, 1)d. The reference mapping FT : T̂ → T is affine for simplices

and generally non-affine for quadrilaterals and hexahedra. Let Pk(T̂ ), k ≥ 0,

denote the space of polynomials with total degree at most k while Qk(T̂ ),
k ≥ 0, is the space of polynomials of degree at most k in each variable. For
convenience, we set P−k(T̂ ) = Q−k(T̂ ) = {0} for all positive integers k. Fur-

thermore, on the reference simplex T̂ define the spaces

P+
k (T̂ ) := Pk(T̂ ) + b̂ · Pk−2(T̂ ), P++

k (T̂ ) := Pk(T̂ ) + b̂ · Pk−1(T̂ ),

where b̂ ∈ Pd+1(T̂ ) is a bubble function that vanishes on the boundary ∂T̂ .
Set

Q+
k (T̂ ) := Qk(T̂ ) + b̂ · span {xk−1

i : i = 1, . . . , d}
on the reference cube T̂ where b̂ ∈ Q2(T̂ ) is a bubble function that vanishes

on ∂T̂ . These spaces on the reference cells are used to define mapped finite
element spaces. Set
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P disc
r =

{
v ∈ L2(Ω) : v|T ◦ FT ∈ Pr(T̂ )∀T ∈ Th

}
, Pr = P disc

r ∩H1(Ω),

Qdisc
r =

{
v ∈ L2(Ω) : v|T ◦ FT ∈ Qr(T̂ )∀T ∈ Th

}
, Qr = Qdisc

r ∩H1(Ω),

and

P+
r =

{
v ∈ H1(Ω) : v|T ◦ FT ∈ P+

r (T̂ )∀T ∈ Th

}
,

P++
r =

{
v ∈ H1(Ω) : v|T ◦ FT ∈ P++

r (T̂ )∀T ∈ Th

}
,

Q+
r =

{
v ∈ H1(Ω) : v|T ◦ FT ∈ Q+

r (T̂ )∀T ∈ Th

}
.

For brevity write Vh = Qk and Qh = Pk instead of Vh =
(
Qk ∩H1

0 (Ω)
)d

and
Qh = Pk ∩ L2

0(Ω). The mapped spaces P disc
r are used later also on quadrilat-

erals and hexahedra for the pressure and the projection spaces. While these
spaces do not enjoy the usual approximation properties on arbitrary families
of meshes, these properties are valid on families of uniformly-refined meshes,
which are often used in practice. For details, see [ABF02, Mat01, MS07].

In the construction of pressure interpolations that satisfy (5.8c), the follow-
ing lemmas will be helpful. We start with continuous pressure approximations
and introduce the notation

Qh(T ) :=
{
qh|T : qh ∈ Qh + span {1}

}
, Q̃h(T ) :=

{
qh : bT · qh ∈ Qh(T )

}
,

where bT denotes the mapped bubble function of lowest polynomial degree,
i.e., bT ∈ Pd+1(T ) for simplices in Rd and bT ∈ Q2(T ) for quadrilaterals and
hexahedra.

Lemma 5.5. Let the interpolation operator i∗h : Q ∩H2(Ω) → Qh ⊂ H1(Ω)
have the approximation property (5.8b). Let the projection spaces D2

h satisfy

D2
h(T ) ⊂ Q̃h(T ) for all T ∈ Th. Then there exists an interpolation operator

ih : Q∩H2(Ω) → Qh that satisfies the approximation property (5.8b) and the
orthogonality condition (5.8c).

Proof. Modify i∗h by setting ihq := i∗hq + dh(q), with dh(q)|T := bT · d̃T where

d̃T ∈ Q̃h(T ) is defined locally on each T ∈ Th by

(dh(q), rh)T = (bT · d̃T , rh)T = (q − i∗hq, rh)T ∀rh ∈ Q̃h(T ) . (5.13)

The uniqueness of a solution d̃T ∈ Q̃h(T ) follows from the observation that

(d, r) �→ (bT · d, r)T is a weighted L2 inner product on Q̃h(T ). Since the
bubble function bT vanishes on the boundary ∂T of each cell, the inter-
polant ihq := i∗hq + dh(q) belongs to Qh ⊂ Q ∩ H1(Ω) and locally pre-
serves polynomials of degree at most r. Thus the Bramble-Hilbert lemma
implies (5.8b) for simplicial finite elements. In the case of quadrilateral and
hexahedral finite elements on uniformly-refined meshes, we appeal to the re-
sults of [ABF02, Mat01, MS07]. Furthermore, (5.13) shows that the error
q − ihq is perpendicular to the projection space D2

h and the orthogonality
property (5.8c) holds true. ⊓⊔
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The version of Lemma 5.5 for discontinuous pressure approximations is as
follows.

Lemma 5.6. Let Qh = P disc
r−1 or Qh = Qdisc

r−1, with D2
h ⊂ Qh + span {1}. Then

the L2 projection ih : L2(Ω) → Qh has the approximation property (5.8b) and
the orthogonality condition (5.8c). If ∇ ·Vh ⊂ Qh + span {1} then one has
(q − ihq,∇ ·wh) = 0 for all wh ∈ Vh, independently of the choice of D2

h.

Proof. The discontinuity of the pressure space Qh implies that the L2 pro-
jection is local. Consequently the approximation property (5.8b) follows from
the Bramble-Hilbert lemma for simplicial finite elements in the usual way. In
the case of quadrilateral and hexahedral finite elements on uniformly-refined
meshes, the result is proved in [ABF02, Mat01, MS07]. Furthermore, one has

(q − ihq, rh) = 0 ∀rh ∈ Qh + span {1}.

Thus for D2
h ⊂ Qh + span (1), we conclude that (5.8c) holds true. If one has

∇ ·Vh ⊂ Qh + span {1}, then set rh = ∇ ·wh to get (q− ihq,∇ ·wh) = 0 for
all wh ∈ Vh, independently of the choice of D2

h. ⊓⊔

We turn now to concrete examples, starting with continuous pressure ap-
proximations; see Table 5.1. The assumptions (5.2) and (5.8) are clearly satis-

Table 5.1. Taylor-Hood families of order r ≥ 2

Vh Qh D1
h D2

h τT γT s t ||| · |||

Pr Pr−1 P disc
s−1 P disc

t−1 O(h
2(r−s)
T ) ∼ 1 s ≤ r t ≤ r − d − 1 O(hr)

Qr Qr−1 Qdisc
s−1 Qdisc

t−1 O(h
2(r−s)
T ) ∼ 1 s ≤ r t ≤ r − 2 O(hr)

fied for the Taylor-Hood families on simplices and quadrilaterals/hexahedra.
Indeed, the additional orthogonality assumption (5.8c) for the pressure inter-
polation can be fulfilled by using a sufficiently small projection space D2

h;
in particular the choices P disc

−1 = Qdisc
−1 = {0} always satisfy (5.8c). By

Lemma 5.5, the largest possible projection space D2
h such that (5.8c) still

holds is given by the bubble part Q̃h(T ) of Pr−1 and Qr−1 respectively. The
bubble part corresponds to P disc

r−d−2 for simplicial elements and to Qdisc
r−3 for

quadrilateral/hexahedral elements. Finally, the fluctuation operator κ1
h satis-

fies assumption (5.7) for all choices of D1
h given in Table 5.1.

Consider now examples of inf-sup stable finite element pairs Vh, Qh with
discontinuous pressure approximations. The inf-sup stability and approxima-
tion properties listed in Table 5.2 follow from [CR73, GR86, MT02]. The
orthogonality assumption (5.8c) is satisfied for D2

h ⊂ Qh + span {1} when
using the local L2 projection as a pressure interpolation; see Lemma 5.6.
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Table 5.2. Families of order r ≥ 2 with discontinuous pressure approximations

Vh Qh D1
h D2

h τT γT s t ||| · |||

P+
r P disc

r−1 P disc
s−1 P disc

t−1 O(h
2(r−s)
T ) ∼ 1 s ≤ r t ≤ r O(hr)

Qr P disc
r−1 P disc

s−1 P disc
t−1 O(h

2(r−s)
T ) ∼ 1 s ≤ r t ≤ r O(hr)

Remark 5.7. If D2
h ⊂ Qh + span {1}, then the L2 projection of a discretely

divergence-free function wh is zero since

(π2
h∇ ·wh, rh) = (∇ ·wh, rh) = 0 ∀rh ∈ D2

h.

This is the case for all the families of Table 5.2. As a consequence, the discrete
solution uh does not depend on the choice of the projection space. Nevertheless
the algebraic properties of the discrete system depend on the choice of D2

h. ♣

Remark 5.8. The enrichment of Pr in the first row of Table 5.2 is needed only
to ensure the inf-sup condition on arbitrary shape-regular meshes. If one con-
siders only families of meshes that are generated by dividing a d-simplex into
(d + 1) simplices in the usual way (using hyperplanes through the barycentre
and sets of d − 2 vertices), then the inf-sup condition holds true for r ≥ d;
see [Qin94, SV85, Zha05]. Thus in this case one can replace P+

r by Pr. The
pair (Pr, Pr−1) is known as the Scott-Vogelius element. ♣

5.3.2 Methods of Order r in the Case σ ≥ 0

A careful inspection of the proof of Theorem 5.4 shows that when σ = 0,
the error constant in (5.9) is no longer uniformly bounded as ν → 0 owing
to the estimates (5.10) and (5.12). We shall see below that one can get error
estimates that hold uniformly for all σ ≥ 0 by choosing a special interpolant
jh : V ∩H2(Ω)d → Vh. In this subsection the polynomial degree is r ≥ 2.

To handle both continuous and discontinuous pressure approximations,
modify the discrete problem by introducing the additional stabilizing term

Jh(p, q) :=
∑

E∈Eh

αE

〈
[p]E , [q]E

〉
E
,

where the αE are user-chosen parameters. Define a bilinear form A∗
h, a stabi-

lizing term S∗
h and an associated mesh-dependent norm ||| · |||∗ by

A∗
h

(
(u, p); (v, q)

)
:= Ah

(
(u, p); (v, q)

)
+ Jh(p, q),

S∗
h

(
(u, p); (v, q)

)
:= Sh(u,v) + Jh(p, q),

|||(v, q)|||∗ :=
[
|||(v, q)|||2 + Jh(q, q)

]1/2
.
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Note that this modification does not introduce any additional consistency
error since for smooth solutions p ∈ H1(Ω) one has [p]E = 0 on all E ∈ Eh

where Eh is the set of all inner faces.
We start from a quasi-local interpolation operator with a discrete diver-

gence property [GS03] then modify it following [MST07] so that the interpo-
lation error becomes orthogonal to the projection space.

Assumption A: There exists an operator j∗h : V → Vh satisfying

(qh,∇ · (w − j∗hw)) = 0 ∀w ∈ V, ∀qh ∈ Qh, (5.14a)

|v − j∗hv|m,T ≤ C hℓ−m
T |v|ℓ,ω(T ) ∀v ∈ V ∩Hℓ(Ω)d, ∀T ∈ Th, (5.14b)

for 0 ≤ m ≤ 1, 1 ≤ ℓ ≤ r + 1, where ω(T ) is a neighbourhood of T . Moreover,
let the local inf-sup condition

∃β1 > 0 ∀h > 0 ∀T ∈ Th : inf
qh∈D1

h(T )
sup

vh∈Yh(T )

(vh, qh)T

‖vh‖0,T ‖qh‖0,T
≥ β1 > 0 (5.15)

be satisfied where Yh(T ) := {vh|T : vh ∈ Yh, vh = 0 on Ω\T} is the local
bubble part of the scalar finite element space Yh. ♣

Remark 5.9. The existence of quasi-local interpolation operators j∗h satisfy-
ing (5.14) has been established for a wide family of pairs Vh, Qh in [GS03].
As regards (5.15), it is necessary that Yh(T ) – compared with D1

h(T ) – be rich
enough. In particular, one must have dimYh(T ) ≥ dimD1

h(T ). Examples of
spaces Yh, D1

h satisfying (5.15) have been given in Section 4.4. ♣

Lemma 5.10. Let Assumption A be satisfied. Then there exists an interpola-
tion operator jh : V → Vh with the following orthogonality and approximation
properties:

(w − jhw, qh) = 0 ∀qh ∈ (D1
h)d, ∀w ∈ V, (5.16a)

|v − jhv|m,T ≤ C hℓ−m
T |v|ℓ,ω(T ) ∀v ∈ V ∩Hℓ(Ω)d, ∀T ∈ Th, (5.16b)

for 0 ≤ m ≤ 1, 1 ≤ ℓ ≤ r + 1. If in addition ∇Qh ⊂ (D1
h)d, then

|(rh,∇ · (w − jhw))| ≤ C
( ∑

E∈Eh

α−1
E h2r+1

TE
|w|2r+1,ω(TE)

)1/2 (
Jh(rh, rh)

)1/2

(5.17)

for all rh ∈ Qh and all w ∈ V ∩Hr+1(Ω)d.

Proof. Under the hypotheses (5.14b) and (5.15), it is shown in [MST07, The-
orem 2.2] that there exists an interpolation operator jh satisfying (5.16). It is
constructed by setting jhw := j∗hw+zh(w) where zh(w)|T ∈ Vh(T ) := Yh(T )d

is defined locally by
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(zh(w), qh)T = (w − j∗hw, qh)T ∀qh ∈
(
D1

h(T )
)d

which immediately guarantees (5.16a). One can establish the local bound

‖zh(w)‖0,T ≤
1

β1
‖w − j∗hw‖0,T

from which (5.16b) follows by invoking (5.14b) and an inverse inequality. It
remains to prove that (5.17) holds true. As jhw = j∗hw + zh(w), for rh ∈ Qh

and w ∈ V ∩Hr+1(Ω)d one obtains

(rh,∇ · (w − jhw)) = −(rh,∇ · zh(w)) =
∑

T∈Th

(∇rh, zh(w))T

=
∑

T∈Th

(∇rh,w − j∗hw)T

= −
∑

T∈Th

(rh,∇ · (w − j∗hw))T

+
∑

E∈Eh

〈
[rh]E , (w − j∗hw) · nE

〉
E
.

This calculation used (5.14a), zh(w) = 0 on ∂T for all T ∈ Th, ∇(rh|T ) ∈(
D1

h(T )
)d

and w − j∗hw = 0 on ∂Ω. The first term on the right-hand side
vanishes because of (5.14a). For E ∈ Eh ∩ ∂TE , the scaled trace inequality

‖v‖0,E ≤ C
(
h
−1/2
TE

‖v‖0,TE
+ h

1/2
TE
|v|1,TE

)
∀v ∈ H1(TE)

yields

‖w − j∗hw‖0,E ≤ C
(
h
−1/2
TE

hr+1
TE
|w|r+1,ω(TE) + h

1/2
TE
hr

TE
|w|r+1,ω(TE)

)

≤ Chr+1/2
TE

|w|r+1,ω(TE)

by applying (5.14b). The estimate (5.17) now follows by using the Cauchy-
Schwarz inequality. �

Remark 5.11. The bound (5.17) implies that the special interpolant jh yields
a discrete divergence property for continuous pressure approximations since
Jh(rh, rh) = 0 for rh ∈ H1(Ω). A simple example of spaces that satisfy As-
sumption A is the “extended Mini-element family” given by Vh = P++

r ,
Qh = Pr, and D1

h = P disc
r . ♣

Theorem 5.12. Assume that the spaces Vh, Qh satisfy (5.2), (5.8) and As-
sumption A. Let the function b satisfy the regularity assumption of Lemma 5.3.
Let the projection space D1

h be such that the associated fluctuation operator
κ1

h satisfies (5.7) with s ∈ {r − 1, r}. Let the user-chosen parameters satisfy
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γT ∼ 1 and αE ∼ hE. Assume that τT ∼ h2
T for s = r− 1 and C̄h2

T ≤ τT ≤ ¯̄C
for s = r. Let (u, p) ∈

(
V∩Hr+1(Ω)d

)
×
(
Q∩Hr(Ω)

)
be the solution of (5.1)

and (uh, ph) ∈ Vh × Qh the solution of (5.4) with Ah replaced by A∗
h. Then

there exists a positive constant C, which is independent of ν, σ and h, such
that

|||(u− uh, p− ph)|||∗ ≤ C
( ∑

T∈Th

h2r
T

(
‖u‖2r+1,T + ‖p‖2r,T

)
)1/2

.

Proof. The proof of Lemma 5.1 is still valid for A∗
h since

A∗
h

(
(vh, qh); (zh, 0)

)
= Ah

(
(vh, qh); (zh, 0)

)
.

Now our argument follows the proof of Theorem 5.4; here we mention only the
necessary changes. The treatment of the additional term that appears only
for discontinuous pressure approximations is standard:

|Jh(ihp− p, rh)| ≤ (Jh(ihp− p, ihp− p))1/2
(Jh(rh, rh))

1/2

≤ C
( ∑

T∈Th

h2r
T ‖p‖2r,T

)1/2

|||(wh, rh)|||∗ ,

where we used hE ∼ hT for E ⊂ ∂T and the same ideas as in the proof of
Lemma 5.10 to estimate the interpolation error on cell boundaries. Replace-
ments for the inequalities (5.10) and (5.12) are still needed; using (5.17) and
αE ∼ hE , one gets

|(rh,∇ · (u− jhu))| ≤ C
( ∑

T∈Th

h2r
T ‖u‖2r+1,T

)1/2

|||(wh, rh)|||∗

for all σ ≥ 0. Since the velocity interpolant has the additional orthogonality
property (5.16a) relative to D1

h, one can estimate the convection term after
an integration by parts via

∣∣((b · ∇)(jhu− u),wh

)∣∣
=
∣∣(jhu− u, (b · ∇)wh

)∣∣ =
∣∣(jhu− u, κ1

h(b · ∇)wh

)∣∣

≤ C
( ∑

T∈Th

h
2(r+1)
T τ−1

T ‖u‖2r+1,T

)1/2

|||(wh, rh)|||∗ . (5.18)

The statement of the theorem follows with τ−1
T ≤ C̄−1h−2

T . ⊓⊔

Examples that satisfy all hypotheses of Theorem 5.12 are given in Ta-
bles 5.3 and 5.4. Since the pairs (Pr, Pr−1) and (Qr, P

disc
r−1) satisfy the inf-sup

condition (5.2), the enriched-velocity versions of these pairs in Tables 5.3
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Table 5.3. Families of order r ≥ 2 with continuous pressure approximations

Vh Qh D1
h D2

h τT γT t ||| · |||

P+
r Pr−1 P disc

r−2 P disc
t−1 ∼ h2

T ∼ 1 t ≤ r − 1 − d O(hr)

P++
r Pr−1 P disc

r−1 P disc
t−1 C̄h2

T ≤ τT ≤ ¯̄C ∼ 1 t ≤ r − 1 − d O(hr)

Qr Qr−1 Qdisc
r−2 Qdisc

t−1 ∼ h2
T ∼ 1 t ≤ r − 2 O(hr)

and 5.4 satisfy (5.2) also. The enrichments have been chosen large enough
to satisfy the inf-sup condition (5.15) of Assumption A, which implies the
orthogonality property (5.16a) of the velocity interpolation for the given pro-
jection space D1

h. See [GMT08, MST07] for a proof of (5.15). Finally, the
largest possible projection space D2

h for continuous pressure approximations
is the bubble part of the pressure space Qh.

Table 5.4. Families of order r ≥ 2 with discontinuous pressures and the modified
stabilization term S∗

h

Vh Qh D1
h D2

h τT γT αE t ||| · |||∗

Qr P disc
r−1 Qdisc

r−2 P disc
t−1 ∼ h2

T ∼ 1 ∼ hE t ≤ r O(hr)

Q+
r P disc

r−1 P disc
r−1 P disc

t−1 C̄h2
T ≤ τT ≤ ¯̄C ∼ 1 ∼ hE t ≤ r O(hr)

5.3.3 Methods of Order r + 1/2

For equal-order interpolations with Vh = (Yh ∩ H1
0 (Ω))d and Qh = Yh ∩Q,

error estimates of order O((ν1/2 + h1/2)hr) were established in Section 4.4.
Unfortunately, these pairs of finite elements are not inf-sup stable and an addi-
tional pressure stabilization (pressure-stabilized Petrov-Galerkin or PSPG; see
[TMRS92]) was necessary. A careful reading of the proof of Theorem 5.4 shows
that the critical term limiting the convergence order to r is (p− ihp,∇ ·wh),
which was estimated in (5.11). Thus an improved approximation of the pres-
sure is the key to getting an improved error estimate. In this subsection we
consider inf-sup stable pairs (Vh, Qh) of finite element spaces that approxi-
mate both velocity and pressure by elements of order r.

Consider the two families of spaces listed in Table 5.5.

Theorem 5.13. Assume that the spaces Vh, Qh, D1
h, D2

h and the parameters
τT , γT , αE are chosen according to Table 5.5. Let the function b satisfy the
regularity assumption of Lemma 5.3. Let (u, p) ∈

(
V ∩ Hr+1(Ω)d

)
×
(
Q ∩

Hr+1(Ω)
)

and (uh, ph) ∈ Vh × Qh be the solutions of (5.1) and (5.4) re-
spectively, where Ah has been replaced by A∗

h. Then there exists a positive
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Table 5.5. Families of order r + 1/2 and the modified stabilization term S∗

h

Vh Qh D1
h D2

h τT γT αE r t ||| · |||∗

P++
r Pr P disc

r−1 P disc
t−1 ∼ hT ∼ hT = 0 r ≥ 1 t ≤ r − d O(hr+1/2)

Q+
r P disc

r P disc
r−1 P disc

t−1 ∼ hT ∼ hT ∼ 1 r ≥ 2 t ≤ r + 1 O(hr+1/2)

constant C, which is independent of ν, σ, and h, such that

|||(u− uh, p− ph)|||∗ ≤ C
[ ∑

T∈Th

(ν + hT )h2r
T

(
‖u‖2r+1,T + ‖p‖2r+1,T

)
]1/2

.

Proof. The inf-sup stability condition (5.2) is proved in [MT07]. Furthermore,
the choice D1

h = P disc
r−1 guarantees (5.7) with s = r and the consistency error

becomes O
(
hr+1/2

)
for τT ≤ C̄hT .

Assumption A is satisfied for the pairs (P++
r , P disc

r−1) and (Q+
r , P

disc
r−1); see

[MST07]. Therefore we can use the improved estimate (5.18) for the convection
term. Moreover, upper bounds for the sizes of the projection spaces D2

h follow
from the size of the bubble parts of the pressure spaces Pr on simplices and
P disc

r on quadrilaterals and hexahedra. The choice D2
h = P disc

t−1 allows us to
apply Lemmas 5.5 and 5.6; thus all the conditions (5.8) are satisfied.

As the pressure space is either Pr or P disc
r , we have the following improved

interpolation error estimate:

‖q − ihq‖0,T + hT |q − ihq|1,T ≤ Chℓ
T ‖q‖ℓ,T ∀q ∈ Hℓ(T ), 2 ≤ ℓ ≤ r + 1,

for all T ∈ Th. Consequently the bound (5.12) can be sharpened:

(p− ihp,∇ ·wh) = (p− ihp, κ2
h∇ ·wh)

≤ C
( ∑

T∈Th

γ−1
T h2r+2

T ‖p‖2r+1,T

)1/2

|||(wh, rh)|||∗

≤ C
( ∑

T∈Th

h2r+1
T ‖p‖2r+1,T

)1/2

|||(wh, rh)|||∗ ,

where γT ∼ hT was used. The desired result follows. ⊓⊔

Examples of elements that in the convection-dominated case (ν < hT ) con-
verge with order r + 1/2 are shown in Figures 5.1 and 5.2.
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Fig. 5.1. Triangular elements of order 5/2: Vh, Qh, and D1
h (from left to right)

Fig. 5.2. Quadrilateral elements of order 5/2: Vh, Qh, and D1
h (from left to right)



6

Mass Conservation for Coupled
Flow-Transport Problems

In this chapter we examine mass-conservation properties of finite element
discretizations of coupled flow-transport problems. The system under consid-
eration is described by the unsteady incompressible Navier-Stokes equations
and a time-dependent transport equation; see [GS00a, GS00b, Hir88, Hir90]
for models where this combination arises. The incompressibility constraint
implies that global mass is conserved in the weak solution of the transport
equation. Since the discretized velocity only satisfies a discrete incompress-
ibility constraint, global mass is in general conserved only approximately in
the numerical scheme. We shall investigate conditions under which discrete
global mass conservation can be guaranteed.

6.1 A Model Problem

We consider the simplest case of a coupled flow-transport problem in a
bounded domain Ω ⊂ Rd, d = 2, 3. The system is described by the unsteady
incompressible Navier-Stokes equations

ut − ν△u + (u · ∇)u +∇p = f in Ω × (0, T ], (6.1a)

∇ · u = 0 in Ω × (0, T ], (6.1b)

u = ub on ∂Ω × (0, T ], (6.1c)

u(0) = u0 in Ω, (6.1d)

and the time-dependent transport equation

ct − ε△c+ u · ∇c = g in Ω × (0, T ], (6.2a)

(cu− ε∇c) · n = cI u · n on Γ− × (0, T ], (6.2b)

ε∇c · n = 0 on Γ∗ × (0, T ], (6.2c)

c(0) = c0 in Ω. (6.2d)
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Here u and p denote the velocity and the pressure of the fluid, ν and ε are small
positive numbers, and T > 0 is the final time. The boundary ∂Ω is divided
between the inflow boundary Γ− := {x ∈ ∂Ω : u · n < 0} and the remaining
part of the boundary Γ∗ := ∂Ω \ Γ−, where n is the outward-pointing unit
normal. Furthermore, c is the concentration of a species transported with the
flow field and cI its concentration at the inflow boundary Γ−. We assume
that the given velocity field ub on the boundary ∂Ω is the restriction of a
divergence-free function that is also denoted by ub. The initial velocity u0

satisfies the incompressibility constraint ∇ · u0 = 0.
Various discretization methods for the unsteady incompressible Navier-

Stokes equations and the transport equation have been developed in previous
chapters for the realistic and important cases where ν ≪ 1 and ε≪ 1. Here we
shall study the mass conservation of the discretized transport equation when
using stabilized schemes. For simplicity of notation we confine our attention to
the semi-discretization in space of the problems (6.1) and (6.2). The results can
be extended to the fully discretized problems by using discontinuous Galerkin
methods in time.

6.2 Continuous and Discrete Mass Conservation

Set W := H1(Ω). Let (·, ·) and 〈·, ·〉Γ denote the L2 inner products on Ω
and Γ respectively. A weak formulation of the transport problem (6.2) is:

Find c(t) ∈W such that for all ϕ ∈W one has (c(0)− c0, ϕ) = 0 and

d

dt
(c, ϕ) + ε(∇c,∇ϕ) + u · ∇c, ϕ)− 〈cu · n, ϕ〉Γ−

= (g, ϕ)− 〈cI u · n, ϕ〉Γ−
. (6.3)

On setting ϕ ≡ 1 and using the incompressibility constraint ∇ · u = 0, one
derives from (6.3) the global mass conservation property

d

dt

∫

Ω

c dx+

∫

Γ−

cI u · n dγ +

∫

Γ∗

cu · n dγ =

∫

Ω

g dx. (6.4)

Assume that the domain Ω is polyhedral and is subdivided into simplicial
elements K by a family

{
Th

}
h>0

of shape-regular triangulations of Ω. Let
Wh ⊂W be some finite element space for approximating the concentration c.
Then the standard Galerkin discretization of (6.3) is:

Find ch(t) ∈ Wh such that for all ϕh ∈ Wh one has (ch(0) − c0, ϕh) = 0
and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (uh · ∇ch, ϕh)− 〈ch uh · n, ϕh〉Γ−

= (g, ϕh)− 〈cI uh · n, ϕh〉Γ−
. (6.5)
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Note that the divergence-free vector field u of (6.3) has been replaced in (6.5)
by some approximation uh that is in general discontinuous. On setting ϕh = 1
and integrating by parts over each element, one arrives at

d

dt

∫

Ω

ch dx+

∫

Γ−

cIuh · n dγ +

∫

Γ∗

chuh · n dγ =

∫

Ω

g dx+mh(ch,uh). (6.6)

In this equation, compared with the global mass conservation of (6.4) on the
continuous level, the additional term

mh(ch,uh) :=
∑

K∈Th

(ch,∇ · uh)K +
∑

E∈Eh

〈ch, [uh]E · nE〉E (6.7)

appears. Here Eh is the set of inner faces E in Th, and (·, ·)K and 〈·, ·〉E are the
L2 inner products on K and E respectively. With each E ∈ Eh we associate
an arbitrary but fixed unit normal nE and define the jump of a quantity ψ
across the common face E of the two adjacent elements K and K̃ by

[ψ]E :=
(
ψ|K̃

)∣∣
E
− (ψ|K)

∣∣
E

where nE is an outward-pointing unit normal to ∂K. The discrete counter-
part of the global mass conservation equation (6.4) is equation (6.6) with
mh(ch,uh) = 0. In Section 6.4 we shall discuss conditions under which
mh(ch,uh) vanishes.

Discrete mass conservation is not guaranteed by the standard Galerkin
discretization unless mh(ch,uh) = 0. What happens if one uses stabilized
schemes to solve (6.2)? Let us consider such schemes of the following type:

Find ch(t) ∈Wh such that for all ϕh ∈Wh one has ch(0)−c0, ϕh) = 0 and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (uh · ∇ch, ϕh)− 〈ch uh · n, ϕh〉Γ−

+Sh(ch, ϕh) = (g, ϕh)− 〈cI uh · n, ϕh〉Γ−
.

In the streamline diffusion method (SDFEM) of Section III.4.3, weighted
residuals of the strong form of the differential equation are added. That is,
one has

SSD(ch, ϕh) :=
∑

K∈Th

δK(ch,t − ε△ch + uh · ∇ch − g,uh · ∇ϕh)K

with user-chosen SD parameters δK .
The subgrid modelling method of Section 4.5 considers a subspace of re-

solvable scales WH in the approximating space Wh, together with a projector
PH : Wh →WH . The non-resolvable scales are stabilized by adding

SSGS(ch, ϕh) :=
∑

K∈Th

τK
(
∇(id− PH)ch,∇(id− PH)ϕh

)
K
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to the standard Galerkin method (6.5), where the τK are user-chosen para-
meters.

Finally, recall the local projection stabilization (LPS) of Section III.3.3.1.

This relies on a local projection operator P̃ : Wh → Dh into a proper subspace
of discontinuous finite elements. The stabilizing term added is

SLPS(ch, ϕh) :=
∑

K∈Th

τK
(
(id− P̃ )∇ch, (id− P̃ )∇ϕh

)
K

with user-chosen parameters τK .
In all these cases the stabilizing terms vanish if ϕh ≡ 1. Hence global mass

conservation on the discrete level will be guaranteed for both the standard
Galerkin and stabilized methods if the additional term mh(ch,uh) in (6.6)
vanishes.

6.3 Approximated Incompressible Flows

Set V = H1
0 (Ω)d, M = L2(Ω), and Q =

{
q ∈ M : (q, 1) = 0

}
. Then a weak

formulation of the unsteady incompressible Navier-Stokes problem (6.1) is:

Find
(
u(t), p(t)

)
∈ (ub + V)×Q such that

(u(0)− u0,v) = 0 ∀v ∈Md, (6.8a)

d

dt
(u,v)+ν(∇u,∇v)+

(
(u · ∇)u,v

)
−(∇ · v, p) = (f ,v) ∀v ∈ V, (6.8b)

(∇ · u, q) = 0 ∀q ∈ Q. (6.8c)

Our assumption that ub is the restriction of a divergence-free function yields

(∇ · u, 1) = 〈u · n, 1〉∂Ω = 〈ub · n, 1〉∂Ω = (∇ · ub, 1) = 0. (6.9)

This, combined with (6.8c), implies that (∇ · u, q) = 0 for all q ∈ L2(Ω).
Consider first the inf-sup stable discretizations of the problem (6.8) that

were discussed in Chapters 2 and 5. Let Vh ⊂ V, Mh ⊂M and Qh = Mh∩Q
be finite element spaces such that the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

|vh|1 ‖qh‖0
≥ β (6.10)

is satisfied with a positive constant β that is independent of the mesh size
parameter h. Using the discrete spaces Vh and Mh, the standard Galerkin
discretization of (6.8) is:

Find
(
uh(t), ph(t)

)
∈ (ub,h + Vh)×Mh such that
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(uh(0)− u0,vh) = 0 ∀vh ∈ Vh, (6.11a)

d

dt
(uh,vh) + ν(∇uh,∇vh)

+
(
(uh · ∇)uh,vh

)
− (∇ · vh, ph) = (f ,vh) ∀vh ∈ Vh, (6.11b)

(∇ · uh, qh) = 0 ∀qh ∈ Qh, (6.11c)

where ub,h is some approximation of ub for which 〈ub,h · n, 1〉∂Ω = 0. As a
consequence,

(∇ · uh, 1) =
∑

K∈Th

(∇ · uh, 1)K = 〈ub,h · n, 1〉∂Ω −
∑

E∈Eh

〈[uh]E · nE , 1〉E

= −
∑

E∈Eh

〈[uh]E · nE , 1〉E .

Thus if the normal components of uh are continuous over the cell faces E, we
get the discrete analogue of (6.9), viz., (∇ · uh, qh) = 0 for all qh ∈ Mh.

When discretizing the Navier-Stokes problem by inf-sup stable finite el-
ements, one has to make a fundamental choice between continuous and dis-
continuous pressure approximations. The relation (6.11c) says that the in-
compressibility constraint (6.1b) is satisfied only in an approximate sense.
Nevertheless, if discontinuous pressure approximations are used, then mass
conservation in the fluid is satisfied more locally since functions with support
within one element can be used as test functions.

Now we turn to schemes that are designed to stabilize the twin effects of
dominant convection and instabilities caused by finite element pairs (Vh, Qh)
that fail to satisfy (6.10) – see Chapters 3 and 4. In particular, equal-order
interpolation of velocity and pressure that is stabilized by the local projection
method (LPS) or by the streamline diffusion method (SDFEM) will be our
focus. A common feature of these stabilization methods is an additional stabi-
lizing term in the discrete mass balance equation (6.11c) of the Navier-Stokes
system, but this produces an additional error in the mass conservation of the
transport equation. Indeed, in the LPS method, (6.11c) is replaced by

(∇ · uh, qh) +
∑

M∈Mh

αM (κh∇ph, κh∇qh)M = 0 ∀qh ∈ Qh,

where κh = id−πh is the fluctuation operator defined via the local projection
πh : L2(M)d → Dh(M)d. HereDh(M) is a finite element space associated with
the family of macro-triangulations {Mh}h>0 of Ω into macro-cells and the αM

are user-chosen parameters. Note that in the case of enriched approximation
spaces it is possible to have Mh = Th. For the SDFEM the discrete mass
balance condition (6.11c) is modified to



534 6 Mass Conservation for Coupled Flow-Transport Problems

∑

K∈Th

τK
(
(uh)t − ν∆uh + (uh · ∇)uh +∇ph − f ,∇qh

)
K

+
∑

E∈Eh

αE

〈
[ph]E , [qh]E

〉
E

+ (∇ · uh, qh) = 0 ∀qh ∈ Qh,

which is even more complicated than that for the LPS scheme.
To avoid the discretization error caused by these additional terms in the

discrete mass balance equation, one should try to separate the treatments
of the two instability phenomena: dominant convection and unstable finite
element pairs for approximating velocity and pressure. Such separation tech-
niques have been considered, e.g., by [BH06, FJMT07, GLOS05]. In the fol-
lowing we restrict ourselves to the solution of the Navier-Stokes equations by
inf-sup stable conforming finite element pairs and stabilization methods that
do not modify the discrete mass balance (6.11c). In this case, the computed
velocity field uh(t) ∈ ub,h+Vh lies in H1(Ω)d and is discretely divergence-free
in the sense that

(∇ · uh, qh) = 0 ∀qh ∈Mh.

While (6.11c) implies that this relation is valid for all qh ∈ Qh ⊂ Mh, the
choice of approximation ub,h of the boundary data ub guarantees its satisfac-
tion for all qh ∈Mh.

6.4 Mass-Conservative Methods

In Section 6.2 we saw that the mass of a species transported with the flow
is conserved on the discrete level if and only if the term mh(ch,uh) of (6.7)
vanishes. Recall that on the continuous level the term mh(ch,u) vanished
owing to the incompressibility condition ∇ · u = 0 and [u]E = 0 for all inner
faces E ∈ Eh. In the following subsections several approaches that ensure
mh(ch,uh) = 0 will be examined.

6.4.1 Higher-Order Flow Approximation

Let us assume that the transport equation is solved by a method of order
r ≥ 1, i.e., the approximation error in space satisfies

inf
ϕh∈Wh

|c− ϕh|m ≤ C hr+1−m|c|r+1

for all c ∈ Hr+1(Ω) and 0 ≤ m ≤ r + 1. One example is the space Wh of
continuous piecewise polynomials of degree at most r.

Consider first conforming finite element discretizations of the Navier-
Stokes equations. Then the sum over inner faces in mh(ch,uh) vanishes since
[uh]E = 0 for all E ∈ Eh. One also observes that the sum over all cells K
in mh(ch,uh) vanishes if ch belongs to the approximation space Mh for the
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pressure, which is true if Wh ⊂ Mh. Thus mass conservation of the species
transported with the flow can be achieved if one chooses Mh = Wh, e.g., the
space Pr of continuous piecewise polynomials of degree at most r. Then the
velocity space has to be rich enough to satisfy the inf-sup condition (6.10).
One possible choice would be the vector-valued version of the space Pr+1 of
continuous piecewise polynomials of degree at most r +1. The pair (P d

r+1, Pr)
is called the Taylor-Hood element and is known to be inf-sup stable [GR86].
We obtain a discretization of (uh, ph, ch) in P d

r+1 ×Pr ×Pr. Figure 6.1 shows
the relevant degrees of freedoms when d = 2 and r = 2. That is, the Navier-

Fig. 6.1. Approximation spaces for velocity, pressure and concentration in the two-
dimensional case when second-order Taylor-Hood elements for the flow problem are
combined with piecewise linear elements for the transport equation

Stokes problem is discretized by a method which is of order r +1 whereas the
transport equation is approximated by a lower-order method that is of order
r. One therefore expects an error estimate of the form

‖u− uh‖1 + ‖p− ph‖0 + ‖c− ch‖1 ≤ C
(
hr+1 + hr+1 + hr

)

which is suboptimal with respect to the flow problem. Another inf-sup stable
example for the two-dimensional case is displayed in Figure 6.2 and turns
out to be also mass conservative. Here the pressure and the concentration are

Fig. 6.2. First-order approximation spaces for the flow and the transport problem
in the two-dimensional case: piecewise linear elements for pressure and concentration
with piecewise linear elements on the next finer mesh level for the velocity

discretized by continuous piecewise linear functions on the triangulation Th

while each velocity component is approximated by continuous piecewise linear
functions on the next refinement level Th/2. Thus the discretization (uh, ph, ch)
lies in (4P1)

2 × P1 × P1. Although the number of degrees of freedom is the
same as for P 2

2 × P1 × P1, the solution (u, p) of the Navier-Stokes equation is
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now approximated only to first order. For flows at higher Reynolds number,
the method could be combined with the upwind technique of Section III.3.1.

For quadrilateral or hexahedral elements, mass-conservative methods can
be derived in a similar way. This technique of using higher-order approxima-
tions for the flow problem to get mass-conservative schemes works for both
continuous and discontinuous pressure approximations.

With nonconforming finite element discretizations of the Navier-Stokes
equations on simplices, more care is needed as now one may not have [uh]E = 0
over the inner faces E ∈ Eh. Nevertheless a careful investigation of the con-
sistency error [MT05] shows that for a method of order r + 1 one needs the
velocity to satisfy

〈
[uh]E , rh

〉
E

= 0 ∀rh ∈ Pr(E)d, ∀E ∈ Eh.

This is just sufficient to guarantee that the sum over inner faces in mh(ch,uh)
vanishes; see (6.7). If the discretization is completed by discontinuous ele-
ments of order r for the pressure and continuous elements of order r for the
concentration, then in (6.7) one has mh(ch,uh) = 0. Figure 6.3 indicates a
variant of this method for the case r = 3. For nonconforming finite element

Fig. 6.3. A combined non-conforming/conforming discretization of the coupled flow-
transport problem: velocity approximated by enriched nonconforming P 2

3 , pressure
by discontinuous P disc

2 and concentration by continuous P2

discretizations of the Navier-Stokes equations on quadrilateral or hexahedral
cells see [Mat07].

In summary, using a discretization of the flow problem that is one order
higher produces global mass conservation of the transport equation. But from
a practical point of view this technique is unattractive since it is too costly
to discretize the Navier-Stokes equations by an order r + 1 method when the
transport equation is discretized using an order r method, as the combined
method will be only order r.

6.4.2 Post-Processing of the Discrete Velocity

An alternative way of ensuring exact mass balance on the discrete level is to
replace the discrete velocity solution uh by a different discrete function wh

that is close to uh. This approach was proposed in [CKS05b] for the local
discontinuous Galerkin method applied to flow problems and we now describe
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it in detail. Instead of the standard Galerkin formulation (6.5) for the weak
form of the transport equation, one solves the problem

Find ch(t) ∈ Wh such that for all ϕh ∈ Wh one has (ch(0) − c0, ϕh) = 0
and

d

dt
(ch, ϕh) + ε(∇ch,∇ϕh) + (wh · ∇ch, ϕh)

−〈ch wh · n, ϕh〉Γ−
= (g, ϕh)− 〈cI wh · n, ϕh〉Γ−

, (6.12)

where wh will be specified below.
Let the Navier-Stokes equations be discretized by the inf-sup stable finite

element pair
((
P bubble

r

)d
, P disc

r−1

)
that comprises the velocity space of contin-

uous piecewise polynomials of degree at most r enriched with certain bubble
functions and the pressure space of discontinuous piecewise polynomials of
degree at most r − 1; see [GR86]. This stable pair is illustrated in Figure 6.4

Fig. 6.4. Inf-sup stable finite element pair for the flow problem in the two-
dimensional case: velocity approximated by

(
P bubble

2

)2
and pressure by P disc

1

for the case d = 2 and r = 2. The function wh ∈
(
P disc

r

)d
that acts as an

approximate velocity field in the transport equation is constructed by post-
processing. To this end, define on each element K ∈ Th the vector-valued local
interpolation operator ΠK : H1(K)d → Pr(K)d by

〈
(ΠKv) · nK , ϕ

〉
E

= 〈v · nK , ϕ〉E ∀E ⊂ ∂K, ϕ ∈ Pr(E), (6.13a)

(ΠKv,∇ϕ) = (v,∇ϕ) ∀ϕ ∈ Pr−1(K), (6.13b)

(ΠKv,ψ) = (v,ψ) ∀ψ ∈ Ψ r(K), (6.13c)

where
Ψ r(K) :=

{
ψ ∈ L2(K)d : (DFT

Kψ) ◦ FK ∈ Ψ̂ r

}

with

Ψ̂ r :=
{
ψ̂ ∈ Pr(K̂)d : ∇ · ψ̂ = 0 in K̂, ψ̂ · nK̂ = 0 on ∂K̂

}
.

In the above formulas, we used the reference transformation FK : K̂ → K
which is a bijective mapping from the reference cell K̂ onto the cell K. Fur-
thermore, ψ̂ = ψ ◦ FK . The space Pr(K)d has dimension
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dim
(
Pr(K)d

)
= d

(
r + d

d

)

and we have to fix the degrees of freedom by (6.13). Conditions (6.13a) and
(6.13b) give

(d + 1)

(
r + d− 1

d− 1

)
+

(
r + d− 1

d

)
− 1

=

{
(r2 + 7r + 4)/2 if d = 2,

(r3 + 15r2 + 38r + 18)/6 if d = 3

linear equations since the gradient of the constant function in Pr−1(K) is zero.

In the case d = 2 the space Ψ̂ r is characterized quite simply [BF91] as

Ψ̂ r =
{

ψ̂ = curl
(
λ̂1λ̂2λ̂3ϕ

)
: ϕ ∈ Pr−2

}

where λ̂1λ̂2λ̂3 is the cubic bubble function that vanishes on the boundary of
the reference cell K̂. Hence dim{Ψ̂ r} = r(r − 1)/2 in the case d = 2. It is

more delicate to determine the dimension of the space {Ψ̂ r} when d = 3, but
it turns out that for d = 2 and 3 the number of equations in (6.13) equals the
number of degrees of freedom. See [BF91] for a proof of the P d

r -unisolvence of
the degrees of freedom.

An interpolation operator P was introduced by [CKS05b] in a general
framework of local discontinuous Galerkin methods; in (6.13) we have adapted
this operator to our situation and called it ΠK . The interpolation operator
ΠK satisfies

ΠKv = v ∀v ∈ Pr(K)d

owing to the P d
r -unisolvence of its degrees of freedom. One can show by direct

computation that
ΠKv = SKP

BDMS−1
K v

where SK : H1(K̂)d → H1(K)d is the Piola mapping defined by

(SK v̂)(x) = (detDFK)−1DFK v̂
(
F−1

K (x)
)

and PBDM is the BDM projection studied in [BDM85]. The equivalence of
norms in finite-dimensional spaces implies the stability of the local interpola-
tion operator ΠK on Pr(K)d, i.e.,

‖ΠKv‖1,K ≤ C ‖v‖1,K ∀v ∈ Pr(K)d, K ∈ Th.

The local interpolation operators ΠK can be assembled to form a global in-
terpolation operator Πh by setting

(Πhv)|K := ΠK(v|K) ∀K ∈ Th.
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In general the function Πhv will not belong to H1(Ω)d but to the space(
P disc

r

)d
of discontinuous piecewise polynomials of degree at most r in each

component.
We show that the post-processed solution Πhuh is piecewise divergence-

free. Starting from the incompressibility constraint (6.11c), one uses the con-
ditions (6.13a) and (6.13b) in the definition of ΠK to obtain

0 = (∇ · uh, qh)K = −(uh,∇qh)K + 〈uh · nK , qh〉∂K

= −(ΠKuh,∇qh)K +
〈
(ΠKuh) · nK , qh

〉
∂K

= (∇ ·ΠKuh, qh)K ,

since ∇qh ∈ Pr−1(K)d and qh|E ∈ Pr(E) for all faces E ⊂ ∂K.
Furthermore, observe that the function α defined piecewise by

α|K := ∇ ·ΠKuh

belongs to Qh. Since α|K ∈ Pr−1(K), we have to show only that α has zero
integral mean over Ω. Indeed, one has

∫

Ω

αdx =
∑

K∈Th

∫

K

∇ ·ΠKuh dx =
∑

K∈Th

∫

∂K

(ΠKuh) · nK dγ

=
∑

K∈Th

uh · nK dγ =

∫

∂Ω

uh · n dγ = 0

where the condition (6.13a) was invoked.
Thus α can be used as a pressure test function in (6.11c). We thence obtain

0 = (∇ ·Πhuh, α) =
∑

K∈Th

(∇ ·Πhuh,∇ ·Πhuh)K

so ∇ · Πhuh|K ≡ 0, i.e., the post-processed velocity solution is piecewise
divergence-free.

The modified convection field in (6.12) is chosen to be wh := Πhuh. This
ensures that the first term in mh(ch,wh) vanishes. Moreover, the normal
component of wh has no jumps across inner faces because of condition (6.13a)
in the definition of ΠK . For, given any ϕ ∈ Pr(E), one has

〈
[Πhuh]E · nE , ϕ

〉
E

= 〈ΠK̃uh · nE , ϕ〉E − 〈ΠKuh · nE , ϕ〉E
= 〈uh · nE , ϕ〉E − 〈uh · nE , ϕ〉E = 0

where K and K̃ are the two elements adjacent to E. As [Πhuh]E ∈ Pr(E)d,
we conclude that [Πhuh]E = 0. That is, the second term of mh(ch,wh) also
vanishes.

As regards the approximation order of wh = Πhuh, in the broken H1(Ω)d

norm one gets
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‖u−Πhuh‖1,h ≤ ‖u− Ihu‖1,h + ‖Πh(Ihu)−Πhuh‖1,h

≤ Chr|u|r+1 + C(‖Ihu− u‖1,h + ‖u− uh‖1,h)

≤ Chr|u|r+1 + C(u, p)hr,

where Ih is the standard Pr interpolation operator for vector-valued functions

and uh is the discrete velocity field computed by the
((

P bubble
r

)d
, P disc

r−1

)
ele-

ment. The above calculation uses the triangle inequality, the approximation
property of the Pr interpolation operator Ih, the stability property of the
post-processing operator Πh on the discrete space of piecewise polynomials of
degree at most r, and the approximation property of the numerical solution
uh of the Navier-Stokes equations.

Finally, let us consider in more detail the construction of the post-
processing operator Πh in the case r = d = 2. Suppose that the Navier-Stokes

a1

a2

a3

m1m2

m3

Fig. 6.5. Post-processing operator Πh :
(
P bubble

2

)2→
(
P disc

2 )2

equations have been solved using the inf-sup stable pair
((

P bubble
2

)2
, P disc

1

)
.

Consider a cell K ∈ Th with vertices ai, i = 1, 2, 3, midpoints mi of the edges
Ei = aiai+1 for i = 1, 2, 3 (where a4 = a1), and barycentric coordinates λi

associated with ai for i = 1, 2, 3; see Figure 6.5. Set λ4 = λ1 for later use.
Then the velocity on K can be written in the form

uh =

7∑

i=1

Ni(uh)ϕi

where the local scalar basis functions are

ϕi = λi(2λi − 1), i = 1, 2, 3,

ϕi = 4λi−3λi−2 − 20λ1λ2λ3, i = 4, 5, 6,

ϕ7 = 60λ1λ2λ3,

and the nodal functionals are

Ni(v) = v(ai), i = 1, . . . , 3,

Ni(v) = v(mi−3), i = 4, . . . , 6,

N7(v) = |K|−1

∫

K

v(x) dx.



6.4 Mass-Conservative Methods 541

For vector-valued functions we use the convention that the nodal functionals
are applied component by component, i.e., applying a nodal functional to a
vector-valued function will result in a vector. The above representation of uh is
valid since Ni(ϕj) = δij , i, j = 1, . . . , 7. Now the post-processing operator ΠK

leaves unchanged every function in
(
P2(K)

)2
, and consequently one gets

ΠKuh =

6∑

i=1

Ni(uh)ψi +ΠK

(
Ñ7(uh)ϕ7

)

with

Ñ7(w) =

(
N7(w)− N4(w) +N5(w) +N6(w)

3

)
.

Here {ψi, i = 1, . . . , 6} is the standard nodal basis of the scalar space P2(K)
which is defined by

ψi = λi(2λi − 1), i = 1, 2, 3,

ψi = 4λi−3λi−2, i = 4, 5, 6.

Let ni, i = 1, 2, 3, denote the outward-pointing unit normal on the edge Ei.
Now ϕ7 ≡ 0 on Ei, i = 1, 2, 3, so from (6.13a) one sees that for any vector
a ∈ R2 one has

〈
ΠK(aϕ7) · ni, ϕ

〉
Ei

= 0 ∀ϕ ∈ P2(Ei), i = 1, 2, 3. (6.14)

From the formula for ΠKuh above, we have only to evaluate ΠK(aϕ7) with

a = Ñ7(uh). Since ΠK

(
aϕ7) · ni|Ei

∈ P2(Ei), i = 1, 2, 3, these functions may
be used as test functions ϕ in (6.14); it follows that

ΠK

(
aϕ7

)
· ni|Ei

≡ 0, i = 1, 2, 3.

At each vertex ai, i = 1, 2, 3, two of the three equations yield

ΠK

(
aϕ7

)
(ai) = 0, i = 1, 2, 3.

Moreover, at the midpoint mi of edge Ei one has

ΠK

(
aϕ7

)
(mi) · ni = 0, i = 1, 2, 3.

Consequently ΠK

(
aϕ7

)
has only tangential components along the edges and

can be written as

ΠK

(
aϕ7

)
=

3∑

i=1

wiψi+3τi

where τ i is the unit tangent vector along the edge Ei and the wi, i = 1, 2, 3,
are given by wi = ΠK

(
aϕ7

)
(mi) · τ i. This implies that only the tangential

component will change when uh is replaced by the divergence-free function
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wh = Πhuh. Since∇P1(K) = span{e1, e2} with e1 = (1, 0)T and e2 = (0, 1)T ,
we obtain from (6.13b) the two relations

1

3

3∑

i=1

wi(τ i · ej) = a · ej , j = 1, 2.

The remaining equation needed to determine the 3 unknowns wi, i = 1, 2, 3,
follows from (6.13c). That is, for each cell one must solve one linear 3×3 system
to compute the post-processed solution, which will be globally continuous at
all vertices with continuous normal fluxes at the midpoints of the edges.

Compared with the method of Section 6.4.1, we solve both the transport
and the Navier-Stokes equations with a method of order r. In this sense, the
method of postprocessing the discrete velocity is well balanced. Moreover,
mass conservation on the discrete level is guaranteed.

6.4.3 Scott-Vogelius Elements

Now we discuss finite element discretizations of the Navier-Stokes equations
that guarantee that the discrete velocity solution uh is piecewise divergence-
free without any post-processing. To this end, let us consider discretizations
with (P d

r , P disc
r−1) elements, i.e., continuous piecewise polynomials of degree at

most r for the velocity approximation and discontinuous piecewise polyno-
mials of degree at most r − 1 for the pressure. For the two-dimensional case
with r ≥ 4, this finite element pair is inf-sup stable when special meshes that
exhibit so-called singular vertices are excluded [SV85]. In R3 the characteriza-
tion of those meshes that have to be excluded to guarantee inf-sup stability is
more delicate, but it is a much simpler task to find a family of meshes on which
this element is stable. Recently, in [Zha05], inf-sup stability has been shown
on a certain type of macro-element mesh provided that the polynomial degree
r is at least as large as the space dimension d. We start in the two-dimensional

Fig. 6.6. Scott-Vogelius element for r = d = 2: continuous piecewise quadratic
approximations of velocity and concentration together with discontinuous piecewise
linear approximation of the pressure

case with a shape-regular decomposition of the domain into macro-triangles
and perform one refinement step by joining the barycentre of each macro-
element to its vertices. On the resulting mesh the pair (P 2

r , P disc
r−1) is inf-sup

stable provided that r ≥ 2. Similarly, in three dimensions one starts with a
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shape-regular decomposition of the domain into macro-tetrahedra. Each of
these is divided into 4 tetrahedra by performing one refinement step; each
“child” tetrahedron has for its vertices three vertices and the barycentre of
the “parent” tetrahedron. For r ≥ 3 the pair (P 3

r , P disc
r−1) is inf-sup stable on

such a family of meshes.
Although a restriction on the mesh is needed, this pair is attractive since

a discretely divergence-free function is divergence-free. For, owing to the dis-
crete spaces used, the divergence of each discrete velocity field belongs to the
pressure space. Hence the discrete mass balance equation (6.11c) yields

0 = (∇ · uh,∇ · uh),

i.e., the discrete velocity solution uh is divergence-free in the L2 sense. Of
course this yields mh(ch,uh) = 0 in (6.7) since the continuous velocity ap-
proximation uh has no jumps.

Moreover, when solving the Navier-Stokes equations for higher Reynolds
numbers one can exploit the macro-triangulation by using it as the coarser
grid in the two-level local projection stabilization of Chapter 3. Thus let T2h

denote the macro-triangulation and Th the triangulation after the refinement
step described above. Then the approximation spaces for velocity, pressure,
and concentration live on the finer triangulation Th and will be (P d

r , P disc
r−1 , Pr),

while the projection space P disc
r−1 is defined on the coarser triangulation T2h.



7

Adaptive Error Control

The derivation of reliable and efficient a posteriori error estimates for the
Navier-Stokes equations is an important consideration in computational fluid
dynamics. On perusing existing a priori error estimates for the Navier-Stokes
equations, one notices fundamental differences from and fresh difficulties com-
pared with the estimates for diffusion-dominated and convection-dominated
elliptic problems in Chapter II.3.6. Some new obstacles that appear are

• a smallness condition on the Reynolds number Re = 1/ν to ensure unique-
ness of the solution (Chapter 1)

• a well-posedness assumption for a linearized problem with an a priori
error estimate that depends strongly on an unknown stability constant
(Theorem 3.14).

As we saw in Example 3.16, this stability constant can grow exponentially
in the Reynolds number Re. One should be aware that such a property will
restrict considerably the quantitative value of our estimates. On the other
hand, in the special case of a no-flow problem (see Remark 2.10), one has
uniqueness of the solution for all Reynolds numbers and error estimates with
a right-hand side that is a polynomial function of Re.

We now sketch the steps followed in deriving quantitative error estimates
for the stationary Navier-Stokes equation in the following weak formulation,
which is easily seen to be equivalent to (1.2):

Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has

ν(∇u,∇v) + n(u,u,v)− (p,∇ · v) + (q,∇ · u) = (f ,v). (7.1)

Here, as in (1.2), V := H1
0 (Ω)d and Q := L2

0(Ω).
In Chapter III.3.6 four different types of error estimators were discussed.

Here we shall concentrate on two of them: residual estimators and goal-
oriented estimators, which are often used in practical computations. In par-
ticular we consider the adaptive control of the global L2 norm of the velocity
field as an example for a residual estimator, and a goal-oriented estimator
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to control the drag or the lift coefficients in flows around an obstacle will be
examined. The main steps in such a technique are:

• error representation via a linearized continuous dual problem
• use of the projection property (Galerkin orthogonality)
• interpolation error estimates for the dual solution
• strong stability for the continuous dual problem.

In order not to overload the presentation with technical details, we shall
first study a standard finite element discretization with finite element spaces
Vh ⊂ V and Qh ⊂ Q that satisfy the Babuška-Brezzi stability condition.
Later we give some remarks concerning the use of stabilized discretization.
Our discrete problem is:

Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh one has

ν(∇uh,∇vh) + n(uh,uh,vh)− (ph,∇ · vh) + (qh,∇ · uh) = (f ,vh). (7.2)

In what follows, let (u, p) ∈ V ×Q and (uh, ph) ∈ Vh ×Qh be the solutions
of the continuous problem (7.1) and the discrete problem (7.2). We introduce
the following linearized dual problem:

Find (w, r) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has

ν(∇v,∇w)− n(u,w,v) + n(v,uh,w)

+ (r,∇ · v)− (q,∇ ·w) = (g,v). (7.3)

Let (ϕ, χ) ∈ V × Q denote the solution of (7.3) for the particular right-
hand side g = u− uh. Then, setting v = u− uh ∈ V and q = p− ph in (7.3)
and integrating by parts, one obtains the error representation

‖u− uh‖20 = ν(∇(u− uh),∇ϕ)− n(u,ϕ,u− uh) + n(u− uh,uh,ϕ)

+ (χ,∇ · (u− uh))− (p− ph,∇ ·ϕ),

= ν(∇(u− uh),∇ϕ) + n(u,u,ϕ)− n(uh,uh,ϕ)

− (p− ph,∇ ·ϕ) + (χ,∇ · (u− uh)). (7.4)

As (7.1) holds for all (v, q) ∈ V × Q, one can subtract (7.2) from (7.1);
this yields the projection property

ν(∇(u− uh),∇vh) + n(u,u,vh)− n(uh,uh,vh)

− (p− ph,∇ · vh) + (qh,∇ · (u− uh)) = 0 (7.5)

for all (vh, qh) ∈ Vh ×Qh.
Now choose vh := ihϕ and qh := jhχ to be interpolants (Scott-Zhang or

Clément) to the solution (ϕ, χ) of the dual problem (7.3) that satisfy

‖ϕ− ihϕ‖0,T ≤ Ch2
T |ϕ|2,ω(T ) for all ϕ ∈ H2(ω(T ))d,

‖ϕ− ihϕ‖0,E ≤ Ch3/2
T |ϕ|2,ω(T ) for all E ⊂ ∂T, ϕ ∈ H2(ω(T ))d,

‖χ− jhχ‖0,T ≤ Ch1
T |χ|1,ω(T ) for all χ ∈ H1(ω(T ))d.
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Using (7.5) one can rewrite (7.4) as

‖u− uh‖20 = ν(∇(u− uh),∇(ϕ− ihϕ))

+ n(u,u,ϕ− ihϕ)− n(uh,uh,ϕ− ihϕ)

− (p− ph,∇ · (ϕ− ihϕ)) + (χ− jhχ,∇ · (u− uh)).

Integrating by parts on each element, this becomes

‖u− uh‖20 =
∑

T∈Th

(f + ν∆uh − (uh · ∇)uh −∇ph,ϕ− ihϕ)T

+
∑

E∈Eh

([
phnE − ν

∂uh

∂nE

]

E

,ϕ− ihϕ

)

E

−
∑

T∈Th

(∇ · uh, χ− jhχ)T .

Now invoke the approximation properties of the interpolants to get

‖u− uh‖20 ≤ C1

∑

T∈Th

h2
T ‖f + ν∆uh − (uh · ∇)uh −∇ph‖0,T |ϕ|2,ω(T )

+ C2

∑

E∈Eh

h
3/2
E

∥∥∥∥
[
phnE − ν

∂uh

∂nE

]

E

∥∥∥∥
0,E

|ϕ|2,ω(T )

+ C3

∑

T∈Th

hT ‖∇ · uh‖0,T |χ|1,ω(T ).

Assume that the linearized dual problem (7.3) satisfies the strong stability
estimate

|νw|2 + |r|1 ≤ S(u,uh) ‖g‖0 for all g ∈ L2(Ω).

Then, recalling that (ϕ, χ) is the solution of (7.3) for g = u−uh, we see that

‖u− uh‖0 ≤ S(u,uh) C (η1 + η2 + η3), (7.6a)

where

C := max{C1, 3C2, C3},

η2
1 :=

∑

T∈Th

h4
T

ν2
‖f + ν∆uh − (uh · ∇)uh −∇ph‖20,T , (7.6b)

η2
2 :=

∑

E∈Eh

h3
E

ν2

∥∥∥∥
[
phnE − ν

∂uh

∂nE

]

E

∥∥∥∥
2

0,E

, (7.6c)

η2
3 :=

∑

T∈Th

h2
T ‖∇ · uh‖20,T . (7.6d)
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If in (7.6a) we can bound (either theoretically or numerically) the stability
factor S(u,uh) by a quantity of moderate size, then η1 + η2 + η3 is a suitable
error indicator. Thus the crucial question is the size of S(u,uh). In [JR94]
it is proved that S(u,uh) = O(Re) = O(1/ν) for a model problem of nearly
parallel streamwise constant pipe flow; this estimate appears to be sharp in
terms of its dependence on Re. But in the general case, S(u,uh) has been
estimated only from computational results [Joh95, HJ04].

Remark 7.1. Verfürth [Ver89] derives a similar a posteriori error estimate in
the energy norm |(v, q)| := (|v|21+‖q‖20)1/2 using a Mini-element discretization
(piecewise linear functions enriched by bubbles for the velocity approximation,
and piecewise linear functions yielding a continuous pressure approximation)
of the Stokes problem. This estimator can be extended to the case of the
Navier-Stokes equations (at least for small Reynolds numbers) and to other
discretizations. The main differences between estimators for the energy and
L2 norms are the different scalings of the local residuals in (7.6b) and (7.6d)
and of the jumps in (7.6c) that control discontinuities in the pressure and in
the normal derivative of the velocity. ♣

Now we turn to the DWR (dual weighted residual) method that was dis-
cussed in Section III.3.6.1; this technique is important when controlling quan-
tities like drag and lift coefficients in flows around obstacles. To be more
precise, consider the configuration of Figure 7.1. Assume the no-slip condition

S

Fig. 7.1. Channel flow around an obstacle

u = 0 at the walls and parabolic in-flow and out-flow velocity profiles. The
drag and lift coefficients are defined by the functional

J(u, p) :=
2

Ū2D

∫

S

nt
(
ν(∇u +∇ut)− p I

)
e dγ,

where e denotes the (column) vector in the downwind and crosswind directions
of flow, respectively, and S is the surface of the obstacle, D its diameter, Ū
the reference velocity, and I the identity tensor.

The derivation of a goal-oriented estimator resembles the approach for
estimating the global L2 norm of the error. One replaces the linearized dual
problem (7.3) by the following problem:
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Find (w, r) ∈ V ×Q such that for all (v, q) ∈ V ×Q one has

ν(∇v,∇w)− n(u,w,v) + n(v,uh,w)

+ (r,∇ · v)− (q,∇ ·w) = J(v, q). (7.7)

Let (ϕ, χ) ∈ V × Q be the solution of (7.7) and let (ϕh, χh) ∈ Vh × Qh be
arbitrary. Then one can deduce the error representation

J(u, p)− J(uh, ph) =
∑

T∈Th

(f + ν∆uh − (uh · ∇)uh −∇ph,ϕ−ϕh)T

+
∑

E∈Eh

([
phnE − ν

∂uh

∂nE

]

E

,ϕ−ϕh

)

E

−
∑

T∈Th

(∇ · uh, χ− χh)T .

A residual-type error estimator follows by setting vh = ihvh and χh = jhχ,
then invoking the approximation properties of the interpolants and the strong
stability of the linearized dual problem. On the other hand, the idea of the
dual weighted residual approach is to use instead the estimate

|J(u, p)− J(uh, ph)| ≤
∑

T∈Th

‖r1,T ‖0,T ‖ϕ−ϕh‖0,T

+
∑

E∈Eh

‖rE‖0,E ‖ϕ−ϕh‖0,E +
∑

T∈Th

‖r2,T ‖0,T ‖χ− χh‖0,T

and to approximate the weights ‖ϕ−ϕh‖0,T , ‖ϕ−ϕh‖0,E , and ‖χ− χh‖0,T

by solving the linearized dual problem. In this formula, for the element and
edge residuals we used the notation

r1,T := f + ν∆uh − (uh · ∇)uh −∇ph,

rE :=

[
phnE − ν

∂uh

∂nE

]

E

,

r2,T := ∇ · uh.

Different ways of approximating the weights are discussed in [Bec00, BR01,
BR03].

So far, we have considered only the standard Galerkin discretization of the
Navier-Stokes equation without any stabilization. If stabilization is needed
there are two possibilities: one can add a stabilization term to the linearized
dual problem or one can start from the stabilized formulation and construct
an associated dual problem. In general, the formation of the dual problem and
stabilization do not commute [BR03]. But symmetric stabilization terms such
as in local projection stabilization (LPS) or the continuous interior penalty ap-
proach (CIP) change this situation; see [BV07]. Adaptive error control for the
discretization of flow problems remains an attractive field for further research.
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[BR84] K. Böhmer and R. Rannacher. Defect Correction Methods: Theory and
Applications. Springer-Verlag, Berlin, 1984.

[BR94] F. Brezzi and A. Russo. Choosing bubbles for advection-diffusion prob-
lems. Mathematical Models and Methods in Applied Sciences, 4:571–587,
1994.

[BR01] R. Becker and R. Rannacher. An optimal control approach to a posteriori
error estimation in finite element methods. Acta Numerica, 10:1–102,
2001.

[BR03] W. Bangerth and R. Rannacher. Adaptive finite element methods for
differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser
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J. Warnatz, editors, Reactive Flows, Diffusion and Transport, pages 93–
112. Springer-Verlag, 2007.

[Bra] M. Braack. A stabilized finite element scheme for the Navier-Stokes
equations on anisotropic meshes. M2AN Math. Model. Numer. Anal.
(to appear).



558 References

[BRR80] F. Brezzi, J. Rappaz, and P. Raviart. Finite dimensional approximations
of non-linear problems I. branches of non-singular solutions. Numer.
Math., 38:1–25, 1980.

[BS89] I. Boglaev and W. Sirotkin. A numerical algorithm for solving sin-
gularly perturbed problems, arising in the modelling of semiconductor
structures. Report Russian Academy of Science, Tsernogolovka, 1989.

[BS90] I. Boglaev and W. Sirotkin. On the numerical solution on nonequidistant
meshes of some quasilinear singularly perturbed problems. Zh. Vychisl.
Mat. i Mat. Fis., 30:680–696, 1990.

[BS97] P. Balland and E. Süli. Analysis of the cell-vertex finite volume method
for hyperbolic problems with variable coefficients. SIAM J. Numer.
Anal., 34(3):1127–1151, 1997.

[BSC+80] A. E. Berger, J. M. Solomon, M. Ciment, S. H. Leventhal, and B. C.
Weinberg. Generalized OCI schemes for boundary layer problems. Math.
Comp., 151:695–731, 1980.

[BSC81] A. E. Berger, J. M. Solomon, and M. Ciment. An analysis of a uniformly
accurate difference method for a singular perturbation problem. Math.
Comp., 37:79–94, 1981.
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[CS07] A. Cangiani and E. Süli. The residual-free-bubble finite element method
on anisotropic partitions. SIAM J. Numer. Anal., 45(4):1654–1678 (elec-
tronic), 2007.

[CSB05] P. Causin, R. Sacco, and C.L. Bottasso. Flux-upwind stabilization of the
discontinuous Petrov-Galerkin formulation with Lagrange multipliers for
advection-diffusion problems. M2AN, 39:1087–1114, 2005.

[CSX07] L. Chen, P. Sun, and J. Xu. Optimal anisotropic meshes for minimizing
interpolation errors in Lp-norm. Math. Comp., 76:179–204, 2007.

[CX05] L. Chen and J. Xu. An optimal streamline diffusion finite element
method for a singularly perturbed problem. In Recent advances in adap-
tive computation, volume 383 of Contemp. Math., pages 191–201. Amer.
Math. Soc., Providence, RI, 2005.

[CX08] L. Chen and J. Xu. Stability and accuracy of adapted finite element
methods for singularly perturbed problems. Numer. Math., 109:167–
191, 2008.
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[HM81] W. Höhn and H. D. Mittelmann. Das diskrete Maximumprinzip für
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[NH00] J. Noordmans and P. W. Hemker. Application of an adaptive sparse-
grid technique to a model singular perturbation problem. Computing,
65:357–378, 2000.



584 References

[Nii84] K. Niijima. A uniformly convergent difference scheme for a semilinear
singular perturbation problem. Numer. Math., 43:175–198, 1984.

[Nii86] K. Niijima. An error analysis for a difference scheme of exponential type
applied to a nonlinear singular perturbation problem without turning
points. J. Comput. Appl. Math., 15:93–101, 1986.

[Nii90] K. Niijima. Pointwise error estimates for a streamline diffusion finite
element scheme. Numer. Math., 56:707–719, 1990.

[NKS08] A. Naughton, R. B. Kellogg, and M. Stynes. Regularity and deriva-
tive bounds for a convection-diffusion problem with a Neumann outflow
condition. Preprint, National University of Ireland Cork, 2008.

[Noc95] R. H. Nochetto. Pointwise a posteriori error estimates for elliptic prob-
lems on highly graded meshes. Math. Comp., 64:1–22, 1995.

[NS03] M. C. Natividad and M. Stynes. Richardson extrapolation for a
convection-diffusion problem using a Shishkin mesh. Appl. Numer.
Math., 45(2-3):315–329, 2003.

[NSOS88] M. J. Ng-Stynes, E. O’Riordan, and M. Stynes. Numerical methods for
time-dependent convection-diffusion problems. J. Comput. Appl. Math.,
21:289–310, 1988.

[NY83] K. Niederdrenk and H. Yserentant. The uniform stability of singularly
perturbed discrete and continuous boundary value problems. Numer.
Math., 41:223–253, 1983.

[O’M91] R. E. O’Malley. Singular perturbation methods for ordinary differential
equations. Springer-Verlag, Berlin, 1991.

[OR70] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear
equations in several variables. Academic Press, New York, 1970.
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theories. Numer. Math., 94:195–202, 2003.

[XZ07] Z. Xie and Z. Zhang. Superconvergence of dG method for one-
dimensional singularly perturbed problems. J. Comput. Math., 25:185–
200, 2007.

[YH86] C.-C. Yu and J. C. Heinrich. Petrov-Galerkin methods for the time-
dependent convective transport equation. Int. J. Numer. Methods Eng.,
23:883–901, 1986.

[YJS99] X.-Y. Yue, L.-S. Jiang, and T.-M. Shih. Finite element analysis of a lo-
cal exponentially fitted scheme for time-dependent convection-diffusion
problems. J. Comput. Math., 17:225–232, 1999.

[Yse83] H. Yserentant. Die maximale Konsistenzordnung von Differenzenap-
proximationen nichtnegativer Art. Numer. Math., 42:119–123, 1983.

[ZB92] P. A. Zegeling and J. G. Blom. A note on the grid movement induced
by mfe. Int. J. Numer. Methods Eng., 35:623–636, 1992.

[Zha03] Z. Zhang. Finite element superconvergence on Shishkin mesh for 2-d
convection-diffusion problems. Math. Comp., 72:1147–1177, 2003.

[Zha04] Z. Zhang. Polynomial preserving gradient recovery and a posteriori
error estimates for bilinear elements on irregular quadrilaterals. Int. J.
Numer. Anal. and Modelling, 1:1–24, 2004.

[Zha05] S. Zhang. A new family of stable mixed finite elements for the 3D Stokes
equations. Math. Comp., 74:543–554, 2005.

[Zho95] G. Zhou. Local pointwise error estimates for the streamline diffusion
method applied to nonstationary hyperbolic problems. East-West J.
Numer. Math., 3(3):217–235, 1995.

[Zho97] G. Zhou. How accurate is the streamline diffusion finite element method?
Math. Comp., 66(217):31–44, 1997.

[ZL94] A. Zhou and Q. Lin. Optimal and superconvergence estimates of the fi-
nite element method for a scalar hyperbolic equation. Acta Mathematica
Scientia, 14:90–94, 1994.



References 597

[ZN05] Z. Zhang and A. Nhaga. A new finite element gradient recovery method:
superconvergence property. SIAM J. Sci. Comp., 26:1192–1213, 2005.

[ZR96] G. Zhou and R. Rannacher. Pointwise superconvergence of the stream-
line diffusion finite element method. Numer. Methods Partial Differ.
Equations, 12(1):123–145, 1996.

[ZR05] H. Zarin and H.-G. Roos. Interior penalty discontinuous approximations
of convection-diffusion problems with parabolic layers. Numer. Math.,
100:735–759, 2005.



Index

L-spline, 64, 69, 104, 106–108, 110–113,
203, 336

L∗-spline, 109–112, 199

L2 stability, 172–180, 182–186

L∞ stability, 181, 183

W −1,∞ norm, 125

L̄-spline, 377

hp FEM, 138, 402, 406, 437

n-width, 80, 134, 190, 194, 404, 406

r-refinement, 225, 440, 441

w−1,∞ norm, 93

a posteriori estimate, 95, 142, 144, 224,
225, 375, 407–417, 419, 420, 545,
548

a priori estimate, 17, 21, 34, 37, 247

A-mesh, 275, 405, 442

adaptive method, 141, 142, 146–149,
223, 407, 424, 440

adjoint consistency, 372

alternating direction implicit (ADI)
method, 431, 432, 434, 442

amplification factor, 176

Angermann scheme, 295

anisotropic interpolation estimate, 382,
383

anisotropic refinement, 414

anisotropic stability estimate, 250, 272

artificial crosswind diffusion, 211, 310,
320, 400

artificial viscosity (AVIS), 52, 61, 83,
263, 277, 320

asymmetric interior penalty (NIP)
method, 367, 374, 401, 404, 438,
439

asymptotic expansion, 12–16, 22, 25,
35, 36, 161–167, 243

asymptotically exact error estimator,
408

Babuška-Brezzi condition, 450, 453,
465, 475, 477, 485

Babuška-Rheinboldt estimator, 411
backward difference, 41
backward Euler method, 190, 199, 433
Bakhvalov mesh, 119–121, 123–127,

134–136, 138, 149, 192, 274, 390
Bakhvalov-Shishkin mesh, 135, 269
Bakhvalov-type mesh, 120–125, 127,

270
balance equation, 114
Banach fixed-point theorem, 480, 482
Bank-Weiser estimator, 411
barrier function, 10, 15, 16, 18, 27, 50,

60, 68, 111, 160, 164, 165, 179,
183, 190, 193, 237, 260, 399, 433

barycentric secondary grid, 284
Bernoulli function, 61, 63, 295, 300
boundary layer, 11, 14, 16, 25, 26,

30–33, 51, 57, 80, 111
boundary layer equation, 14
boundary layer stability, 30, 31, 33
Boussinesq approximation, 463
box scheme, 177, 181, 182, 380
Bristeau scheme, 284
broken Sobolev space, 364
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Brouwer fixed-point theorem, 148, 320,
480

bubble function, 84, 96, 97, 334
Burgers’ equation, 75, 226, 442, 483

cancellation law, 12, 25, 35, 36
Cea lemma, 77
cell Reynolds number, 179, 197
cell-centre FVM, 115
cell-certex FVM, 115
central difference scheme, 42, 45–47, 51,

52, 54, 55, 80, 115, 133, 136–140,
179, 181, 273, 400

CFL condition, 175–177, 180, 181, 200,
437

characteristic boundary layer, 167, 192,
239, 244, 246, 249, 252, 255, 266,
267, 274, 275, 376, 378, 402–404

characteristic Galerkin method, 217
characteristic streamline diffusion

method, 217, 225
circumcentric secondary grid, 284
Clément interpolant, 409, 546
coercive bilinear form, 76, 91
collocation, 65
compact scheme, 66, 186
comparison principle, 10, 18, 27, 50,

63–66, 68, 69, 160, 165, 180, 183,
236, 237

compatibility condition, 160, 188, 236
complete exponential fitting, 107
condition number, 132, 140
conforming finite element method, 77
conservation form, 20, 32, 72, 114, 133,

142, 191
conservation law, 32, 72, 114
consistent finite difference method —

see finite difference consistency, 42
consistent finite element method, 85,

302, 303
continuous bilinear form, 76, 91
continuous interior penalty (CIP)

stabilization, 327, 352–362, 366,
401, 419, 447, 549

control volume, 296
convection-diffusion, 155, 189, 195, 199,

211, 214, 223, 225, 226, 229, 259,
376, 427

convection-diffusion problem, 10

convection-diffusion system, 38, 39, 141,
431

corner layer, 32, 34, 245
Courant number, 176, 199, 220
Crank-Nicolson method, 190, 191, 199
Crouzeix-Raviart element, 419
curvilinear boundary, 402
cusp layer, 27, 69, 113
cut-off function, 292

defect correction, 138, 190, 193, 273,
400

Delaunay triangulation, 280, 298
derivative approximation, 65, 139
differentiated residual method, 98, 99,

102–104
dimension-splitting, 431–434
discontinuity-penalization parameter,

366
discontinuous Galerkin FEM (dGFEM),

206, 207, 212–214, 217, 363–375,
401, 412, 413, 425, 437–439, 447

discrete Lp norm, 171
discrete barrier function, 129, 131
discrete comparison principle, 44, 50,

51, 60
discrete Green’s function, 108, 123, 124,

136, 140, 271
discrete maximum norm, 42, 170
discrete maximum principle, 136,

180–182, 185, 190, 192, 200, 308,
321, 323

discrete norm superconvergence, 395
domain decomposition, 190
domain of influence, 242
drag coefficient, 548
dual domain, 284
dual norm, 89
dual weighted residuals (DWR) method,

372, 408, 412–414, 421–425, 548

edge residual, 410
edge stabilization, 55, 354
efficiency index, 408
efficient error estimator, 408
El-Mistikawy-Werle scheme, 63–65, 68,

69, 110
element residual, 410
ELLAM, 217–221, 439
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elliptic bilinear form, 76
elliptic decomposition, 255
energy norm, 78
Enquist-Osher scheme, 72
entropy flux, 32
entropy function, 32
equidistant grid, 41
equidistribution, 118, 145
equilibrated residual method, 411, 420
equivalent estimator , 407
estimator based on higher-order

recovery of the gradient, 411
estimators based on the solution of local

problems, 410
Euler equations, 439
Eulerian-Lagrangian method, 206, 225
exact scheme, 62
exit time, 242
explicit scheme, 175
exponential boundary layer, 14, 24, 30,

45, 57, 119, 142, 244, 245, 251,
254, 259, 268, 376

exponential box scheme, 300
exponential fitting, 52, 53, 55, 56, 58,

63, 75, 83, 87, 104, 105, 115, 116,
189, 433

exponential spline, 65
exponential streamline diffusion

method, 380

finite difference consistency, 42, 43, 45,
53–55, 169, 170, 174, 175, 177,
178, 182–186, 190, 193, 199, 200,
260

finite difference method, 41
finite difference stability, 42–46, 49, 52,

54–57, 72, 74, 75, 124
finite element method, 140
finite element stability, 86
finite volume method (FVM), 114, 221,

296, 462
finite volume-finite element method,

284
first-order hyperbolic problem, 368, 424
first-order upwinding, 183
fitted scheme nonexistence, 71
fitting factor, 52
fluctuation operator, 340
flux formulation of dGFEM, 367

formal consistency, 53–55, 183, 185,
186, 199

formally consistent, 260
forward difference, 41
forward Euler method, 199
Friedrichs-Keller mesh, 283, 287, 290,

295, 308
fully discrete form, 197

Galerkin gradient least squares method,
333

Galerkin least squares FEM (GLS-
FEM), 327–333, 404, 419, 425,
437, 439, 465

Galerkin method, 377, 380, 381,
387–390, 393, 395, 398, 400, 401,
403–406

Galerkin orthogonality, 77, 85, 105, 303,
370, 371, 388, 436, 437, 440

generalized Stokes operator, 480
global expansion, 12
global stream direction, 250
globally stable reduced solution, 31
goal-oriented estimator, 412
Goncharov-Fryazinov scheme, 55
graded mesh, 118
gradient recovery, 398, 399
graph norm, 415
Green’s function, 16–19, 34, 62–64, 71,

79, 93, 108, 250
grid functions, 42
Gushchin-Shchennikov scheme, 54

Hölder continuity, 159
Hölder space, 235
higher-order problem, 35, 36, 56, 140
higher-order scheme, 53–55, 66
hinged finite element, 84
HODIE scheme, 65–67, 112, 138, 186,

191, 193, 432–434
horizontal method of lines, 197

Il’in-Allen-Southwell scheme, 58–61, 63,
67, 69, 70, 75, 82, 87, 110, 115,
116, 262, 266, 267, 274, 307, 336

implicit scheme, 176
inf-sup condition, 89–91
inflow boundary, 239
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interior layer, 26, 27, 32, 33, 61, 68, 69,
113, 156, 162, 165, 166, 169, 193,
205, 224, 244, 257, 276, 431

interior penalty, 366
interpolantwise superconvergent, 395,

396
inverse-monotone, 10, 44, 54, 55, 73,

138, 236, 260, 263, 278, 399

Lagrange-Galerkin method, 217, 440
Lax-Friedrichs scheme, 72, 186
Lax-Milgram lemma, 76, 77, 79
Lax-Richtmyer theorem, 175, 176, 182
Lax-Wendroff scheme, 185
layer-adapted mesh, 71, 95, 104, 113,

133, 210, 268, 381, 387, 390, 391
LECUSSO scheme, 264
lift coefficient, 548
limit cycle, 242
Lin identities, 392, 393, 400
local error estimate, 203, 292, 293
local expansion, 14
local projection stabilization (LPS)

method, 55, 339–350, 352, 357,
358, 362, 447, 485–503, 505–524,
526, 527, 532, 533, 543, 549

locally almost equidistant grid, 117
locally quasi-equidistant grid, 117, 121
lumping, 281
lumping operator, 454

M-criterion, 44, 74, 279
M-function, 73, 75
M-matrix, 44–49, 52, 54, 55, 73, 93, 122,

124, 130, 134, 137, 145, 181, 263,
279, 298, 309, 321

majorizing element, 44, 45
mapped finite element, 500, 503
mass conservation property, 530
mass lumping, 201
mass matrix, 198
material derivative, 206, 435, 437, 440
matrix criterion for stability analysis,

172, 178
matrix of positive type, 262–264
maximum principle, 10, 160, 161, 180,

236, 237, 279, 378
mesh Péclet number, 286, 306, 475
mesh transition point, 127

mesh-characterizing function, 135, 269
mesh-generating function, 117, 119,

121, 268
method of lines, 196
midpoint scheme, 276
midpoint upwind scheme, 54, 137, 370
Miller-Wang scheme, 300, 380
Mini-element, 517, 524, 548
mixed FEM, 111
Mizukami-Hughes variant of SDFEM,

308, 309
modified method of characteristics, 217
monitor function, 118, 119, 145, 441,

442
moving finite element method, 226–229,

442
moving mesh method, 225, 440, 441
multi-step schemes, 173
multiplicative trace inequality, 373

Navier-Stokes, 445, 453, 465, 476
negative norm, 20, 39
Neumann boundary condition, 16, 51,

81, 133, 224, 257, 424, 437, 439
Niijima scheme, 70
nonconforming method, 377, 379
nonlinear crosswind diffusion, 321
nonlinear isotropic diffusion, 320
nonlumped scheme, 201, 205
nonsymmetric interior penalty method

— see asymmetric interior penalty
(NIP) method

numerical flux, 72, 75
numerical viscosity (NVIS), 263, 284

one-step scheme, 173
operator compact implicit

scheme, 66
order of accuracy, 42
order reduction, 53
ordinary boundary layer, 14
Oseen problem, 339, 446, 447, 452,

465–475, 485, 486, 511, 512
outflow boundary, 239

parabolic boundary layers — see
characteristic boundary layer

partial exponential fitting, 107
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Peaceman-Rachford algorithm, 432, 434
penalty term, 366
Petrov-Galerkin FEM, 82–84, 95,

108–113, 196, 206, 207, 211, 215,
300, 306, 380, 381

piecewise uniform mesh, 118
Piola mapping, 538
PLTMG, 381
Poincaré inequality, 490
Poincaré-Friedrichs inequality, 408
pointwise superconvergent, 396
porous medium equation, 442
primal formulation, 363
projection property, 303
pure convection problem, 373

quasi-equidistant grid, 116, 212, 278,
435, 477

quasi-optimal estimate, 77, 78, 83, 88,
90–92, 94

quasilinear problem, 29, 140, 142, 144,
145

QUICKEST scheme, 186

reaction-diffusion problem, 24, 68, 119,
134, 139, 140, 145, 156, 167, 168,
191, 192, 226, 257, 272, 273, 333,
363, 398, 404–406, 420, 427, 429,
433, 434, 442

reaction-diffusion system, 38, 39, 141,
193, 273

recursively defined mesh, 118
reduced problem, 162, 167, 169, 180,

238, 259
reduced solution, 13, 14, 16, 25, 26,

30–34, 36, 54, 81, 162
Reed-Hill-Richter method, 206, 214, 216
refinement indicator, 407
residual estimator, 410
residual-free bubble, 96, 336, 337, 352,

381, 419, 425
resonance, 25
Richardson extrapolation, 138,

193, 273
Ritz-Galerkin FEM, 106
Ritz-Galerkin method, 77, 78, 84, 105
Robin boundary condition, 133, 439
robust error estimator, 414, 419, 420
robust estimator, 414

Roe-Sidilkover scheme, 264

rotated bilinear element, 463

Rothe’s method, 197, 441

Runge-Kutta method, 434

S-decomposition, 23, 24, 166–168, 428,
429

S-type decomposition, 23, 254

Samarskĭı scheme, 53, 69, 133, 138, 139,
286, 456

Scharfetter-Gummel scheme, 61, 116

Schwarz method, 431, 434

Scott-Vogelius element, 475, 522, 542

Scott-Zhang interpolant, 467, 468, 488,
546

SD parameter, 303

SDIRK method, 193

secondary grid, 114, 284, 287, 294

secondary grid method, 286, 288–300

semiconductor device modelling, 300

semidiscrete form, 196, 201, 202

semilinear problem, 30, 113, 273

shape-regular triangulation, 278

Shishkin mesh, 127–140, 149, 193, 210,
381–406, 430–434, 442

Shishkin’s obstacle result, 192, 267

Shishkin-type mesh, 135, 138, 139, 268

shock layer, 26, 32, 74

shock-capturing, 224, 319, 320, 325, 326

simple upwind scheme, 48–52, 55–57,
69, 70, 82, 87, 115, 121–127,
129–131, 133, 135, 138, 140, 170,
171, 173, 176, 177, 181, 183, 186,
213, 215, 260, 261, 264, 268, 270,
275, 283, 284, 286, 288, 292, 400,
456

singularly perturbed problem, 11

smooth component, 22

Sobolev imbedding, 458

solution decomposition, 247, 252

special interpolant, 99–102

stability, 52, 171, 260

stability estimate, 16–20, 27, 34, 37, 64,
68, 73, 81

stationary point, 242

steady-state solution, 167

Stokes problem, 339, 469, 485, 491, 548

Stoyan scheme, 53, 189
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streamline diffusion FEM (SDFEM),
85–88, 91–95, 97–99, 199, 206–211,
223–225, 302–320, 325, 326, 335,
350–352, 370, 374, 391–404, 413,
414, 418, 419, 421–425, 435, 436,
447, 465, 468–484, 495, 531, 533

streamline-oriented mesh, 318
strong DMP property, 323–326
strong stability, 423, 440, 546, 547, 549
subcharacteristic, 166, 204, 217, 223,

225, 226, 238, 259
subgrid modelling, 340, 439, 486,

504–508, 510, 531
superclose property, 391, 395, 396
superconvergence, 79, 375, 395, 411
SUPG, 206, 302
supraconvergence, 117
symmetric interior penalty (SIP)

method, 367, 374

Taylor-Galerkin method, 186, 430
Taylor-Hood element, 535
three-directional mesh, 290, 312, 313
time-dependent problems, 153
transport equation, 339, 485
turbulent flow, 505
turning point, 12, 25–27, 29, 32, 35,

68–70, 113, 140, 141, 242
two-parameter problem, 24, 140

uniform consistency, 57, 65
uniform convergence, 57
uniform convergence, necessary

conditions, 58

uniform convergence, sufficient
conditions, 61, 69

uniform stability estimate, 93, 124
uniformly convergent FEM, 104–110,

112, 113, 201
uniformly convergent method, 95, 187,

192, 194, 199
uniformly convergent scheme, 60, 61,

63, 65–69, 71, 116, 118, 121, 125,
127, 131, 200, 265

uniformly stable scheme, 48, 52, 54, 56,
59, 67, 74, 75, 125

unmapped finite element, 501, 503
upwind scheme, 52, 54, 56, 142
upwind triangle, 282
upwind weighting function, 286

variational multiscale method, 95–98,
102, 337, 486

Verfürth estimator, 411
von Neumann condition, 176–179, 185,

198, 199

weak comparison principle, 160
weak DMP property, 323–325, 327
weak solution, 237
weakly acute triangulation, 280
weakly imposed boundary conditions,

353
Wendroff’s implicit scheme, 177

Xu-Zikatanov mesh condition, 280, 321

Z-function, 73
Zienkiewicz-Zhu estimator, 412


