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Morton and his coworkers [BM80, MMS92, MS85] developed a theory of
“optimal ” Petrov-Galerkin methods. The basic idea is quite elegant: as seen in
Section 2.2.1, for symmetric problems the Ritz-Galerkin technique is optimal
with respect to the energy norm, so one tries to find test functions that yield
a symmetric (or nearly symmetric) discrete problem. That is, one looks for a
surjective mapping Φ : Sh → Th such that

Bs(v, w) := a(v, Φ(w))

is a symmetric bilinear form. For one-dimensional problems this method works
well, but it is difficult to generalize it to higher-dimensional problems, so it
will not be discussed further.

Instead of trial and test functions that are linear within each mesh subin-
terval, O’Riordan [O’R84] proposes the use of hinged elements; these are only
piecewise linear in each mesh subinterval, thus enabling better approximation
of layers. One constructs them by introducing in each subinterval an additional
mesh point whose position depends on a local Reynolds number. Recently, in
the context of enriching the finite element space by bubble functions, a method
using two additional mesh points in each subinterval is proposed in [BHMS03].
This can be considered as an extension of [O’R84] to handle the whole range
of convection-diffusion to reaction-diffusion equations.

In recent years many other finite element methods of upwind type such as

• streamline diffusion method (SDFEM)
• variational multiscale method (VMS)
• differentiated residual method (DRM)
• continuous interior penalty approach (CIP)
• Galerkin least squares techniques (GLS)
• local projection stabilization (LPS)
• discontinuous Galerkin methods (dGFEM)
• combined finite volume – finite element approaches (CFVFE)

have been developed. To give the reader some impression of how higher-order
finite element methods can be designed and analysed, the first three methods
of this list will be considered in the next subsections; the others are deferred
to Parts II and III.

2.2.3 Stabilized Higher-Order Methods

Consider as in Section 2.2.2 the singularly perturbed boundary value problem

Lu := −εu′′ + b(x)u′ + c(x)u = f(x) on (0, 1), u(0) = u(1) = 0, (2.71a)

under the assumption that

c(x)− b′(x)/2 ≥ ω > 0 for all x ∈ [0, 1]. (2.71b)
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Our aim is to create a method that is more stable than the Galerkin approach
and can be used for finite elements of any order. The improved stability prop-
erty will be expressed in terms of a norm stronger than the standard energy
norm.

The first idea is to add weighted residuals to the usual Galerkin finite
element method. The method is called the streamline-diffusion finite element
method (SDFEM); the reason for its name will become clear in the multi-
dimensional case – see the interpretation following Remark III.3.28. Multiply
the differential equation (2.71) by bv′, integrate over each subinterval (xi−1, xi)
for i = 1, . . . , N , and add this weighted sum to the standard Galerkin method;
one gets the following discrete problem:

Find uh ∈ Vh such that

ah(uh, vh) = fh(vh) for all vh ∈ Vh, (2.72)

where

ah(v, w) := ε(v′, w′) + (bv′ + cv, w) +

N∑

i=1

∫ xi

xi−1

δi(−εv′′ + bv′ + cv)bw′ dx,

fh(w) := (f, w) +

N∑

i=1

∫ xi

xi−1

δif bw
′ dx.

Here, (·, ·) denotes the inner product in L2(0, 1), δi is a user chosen parameter,
called the SD parameter, which is usually constant on Ii. Note that since
v ∈ Vh, in general v′′ in ah(v, w) is defined only piecewise. Nevertheless, for a
smooth solution u ∈ H2(0, 1) of (2.71) we have

ah(u, vh) = fh(vh) for all vh ∈ Vh. (2.73)

A finite element method (2.72) that satisfies (2.73) for a sufficiently smooth
solution of (2.71) is said to be consistent. This is not the same as consistency of
a finite difference scheme, which was discussed in Section 2.1.1. Furthermore,
finite element consistency implies Galerkin orthogonality, viz.,

ah(u− uh, vh) = 0 for all vh ∈ Vh.

As regards coercivity of the discrete bilinear form ah(·, ·), one has

ah(vh, vh) = ε|vh|21 +

∫ 1

0

(c− b′/2) v2h dx

+

N∑

i=1

‖
√
δibv

′‖20,Ii
+

N∑

i=1

∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx

≥ |||vh|||2SD +

N∑

i=1

∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx,
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where Ii = (xi−1, xi) and ‖.‖0,Ii
denote the ith subinterval and the L2(Ii)

norm. Furthermore, the streamline diffusion norm ||| · |||SD has been intro-
duced:

|||vh|||SD :=

(
ε|vh|21 + ω‖vh‖20 +

N∑

i=1

‖
√
δibv

′‖20,Ii

)1/2

.

Let hi = xi − xi−1 be the length of Ii. Using the inverse inequality

‖v′′h‖0,Ii
≤ cinv h

−1
i ‖v′h‖0,Ii

and imposing the requirement on the SD parameter that

0 < δi ≤
1

2
min

{
h2

i

εc2inv

,
ω

‖c‖2∞

}
, (2.74)

we estimate∣∣∣∣
∫ xi

xi−1

δi (−εv′′h + cvh) bv′h dx

∣∣∣∣

≤
(√

ε

2

hi

cinv
‖v′′h‖0,Ii

+

√
ω

2
‖vh‖0,Ii

)
‖
√
δibv

′
h‖0,Ii

≤ ε

2
‖v′h‖0,Ii

+
ω

2
‖vh‖20,Ii

+
1

2
‖
√
δibv

′
h‖20,Ii

.

In the case of piecewise linear elements one has v′′h|Ii
= 0 for i = 1, . . . , N and

this inequality is still valid when (2.74) is replaced by the weaker assumption

0 < δi ≤
ω

‖c‖2∞
. (2.75)

The above computation proves the following lemma:

Lemma 2.51. Assume that (2.74) is satisfied. Then the SDFEM discrete bi-
linear form is coercive, viz.,

ah(vh, vh) ≥ 1

2
|||vh|||2SD for all vh ∈ Vh.

For piecewise linear elements the assumption (2.74) can be replaced by (2.75).

Remark 2.52. Lemma 2.51 implies stability of the SDFEM with respect to the
norm ||| · |||SD. Now all vh ∈ Vh satisfy

|||vh|||SD ≥ min{1, ω} ‖vh‖ε.

Thus the stability of the SDFEM in the norm ||| · |||SD is stronger than the
stability of the standard Galerkin method in the norm ‖·‖ε. Furthermore, the
quantity

N∑

i=1

‖
√
δibu

′
h‖20,Ii

is bounded for the solution uh of the SDFEM but in general this is not the
case for the solution of the Galerkin method. ♣
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Take Vh to be the space of piecewise linear functions on an equidistant
mesh (hi = h for i = 1, . . . , N). Assume that b, c, f , and δi = δ for i = 1, . . . , N
are all constant. Then the SDFEM reduces to the scheme

−(ε+ b2δ)D+D−ui + bD0ui + cui = f,

i.e., the fitted scheme (2.15) with σ(q) = 1+b2δ/ε, q = bh/(2ε). Recall that for
σ(q) = q coth q one gets the Il’in-Allen-Southwell scheme, which corresponds
to choosing the SD parameter to be

δ(q) =
h

2b

(
coth q − 1

q

)
.

Since

coth q− 1

q
=
q

3
+O(q3) as q → 0 and coth q− 1

q
= 1+O

(
1

q

)
as q →∞,

the asymptotic limits h → 0 for fixed ε, and ε → 0 for fixed h, motivate the
following choices of δ:

δ(q) =

{
h2/(12ε) if 0 < q ≪ 1,
h/(2b) if q ≫ 1.

(2.76)

The choice δ(q) = h/(2b) for q ∈ (0,∞) generates the simple upwind scheme.
We now study the convergence properties of the SDFEM in the case where

Vh ⊂ H1
0 (0, 1) is the finite element space of piecewise polynomials of degree

k ≥ 1. For the nodal interpolant uI ∈ Vh, one has the estimates

|uI − u|l ≤ Chk+1−l|u|k+1 for l = 0, . . . , k + 1.

Theorem 2.53. Let the SD parameter be specified by

δi =

{
C0 h

2
i /ε if hi < ε,

C0 hi if ε < hi,
(2.77)

where the constant C0 is small enough to satisfy (2.74) if k ≥ 2 and (2.75)
if k = 1. Then using piecewise polynomials of degree k, the solution uh of the
SDFEM satisfies the error estimate

|||u− uh|||SD ≤ C(ε1/2hk + hk+1/2) |u|k+1.

Proof. The coercivity of ah (Lemma 2.51) and Galerkin orthogonality yield

1

2
|||uI − uh|||2SD ≤ ah(uI − uh, u

I − uh) = ah(uI − u, uI − uh).

Each term in ah(uI−u, uI−uh) will be estimated separately. Set wh = uI−uh.
First,
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∣∣ε((uI − u)′, w′
h)
∣∣ ≤ Cε1/2hk|u|k+1 |||wh|||SD,∣∣(c(uI − u), wh)
∣∣ ≤ Chk+1|u|k+1 |||wh|||SD.

Then, using εδi ≤ C0 h
2
i and δi ≤ C0 hi we obtain

∣∣∣∣∣
N∑

i=1

(−ε(uI − u)′′, δibw′
h)Ii

∣∣∣∣∣ ≤ C
N∑

i=1

ε1/2hi ‖(uI − u)′′‖0,Ii
‖
√
δibw

′
h‖0,Ii

≤ Cε1/2hk|u|k+1 |||wh|||SD,∣∣∣∣∣
N∑

i=1

(b(uI − u)′ + c(uI − u), δibw′
h)Ii

∣∣∣∣∣ ≤ C(hk+1/2 + hk+3/2) |u|k+1 |||wh|||SD

It remains to estimate the convection term. The standard estimate would be

|(b(uI − u)′, wh)| ≤ Chk‖wh‖0 ≤ Chk|u|k+1|||wh|||SD

but thanks to the additional term
∑N

i=1 ‖
√
δibv

′‖20,Ii
in the norm ||| · |||SD,

this estimate can be improved. To this end, one integrates by parts to get

|(b(uI − u)′, wh)| ≤ |((uI − u), bw′
h)|+ |((uI − u), b′wh)|

Here the second term is estimated in a standard way:

|((uI − u), b′wh)| ≤ Chk+1|u|k+1‖wh‖0 ≤ Chk+1|u|k+1|||wh|||SD.

The bound on the first term depends on ε ≤ hi or ε > hi:

∣∣∣∣∣
N∑

i=1

((uI − u), bw′
h)Ii

∣∣∣∣∣ ≤ C
∑

ε≤hi

δ
−1/2
i hk+1

i |u|k+1,Ii
‖
√
δibw

′
h‖0,Ii

+ C
∑

ε>hi

h
k+1/2
i |u|k+1,Ii

ε1/2|wh|1

≤ Chk+1/2|u|k+1|||wh|||SD.

Collecting all these estimates completes the proof of the theorem. ⊓⊔

The Cea lemma, Theorem 2.44, gives a quasi-optimal error estimate whose
constant multiplier depends on the data of the problem. It says that the
error is, up to a constant factor, less than or equal to the approximation
error. Such an error estimate is highly desirable since it reduces the question
of constructing a good solution to the corresponding task in approximation
theory. In Section 2.2.2 the error u−uh has been measured in the energy norm
‖·‖ε = (ε| · |21+ | · |20)1/2, which forms part of the SD norm. But recalling (2.66),
we have no uniform quasi-optimal error estimate in the norm ‖ · ‖ε. Before
considering the question of finding an appropriate norm in which a uniform
quasi-optimal error estimate can be given, we demonstrate why the standard
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H1 norm ‖ · ‖1 and the energy norm ‖ · ‖ε seem unsuited to our singularly
perturbed problem.

Under the hypothesis (2.71b), the operator Lε : H1
0 (0, 1) → H−1(0, 1)

defined by
〈Lεv, w〉 = a(v, w) for all v, w ∈ H1

0 (0, 1)

is for each ε > 0 an isomorphism fromH1
0 (0, 1) ontoH−1(0, 1). Let us consider

two norms ‖ · ‖S and ‖ · ‖T on H1
0 (0, 1) that are equivalent for fixed ε and are

such that the continuity and inf-sup conditions

|a(v, w)| ≤ β‖v‖S ‖w‖T for all v, w ∈ H1
0 (0, 1), (2.78)

inf
v∈H1

0 (0,1)
sup

w∈H1
0 (0,1)

a(v, w)

‖v‖S ‖w‖T
≥ α > 0, (2.79)

hold true. From these inequalities one can deduce immediately that

‖L−1
ε ‖ := sup

f∈H−1(0,1)

‖L−1
ε f‖S

‖f‖∗,T
= sup

v∈H1
0 (0,1)

‖v‖S

‖Lεv‖∗,T
≤ 1

α
,

‖Lε‖ := sup
v∈H1

0 (0,1)

‖Lεv‖∗,T

‖v‖S
= sup

v∈H1
0 (0,1)

sup
w∈H1

0 (0,1)

〈Lεv, w〉
‖v‖S‖w‖T

≤ β,

where ‖ · ‖∗,T denotes the dual norm in H−1(0, 1) defined by

‖f‖∗,T := sup
w∈H1

0 (0,1)

〈f, w〉
‖w‖T

.

If α and β are independent of ε, then one can consider the norms ‖v‖S and
‖w‖T as natural for Lε because for a given source term f and a perturbed
source term f + δf the relative perturbation in the solution is uniformly
bounded by the relative perturbation of the source term. Indeed, if u and
u+ δu denote the corresponding solutions, then

‖δu‖S

‖u‖S
=
‖L−1

ε δf‖S

‖u‖S
≤ β

α

‖δf‖∗,T

‖Lεu‖∗,T
=
β

α

‖δf‖∗,T

‖f‖∗,T
.

If however ‖ · ‖S = ‖ · ‖T = ‖ · ‖1, then (2.78) and (2.79) hold true only with
constants α and β that depend on ε; this implies that

‖L−1
ε ‖ ≤ 1

α
= O

(
1

ε

)
, ‖Lε‖ ≤ β = O(1).

On the other hand, for ‖ · ‖S = ‖ · ‖T = ‖ · ‖ε one obtains

‖L−1
ε ‖ ≤ 1

α
= O(1), ‖Lε‖ ≤ β = O

(
1

ε

)
.
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Suppose that we have appropriate norms ‖ · ‖S and ‖ · ‖T such that (2.78)
and (2.79) hold with constants α and β that are independent of ε. Then one
might hope that these inequalities yield a uniform quasi-optimal convergence
result with respect to ‖v‖S , similarly to the Cea lemma, Theorem 2.44 – but
this is not true. The reason is that the inf-sup condition (2.79) is weaker than
the coercivity condition (2.52): imitating the proof of Theorem 2.44 one gets

‖u− uh‖S ≤ ‖u− vh‖S + ‖vh − uh‖S

≤ ‖u− vh‖S +
1

α
sup

w∈H1
0 (0,1)

a(vh − uh, w)

‖w‖T

but after using Galerkin orthogonality to replace a(vh−uh, w) by a(vh−u,w),
we are unable to take an infimum of the right-hand side over H1

0 (0, 1) – we
can take the infimum only over the finite element space Vh where vh lies.
To surmount this obstacle, one needs an additional inf-sup condition on the
discrete spaces Sh and Th:

inf
vh∈Sh

sup
wh∈Th

a(vh, wh)

‖vh‖S ‖wh‖T
≥ α1 > 0. (2.80)

Then one can argue that

‖vh − uh‖S ≤
1

α1
sup

wh∈Th

a(vh − uh, wh)

‖wh‖T
=

1

α1
sup

wh∈Th

a(vh − u,wh)

‖wh‖T

≤ β

α1
‖vh − u‖S

and use a triangle inequality to get the uniform quasi-optimal estimate

‖u− uh‖S ≤
(

1 +
β

α1

)
inf

vh∈Sh

‖u− vh‖S .

An investigation of norms ‖ · ‖S and ‖ · ‖T such that (2.78)–(2.80) are
satisfied has been carried out by Sangalli [San05, San08].

Following [San05], we consider the simple model problem in which b = 1
and c = 0. Thus the bilinear form a(·, ·) becomes

a(v, w) := ε(v′, w′) + (w′, v) for all v, w ∈ H1
0 (0, 1).

Let L2
0(0, 1) denote the subset of L2(0, 1) comprising functions of zero mean

value. Let Π0 : L2(0, 1) → L2
0(0, 1) be the L2 projection onto L2

0(0, 1) such
that (Π0w−w, v) = 0 for all v ∈ L2

0(0, 1) and w = Π0w+w where w denotes
the mean value of w. The convection term (v′, w) can be estimated via

|(v′, w)| = |((Π0v)
′, w)| = | − (Π0v, w

′)| ≤ ‖Π0v‖0 |w|1

or equivalently, integrating by parts,
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|(v′, w)| = | − (v, w′)| = | − (v, (Π0w)′)| = |(v′, Π0w)| ≤ |v|1 ‖Π0w‖0,
which results in two continuity estimates of the form (2.78):

|a(v, w)| ≤ (ε|v|1 + ‖Π0v‖0) |w|1,
|a(v, w)| ≤ |v|1 (ε|w|1 + ‖Π0v‖0).

Thus we shall consider ε| · |1 +‖Π0(·)‖0 and | · |1 – or vice versa – as candidates
for ‖ · ‖S and ‖ · ‖T . The coercivity of a(·, ·) gives

ε|v|1 ≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
for all v ∈ H1

0 (0, 1).

In order to show also that

‖Π0v‖0 ≤ C sup
w∈H1

0 (0,1)

a(v, w)

|w|1
for all v ∈ H1

0 (0, 1),

one uses the norm relationships ‖Π0v‖0 ≤ C ‖v′‖−1 and

‖v′‖−1 = sup
w∈H1

0 (0,1)

(v′, w)

|w|1
= sup

w∈H1
0 (0,1)

a(v, w)− ε(v′, w′)

|w|1

≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
+ ε|v|1 ≤ 2 sup

w∈H1
0 (0,1)

a(v, w)

|w|1
.

Hence

α(ε|v|1 + ‖Π0v‖0) ≤ sup
w∈H1

0 (0,1)

a(v, w)

|w|1
where α is independent of ε. A duality argument delivers the other estimate

α |v|1 ≤ sup
w∈H1

0 (0,1)

a(v, w)

ε|w|1 + ‖Π0w‖0
.

Thus, in agreement with our earlier discussion, the norms

v �→ ε|v|1 + ‖Π0v‖0 and v �→ |v|1
are suitable for this model problem.

In [San05] Sangalli proved a discrete inf-sup condition of type (2.80) from
which uniform quasi-optimality with respect to the two norms follows.

Lemma 2.54. Consider the bilinear form ah(·, ·) of the SDFEM (2.72) with
b = 1 and c = 0. Let Vh be the space of piecewise linear functions on an
equidistant mesh. Then there is a constant α1, which is independent of ε,
such that

α1(ε|vh|1 + ‖Π0vh‖0) ≤ sup
wh∈Vh

ah(vh, wh)

|wh|1
∀vh ∈ Vh,

α |vh|1 ≤ sup
wh∈Vh

ah(vh, wh)

ε|wh|1 + ‖Π0wh‖0
∀vh ∈ Vh.
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Proof. See [San05, Lemma 3.1]. �

Lemma 2.54 is the basis for using interpolation theory to construct a family
of norms in which the SDFEM yields uniform quasi-optimal estimates; see
[San05]. Note that the analysis given in [San05] is restricted to the model
problem (b = 1 and c = 0) in one space dimension.

Next, following [CX08, CX05], we show that a variant of the SDFEM for
continuous piecewise linear finite elements on an arbitrary family of meshes
yields a solution uh that is quasi-optimal with respect to the L∞ norm, viz.,

‖u− uh‖∞ ≤ C inf
vh∈Vh

‖u− vh‖∞.

To concentrate on the main ideas, consider the simple model problem

−εu′′ + bu′ = f on (0, 1), u(0) = u(1) = 0,

where b is a positive constant and f a given function. For a positive integer N ,
let TN = {xi : 0 = x0 < x1 < · · · < xN = 1} be an arbitrary grid with
hi = xi− xi−1 the local mesh size and {ϕi} the standard piecewise linear hat
functions that satisfy ϕi(xj) = δij for i, j = 0, 1, . . . , N . Let the finite element
space be

Vh := span{ϕ1, . . . , ϕN−1} ⊂ H1
0 (0, 1).

The SDFEM (2.72) can be written in the form

Find uh ∈ Vh such that ah(uh, vh) = fh(vh) for all vh ∈ Vh

where

ah(v, w) := ε(v′, w′) + (bv′, w) +
N∑

i=1

∫ xi

xi−1

δi(−εv′′ + bv′)bw′ dx,

fh(w) := (f, w) +

N∑

i=1

∫ xi

xi−1

δif bw
′ dx.

Unlike the usual choice of a piecewise-constant SD parameter, here we take

δi :=
3hi

b
min{1, qi}ϕi−1(x)ϕi(x), qi =

bhi

2ε
. (2.81)

Nevertheless the maximum of δi has the asymptotic behaviour (2.77) in the
diffusion-dominated and convection-dominated regimes.

Let A = (ah(ϕj , ϕi)), for i, j = 1, . . . , N − 1, be the coefficient matrix of
the corresponding algebraic system. For ui = uh(xi) a direct calculation gives

−
(
ε+ δib

2

hi
+
b

2

)
ui−1 +

(
ε+ δib

2

hi
+
ε+ δi+1b

2

hi+1

)
ui (2.82)

−
(
ε+ δi+1b

2

hi+1
− b

2

)
ui+1 = fh(ϕi)
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where

δi :=
1

hi

∫ xi

xi−1

δi(x) dx =
hi

2b
min{1, qi}.

Observe that

ε+ δi+1b
2

bhi+1
=

1 + qi+1 min(1, qi+1)

2qi+1
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 + q2i+1

2qi+1
> 1 for 0 < qi+1 < 1,

1 + qi+1

2qi+1
>

1

2
for qi+1 ≥ 1,

so the matrix A of (2.82) is an M-matrix. The following uniform stability result
is established in [CX05] by studying the properties of the discrete Green’s
function (compare Section 1.1.2 for the continuous analogue):

Lemma 2.55. Define δi by (2.81). Then the SDFEM is uniformly (l∞, w−1,∞)
stable, i.e.,

‖vh‖∞,d ≤
2

b
max

j=1,...,N−1

∣∣∣∣∣∣

N−1∑

k=j

(Avh)k

∣∣∣∣∣∣
∀vh ∈ Vh,

where the right-hand side defines the discrete analogue of the norm W−1,∞.

Now consider the error eh = uI−uh ∈ Vh where uI is the nodal interpolant.
The consistency property ah(u, vh) = fh(vh) for all vh ∈ Vh implies that
(provided the solution u is sufficiently smooth) the error eh is the solution of
the problem

Find eh ∈ Vh such that ah(eh, vh) = ah(uI − u, vh) for all vh ∈ Vh.

Using (uI−u)(xi) = 0 for i = 0, . . . , N and integration by parts, one sees that

(Aeh)k = ah(eh, ϕk) = ah(uI − u, ϕk) = rk − rk+1

where

rk :=
b

hk

[
−
∫ xk

xk−1

(uI − u)(x) dx+

∫ xk

xk−1

δk(x)εu′′(x) dx

+

∫ xk

xk−1

bδk(x)(uI − u)′(x) dx.
]

Since the SD parameter δi vanishes at the mesh points, one can show by means
of integration by parts that
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∣∣∣∣∣
b

hk

∫ xk

xk−1

(uI − u)(x) dx

∣∣∣∣∣ ≤ b‖u− uI‖∞,

∣∣∣∣∣
b

hk

∫ xk

xk−1

δk(x)εu′′(x) dx

∣∣∣∣∣ =
b

hk

∣∣∣∣∣

∫ xk

xk−1

δ′′k (x)ε(u− uI)(x) dx

∣∣∣∣∣

≤ 3b

qk
min(1, qk)‖u− uI‖∞ ≤ 3b‖u− uI‖∞,

∣∣∣∣∣
b

hk

∫ xk

xk−1

bδk(x)(uI − u)′(x) dx
∣∣∣∣∣ =

b2

hk

∣∣∣∣∣

∫ xk

xk−1

δ′k(x)(uI − u)(x) dx
∣∣∣∣∣

≤ 3b‖u− uI‖∞.
Gathering all these bounds gives

|rk| ≤ 7b‖u− uI‖∞. (2.83)

The discretization error can now be estimated using the interpolation error.

Lemma 2.56. Let uh be the solution of the SDFEM with δi given by (2.81).
Then there is a positive constant C, independent of ε and the mesh, such that

‖u− uh‖∞ ≤ C‖u− uI‖∞.
Proof. By Lemma 2.55 and (2.83),

‖uI − uh‖∞ ≤ 2

b
max

j=1,...,N−1

∣∣∣∣∣∣

N−1∑

k=j

(Aeh)k

∣∣∣∣∣∣
=

2

b
max

j=1,...,N−1
|rj − rN |

≤ 28‖u− uI‖∞
and the desired estimate follows from the triangle inequality. �

Theorem 2.57. Let uh be the solution of the SDFEM with δi given by (2.81).
Then there is a positive constant C, independent of ε and the mesh, such that

‖u− uh‖∞ ≤ C inf
vh∈Vh

‖u− vh‖∞.

That is, the SDFEM is quasi-optimal in the L∞ norm.

Proof. Let Ph : H1
0 (0, 1) → Vh denote the solution operator of the SDFEM,

i.e., Phu := uh. From Lemma 2.56 we infer that

‖u− uh‖∞ ≤ C‖u− uI‖∞ ≤ C(‖u‖∞ + ‖uI‖∞) ≤ C‖u‖∞.
Thus the operator Ph is L∞ stable since

‖Phu‖∞ = ‖uh‖∞ ≤ ‖u‖∞ + ‖u− uh‖∞ ≤ C‖u‖∞.
But P 2

h = Ph, so for any vh ∈ Vh one has

‖u− uh‖∞ = ‖(I − Ph)(u− vh)‖∞ ≤ C‖u− vh‖∞.
The proof is then finished by taking the infimum over all vh ∈ Vh. �
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Remark 2.58. The quasi-optimality result of Lemma 2.56 reduces the ques-
tion of L∞-norm convergence of the SDFEM to a problem in approximation.
Thus if layer-adapted meshes are used, convergence can be established in the
L∞ norm uniformly with respect to ε. Of course a detailed knowledge of the
analytical structure of the solution u is needed in order to create a layer-
adapted mesh. ♣

Remark 2.59. A quasi-optimality result in an Lp-type norm (where 1 ≤ p ≤ ∞
is arbitrary) for a Petrov-Galerkin finite element method is given in [SB84].
This result could also be used to get a uniform convergence result on a suitable
layer-adapted mesh. Moreover, [SB84] contains an asymptotically exact error
estimator; such estimators will be the main topic of Section III.3.6. ♣

2.2.4 Variational Multiscale and Differentiated Residual Methods

The variational multiscale method (VMS) [HFMQ98, Hug95, HS07] was in-
troduced to provide a framework for a better understanding of fine-to-coarse
scale effects and as a platform for the development of new numerical methods.

We derive the method for the two-point boundary value problem

−εu′′ + b(x)u′ + c(x)u = f(x) in (0, 1), u(0) = u(1) = 0, (2.84)

with sufficiently smooth functions b, c and f , where the parameter ε satisfies
0 < ε≪ 1. Assume that

c(x)− 1

2
b′(x) ≥ ω > 0 for x ∈ [0, 1], (2.85)

which guarantees the unique solvability of the problem.
The weak formulation of (2.84) is given by:

Find u ∈ V := H1
0 (0, 1) such that for all v ∈ V one has

a(u, v) := ε(u′, v′) + (bu′ + cu, v) = (f, v) . (2.86)

The basic idea of the VMS approach is to split the solution space V into
resolvable and unresolvable scales. This is done by choosing a finite element
space Vh that represents the resolvable scales and a projection operator P :
V → Vh such that

V = Vh ⊕ V ⋄, so u = Pu+ (I − P )u = uh + u⋄.

Now the weak formulation (2.86) can be restated as:

Find uh ∈ Vh and u⋄ ∈ V ⋄ such that

a(uh + u⋄, vh) = (f, vh) ∀vh ∈ Vh, (2.87a)

a(uh + u⋄, v⋄) = (f, v⋄) ∀v⋄ ∈ V ⋄. (2.87b)


