
Fluids under Pressure
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Preface

This book is based on lectures being presented at a thematic summer school named
Fluids under Pressure, that was held in Prague in August 2016 in the series Prague-
Sum events started back in 2011 . The aim of this monograph is to cover various
roles of pressure in physics as well as in mathematical modeling and analysis of
fluids flows problems. The pressure is a common denominator in all the chapters
of the book. Besides of several theoretical problems concerning namely the well-
posedness of the Navier-Stokes equations, some chapters are devoted to the role of
pressure in finite-element and finite-volume methods and their CFD applications.
All the chapters are written by world renown experts in the corresponding fields,
which makes this volume an excellent summary of state of the art knowledge in
this area.

This is the text for the Preface to this file. It should appear after the table
of contents which starts page numbering with roman page 5. The actual text of
the book starts on roman page 1.
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Chapter 3

Finite Element Pressure
Stabilizations for
Incompressible Flow Problems

V. John, P. Knobloch, U. Wilbrandt

3.1 Introduction

The behavior of incompressible flows is modeled by the incompressible Navier–
Stokes equations, given here already in dimensionless form,

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω,

(3.1)

where Ω ⊂ Rd, d ∈ {2, 3}, is the flow domain, T the final time, u the velocity field,
p the pressure, ν the (dimensionless) kinematic viscosity, and f represents forces
acting on the fluid. The first equation describes the conservation of linear momen-
tum and the second equation, the so-called continuity equation, the conservation
of mass. System (3.1) has to be equipped with an initial velocity condition and
with boundary conditions on the boundary ∂Ω.

There are three aspects that might lead to difficulties in the analysis and
numerical simulation of the incompressible Navier–Stokes equations:

• It is a coupled system with two unknowns, where the pressure does not appear
in the continuity equation. One obtains a so-called saddle point problem.

• The Navier–Stokes equations form a nonlinear system.
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• In the case of (very) small viscosities, the first order term (u ·∇)u dominates
in the momentum equation. This situation corresponds to turbulent flows.
System (3.1) is convection-dominated and its numerical simulation requires
special approaches, so-called turbulence models.

This review will discuss numerical methods for treating the coupling of ve-
locity and pressure. To concentrate on this issue, it suffices to consider the (scaled)
stationary Stokes equations with homogeneous Dirichlet boundary conditions

−ν∆u+∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω.
(3.2)

System (3.2) is a linear saddle point problem. The theory of linear saddle point
problems was developed in the early 1970s in the seminal papers [6, 24]. In this
theory, the weak or variational form of (3.2) is studied. It turns out that this form
is well posed, i.e., there exists a unique solution that depends continuously on the
right-hand side, if the spaces V for the velocity and Q for the pressure are chosen
appropriately.

Applying a Galerkin finite element method to discretize the variational form
of the Stokes equations, i.e., solely replacing the infinite-dimensional spaces V and
Q with finite-dimensional spaces V h and Qh, leads to a finite-dimensional linear
saddle point problem, whose algebraic form is

(
A BT

B 0

)(
u
p

)
=

(
f
0

)
.

From the theory of linear saddle point problems, it follows that the Galerkin finite
element method is only well posed for appropriate choices of the finite element
spaces. Concretely, the spaces have to satisfy a discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

(
∇ · vh, qh

)

‖∇vh‖L2(Ω) ‖qh‖L2(Ω)

≥ βhis > 0. (3.3)

For obtaining optimal order convergence, βhis has to be independent of the mesh
width h.

In practice, it turns out that the inequality (3.3) requires the use of different
finite element spaces for velocity and pressure. However, it was proved that lowest
order spaces, using continuous linear or d-linear functions for the finite element
velocity and piecewise constant functions for the discrete pressure, do not satisfy
(3.3). Thus, implementing finite element methods that respect (3.3) requires some
effort. Another issue in practice is that many standard preconditioners for iterative
solvers of linear systems of equations cannot be applied to linear saddle point
problems due to the zeros in the main diagonal of the system matrix.

In view of these drawbacks, numerical methods were developed in order to
circumvent the discrete inf-sup condition (3.3). The main idea of these so-called
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pressure stabilizations consists in introducing a pressure term in the finite element
continuity equation to remove the saddle point character of the discrete problem,
leading to an algebraic system of the form

(
A D
B −C

)(
u
p

)
=

(
f
g

)
. (3.4)

Several methods were proposed in the 1980s, the first one by Brezzi and Pitkäranta
in [26] and a number of residual-based pressure stabilizations in [55, 54, 39]. At
the end of the 1990s and during the 2000s, new approaches were developed, which
often contain terms where only the pressure appears, e.g., in [34, 13, 38, 29]. In
recent years, variants of stabilized methods were proposed that allow an easier
implementation as previous variants, e.g., in [12, 7, 31], or a finite element error
analysis was presented with less regularity assumptions on the solution of the
continuous problem in [83].

Altogether, there are many different proposals for pressure stabilizations.
However, to the best of our knowledge, there is no up-to-date comprehensive survey
of this topic in the literature available. In addition, it was pointed out as an open
problem in [57] that Systematic assessments of the proposed stabilized methods
are missing that clarify their advantages and drawbacks and give finally proposals
which ones should be preferred in simulations. The present paper aims to close
these gaps to some extent. However, there will be also some limitations of this
survey. It is restricted to conforming finite element methods and to the discussion
of the a priori error analysis.

Throughout the paper, standard notation for Lebesgue and Sobolev spaces
is used. The inner product of L2(Ω)d, d ∈ {1, 2, 3}, will be denoted by (·, ·). All
constants C, C1, etc. do neither depend on the viscosity coefficient ν nor on the
mesh width h. The notation C indicates a general constant that can have different
values at different places.

The paper is organized as follows. Section 3.2 introduces the considered fi-
nite element spaces and provides some properties which are used in the numerical
analysis. Available convergence results for inf-sup stable discretizations are sum-
marized in Section 3.3, to allow an easy comparison with the results for pressure-
stabilized discretizations. The topic of Section 3.4 is the class of residual-based
stabilizations. For some of them, the finite element analysis is presented in detail.
Stabilizations that use only the pressure are described in Section 3.5. A detailed
presentation of the analysis is provided for a local projection stabilization (LPS)
scheme. Section 3.6 describes the connection of some stabilized discretizations to
inf-sup stable methods that are enriched with bubble functions. Finally, numeri-
cal studies involving three residual-based stabilizations and one LPS method are
presented in Section 3.7.
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3.2 Weak Form of the Stokes Equations, Finite Element
Spaces

Throughout the remaining part of this chapter, the following assumptions on the
data of the Stokes problem (3.2) will be made. It will be assumed that Ω is a
bounded domain with a polygonal resp. polyhedral Lipschitz-continuous boundary,
the viscosity ν is a positive constant, and f ∈ L2(Ω)d.

A weak form of the Stokes equations (3.2) reads: Given f ∈ L2(Ω)d, find
(u, p) ∈ H1

0 (Ω)d × L2
0(Ω) such that

ν(∇u,∇v)− (∇ · v, p) + (∇ · u, q) = (f ,v) ∀ (v, q) ∈ H1
0 (Ω)d × L2

0(Ω). (3.5)

We shall use the notation V = H1
0 (Ω)d and Q = L2

0(Ω). The unique solvability of
(3.5) is closely connected with the fact that the spaces V and Q satisfy the inf–sup
condition

inf
q∈Q\{0}

sup
v∈V \{0}

(∇ · v, q)
‖∇v‖L2(Ω) ‖q‖L2(Ω)

≥ βis > 0. (3.6)

The inequality

‖∇ · v‖L2(Ω) ≤ ‖∇v‖L2(Ω) ∀ v ∈ V (3.7)

will be used in the analysis. The space of weakly divergence-free functions is given
by

Vdiv = {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q} .

We assume that we are given a family {T h} of triangulations of Ω consisting
of simplices, quadrilaterals or hexahedra and possessing the usual compatibility
properties. The set of interior faces (edges for d = 2) will be denoted by Eh. We
denote hK := diam(K) and hE := diam(E) for any K ∈ T h and E ∈ Eh and
assume that hK ≤ h for all K ∈ T h. For each face E ∈ Eh, we denote by nE a
fixed unit normal vector to E and by [|q|]E the jump of the function q across the
face E such that [|q|]E > 0 if q decreases in the direction of nE .

For each T h, we introduce finite element spaces V h ⊂ V and Qh ⊂ Q con-
taining piecewise (mapped) polynomials of degree k ≥ 1 and l ≥ 0, respectively.
We assume that the finite element spaces V h and Qh possess standard interpo-
lation properties. More precisely, we denote by Ih : V ∩ Hk+1(Ω)d → Vh and
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Jh : Q ∩H l+1(Ω)→ Qh interpolation operators satisfying


 ∑

K∈T h

h−2
K

∥∥v − Ihv
∥∥2

L2(K)




1/2

+
∥∥∇(v − Ihv)

∥∥
L2(Ω)

+


 ∑

K∈T h

h2
K

∥∥∆(v − Ihv)
∥∥2

L2(K)




1/2

+


∑

E∈Eh
h−1
E

∥∥v − Ihv
∥∥2

L2(E)




1/2

≤ C hk ‖v‖Hk+1(Ω) , (3.8)


 ∑

K∈T h

h−2
K

∥∥q − Jhq
∥∥2

L2(K)




1/2

+


 ∑

K∈T h

∥∥∇(q − Jhq)
∥∥2

L2(K)




1/2

+


 ∑

K∈T h

∑

E⊂∂K
h−1
E

∥∥q − (Jhq)|K
∥∥2

L2(E)




1/2

≤ C hl ‖q‖Hl+1(Ω) , (3.9)

for v ∈ V ∩Hk+1(Ω)d and q ∈ Q∩H l+1(Ω). The operator Ih may be the standard
Lagrange interpolation. The definition of Jh depends on the construction of Qh.
For example, if Qh ⊂ H1(Ω), the operator Jh may be defined as the Lagrange
interpolation projected into Q. If the functions in Qh are discontinuous across
faces, the operator Jh may be defined as the projection into a polynomial space
on each element of the triangulation.

In addition, for v ∈ V , we shall use a piecewise (multi)linear interpolant
Ihv ∈ V h (e.g., the Clément or Scott–Zhang interpolant) satisfying


 ∑

K∈T h

h−2
K

∥∥v − Ihv
∥∥2

L2(K)




1/2

+
∥∥∇Ihv

∥∥
L2(Ω)

+


∑

E∈Eh
h−1
E

∥∥v − Ihv
∥∥2

L2(E)




1/2

≤ C ‖∇v‖L2(Ω) . (3.10)

Similarly, for q ∈ Q ∩H1(Ω), we introduce an interpolant J hq ∈ Qh satisfying


 ∑

K∈T h

h−2
K

∥∥q − J hq
∥∥2

L2(K)




1/2

+


 ∑

K∈T h

∥∥∇J hq
∥∥2

L2(K)




1/2

+


 ∑

K∈T h

∑

E⊂∂K
h−1
E

∥∥q − (J hq)|K
∥∥2

L2(E)




1/2

≤ C ‖∇q‖L2(Ω) . (3.11)
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Finally, it is assumed that the following inverse inequality holds

∥∥∆vh
∥∥
L2(K)

≤ Cinvh
−1
K

∥∥∇vh
∥∥
L2(K)

∀ vh ∈ V h, K ∈ T h. (3.12)

Note that Cinv depends on the polynomial degree. It was shown in [53] for some
types of mesh cells that it increases with increasing polynomial degree. For exam-
ple, it has the value 0, 48, 149.1 for P1(K), P2(K), and P3(K), respectively, in the
case that K is a right isoscale triangle.

3.3 Inf-Sup Stable Finite Element Discretizations

Inf-sup stable pairs of finite element spaces satisfy the discrete inf-sup condition
(3.3). For the well-posedness of the discrete problem, the introduction of a pressure
stabilization is not necessary. This section provides a survey on the most impor-
tant results from the finite element convergence theory for inf-sup stable finite
element discretizations to facilitate the comparison with the convergence results
for stabilized discretizations presented in the subsequent sections.

Let the spaces V h and Qh satisfy the discrete inf-sup condition (3.3). Then,
the conforming discretization of the Stokes problem reads as follows: Find

(
uh, ph

)
∈

V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
=
(
f ,vh

)
∀
(
vh, qh

)
∈ V h ×Qh.

(3.13)

The natural norms for the analysis of the Stokes problem are the L2(Ω)
norm of the velocity gradient and the L2(Ω) norm of the pressure. Since the error
analysis for these norms utilizes typical tools and it is rather short, the proofs will
be presented in detail. The presentation follows [56, Section 4.2.1].

A crucial role in the analysis plays the subspace of discretely divergence-free
functions

V hdiv =
{
vh ∈ V h :

(
∇ · vh, qh

)
= 0 ∀ qh ∈ Qh

}
.

The solution of (3.13) belongs to this subspace. Note that in general functions
from this subspace are not weakly divergence-free, i.e., it holds V hdiv 6⊂ Vdiv.

Theorem 3.3.1 (Error estimate for the L2(Ω) norm of the velocity gradient). Let
(u, p) ∈ V × Q be the unique solution of the Stokes problem (3.5) and assume
that the spaces V h and Qh satisfy (3.3). Then, the solution of the conforming
discretization (3.13) satisfies the error estimate

∥∥∇(u− uh)
∥∥
L2(Ω)

≤ 2 inf
vh∈V h

div

∥∥∇(u− vh)
∥∥
L2(Ω)

+
1

ν
inf

qh∈Qh

∥∥p− qh
∥∥
L2(Ω)

.

(3.14)
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Proof. The proof starts by formulating the error equation. Since V h ⊂ V , functions
from V h can be used as test functions in (3.5). Subtracting (3.13) from (3.5) and
setting q = qh = 0 yields the so-called error equation

ν
(
∇(u− uh),∇vh

)
−
(
∇ · vh, p− ph

)
= 0 ∀ vh ∈ V h. (3.15)

Now, restricting the test functions to the space V hdiv, the second term on the left-
hand side is modified such that an approximation term with respect to the pressure
is obtained. One observes that

(
∇ · vh, qh

)
= 0 for all vh ∈ V hdiv and qh ∈ Qh,

which leads to

ν
(
∇(u− uh),∇vh

)
−
(
∇ · vh, p− qh

)
= 0 ∀ vh ∈ V hdiv, q

h ∈ Qh. (3.16)

Next, an approximation error for the velocity is introduced. To this end, the error
is decomposed into

u− uh =
(
u−wh

)
−
(
uh −wh

)
= η − φh,

where wh denotes an arbitrary interpolant of u in V hdiv. Hence, η is an approxima-
tion error which depends only on the finite element space V hdiv. The goal consists

in estimating φh ∈ V hdiv by approximation errors as well. Therefore, this decom-

position is inserted in (3.16) and the test function vh = φh is chosen. It follows
that

ν
∥∥∥∇φh

∥∥∥
2

L2(Ω)
= ν

(
∇φh,∇φh

)
= ν

(
∇η,∇φh

)
−
(
∇ · φh, p− qh

)
∀ qh ∈ Qh.

(3.17)
The first term on the right-hand side is estimated with the Cauchy–Schwarz in-
equality

ν
∣∣∣
(
∇η,∇φh

)∣∣∣ ≤ ν ‖∇η‖L2(Ω)

∥∥∥∇φh
∥∥∥
L2(Ω)

.

For the second term, one uses in addition (3.7), which gives

∣∣∣−
(
∇ · φh, p− qh

)∣∣∣ ≤
∥∥p− qh

∥∥
L2(Ω)

∥∥∥∇ · φh
∥∥∥
L2(Ω)

≤
∥∥p− qh

∥∥
L2(Ω)

∥∥∥∇φh
∥∥∥
L2(Ω)

.

Inserting these estimates in (3.17) and dividing by ν
∥∥∥∇φh

∥∥∥
L2(Ω)

6= 0 yields

∥∥∥∇φh
∥∥∥
L2(Ω)

≤ ‖∇η‖L2(Ω) +
1

ν

∥∥p− qh
∥∥
L2(Ω)

.

This estimate is trivially true if
∥∥∥∇φh

∥∥∥
L2(Ω)

= 0.
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With the triangle inequality, it follows that

∥∥∇(u− uh)
∥∥
L2(Ω)

≤
∥∥∥∇φh

∥∥∥
L2(Ω)

+ ‖∇η‖L2(Ω)

≤ 2 ‖∇η‖L2(Ω) +
1

ν

∥∥p− qh
∥∥
L2(Ω)

for all wh ∈ V hdiv and for all qh ∈ Qh, such that (3.14) follows. �

Theorem 3.3.2 (Error estimate for the L2(Ω) norm of the pressure). Let the as-
sumption of Theorem 3.3.1 be satisfied. Then the following error estimate holds

∥∥p− ph
∥∥
L2(Ω)

≤ 2ν

βhis
inf

vh∈V h
div

∥∥∇(u− vh)
∥∥
L2(Ω)

+

(
1 +

2

βhis

)
inf

qh∈Qh

∥∥p− qh
∥∥
L2(Ω)

. (3.18)

Proof. Let qh ∈ Qh be arbitrary, then the triangle inequality implies

∥∥p− ph
∥∥
L2(Ω)

≤
∥∥p− qh

∥∥
L2(Ω)

+
∥∥ph − qh

∥∥
L2(Ω)

.

Replacing the right-hand side of the momentum equation of the finite element
Stokes problem (3.13) by the left-hand side of the the momentum equation of the
continuous Stokes problem (3.5) for vh ∈ V h yields

−
(
∇ · vh, ph − qh

)
= −ν

(
∇uh,∇vh

)
+
(
f ,vh

)
+
(
∇ · vh, qh

)

= ν
(
∇
(
u− uh

)
,∇vh

)
−
(
∇ · vh, p− qh

)

for all
(
vh, qh

)
∈ V h×Qh. With the discrete inf-sup condition (3.3), the Cauchy–

Schwarz inequality, and (3.7), it follows now that

∥∥ph − qh
∥∥
L2(Ω)

≤ 1

βhis
sup

vh∈V h\{0}

−
(
∇ · vh, ph − qh

)

‖∇vh‖L2(Ω)

=
1

βhis
sup

vh∈V h\{0}

ν
(
∇
(
u− uh

)
,∇vh

)
−
(
∇ · vh, p− qh

)

‖∇vh‖L2(Ω)

≤ 1

βhis
sup

vh∈V h\{0}

ν
∥∥∇
(
u− uh

)∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

+
∥∥p− qh

∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

‖∇vh‖L2(Ω)

=
1

βhis

(
ν
∥∥∇
(
u− uh

)∥∥
L2(Ω)

+
∥∥p− qh

∥∥
L2(Ω)

)
∀ qh ∈ Qh.

Inserting the error bound (3.14) for the velocity yields the error estimate (3.18)
for the pressure. �



3.3. Inf-Sup Stable Finite Element Discretizations 13

The best approximation error in the subspace V hdiv can be estimated by the
best approximation error in V h

inf
vh∈V h

div

∥∥∇
(
u− vh

)∥∥
L2(Ω)

≤
(

1 +
1

βhis

)
inf

wh∈V h

∥∥∇
(
u−wh

)∥∥
L2(Ω)

, (3.19)

e.g., see [56, Lemma 3.60]. With respect to the dependency on the discrete inf-sup
constant, estimate (3.19) is a worst case estimate. For many pairs of finite element
spaces, an alternative estimate using a quasi-local Fortin projection is possible
which does not depend on the inverse of βhis, see [48]. Applying (3.19) to the error
bounds (3.14) and (3.18) gives the following estimate.

Corollary 3.3.3 (Error estimate). Let the spaces V h and Qh satisfy (3.3) with βhis
bounded from below by β0 > 0 independent of h. Assume that the solution of (3.5)
satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω), then one has the error estimate

ν ‖∇(u− uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
. (3.20)

Another norm of interest is the L2(Ω) norm of the velocity because its square
is proportional to the kinetic energy of the flow. Applying the Poincaré–Friedrichs
inequality, one observes that the estimate from Corollary 3.3.3 also holds for
ν
∥∥u− uh

∥∥
L2(Ω)

. However, such an error estimate is suboptimal with respect to

h. In what follows, an optimal estimate of the velocity error in the L2(Ω) norm
will be derived using the usual Aubin–Nitsche technique. To this end, a regularity
assumption on the Stokes problem in the following sense will be needed.

Definition 3.3.4. The Stokes problem (3.2) is regular if, for any f ∈ L2(Ω)d, the
solution of the weak formulation (3.5) satisfies (u, p) ∈ H2(Ω)d × H1(Ω) and it
holds

ν ‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C ‖f‖L2(Ω)

with a constant C independent of f and ν.

Theorem 3.3.5 (L2 estimate of the velocity error). Let the spaces V h and Qh satisfy
(3.3) with βhis bounded from below by β0 > 0 independent of h. Assume that the
solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d×H l+1(Ω) and let the Stokes problem
(3.2) be regular. Then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C
(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
. (3.21)
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Proof. Let (z, r) ∈ V ×Q be the solution of the problem

ν(∇z,∇v)− (∇ · v, r) + (∇ · z, q) = ν(u− uh,v) ∀ (v, q) ∈ V ×Q. (3.22)

Then, according to the regularity assumption, one has (z, r) ∈ H2(Ω)d ×H1(Ω)
and

ν ‖z‖H2(Ω) + ‖r‖H1(Ω) ≤ Cν
∥∥u− uh

∥∥
L2(Ω)

. (3.23)

Since u− uh ∈ V , one can set v = u− uh and q = 0 in (3.22), which gives

ν
∥∥u− uh

∥∥2

L2(Ω)
= ν(∇z,∇(u− uh))− (∇ · (u− uh), r). (3.24)

Let zI ∈ V h be the continuous piecewise (multi)linear Lagrange interpolant
of z satisfying (3.8) with k = 1 and let rI = J hr ∈ Qh be an interpolant of r
satisfying (3.11). Then

∥∥∇(z − zI)
∥∥
L2(Ω)

≤ Ch ‖z‖H2(Ω) ≤ Ch
∥∥u− uh

∥∥
L2(Ω)

, (3.25)
∥∥r − rI

∥∥
L2(Ω)

≤Ch ‖∇r‖L2(Ω) ≤ Cνh
∥∥u− uh

∥∥
L2(Ω)

. (3.26)

It follows from (3.24) that

ν
∥∥u− uh

∥∥2

L2(Ω)
= ν(∇(z − zI),∇(u− uh))− (∇ · (u− uh), r − rI)

+ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI). (3.27)

Applying the Cauchy–Schwarz inequality and (3.25), (3.26), the first two terms in
(3.27) can be estimated by

ν(∇(z − zI),∇(u− uh))− (∇ · (u− uh), r − rI)
≤ Cνh

∥∥∇(u− uh)
∥∥
L2(Ω)

∥∥u− uh
∥∥
L2(Ω)

. (3.28)

Setting vh = zI in (3.15), using the fact that ∇ · z = 0 and applying the Cauchy–
Schwarz inequality and (3.25), one derives

ν(∇zI ,∇(u− uh)) =
(
∇ · (zI − z), p− ph

)

≤
∥∥∇(z − zI)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

≤ Ch
∥∥u− uh

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

.

Finally, the last term in (3.27) vanishes since, according to (3.5) and (3.13), u is
weakly divergence-free and uh is discretely divergence-free. Combining the above
estimates gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Ch
(
ν ‖∇(u− uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

)

and the statement of the theorem follows from Corollary 3.3.3. �
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It should be noted that the velocity error bounds (3.20) and (3.21) im-
prove substantially if an inf-sup stable pair of finite element spaces is used with
V hdiv ⊂ Vdiv. Such pairs exist, e.g., the Scott–Vogelius pair P2/P

disc
1 applied on

special meshes. Then, the pressure term in the error equation (3.16) vanishes and
consequently the pressure terms vanish on the right-hand sides of the estimates
(3.20) and (3.21). The consequences are that the velocity error bounds do not
depend on the pressure and they do not depend explicitly on inverse powers of the
viscosity. Even for spaces with V hdiv 6⊂ Vdiv, an approach has been developed such
that the velocity error bounds have these two properties, see [70, 71] or the recent
survey paper [58]. To derive velocity error bounds with these two properties for
pressure-stabilized methods, as presented in the following sections, is impossible.

For inf-sup stable pairs of finite element spaces, error estimates with respect
to the norms of other Lebesgue spaces can be proved. In particular, estimates in
L∞(Ω) were derived in [47, 33, 51, 46, 52] that are of the form

ν
∥∥∇
(
u− uh

)∥∥
L∞(Ω)

+
∥∥p− ph

∥∥
L∞(Ω)

≤ C

(
ν inf

vh∈V h

∥∥∇
(
u− vh

)∥∥
L∞(Ω)

+ inf
qh∈V h

∥∥p− qh
∥∥
L∞(Ω)

)
. (3.29)

In [46], even an estimate of the form

ν
∥∥∇
(
u− uh

)∥∥
Lr(Ω)

+
∥∥p− ph

∥∥
Lr(Ω)

(3.30)

≤ C

(
ν inf

vh∈V h

∥∥∇
(
u− vh

)∥∥
Lr(Ω)

+ inf
qh∈V h

∥∥p− qh
∥∥
Lr(Ω)

)
, 2 ≤ r ≤ ∞

was shown. The current state of the art is that estimates of form (3.29) and (3.30)
can be proved for convex polyhedral domains.

3.4 Residual-Based Stabilizations

For another review of residual-based stabilizations, it is referred to [42].

3.4.1 A Framework

A framework for the derivation of residual-based stabilizations was presented in
[19]. Starting point is the regularization of the Galerkin finite element method
(3.13) with respect to the norm of Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δ

(
ph, qh

)
= (f ,vh),

where δ > 0 is a stabilization parameter. However, this stabilization acts like
a penalty term which prevents the method from being optimally convergent for
higher order finite element spaces. Thus, this stabilization should be replaced by
a stabilization that is, on the one hand, similarly strong but, on the other hand,
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possesses a sufficiently small consistency error. Using [49, Cor. 2.1], it is known
that there are positive constants C1 and C2 such that

C1 ‖q‖L2(Ω) ≤ ‖∇q‖H−1(Ω) ≤ C2 ‖q‖L2(Ω) ∀ q ∈ Q,

i.e., the H−1(Ω)d norm of ∇q is equivalent to the L2(Ω) norm of q. Conse-

quently,
∥∥∇qh

∥∥2

H−1(Ω)
has the same stabilization effect like

∥∥qh
∥∥2

L2(Ω)
. The term(

∇ph,∇qh
)
−1

can be included in a stabilization term naturally by using the resid-

ual, where (·, ·)−1 is the inner product in H−1(Ω)d, see [19] for a definition of this
inner product.

For simplicity of presentation, only the case Qh ⊂ H1(Ω) is considered. The
prototype of a residual-based stabilization from [19] has the form: Find

(
uh, ph

)
∈

V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)

+δ
(
−ν∆uh +∇ph, κν∆vh +∇qh

)
−1

(3.31)

= (f ,v) + δ
(
f , κν∆vh +∇qh

)
−1

∀
(
vh, qh

)
∈ V h ×Qh,

with κ ∈ {−1, 0, 1} and δ > 0. There are still two issues in (3.31). First, (·, ·)−1 is
not computable and second, ∆uh,∆vh are not defined. Thanks to the regularity
assumption on Qh, the functions ∇ph,∇qh are well defined.

A standard way to resolve these issues consists in approximating (·, ·)−1 by a
weighted L2(Ω) inner product, leading to the following problem: Find

(
uh, ph

)
∈

V h ×Qh such that for all
(
vh, qh

)
∈ V h ×Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)

+
∑

K∈T h

δh2
K

(
−ν∆uh +∇ph, κν∆vh +∇qh

)
K

(3.32)

= (f ,v) +
∑

K∈T h

δh2
K

(
f , κν∆vh +∇qh

)
K
.

For κ = 0, one obtains the PSPG method, which is discussed in Section 3.4.2,
for κ = 1 the symmetric GLS method, see Section 3.4.3, and for κ = −1 the
non-symmetric GLS method presented in Section 3.4.4.

In [19], a new proposal for approximating the inner product in H−1(Ω)d was
presented. This proposal is discussed briefly in Section 3.4.5.

Definition 3.4.1 (Absolutely and conditionally stable methods). A stabilized dis-
crete method is called absolutely stable if it is stable for all δ > 0. Otherwise, if it
is stable only for a restricted set of parameters, it is called conditionally stable.

3.4.2 The PSPG Method

The Pressure Stabilizing Petrov–Galerkin (PSPG) method was proposed for finite
element spaces with continuous discrete pressures in [55]. In the case of piecewise
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polynomial but discontinuous finite element pressure spaces, an additional term is
necessary, which was introduced in [54, 39].

The PSPG method has the form: Find
(
uh, ph

)
∈ V h ×Qh such that

Apspg

((
uh, ph

)
,
(
vh, qh

))
= Lpspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (3.33)

where the bilinear form Apspg :
(
Ṽ × Q̃

)
×
(
V × Q̃

)
→ R is given by

Apspg ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)

E
+
∑

K∈T h

(−ν∆u+∇p, δK∇q)K (3.34)

and the linear form Lpspg : V × Q̃→ R by

Lpspg ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK∇q)K , (3.35)

with

Ṽ =
{
v ∈ V : v|K ∈ H2(K)d for all K ∈ T h

}
, (3.36)

Q̃ =
{
q ∈ Q : q|K ∈ H1(K) for all K ∈ T h

}
(3.37)

and nonnegative stabilization parameters γE and δK . Their appropriate choices
will be based on the study of the existence and uniqueness of a solution of (3.33),
see Lemma 3.4.3, and on finite element error estimates, see Theorem 3.4.6. The
volume integrals in the stabilization terms contain the so-called strong residual of
the Stokes equations.

The definition of Q̃ ensures that the jumps of the pressure across the faces
of the mesh cells are well defined. If Qh ⊂ H1(Ω), then the jumps of the pressure
vanish almost everywhere on the faces. From the practical point of view, the case of
piecewise polynomial and continuous discrete pressure functions is very important
such that then even Qh ⊂ C(Ω).

Lemma 3.4.2 (A norm in V h×Qh containing the stabilization terms). Let δK > 0
for all K ∈ T h and, in the case Qh 6⊂ H1(Ω), let γE > 0 for all E ∈ Eh. Then

∥∥(vh, qh
)∥∥

pspg
=

(
ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)

+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

)1/2

(3.38)

defines a norm in V h ×Qh.
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Proof. Expression (3.38) is the square root of a sum of squares of seminorms. Thus,
it is clearly a seminorm itself. It remains to prove that from

∥∥(vh, qh
)∥∥

pspg
= 0,

it follows that vh = 0 and qh = 0.
Let

∥∥(vh, qh
)∥∥

pspg
= 0, then all terms in (3.38) vanish. In particular, it holds∥∥∇vh

∥∥
L2(Ω)

= 0. Since this expression is a norm in V h, it follows that vh = 0.

With this result, one gets

0 =
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

Because δK is assumed to be positive for all mesh cells, it follows that
∥∥∇qh

∥∥
L2(K)

=

0 for all K ∈ T h. If Qh ⊂ H1(Ω), then
∥∥[∣∣qh

∣∣]
E

∥∥
L2(E)

= 0 for all faces. Otherwise,

one gets this property from the assumption γE > 0 for all faces. Altogether, it
follows that qh is constant on Ω. The only globally constant function in Qh is
qh = 0. Hence

∥∥(vh, qh
)∥∥

pspg
defines a norm on V h ×Qh. �

Lemma 3.4.3 (Existence and uniqueness of a solution of (3.33)). Let the assump-
tions of Lemma 3.4.2 be satisfied and let

δK ≤
h2
K

νC2
inv

. (3.39)

Then the PSPG problem (3.33) possesses a unique solution.

Proof. First, the coercivity of the bilinear form Apspg(·, ·) with respect to the norm
‖·‖pspg will be shown for any (vh, qh) ∈ V h ×Qh. One obtains with the Cauchy–
Schwarz inequality, the inverse inequality (3.12), the Young inequality, and the
condition (3.39) on the stabilization parameters

Apspg

((
vh, qh

)
,
(
vh, qh

))

≥ ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

−
∑

K∈T h

δKν
∥∥∆vh

∥∥
L2(K)

∥∥∇qh
∥∥
L2(K)

≥
∥∥(vh, qh

)∥∥2

pspg
−
∑

K∈T h

δKh
−1
K Cinvν

∥∥∇vh
∥∥
L2(K)

∥∥∇qh
∥∥
L2(K)

≥
∥∥(vh, qh

)∥∥2

pspg
− 1

2

∑

K∈T h

δKC
2
invν

2

h2
K

∥∥∇vh
∥∥2

L2(K)
− 1

2

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)

≥ 1

2

∥∥(vh, qh
)∥∥2

pspg
. (3.40)

The PSPG problem (3.33) is equivalent to a system of linear algebraic equations
with a square matrix. The coercivity (3.40) implies that the homogeneous PSPG
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problem (for f = 0) has only the trivial solution. Consequently, the matrix is
non-singular, which proves the lemma. �

Since the stabilization parameters have to satisfy (3.39), they depend on the
local mesh size. Hence, the norm ‖·‖pspg is a mesh-dependent norm. Note that in

the case that ∆vh|K = 0 for all mesh cells K, as it is given, e.g., for P1 finite
elements, the restriction (3.39) on the stabilization parameter is not necessary.

Lemma 3.4.4 (Stability estimate). Let the assumptions of Lemmas 3.4.2 and 3.4.3
be satisfied. Then the solution of the PSPG problem (3.33) satisfies the stability
estimate

∥∥(uh, ph
)∥∥

pspg
≤ C

ν1/2
‖f‖L2(Ω) + 2


 ∑

K∈T h

δK ‖f‖2L2(K)




1/2

. (3.41)

Proof. Using the Cauchy–Schwarz inequality, the Poincaré–Friedrichs inequality,
and the Cauchy–Schwarz inequality for sums, one obtains

Lpspg

((
vh, qh

))

≤ ‖f‖L2(Ω)

∥∥vh
∥∥
L2(Ω)

+
∑

K∈T h

δK ‖f‖L2(K)

∥∥∇qh
∥∥
L2(K)

≤ C ‖f‖L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

+


 ∑

K∈T h

δK ‖f‖2L2(K)




1/2
 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

≤


 C

ν1/2
‖f‖L2(Ω) +


 ∑

K∈T h

δK ‖f‖2L2(K)




1/2


∥∥(vh, qh

)∥∥
pspg

,

for all
(
vh, qh

)
∈ V h×Qh. Inserting this estimate in (3.33) and setting

(
vh, qh

)
=(

uh, ph
)
, the stability estimate follows using the coercivity (3.40). �

Lemma 3.4.5 (Consistency and Galerkin orthogonality). Let the solution of (3.5)
satisfy (u, p) ∈ H2(Ω)d×H1(Ω) and let (uh, ph) ∈ V h×Qh be the solution of the
PSPG method (3.33). The PSPG method is consistent, i.e., it holds

Apspg

(
(u, p) ,

(
vh, qh

))
= Lpspg

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (3.42)

and it satisfies the Galerkin orthogonality

Apspg

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (3.43)
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Proof. The residual vanishes for (u, p) and with that the residual-based stabiliza-
tion terms in Apspg and Lpspg are equal. Moreover, the stabilization term with
pressure jumps vanishes since p ∈ H1(Ω). Thus, only the terms from the weak for-
mulation (3.5) remain and since the finite element spaces are conforming, (3.42)
holds.

The Galerkin orthogonality is obtained by subtracting (3.33) from (3.42). �

To prove error estimates for the solution of (3.33), we shall need additional
assumptions on the stabilization parameters. It will be assumed that there are
positive constants δ0, δ1 and γ0, γ1 independent of ν and h such that

0 < δ0
h2
K

ν
≤ δK ≤ δ1

h2
K

ν
∀ K ∈ T h (3.44)

and

0 < γ0
hE
ν
≤ γE ≤ γ1

hE
ν

∀ E ∈ Eh. (3.45)

Theorem 3.4.6 (Error estimate). Let the solution of (3.5) satisfy (u, p) ∈ Hk+1(Ω)d×
H l+1(Ω) and let

(
uh, ph

)
∈ V h ×Qh be the solution of the PSPG problem (3.33).

Assume that the stabilization parameters satisfy (3.44) and (3.45) with δ1 ≤
1/C2

inv. Then the following error estimate holds

∥∥(u− uh, p− ph
)∥∥

pspg
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
. (3.46)

Proof. The triangle inequality gives

∥∥(u− uh, p− ph
)∥∥

pspg

≤
∥∥(u− Ihu, p− Jhp

)∥∥
pspg

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
pspg

, (3.47)

where Ih and Jh are the interpolation operators satisfying (3.8) and (3.9). Both
terms on the right-hand side of (3.47) are estimated separately.

One obtains with the interpolation estimates (3.8) and (3.9), and with the
assumptions (3.44) and (3.45) on the stabilization parameters

∥∥(u− Ihu, p− Jhp
)∥∥2

pspg

≤ ν
∥∥∇
(
u− Ihu

)∥∥2

L2(Ω)
+
γ1h

ν

∑

E∈Eh

∥∥[∣∣p− Jhp
∣∣]
E

∥∥2

L2(E)

+
δ1h

2

ν

∑

K∈T h

∥∥∇
(
p− Jhp

)∥∥2

L2(K)

≤ C

(
νh2k ‖u‖2Hk+1(Ω) +

h2(l+1)

ν
‖p‖2Hl+1(Ω)

)
. (3.48)
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The estimate of the second term of (3.47) starts with the coercivity (3.40)
and the Galerkin orthogonality (3.43)

∥∥(uh − Ihu, ph − Jhp
)∥∥2

pspg

≤ 2Apspg

((
uh − Ihu, ph − Jhp

)
,
(
uh − Ihu, ph − Jhp

))

= 2Apspg

((
u− Ihu, p− Jhp

)
,
(
uh − Ihu, ph − Jhp

))
. (3.49)

Now, each term of the right-hand side of (3.49) is estimated separately. The goal
of these estimates is to obtain interpolation errors and to hide the other terms in
the left-hand side of (3.49).

Using the Cauchy–Schwarz inequality, the Young inequality, and the inter-
polation estimate (3.8), one obtains for the viscous term

ν
(
∇
(
u− Ihu

)
,∇
(
uh − Ihu

))

≤ ν
∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

≤ 4ν
∥∥∇
(
u− Ihu

)∥∥2

L2(Ω)
+

ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)

≤ Cνh2k ‖u‖2Hk+1(Ω) +
ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)
.

The last term can be absorbed in the left-hand side of (3.49). In a similar way,
using (3.9), one gets

(
∇ ·
(
uh − Ihu

)
, p− Jhp

)
≤ Ch

2(l+1)

ν
‖p‖2Hl+1(Ω) +

ν

16

∥∥∇
(
uh − Ihu

)∥∥2

L2(Ω)
.

The estimate of the next term requires an integration by parts

(
∇ ·
(
u− Ihu

)
, ph − Jhp

)
=

∑

E∈Eh

((
u− Ihu

)
· nE ,

[∣∣ph − Jhp
∣∣]
E

)
E

−
∑

K∈T h

(
u− Ihu,∇

(
ph − Jhp

))
K
. (3.50)

Both terms on the right-hand side of (3.50) are estimated more or less in the
same way, e.g., one obtains for the last term with the Cauchy–Schwarz inequality,
the Young inequality, the property (3.44) of the stabilization parameters, and the
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interpolation estimate (3.8)
∑

K∈T h

(
u− Ihu,∇

(
ph − Jhp

))
K
≤
∑

K∈T h

∥∥u− Ihu
∥∥
L2(K)

∥∥∇
(
ph − Jhp

)∥∥
L2(K)

≤ 4
∑

K∈T h

1

δK

∥∥u− Ihu
∥∥2

L2(K)
+

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)

≤ 4ν

δ0

∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)
+

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)

≤ Cν

δ0
h2k ‖u‖2Hk+1(Ω) +

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
.

The estimate of the other term on the right-hand side of (3.50) uses (3.45). All
stabilization terms are estimated with the same tools used so far. One gets

∑

K∈T h

(
−ν∆

(
u− Ihu

)
, δK∇

(
ph − Jhp

))
K

≤ Cνh2k ‖u‖2Hk+1(Ω) +
1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
,

and
∑

K∈T h

(
∇
(
p− Jhp

)
, δK∇

(
ph − Jhp

))
K

≤ C
h2(l+1)

ν
‖p‖2Hl+1(Ω) +

1

16

∑

K∈T h

δK
∥∥∇
(
ph − Jhp

)∥∥2

L2(K)
.

Finally, for the term with the pressure jumps, one gets with (3.9)
∑

E∈Eh
γE
([∣∣p− Jhp

∣∣]
E
,
[∣∣ph − Jhp

∣∣]
E

)
E

≤ C
h2(l+1)

ν
‖p‖2Hl+1(Ω) +

1

16

∑

E∈Eh
γE
∥∥[∣∣ph − Jhp

∣∣]
E

∥∥2

L2(E)
.

Collecting all estimates proves the statement of the theorem. �

To derive an error estimate for the pressure in the L2 norm, the following
auxiliary problem (a kind of Stokes projection) will be considered: Find (w, r) ∈
V ×Q such that

(∇w,∇v)− (∇ · v, r) = 0 ∀ v ∈ V,
− (∇ ·w, q) =

(
p− ph, q

)
∀ q ∈ Q. (3.51)

It follows from the theory of linear saddle point problems that (3.51) possesses a
unique solution.
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Lemma 3.4.7 (Stability estimate for (3.51)). For the unique solution of (3.51)
there holds the stability estimate

‖∇w‖L2(Ω) + ‖r‖L2(Ω) ≤ C
∥∥p− ph

∥∥
L2(Ω)

. (3.52)

The constant depends on the inverse of βis from (3.6).

Proof. Using (3.6), (3.51), and the Cauchy–Schwarz inequality gives

βis ‖r‖L2(Ω) ≤ sup
v∈V \{0}

(∇ · v, r)
‖∇v‖L2(Ω)

= sup
v∈V \{0}

(∇w,∇v)

‖∇v‖L2(Ω)

≤ sup
v∈V \{0}

‖∇w‖L2(Ω) ‖∇v‖L2(Ω)

‖∇v‖L2(Ω)

= ‖∇w‖L2(Ω) . (3.53)

Inserting (v, q) = (w, r) in (3.51), subtracting both equations, and applying the
Cauchy–Schwarz inequality and (3.53) yields

‖∇w‖2L2(Ω) = −
(
p− ph, r

)
≤
∥∥p− ph

∥∥
L2(Ω)

‖r‖L2(Ω)

≤ 1

βis

∥∥p− ph
∥∥
L2(Ω)

‖∇w‖L2(Ω) . (3.54)

Combining (3.53) and (3.54) leads to

‖∇w‖L2(Ω) + ‖r‖L2(Ω) ≤
(

1 +
1

βis

)
‖∇w‖L2(Ω)

≤ 1

βis

(
1 +

1

βis

)∥∥p− ph
∥∥
L2(Ω)

.

�

Theorem 3.4.8 (L2 estimate of the pressure error). Assume that the solution of
(3.5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω) and that the stabilization parameters
satisfy (3.44) and (3.45) with δ1 ≤ 1/C2

inv. Then there holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
.

Proof. Let (w, r) be the solution of (3.51). Let Ihw ∈ V h be an interpolant of w
satisfying (3.10). Inserting q = p− ph in (3.51) gives

∥∥p− ph
∥∥2

L2(Ω)
= −

(
∇ ·w, p− ph

)

= −
(
∇ ·
(
w − Ihw

)
, p− ph

)
−
(
∇ ·
(
Ihw

)
, p− ph

)
. (3.55)

Consider now the second term on the right-hand side of (3.55). The Galerkin
orthogonality (3.43) with vh = Ihw and qh = 0 leads to

0 = ν
(
∇
(
u− uh

)
,∇Ihw

)
−
(
∇ ·
(
Ihw

)
, p− ph

)
.
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Hence, one obtains with the Cauchy–Schwarz inequality, (3.10), and (3.52)

∣∣(∇ ·
(
Ihw

)
, p− ph

)∣∣ ≤ Cν
∥∥∇(u− uh)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

. (3.56)

The estimate of the first term on the right-hand side of (3.55) starts with
integration by parts, followed by the Cauchy–Schwarz inequality and application
of (3.44), (3.45), (3.10), and (3.52)

−
(
∇ ·
(
w − Ihw

)
, p− ph

)

=
∑

K∈T h

(
w − Ihw,∇

(
p− ph

))
K
−
∑

E∈Eh

((
w − Ihw

)
· nE ,

[∣∣p− ph
∣∣]
E

)
E

≤


 ∑

K∈T h

δ−1
K

∥∥w − Ihw
∥∥2

L2(K)




1/2
 ∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)




1/2

+


∑

E∈Eh
γ−1
E

∥∥w − Ihw
∥∥2

L2(E)




1/2
∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥2

L2(E)




1/2

≤ Cν1/2

(
1

δ
1/2
0

+
1

γ
1/2
0

)
‖∇w‖L2(Ω)

∥∥(u− uh, p− ph)
∥∥

pspg

≤ Cν1/2

(
1

δ
1/2
0

+
1

γ
1/2
0

)
∥∥p− ph

∥∥
L2(Ω)

∥∥(u− uh, p− ph)
∥∥

pspg
. (3.57)

Combining the estimates (3.55), (3.56), and (3.57) yields

∥∥p− ph
∥∥
L2(Ω)

≤ Cν1/2
∥∥(u− uh, p− ph)

∥∥
pspg

,

where the constant C depends on δ
−1/2
0 and γ

−1/2
0 . Thus, the final estimate follows

from Theorem 3.4.6. �

Theorem 3.4.9 (L2 estimate of the velocity error). Let the stabilization parameters
satisfy (3.44) and (3.45) with δ1 ≤ 1/C2

inv and let the Stokes problem (3.2) be
regular. Assume that the solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω),
then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C
(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. We start as in the proof of Theorem 3.3.5 since, up to (3.28), the proof is
independent of the analyzed method. We shall use the fact that, in view of (3.11),
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(3.23), and (3.45), the interpolant rI satisfies


 ∑

K∈T h

∥∥∇rI
∥∥2

L2(K)




1/2

≤ C ‖∇r‖L2(Ω) ≤ Cν
∥∥u− uh

∥∥
L2(Ω)

, (3.58)


∑

E∈Eh
γE
∥∥[∣∣r − rI

∣∣]
E

∥∥2

L2(E)




1/2

≤ Cν1/2h
∥∥u− uh

∥∥
L2(Ω)

. (3.59)

To estimate the last two terms in (3.27), we employ the Galerkin orthogonality
(3.43). Since zI ∈ V h, we may set

(
vh, qh

)
= (zI , 0) in (3.43), which gives

ν
(
∇(u− uh),∇zI

)
−
(
∇ · zI , p− ph

)
= 0. (3.60)

Furthermore, for
(
vh, qh

)
= (0, rI), one deduces from (3.43) that

(
∇ · (u− uh), rI

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI

∣∣]
E

)
E

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK∇rI

)
K

= 0. (3.61)

Thus, using the property ∇ · z = 0 and the fact that r ∈ H1(Ω), one has

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

=
(
∇ · (zI − z), p− ph

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI − r

∣∣]
E

)
E

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK∇rI

)
K
. (3.62)

Then, applying the Cauchy–Schwarz inequality, (3.44), (3.25), (3.58), and (3.59),
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one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

≤
∥∥∇(z − zI)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

+
∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥
L2(E)

∥∥[∣∣r − rI
∣∣]
E

∥∥
L2(E)

+
∑

K∈T h

νδK
∥∥∆(u− uh)

∥∥
L2(K)

∥∥∇rI
∥∥
L2(K)

+
∑

K∈T h

δK
∥∥∇(p− ph)

∥∥
L2(K)

∥∥∇rI
∥∥
L2(K)

≤ Ch


∥∥p− ph

∥∥2

L2(Ω)
+ ν

∑

E∈Eh
γE
∥∥[∣∣p− ph

∣∣]
E

∥∥2

L2(E)

+ν
∑

K∈T h

δK
∥∥∇(p− ph)

∥∥2

L2(K)




1/2

∥∥u− uh
∥∥
L2(Ω)

+Cνh


 ∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)




1/2

∥∥u− uh
∥∥
L2(Ω)

. (3.63)

To estimate the last term, we employ the triangle inequality and (3.12) to obtain

hK
∥∥∆(u− uh)

∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ hK
∥∥∆(Ihu− uh)

∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ Cinv

∥∥∇(Ihu− uh)
∥∥
L2(K)

≤ hK
∥∥∆(u− Ihu)

∥∥
L2(K)

+ Cinv

∥∥∇(Ihu− u)
∥∥
L2(K)

+ Cinv

∥∥∇(u− uh)
∥∥
L2(K)

.

Then (3.8) implies that


 ∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)




1/2

≤ Chk ‖u‖Hk+1(Ω) + C
∥∥∇(u− uh)

∥∥
L2(Ω)

.

(3.64)
Combining (3.27), (3.28), (3.63), and (3.64) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Cν1/2h
∥∥(u− uh, p− ph

)∥∥
pspg

+ Ch
∥∥p− ph

∥∥
L2(Ω)

+ Cνhk+1 ‖u‖Hk+1(Ω)

and the statement of the theorem follows from Theorems 3.4.6 and 3.4.8. �
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One observes the usual scaling properties of the error estimates with respect
to ν: small values of ν lead to large bounds for velocity errors due to large weights
of the pressure contributions in the error bounds whereas large values of ν lead
to large bounds for pressure errors due to the scaling of the velocity terms in the
error bounds.

For discontinuous pressure approximations, the jump term in (3.34) can be
replaced by a so-called local jump term, as proposed in [81, 60]. In this approach,
there is an outer sum over appropriate macro mesh cells and than an inner sum of
jumps over edges that are strictly in the interior of the macro mesh cells. Numerical
studies of this method can be found in [81] and a finite element error analysis for
P1/P0 and Q1/Q0 in [60]. The analysis for the Q1/Q0 case was extended to special
anisotropic meshes in [69].

If the PSPG method is used with the P1/P0 finite element, then it is possible
to compute a divergence-free velocity field in Hdiv(Ω), where

Hdiv(Ω) =
{
v : v ∈ L2(Ω),∇ · v ∈ L2(Ω),∇ · v = 0, and v · n = 0 on ∂Ω

in the sense of traces} .

with an inexpensive post-processing step, see [12]. The idea consists in adding to
uh a correction uhRT0

∈ RT0, the Raviart–Thomas space of lowest order, such that

∇·
(
uh + uhRT0

)
= 0 in L2(Ω). Details of this approach and some numerical results

can be found also in [56, Remark 4.102, Example 4.103].
The paper [79] studies a stabilization of somewhat general form, which con-

tains as special cases the PSPG method and the inf-sub stable MINI element from
[5]. Error estimates are derived for both, the H1(Ω) and the L2(Ω) norm of the
velocity and the pressure. A PSPG method with weak imposition of the boundary
condition using a penalty-free Nitsche method was analyzed in [22]. It was shown
in [9] that a PSPG-type method, with an appropriate stabilization parameter, can
be used to stabilize discrete inf-sup conditions of the dual Darcy problem and of
the curl formulation of Maxwell’s problem.

Remark 3.4.10 (Anisotropic meshes). The PSPG method for the Q1/Q1 pair of
finite element spaces on anisotropic quadrilateral grids aligned with the Cartesian
coordinate axes was studied in [16]. The definition of the stabilization parameter
includes both edge lengths of the quadrilateral cells.

The PSPG method on anisotropic grids was studied for the P1/P1 pair of
spaces in [73]. A finite element analysis is presented, where the stabilization pa-
rameter is of the form

δK = δ
hK,min

ν
,

with hK,min being the smaller characteristic length of K obtained via the polar
decomposition of the matrix from the affine map from a standard reference cell
to K.

A PSPG method on anisotropic grids in boundary layers, in the context of
the Oseen equations, was studied in [2]. For the Stokes equations, the stabilization
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parameter has the form

δK = δ
hK,min

C2
invν

,

where hK,min is some kind of minimal length of the mesh cell K, e.g., the shortest
edge for mesh cells of brick form. 4

A modification of the PSPG method for continuous discrete pressure that is
stable for stabilization parameters δ = δ0h

2/ν with arbitrary δ0 > 0, in contrast
to condition (3.39), will be discussed briefly in Section 3.4.5.

3.4.3 The (Symmetric) Galerkin Least Squares (GLS) Method

The (symmetric) Galerkin Least Squares (GLS) method uses, like the PSPG
method (3.33) – (3.35), the residual of the strong form of the equation. In contrast
to the PSPG method, the operator of the strong form of the equation is applied
also to the test functions. Hence, the application of a GLS method is a little bit
more expensive than the use of the PSPG method.

The symmetric GLS method was proposed in [54]. It has the following form:
Find

(
uh, ph

)
∈ V h ×Qh such that

Asgls

((
uh, ph

)
,
(
vh, qh

))
= Lsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (3.65)

with

Asgls ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)

E
+
∑

K∈T h

(−ν∆u+∇p, δK (ν∆v +∇q))K , (3.66)

Lsgls ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK (ν∆v +∇q))K . (3.67)

Remark 3.4.11. The discretization (3.65) can be equivalently written in the form

Ãsgls

((
uh, ph

)
,
(
vh, qh

))
= L̃sgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (3.68)

where Ãsgls ((u, p) , (v, q)) = Asgls ((u, p) , (v,−q)) and L̃sgls ((v, q)) = Lsgls ((v,−q)).
It is easy to see that the bilinear form Ãsgls is symmetric, which is the reason for
calling the discretization (3.65) symmetric GLS method. The form (3.68) is typi-
cally used in implementations. However, to unify the presentation of the various
methods, we consider (3.65) for the analysis. 4

To simplify the subsequent considerations, the analysis will be given only
for the case of continuous pressure finite element spaces, i.e., Qh ⊂ H1(Ω). In
this case, the pressure jumps across faces in (3.66) vanish. Discontinuous pressure
approximations are discussed briefly in Remark 3.4.18.

As before, it will be assumed that the stabilization parameter δK satisfies
(3.44).
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Defining an extended L2(Ω) norm for the pressure

‖q‖ext =


1

ν
‖q‖2L2(Ω) +

∑

K∈T h

δK ‖∇q‖2L2(K)




1/2

,

the norm for the analysis of the symmetric GLS method is given by

‖(v, q)‖sgls =
(
ν ‖∇v‖2L2(Ω) + ‖q‖2ext

)1/2

. (3.69)

In contrast to the bilinear form of the PSPG method, the bilinear form Asgls

is not coercive. However, we shall show that it satisfies an inf–sup condition, which
is sufficient for proving the unique solvability and error estimates for the symmetric
GLS method. First, let us prove the following auxiliary result.

Lemma 3.4.12 (Weaker estimate in the spirit of the discrete inf-sup condition).
There are positive constants C1 and C2 independent of h such that for all q ∈
Q ∩H1(Ω), it holds

sup
vh∈V h\{0}

(
∇ · vh, q

)

‖∇vh‖L2(Ω)

≥ C1 ‖q‖L2(Ω) − C2


 ∑

K∈T h

h2
K ‖∇q‖2L2(K)




1/2

. (3.70)

Proof. Choose q ∈ Q ∩ H1(Ω) \ {0} arbitrarily but fixed. The idea of the proof
consists in constructing a function wh ∈ V h such that an inequality of form (3.70)
is already satisfied with wh.

In view of the inf–sup condition (3.6), there exists w ∈ V such that

∇ ·w = q, ‖∇w‖L2(Ω) ≤
1

βis
‖q‖L2(Ω) ,

see [56, Cor. 3.44]. It follows that

(∇ ·w, q)
‖∇w‖L2(Ω)

=
(q, q)

‖∇w‖L2(Ω)

≥ βis ‖q‖L2(Ω) . (3.71)

Let wh = Ihw ∈ V h be an interpolant of w satisfying (3.10). Then, using
(3.71), integration by parts, the Cauchy–Schwarz inequality, the Cauchy–Schwarz
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inequality for sums, and (3.10) yields

(
∇ ·wh, q

)

=
(
∇ ·
(
wh −w

)
, q
)

+ (∇ ·w, q)
≥

(
w −wh,∇q

)
+ βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

≥ −


 ∑

K∈T h

h−2
K

∥∥w −wh
∥∥2

L2(K)




1/2
 ∑

K∈T h

h2
K ‖∇q‖2L2(K)




1/2

+βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

≥ −C ‖∇w‖L2(Ω)


 ∑

K∈T h

h2
K ‖∇q‖2L2(K)




1/2

+ βis ‖q‖L2(Ω) ‖∇w‖L2(Ω)

=


βis ‖q‖L2(Ω) − C


 ∑

K∈T h

h2
K ‖∇q‖2L2(K)




1/2

 ‖∇w‖L2(Ω) . (3.72)

If the expression in the square brackets in (3.72) is positive, it follows that wh 6= 0
and then using (3.10) and (3.72) yields

(
∇ ·wh, q

)

‖∇wh‖L2(Ω)

≥ C
(
∇ ·wh, q

)

‖∇w‖L2(Ω)

≥ C1 ‖q‖L2(Ω) − C2


 ∑

K∈T h

h2
K ‖∇q‖2L2(K)




1/2

.

(3.73)
If the right-hand side of (3.73) (which is a multiple of the expression in the square
brackets in (3.72)) is nonpositive, one chooses an arbitrary wh ∈ V h \ {0} for
which the left-hand side of (3.73) is nonnegative, such that (3.73) holds also in
this case. �

Lemma 3.4.13 (Inf-sup condition for the bilinear form Asgls). Let Qh ⊂ H1(Ω).
Let the conditions (3.44) on {δK} be satisfied and let

δ1 <
1

C2
inv

. (3.74)

Then, there is a positive constant C such that for all
(
vh, qh

)
∈ V h×Qh, it holds

sup
(wh,rh)∈V h×Qh\{(0,0)}

Asgls

((
vh, qh

)
,
(
wh, rh

))

‖(wh, rh)‖sgls

≥ C
∥∥(vh, qh

)∥∥
sgls

. (3.75)

Proof. Consider an arbitrary pair
(
vh, qh

)
∈ V h × Qh. The idea of the proof

consists in constructing a pair
(
wh, rh

)
∈ V h×Qh\{(0, 0)} that satisfies inequality

(3.75).
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First, assume that qh 6= 0. According to the proof of Lemma 3.4.12, there
is zh ∈ V h \ {0} such that (3.70) holds for vh = zh and q = qh without the
supremum. Note that (3.70) also holds when zh is multiplied by any positive
number. Accordingly, one chooses zh such that

∥∥∇zh
∥∥
L2(Ω)

=
1

ν

∥∥qh
∥∥
L2(Ω)

. (3.76)

Now, the pair for which the satisfaction of (3.75) will be shown is

(
wh, rh

)
=
(
vh − κzh, qh

)
, (3.77)

where κ will be chosen appropriately in the forthcoming analysis. It is

Asgls

((
vh, qh

)
,
(
wh, rh

))

= Asgls

((
vh, qh

)
,
(
vh, qh

))
+ κAsgls

((
vh, qh

)
,
(
−zh, 0

))
. (3.78)

Both terms on the right-hand side of this identity will be studied separately.
With the Cauchy–Schwarz inequality, one obtains

Asgls

((
vh, qh

)
,
(
−zh, 0

))

= −ν
(
∇vh,∇zh

)
+
(
∇ · zh, qh

)
−
∑

K∈T h

δK
(
−ν∆vh +∇qh, ν∆zh

)
K

≥ −ν
∥∥∇vh

∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

+
(
∇ · zh, qh

)

+ν2
∑

K∈T h

δK
(
∆vh,∆zh

)
K
− ν

∑

K∈T h

δK
(
∇qh,∆zh

)
K
. (3.79)

Each term on the right-hand side of (3.79) will be estimated from below.
Using (3.70) (without supremum) with (vh, q) = (zh, qh), (3.76), and (3.44)

yields

(
∇ · zh, qh

)
≥


C1

∥∥qh
∥∥
L2(Ω)

− C2


 ∑

K∈T h

h2
K

∥∥∇qh
∥∥2

L2(K)




1/2


∥∥∇zh

∥∥
L2(Ω)

=
C1

ν

∥∥qh
∥∥2

L2(Ω)
− C2

ν


 ∑

K∈T h

h2
K

∥∥∇qh
∥∥2

L2(K)




1/2

∥∥qh
∥∥
L2(Ω)

≥ C1

ν

∥∥qh
∥∥2

L2(Ω)
− C2

δ
1/2
0


 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

Applying the Cauchy–Schwarz inequality, the inverse inequality (3.12), (3.44), the
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Cauchy–Schwarz inequality for sums, and (3.76) yields

ν2
∑

K∈T h

δK
(
∆vh,∆zh

)
K
≥ −ν2

∑

K∈T h

δK
∥∥∆vh

∥∥
L2(K)

∥∥∆zh
∥∥
L2(K)

≥ −ν2C2
inv

∑

K∈T h

δKh
−2
K

∥∥∇vh
∥∥
L2(K)

∥∥∇zh
∥∥
L2(K)

≥ −νC2
invδ1

∑

K∈T h

∥∥∇vh
∥∥
L2(K)

∥∥∇zh
∥∥
L2(K)

≥ −νC2
invδ1

∥∥∇vh
∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

= −C2
invδ1ν

1/2
∥∥∇vh

∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

The estimate of the third term uses the same tools

−ν
∑

K∈T h

δK
(
∇qh,∆zh

)
K

≥ −ν


 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2
 ∑

K∈T h

δK
∥∥∆zh

∥∥2

L2(K)




1/2

≥ −Cinvδ
1/2
1


 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

1

ν1/2

∥∥qh
∥∥
L2(Ω)

.

Inserting all estimates in (3.79) and applying (3.76) leads to

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥ −
(
1 + C2

invδ1
)
ν1/2

∥∥∇vh
∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

+
C1

ν

∥∥qh
∥∥2

L2(Ω)

−
(
C2

δ
1/2
0

+ Cinvδ
1/2
1

)
 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

1

ν1/2

∥∥qh
∥∥
L2(Ω)

= −C3 ν
1/2
∥∥∇vh

∥∥
L2(Ω)

1

ν1/2

∥∥qh
∥∥
L2(Ω)

+
C1

ν

∥∥qh
∥∥2

L2(Ω)

−C4


 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

1

ν1/2

∥∥qh
∥∥
L2(Ω)

,

with positive constants C3 and C4 that do not depend on ν, but C4 depends
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on δ
−1/2
0 . The application of the Young inequality with some ε > 0 gives

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥
(
C1 −

ε

2
(C3 + C4)

) 1

ν

∥∥qh
∥∥2

L2(Ω)
− C3

2ε
ν
∥∥∇vh

∥∥2

L2(Ω)

−C4

2ε

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

Choosing now 0 < ε < 2C1/(C3 + C4) leads to

Asgls

((
vh, qh

)
,
(
−zh, 0

))

≥ C5
1

ν

∥∥qh
∥∥2

L2(Ω)
− C6ν

∥∥∇vh
∥∥2

L2(Ω)
− C7

∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
, (3.80)

with positive constants C5, C6, and C7.
Now, the first term on the right-hand side of (3.78) will be estimated. Using

the definition (3.66) gives

Asgls

((
vh, qh

)
,
(
vh, qh

))

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
(
−ν∆vh +∇qh, ν∆vh +∇qh

)
K

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
− ν2

∑

K∈T h

δK
∥∥∆vh

∥∥2

L2(K)
.

By using (3.12) and (3.44), one obtains

Asgls

((
vh, qh

)
,
(
vh, qh

))

≥ ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
− νC2

invδ1
∥∥∇vh

∥∥2

L2(Ω)

=
(
1− C2

invδ1
)
ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.

By the assumption (3.74) on δ1, the term in the parentheses is positive. Hence,
with a positive constant C8, it is

Asgls

((
vh, qh

)
,
(
vh, qh

))
≥ C8ν

∥∥∇vh
∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
. (3.81)

Inserting (3.80) and (3.81) in (3.78) yields

Asgls

((
vh, qh

)
,
(
wh, rh

))

≥ (C8 − κC6) ν
∥∥∇vh

∥∥2

L2(Ω)
+ κC5

1

ν

∥∥qh
∥∥2

L2(Ω)

+ (1− κC7)
∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
.
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Choosing now 0 < κ < min {C8/C6, 1/C7} leads to the existence of a positive
constant C9 such that

Asgls

((
vh, qh

)
,
(
wh, rh

))
≥ C9

∥∥(vh, qh)
∥∥2

sgls
. (3.82)

Considering the denominator of (3.75), using the definition (3.77) of
(
wh, rh

)
,

the triangle inequality, and (3.76) yields

∥∥(wh, rh
)∥∥

sgls
=

(
ν
∥∥∇
(
vh − κzh

)∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

≤
(

2ν
∥∥∇vh

∥∥2

L2(Ω)
+ 2κ2ν

∥∥∇zh
∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

=

(
2ν
∥∥∇vh

∥∥2

L2(Ω)
+ 2κ2 1

ν

∥∥qh
∥∥2

L2(Ω)
+
∥∥qh
∥∥2

ext

)1/2

≤
(
2 + 2κ2

)1/2 ∥∥(vh, qh)
∥∥

sgls
= C10

∥∥(vh, qh)
∥∥

sgls
(3.83)

with a positive constant C10 that is independent of ν.
Combining (3.82) and (3.83) gives the inf-sup condition (3.75).
Finally, if qh = 0, the inf-sup condition (3.75) immediately follows from

(3.81). �

The proof of the inf-sup condition for the bilinear form Asgls requires an upper
bound of the stabilization parameter, hence this method is not absolutely stable.
Note that the bound (3.74) for δ1 depends on the polynomial degree, compare the
note after (3.12).

Lemma 3.4.14 (Existence and uniqueness of a solution of (3.65)). Let the as-
sumptions of Lemma 3.4.13 be satisfied, then the symmetric GLS problem (3.65)
possesses a unique solution.

Proof. The existence and uniqueness of the solution follows analogously as in the
proof of Lemma 3.4.3 since the inf-sup condition (3.75) implies that the homoge-
neous symmetric GLS problem has only the trivial solution. �

Lemma 3.4.15 (Consistency and Galerkin orthogonality). Let the solution of (3.5)
satisfy (u, p) ∈ H2(Ω)d×H1(Ω) and let (uh, ph) ∈ V h×Qh be the solution of the
symmetric GLS method (3.65). This method is consistent, i.e., it holds

Asgls

(
(u, p) ,

(
vh, qh

))
= Lsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (3.84)

and it satisfies the Galerkin orthogonality

Asgls

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (3.85)

Proof. The lemma follows in the same way as Lemma 3.4.5. �
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Theorem 3.4.16 (Error estimate). Let the assumptions of Lemma 3.4.13 be sat-
isfied. Assume that the solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d × H l+1(Ω),
then there holds the error estimate

∥∥(u− uh, p− ph
)∥∥

sgls
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (3.8) and (3.9).
From the proof of Lemma 3.4.13, it is known that there is a pair

(
vh, qh

)
∈ V h×Qh

such that

∥∥(uh − Ihu, ph − Jhp
)∥∥

sgls
≤ CAsgls

((
uh − Ihu, ph − Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖sgls

.

With the Galerkin orthogonality (3.85) of the symmetric GLS method, one obtains

∥∥(uh − Ihu, ph − Jhp
)∥∥

sgls
≤ CAsgls

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖sgls

. (3.86)

Now, all terms of the numerator of the right-hand side of (3.86) will be esti-
mated such that the contribution from

(
vh, qh

)
can be bounded by

∥∥(vh, qh
)∥∥

sgls
.

With the Cauchy–Schwarz inequality and (3.7), one obtains

ν
(
∇
(
u− Ihu

)
,∇vh

)
≤ ν

∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

,
(
∇ · vh, p− Jhp

)
≤

∥∥p− Jhp
∥∥
L2(Ω)

∥∥∇vh
∥∥
L2(Ω)

,
(
∇ ·
(
u− Ihu

)
, qh
)
≤

∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥qh
∥∥
L2(Ω)

.

The terms coming from the stabilization are estimated individually, using also the



36 Chapter 3. FE Pressure Stabilizations for Incompressible Flow Problems

inverse inequality (3.12) and the upper bound (3.44) of the parameter δK :
∑

K∈T h

δK
(
−ν∆

(
u− Ihu

)
, ν∆vh

)
K

≤ Cν


 ∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)




1/2

∥∥∇vh
∥∥
L2(Ω)

,

∑

K∈T h

δK
(
−ν∆

(
u− Ihu

)
,∇qh

)
K

≤ Cν1/2


 ∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)




1/2
 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

,

∑

K∈T h

δK
(
∇
(
p− Jhp

)
, ν∆vh

)
K

≤ Cν1/2


 ∑

K∈T h

δK
∥∥∇
(
p− Jhp

)∥∥2

L2(K)




1/2

∥∥∇vh
∥∥
L2(Ω)

,

∑

K∈T h

δK
(
∇
(
p− Jhp

)
,∇qh

)
K

≤


 ∑

K∈T h

δK
∥∥∇
(
p− Jhp

)∥∥2

L2(K)




1/2
 ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)




1/2

.

Collecting terms and using the definition (3.69) of the symmetric GLS norm yields

Asgls

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

≤ C

[
∥∥(u− Ihu, p− Jhp

)∥∥
sgls

(3.87)

+

(
ν
∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2]∥∥(vh, qh
)∥∥

sgls
.

The triangle inequality gives
∥∥(u− uh, p− ph

)∥∥
sgls
≤
∥∥(u− Ihu, p− Jhp

)∥∥
sgls

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
sgls

and hence, inserting (3.87) in (3.86), one obtains
∥∥(u− uh, p− ph

)∥∥
sgls

≤ C
∥∥(u− Ihu, p− Jhp

)∥∥
sgls

+C

(
ν
∑

K∈T h

h2
K

∥∥∆
(
u− Ihu

)∥∥2

L2(K)

)1/2

.
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The terms on the right-hand side of this estimate can be estimated using (3.8),
(3.9), and (3.44), giving the statement of the theorem. �

Theorem 3.4.17 (L2 estimate of the velocity error). Let the assumptions of Lemma
3.4.13 be satisfied and let the Stokes problem (3.2) be regular. Assume that the
solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d×H l+1(Ω), then there holds the error
estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C
(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. The proof is very similar to the proof of Theorem 3.4.9. First, we again
repeat the part of the proof of Theorem 3.3.5 up to (3.28). Second, applying the
Galerkin orthogonality (3.85) in an analogous way as in the proof of Theorem 3.4.9,
one obtains

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

=
(
∇ · (zI − z), p− ph

)

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK(−ν∆zI +∇rI)

)
K
. (3.88)

To estimate the additional terms (in comparison to (3.62)), one may use the esti-
mate 

 ∑

K∈T h

h2
K

∥∥∆zI
∥∥2

L2(K)




1/2

≤ Ch
∥∥u− uh

∥∥
L2(Ω)

, (3.89)

which follows from the triangle inequality, (3.8) and (3.23). Then, the right-hand
side of (3.88) can be estimated by the right-hand side of (3.63) (the jump term
now vanishes), which leads to the estimate

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

≤ Cν1/2h
∥∥p− ph

∥∥
ext

∥∥u− uh
∥∥
L2(Ω)

+Cνh


 ∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)




1/2

∥∥u− uh
∥∥
L2(Ω)

. (3.90)

Combining (3.27), (3.28), (3.90), and (3.64) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Cν1/2h
∥∥(u− uh, p− ph

)∥∥
sgls

+ Cνhk+1 ‖u‖Hk+1(Ω)

and the theorem follows from Theorem 3.4.16. �

Remark 3.4.18 (Discontinuous pressure finite element space). The proof of the
inf-sup condition (3.75) relies on (3.70). It can be shown that an inequality of
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this form holds also for discontinuous pressure spaces, see [43]. Then, for low
order spaces, one has to include pressure jumps in the method, as for the PSPG
method. The optimal choice of the stabilization parameter for the pressure jumps
in (3.66) is γE ∼ hE/ν, see [54] for details. For high order spaces, the inclusion
of such jumps is not necessary. High order means that Pd ⊂ V h for simplicial
meshes and Q2 ⊂ V h for quadrilateral or hexahedral meshes. With such spaces,
the known discrete inf-sup stability of V h/P0 or V h/Q0 is utilized in the proof. 4

In [3], a multiscale enrichment of the velocity finite element space is proposed
that leads to a family of stabilized methods. The enrichment functions are defined
locally, but the functions of the ansatz space do not vanish on the boundary of the
mesh cells. After performing some manipulations and applying static condensation,
the resulting method contains the symmetric GLS stabilization term and a jump
term at the faces. The stabilization parameter of the jump term is known exactly.
One member of the family uses the jump of the Cauchy stress tensor across the
faces. This method is called algebraic subgrid scale method (ASGS) in [8], where
it was analyzed for the Brinkman equations (Stokes equations plus a zeroth order
velocity term in the momentum balance).

An a priori and a posteriori error analysis for the symmetric GLS method
with minimal regularity conditions on the solution of the weak problem is presented
in [83]. It uses a technique developed in [50].

3.4.4 The Non-Symmetric Galerkin Least Squares Method (Douglas–
Wang Method)

A method that looks similar to the symmetric GLS method (3.65) – (3.67) was
proposed in [39]: Find

(
uh, ph

)
∈ V h ×Qh such that

Ansgls

((
uh, ph

)
,
(
vh, qh

))
= Lnsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh, (3.91)

with

Ansgls ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)

E
+
∑

K∈T h

(−ν∆u+∇p, δK (−ν∆v +∇q))K , (3.92)

Lnsgls ((v, q)) = (f ,v) +
∑

K∈T h

(f , δK (−ν∆v +∇q))K . (3.93)

The difference between (3.65) – (3.67) and (3.91) – (3.93) is just the sign in front
of ν∆v in the residual-based stabilization terms. The method (3.91) – (3.93) is
non-symmetric.

Again, the presentation of the analysis will be restricted to continuous pres-
sure finite element spaces, i.e., Qh ⊂ H1(Ω). To prove error estimates, we shall
again use the assumptions (3.44) on the stabilization parameters, to ensure a cor-
rect scaling with respect to hK and ν. However, an important difference to the
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previous two methods is that the stability holds without any upper bound on the
stabilization parameters, cf. Lemmas 3.4.3, 3.4.13, and 3.4.20.

The following norm will be used

‖(v, q)‖nsgls =


ν ‖∇v‖2L2(Ω) +

∑

K∈T h

δK ‖−ν∆v +∇q‖2L2(K)




1/2

. (3.94)

Lemma 3.4.19 (‖(·, ·)‖nsgls defines a norm). If Qh ⊂ H1(Ω), then the expression

defined in (3.94) is a norm in V h×Qh for any set of positive stabilization param-
eters {δK}.
Proof. Clearly, ‖(·, ·)‖nsgls defines a seminorm as a sum of norms and seminorms.

It remains to show that
∥∥(vh, qh)

∥∥
nsgls

= 0 implies (vh, qh) = (0, 0).

From
∥∥(vh, qh)

∥∥
nsgls

= 0, it follows that
∥∥∇vh

∥∥
L2(Ω)

= 0, hence that vh = 0.

Now, one has ∑

K∈T h

δK
∥∥∇qh

∥∥2

L2(K)
= 0.

Since all δK are positive, one finds that qh is piecewise constant. The only piecewise
constant function that belongs to H1(Ω) ∩ L2

0(Ω) is qh = 0. �

Lemma 3.4.20 (Existence and uniqueness of a solution of (3.91)). For any set
of positive stabilization parameters {δK}, the non-symmetric GLS problem (3.91)
with Qh ⊂ H1(Ω) has a unique solution.

Proof. For (vh, qh) ∈ V h ×Qh, one has

Ansgls

((
vh, qh

)
,
(
vh, qh

))

= ν
∥∥∇vh

∥∥2

L2(Ω)
+
∑

K∈T h

δK
∥∥−ν∆vh +∇qh

∥∥2

L2(K)
=
∥∥(vh, qh)

∥∥2

nsgls
(3.95)

and hence the bilinear form given in (3.92) is coercive. Now, the existence and
uniqueness of the solution follows in the same way as in the proof of Lemma 3.4.3.

�

Lemma 3.4.21 (Consistency and Galerkin orthogonality). Let the solution of (3.5)
satisfy (u, p) ∈ H2(Ω)d×H1(Ω) and let (uh, ph) ∈ V h×Qh be the solution of the
non-symmetric GLS method (3.91). This method is consistent, i.e., it holds

Ansgls

(
(u, p) ,

(
vh, qh

))
= Lnsgls

((
vh, qh

))
∀
(
vh, qh

)
∈ V h ×Qh (3.96)

and it satisfies the Galerkin orthogonality

Ansgls

((
u− uh, p− ph

)
,
(
vh, qh

))
= 0 ∀

(
vh, qh

)
∈ V h ×Qh. (3.97)

Proof. The proof follows the lines of the proof of Lemma 3.4.5. �
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Lemma 3.4.22 (Estimate of the term with the divergence). Let Qh ⊂ H1(Ω) and
let the stabilization parameters satisfy (3.44). Then, for any v ∈ V , any (zh, qh) ∈
V h ×Qh and for any ε > 0, it holds

∣∣(∇ · v, qh
)∣∣ ≤ ε

∥∥(zh, qh)
∥∥2

nsgls
+

ν

4ε

(
1

δ0
+ C2

inv

) ∑

K∈T h

h−2
K ‖v‖

2
L2(K) . (3.98)

Proof. Applying integration by parts and using that qh ∈ H1(Ω) yields
(
∇ · v, qh

)
= −

(
v,∇qh

)
.

For each mesh cell K, it is for arbitrary zh ∈ V h

−
(
v,∇qh

)
K

= −
(
v,−ν∆zh +∇qh

)
K

+
(
v,−ν∆zh

)
K
.

Using the triangle inequality, the Cauchy–Schwarz inequality, the property (3.44),
as well as the Young inequality gives for any ε1 > 0

∣∣(∇ · v, qh
)∣∣

≤
∑

K∈T h

∣∣(v,−ν∆zh +∇qh
)
K

∣∣+
∑

K∈T h

∣∣(v,−ν∆zh
)
K

∣∣

≤ ν

4δ0ε

∑

K∈T h

h−2
K ‖v‖

2
L2(K) + ε

∑

K∈T h

δK
∥∥−ν∆zh +∇qh

∥∥2

L2(K)

+ε1

∑

K∈T h

h2
K

∥∥ν∆zh
∥∥2

L2(K)
+

1

4ε1

∑

K∈T h

h−2
K ‖v‖

2
L2(K) .

Utilizing the inverse inequality (3.12) yields

ε1

∑

K∈T h

h2
K

∥∥ν∆zh
∥∥2

L2(K)
≤ ε1C

2
invν

2
∑

K∈T h

∥∥∇zh
∥∥2

L2(K)
.

Choosing ε1 = εC−2
invν

−1 and collecting terms gives (3.98). �

Theorem 3.4.23 (Error estimate). Assume that the solution of (3.5) satisfies (u, p) ∈
Hk+1(Ω)d×H l+1(Ω), that Qh ⊂ H1(Ω), and that the stabilization parameters sat-
isfy (3.44), then there holds the error estimate

∥∥(u− uh, p− ph
)∥∥

nsgls
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hl+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (3.8) and (3.9).
Using the coercivity (3.95) and the Galerkin orthogonality (3.97) yields

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls

= Ansgls

((
uh − Ihu, ph − Jhp

)
,
(
uh − Ihu, ph − Jhp

))

= Ansgls

((
u− Ihu, p− Jhp

)
,
(
uh − Ihu, ph − Jhp

))
.
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Applying the Cauchy–Schwarz inequality, Lemma 3.4.22 with zh = uh− Ihu and
ε = 1/4, and the Young inequality gives

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls

≤ ν
∥∥∇
(
u− Ihu

)∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

+
∥∥p− Jhp

∥∥
L2(Ω)

∥∥∇
(
uh − Ihu

)∥∥
L2(Ω)

+
∣∣(∇ ·

(
u− Ihu

)
, ph − Jhp

)∣∣

+
∑

K∈T h

δK
∥∥−ν∆

(
u− Ihu

)
+∇(p− Jhp)

∥∥
L2(K)

×
∥∥−ν∆

(
uh − Ihu

)
+∇(ph − Jhp)

∥∥
L2(K)

≤ 1

2

∥∥(uh − Ihu, ph − Jhp
)∥∥2

nsgls
+ 2

∥∥(u− Ihu, p− Jhp
)∥∥2

nsgls

+
2

ν

∥∥p− Jhp
∥∥2

L2(Ω)
+ ν

(
1

δ0
+ C2

inv

) ∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)
.

The proof is finished by applying the triangle inequality
∥∥(u− uh, p− ph

)∥∥
nsgls

≤
∥∥(u− Ihu, p− Jhp

)∥∥
nsgls

+
∥∥(uh − Ihu, ph − Jhp

)∥∥
nsgls

and using (3.44), (3.8), and (3.9). �

Theorem 3.4.24 (L2 estimate of the pressure error). Assume that the solution
of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d × H l+1(Ω), that Qh ⊂ H1(Ω), and that the
stabilization parameters satisfy (3.44), then there holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
.

Proof. Like in the proof of Theorem 3.4.8, we start with (3.55). The Galerkin
orthogonality (3.97) with (vh, qh) = (Ihw, 0) gives

0 = ν
(
∇
(
u− uh

)
,∇Ihw

)
−
(
∇ ·
(
Ihw

)
, p− ph

)

−
∑

K∈T h

(
−ν∆

(
u− uh

)
+∇

(
p− ph

)
, δKν∆Ihw

)
K
.

Hence, using the Cauchy–Schwarz inequality and applying (3.44), (3.12), (3.10),
and (3.52), one obtains
∣∣(∇ ·

(
Ihw

)
, p− ph

)∣∣ ≤ Cν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

∥∥p− ph
∥∥
L2(Ω)

. (3.99)

The estimate (3.57) reduces to

−
(
∇ ·
(
w − Ihw

)
, p− ph

)

≤ Cν1/2

δ
1/2
0

∥∥p− ph
∥∥
L2(Ω)


 ∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)




1/2

. (3.100)
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To estimate the last term in (3.100), we apply the triangle inequality, (3.44), and
(3.64), which gives

∑

K∈T h

δK
∥∥∇
(
p− ph

)∥∥2

L2(K)

≤ 2
∥∥(u− uh, p− ph)

∥∥2

nsgls
+ 2δ1ν

∑

K∈T h

h2
K

∥∥∆(u− uh)
∥∥2

L2(K)

≤ C
∥∥(u− uh, p− ph)

∥∥2

nsgls
+ Cνh2k ‖u‖2Hk+1(Ω) .

Combining this estimate with (3.55), (3.99), and (3.100) yields

∥∥p− ph
∥∥
L2(Ω)

≤ Cν1/2
∥∥(u− uh, p− ph)

∥∥
nsgls

+ Cνhk ‖u‖Hk+1(Ω) ,

where the constant C depends on δ
−1/2
0 . Applying Theorem 3.4.23 finishes the

proof. �

Theorem 3.4.25 (L2 estimate of the velocity error). Let the Stokes problem (3.2) be
regular. Assume that the solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω),
that Qh ⊂ H1(Ω), and that the stabilization parameters satisfy (3.44), then there
holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C
(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
.

Proof. We proceed analogously as in the proofs of Theorems 3.4.9 and 3.4.17.
Again, the starting point is the identity (3.27), where the first two terms on the
right-hand side can be estimated by (3.28). From the Galerkin orthogonality (3.97),
one obtains

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

=
(
∇ · (zI − z), p− ph

)

+
∑

K∈T h

(
−ν∆(u− uh) +∇(p− ph), δK(ν∆zI +∇rI)

)
K
.

Thus, using (3.44), (3.25), (3.58), and (3.89), one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

≤
∥∥∇(z − zI)

∥∥
L2(Ω)

∥∥p− ph
∥∥
L2(Ω)

+
∥∥(u− uh, p− ph

)∥∥
nsgls


 ∑

K∈T h

δK
∥∥ν∆zI +∇rI

∥∥2

L2(K)




1/2

≤ Ch
(∥∥p− ph

∥∥
L2(Ω)

+ ν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

)∥∥u− uh
∥∥
L2(Ω)

. (3.101)
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Combining (3.27), (3.28), and (3.101) gives

ν
∥∥u− uh

∥∥
L2(Ω)

≤ Ch
(∥∥p− ph

∥∥
L2(Ω)

+ ν1/2
∥∥(u− uh, p− ph

)∥∥
nsgls

)

and the theorem follows from Theorems 3.4.23 and 3.4.24. �

In the case of discontinuous pressure approximations, the optimal choice of
the stabilization parameter for the pressure jumps is γE = O (hE/ν), see [39].

In [4], an extension of the non-symmetric GLS method is proposed. This
method possesses jump terms that contain the residual of the stress tensor on
the internal edges, i.e., the jump of the normal derivative of the finite element
velocity and the jump of the finite element pressure. It is unconditionally stable
for a norm where, in comparison with ‖(·, ·)‖nsgls defined in (3.94), the Laplacian
of the velocity is absent but the residual of the stress tensor at the inner faces
is present. An a priori analysis and an a posteriori analysis of this method are
provided in [4].

For P1/P1 finite elements, the non-symmetric GLS method with a weak im-
position of the boundary condition via a penalty-free Nitsche method was studied
in [18].

3.4.5 An Absolutely Stable Modification of the PSPG Method

The PSPG method from Section 3.4.2 is only conditionally stable, see the upper
bound (3.39) for the stabilization parameter used in Lemma 3.4.3 to prove the
coercivity. In [19], an absolutely stable modification of the PSPG method was
proposed which we now briefly describe.

The PSPG method (3.33) will be now considered with Qh ⊂ H1(Ω) and
δK = δ := δ0h

2/ν, which can be used on an uniform grid. In (3.34), the operator
∆ is applied elementwise. In [19], it was replaced by the discrete Laplacian ∆h :
V → V h defined by

(
∆hu,vh

)
= −

(
∇u,∇vh

)
∀ u ∈ V, vh ∈ V h. (3.102)

Then the modified PSPG method reads: Find
(
uh, ph

)
∈ V h ×Qh such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δ

(
−ν∆huh +∇ph,∇qh

)

= (f ,vh) + δ
(
f ,∇qh

)
∀
(
vh, qh

)
∈ V h ×Qh. (3.103)

Thus, the modified PSPG method requires the additional solution of problem
(3.102), which is a linear system with the mass matrix as system matrix. In prac-
tical computations, the mass matrix can be replaced by a lumped mass matrix or
local projection. Using (3.102), method (3.103) can be rewritten as

(
−ν∆huh +∇ph,vh + δ∇qh

)
+
(
∇ · uh, qh

)
=
(
f ,vh + δ∇qh

)
, (3.104)
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such that it has the form of a Petrov–Galerkin method.
Recall that the conditional stability of the PSPG method stems from the fact

that the coercivity is based on estimating the term
∑
K∈T h δK

(
−ν∆vh,∇qh

)
K

by
∥∥(vh, qh

)∥∥2

pspg
. This step inevitably leads to a bound on δK . However, replacing

∆ by ∆h, it is possible to get rid of this term by a suitable choice of vh. Indeed,
defining vh as the L2 projection of −δ∇qh onto V h, we see from (3.104) that
the respective term disappears. This together with further tools enabled to prove
in [19] that, for any δ0 > 0, the bilinear form corresponding to the modified PSPG
method satisfies an inf–sup condition of the type (3.75) with respect to the norm
ν1/2

∥∥∇vh
∥∥
L2(Ω)

+ ν−1/2
∥∥qh
∥∥
L2(Ω)

with a constant dependent on δ0.

The modified PSPG method (3.103) is obviously not consistent in general.
However, this inconsistency is very weak so that the optimal order of convergence
with respect to the mentioned norm could be proved in [19].

3.5 Stabilizations Using only the Pressure

This section is dedicated to methods that use only the pressure in the stabilization
term. Hence, there is no need to compute the residual and the use of second
derivatives of the finite element functions is not necessary. However, many methods
connect pressure degrees of freedom that do not belong to the same mesh cell.
Consequently, the stencil of the matrix C in (3.4) is denser than for residual-based
stabilizations.

After having introduced a framework in Section 3.5.1, a number of methods
will be presented briefly. A detailed analysis is provided for a Local Projection
Stabilization (LPS) method in Section 3.5.4.

3.5.1 A Framework

An abstract approach for the derivation and analysis of pressure-stabilized schemes
was presented in [25], see also [21, Chapter 6.3]. For the Stokes equations, the
considered scheme has the form: Find

(
uh, ph

)
∈ V h × Qh such that for all(

vh, qh
)
∈ V h ×Qh

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
+
(
∇ · uh, qh

)
+ δS

((
uh, ph

)
,
(
vh, qh

))
=
(
f ,vh

)
,

(3.105)
with δ > 0 and S :

(
V h ×Qh

)
×
(
V h ×Qh

)
→ R being a bilinear form that

should be chosen such that (3.105) is a stable and consistent discrete scheme.
There are two essential assumptions on S. The bilinear form should be bounded
with a constant independent of h. Likewise, uniformly in h, there should exist a
Hilbert space H, some operator Gh ∈ L

(
V h ×Qh,H

)
, and a constant C > 0 such

that for all
(
vh, qh

)
∈ V h ×Qh

S
((
vh, qh

)
,
(
vh, qh

))
≥ C

∥∥Gh
((
vh, qh

))∥∥2

H .
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For the abstract problem considered in [25], more operators, assumptions,
etc. were introduced. Then, stability and error estimates, e.g., with respect to the
errors in the norms of V and Q were derived.

Let Qh ⊂ H1(Ω). The application of the abstract theory presented in [25] to
the Stokes equations considers pressure stabilizations that use only the pressure.
A first example consists in taking

S
((
uh, ph

)
,
(
vh, qh

))
=
(
∇ph,∇qh

)
,

Gh
(
vh, qh

)
= ∇qh, H = L2(Ω)d, and δ = O

(
h2
)
, which gives the method of

Brezzi–Pitkäranta, see Section 3.5.2. A second example consists in choosing

S
((
uh, ph

)
,
(
vh, qh

))
=
((
I − P

V h

)
∇ph,∇qh

)
,

with P
V h being a the L2(Ω) projection operator onto V h, where V h is defined

with the same polynomials as V h but without incorporating the boundary con-
ditions in the definition. In this method, one has H = L2(Ω)d and Gh

(
vh, qh

)
=(

I − P
V h

)
∇qh. One obtains the method proposed in [34], see Section 3.5.3. Con-

cerning the choice of δ, one finds in [34], where bounds for the pressure error in
different norms than in [25] were proved, that one gets stability for δ ≥ Ch2 and
optimal convergence for δ = O

(
h2
)
. In [25], see also [21, Chapter 8.13.3], it is

shown that for V h ×Qh = P1/P1, stability and optimal convergence are obtained
with δ = O (1).

For a detailed investigation on how several methods introduced in this section
fit into the framework of [25], it is referred to [27].

3.5.2 The Brezzi–Pitkäranta Method

The Brezzi–Pitkäranta method from [26] was the first stabilization method for
circumventing the discrete inf-sup condition (3.3). This method was proposed for
the P1/P1 pair of finite element spaces and it has the form: Find (uh, ph) ∈
V h ×Qh = P1 × P1 such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑

K∈T h

(
∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh. (3.106)

Considering a uniform family of triangulations, the optimal order convergence of
the solution of (3.106) with respect to

∥∥∇
(
u− uh

)∥∥
L2(Ω)

and
∥∥p− ph

∥∥
L2(Ω)

was

proved for the stabilization parameter δpK = O
(
h2
)

(for ν = 1). As discussed
above, method (3.106) fits into the framework presented in Section 3.5.1.

As it is often noted in the literature, the Brezzi–Pitkäranta method imposes
artificial boundary conditions for the finite element pressure. Considering for sim-
plicity δpK = δ, then the strong form of the continuity equation of (3.106) reads
as

−∇ · u+ δ∆p = 0.
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Deriving in the usual way the corresponding weak form leads to

− (∇ · u, q)− δ (∇p,∇q) + δ

∫

∂Ω

(∇p · n) q ds = 0 ∀ q ∈ Q.

Since no boundary integral appears in (3.106), one finds that an artificial boundary
condition of the form

δ
(
∇ph · n

)
= 0 on ∂Ω

for the discrete pressure is introduced with this method.
A stabilized method of Brezzi–Pitkäranta-type with a nonlinear stabilization

parameter is presented in [77], the so-called pressure Laplacian stabilization (PLS)
method. The stabilization parameter depends on the residuals of the finite element
continuity and the momentum equation.

3.5.3 Stabilization with Global Fluctuations of the Pressure Gra-
dient

In [34], it was shown that for constructing a pressure-stable method, it is not
necessary to use the full gradient of the discrete pressure, as in (3.106). Denoting

by V h the velocity finite element space with the same polynomials as V h but
without prescribed boundary conditions, then it is proposed in [34] to apply the

following method: Find
(
uh, ph,∇ph

)
∈ V h ×Qh × V h such that

ν
(
∇uh,∇vh

)
−
(
∇ · vh, ph

)
=

(
f ,vh

)
∀ vh ∈ V h,

−
(
∇ · uh, qh

)
−
∑

K∈T h

(
∇ph −∇ph, δpK∇qh

)
K

= 0 ∀ qh ∈ Qh,
(
∇ph −∇ph,vh

)
= 0 ∀ vh ∈ V h.

(3.107)

The third equation of (3.107) defines ∇ph to be the L2(Ω) projection of ∇ph
onto V h. In this way, one can interprete ∇ph as being large scales of ∇ph and
the difference ∇ph − ∇ph of being fluctuations. Only the fluctuations appear in
the stabilization term of the discrete continuity equation. It was already discussed
above that this method fits into the framework described in Section 3.5.1.

A finite element analysis of the method can be found in [34]. This anal-
ysis considers a family of quasi-uniform triangulations and δpK = δ. For δ =
O
(
h2
)
, the stability of the finite element solution and optimal error estimates

for
∥∥∇
(
u− uh

)∥∥
L2(Ω)

,
∥∥∇
(
p− ph

)∥∥
L2(Ω)

, and
∥∥∥∇p−∇ph

∥∥∥
L2(Ω)

were proved.

Extensions of the analysis that allow the choice of local stabilization parameters
and to the steady-state Navier–Stokes equations can be found in [35].

Another analysis of method (3.107) can be found in [66]1. The error estimate

1Reading [66], one is wondering that there is no reference to [34] for method (3.107). From
the article’s history, one finds that [66] was submitted shortly after [34] was published.
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from [66] bounds
∥∥p− ph

∥∥
L2(Ω)

whereas the estimate from [34] gives a bound for

h
∥∥∇
(
p− ph

)∥∥
L2(Ω)

.

A method of type (3.107) was analyzed for the Brinkman equations in [8].
As additional terms, a grad-div stabilization, using fluctuations of the divergence,
and jump terms across faces, which involve the Cauchy stress tensor, appear. The
analysis covers both limit cases of the Brinkman equations, namely the Stokes and
the Darcy equations. Global Fluctuations of the Pressure Gradient

3.5.4 Local Projection Stabilization (LPS) Methods

To assure the stability of the PSPG method (3.33), it would be sufficient to con-
sider the term ∑

K∈T h

δK (∇p,∇q)K (3.108)

instead of the residual-based terms in (3.34) and (3.35). This would provide several
advantages (e.g., symmetry of the stabilization, simpler implementation, absolute
stability) but it would not lead to optimal error estimates. A remedy preserving
most of the advantages of (3.108) without compromising the convergence rates of
the PSPG method is to apply locally suitable projection operators to ∇p and ∇q
in (3.108) so that the consistency error can be estimated in the desired way.

It is convenient to define the mentioned local projections on macroelements.
Precisely, one introduces a set Mh consisting of a finite number of open subsets
M of Ω such that Ω = ∪M∈Mh M . In contrast to T h, the sets in Mh are allowed
to overlap. For any K ∈ T h, E ∈ Eh, and M ∈ Mh it is assumed that either
K ⊂ M or K ⊂ Ω \M and that either E ⊂ M or E ⊂ Ω \M . Furthermore,
for any M ∈ Mh, one introduces a finite-dimensional space DM ⊂ L2(M)d and
a continuous linear projection operator πM which maps the space L2(M)d onto
the space DM . Then one defines the so-called fluctuation operator κM = id−πM ,
where id is the identity operator on L2(M)d. Finally, the term (3.108) is replaced
by ∑

M∈Mh

δM (κM (∇hp), κM (∇hq))M ,

where (∇hq)|K = ∇(q|K) for any K ∈ T h.
Thus, the local projection stabilization (LPS) method reads: Find

(
uh, ph

)
∈

V h ×Qh such that

Alps

((
uh, ph

)
,
(
vh, qh

))
= (f ,vh) ∀

(
vh, qh

)
∈ V h ×Qh, (3.109)

where the bilinear form Alps :
(
V × Q̃

)
×
(
V × Q̃

)
→ R is given by

Alps ((u, p) , (v, q)) = ν (∇u,∇v)− (∇ · v, p) + (∇ · u, q)
+
∑

E∈Eh
γE ([|p|]E , [|q|]E)

E
+

∑

M∈Mh

δM (κM (∇hp), κM (∇hq))M
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Figure 3.1: Relation between the meshes Mh (bold lines) and T h (bold and fine
lines) in the two-level method.

and the space Q̃ was defined in (3.37).
We make analogous assumptions on the stabilization parameters as for the

residual-based methods, i.e., it is assumed that the parameters {γE} satisfy (3.45)
and that

0 < δ0
h2
M

ν
≤ δM ≤ δ1

h2
M

ν
∀M ∈Mh (3.110)

with some positive constants δ0, δ1 and hM := diam(M).
To perform an analysis of the method and prove optimal error estimates, a

key assumption is the validity of the inf-sup conditions

sup
v∈VM\{0}

(v, q)M
‖v‖L2(M)

≥ βLP ‖q‖L2(M) ∀ q ∈ DM , M ∈Mh (3.111)

with VM = {vh ∈ V h : vh = 0 in Ω \M} and a constant βLP independent of h.
This poperty limits possible combinations of spaces V h and DM .

Using local projections onto macro mesh cells for pressure stabilization was
proposed for the Q1/Q0 pair of finite element spaces already in [82]. The original
local projection stabilization [13, 14] was designed as a two-level method. Given a
triangulation of Ω, the elements of this triangulation are considered as the setMh.
Then this triangulation is refined as depicted in Fig. 3.1 for the two-dimensional
case, i.e., each triangle is divided into three triangles by connecting its vertices
with the barycenter and each quadrilateral is divided into four quadrilaterals by
connecting midpoints of opposite edges. This gives the triangulation T h. If the
space V h is defined on T h like before (i.e., it contains locally (mapped) polynomials
of degree k ≥ 1), then the inf-sup conditions (3.111) hold for DM = Pk−1(M)d.

Another choice of the spaces V h and DM (a one-level method) was proposed
in [72]. In this case Mh = T h and to satisfy the inf-sup conditions (3.111) with
DM = Pk−1(M)d the space V h is enriched elementwise by bubble functions.

Finally, let us describe a choice of the spaces V h and DM based on a setMh

consisting of overlapping sets M as proposed in [61]. Assuming that each element
of T h has at least one vertex in Ω, then for each interior vertex a macroelement
consisting of elements of T h sharing this vertex is defined. For this set Mh, one
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can use our standard choice of V h and local spaces DM = Pk−1(M)d to satisfy
the inf-sup conditions (3.111).

Note that the first two ways of constructing the spaces V h and DM lead
to a significant increase of the number of degrees of freedom, either due to an
enrichment by bubble functions (in the one-level method) or due to a refinement
of the given triangulation (in the two-level method). On the other hand, in the
variant with overlapping sets M , the number of degrees of freedom remains the
same as if one would use, e.g., a residual-based stabilization.

We refer to [61, 72] for details on the definitions of the spaces and for proofs
of the inf-sup conditions.

In view of the examples of the spaces DM , it is reasonable to assume that
there exist interpolation operators jM : L2(M)d → DM such that, for m =
0, . . . , k, one has

‖q − jMq‖L2(M) ≤ C hmM ‖q‖Hm(M) ∀ q ∈ Hm(M)d, M ∈Mh. (3.112)

Finally, let us state a few natural assumptions needed for the subsequent
analysis. We assume that there are various positive constants independent of h
such that

card{M ′ ∈Mh ; M ∩M ′ 6= ∅} ≤ CM ∀ M ∈Mh, (3.113)

card{K ∈ T h ; K ⊂M} ≤ CT ∀ M ∈Mh , (3.114)

card{M ∈Mh ; K ⊂M} ≤ CT ∀ K ∈ T h , (3.115)

card{E ∈ Eh ; E ⊂M} ≤ CE ∀ M ∈Mh , (3.116)

card{M ∈Mh ; E ⊂M} ≤ CE ∀ E ∈ Eh, (3.117)

‖κM‖L(L2(M)d,L2(M)d) ≤ Cκ ∀ M ∈Mh , (3.118)

hM ≤ C ′M hM ′ ∀ M,M ′ ∈Mh, M ∩M ′ 6= ∅. (3.119)

Furthermore, for any E ∈ Eh and M ∈Mh with E ⊂M , we assume that

hM ≤ C ′E hE , (3.120)

‖v‖L2(E) ≤ Ce (h
−1/2
M ‖v‖L2(M) + h

1/2
M ‖∇v‖L2(M)) ∀ v ∈ H1(M). (3.121)

Finally, we shall need the inverse inequalities

∥∥∇vh
∥∥
L2(M)

≤ C̄inv h
−1
M ‖vh‖L2(M) ∀ vh ∈ V h, M ∈Mh . (3.122)

Let us now investigate the stability of the LPS method. One obviously has

Alps ((v, q) , (v, q)) = |(v, q)|2lps ∀ (v, q) ∈ V × Q̃, (3.123)
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where

|(v, q)|lps =

(
ν ‖∇v‖2L2(Ω) +

∑

E∈Eh
γE ‖[|q|]E‖

2
L2(E)

+
∑

M∈Mh

δM
∥∥κM (∇hq)

∥∥2

L2(M)

)1/2

.

The functional |·|lps is only a seminorm on V × Q̃. In what follows we shall prove

that the bilinear form Alps is stable on V h ×Qh with respect to the norm

‖(v, q)‖lps =

(
ν ‖∇v‖2L2(Ω) +

∑

E∈Eh
γE ‖[|q|]E‖

2
L2(E)

+
∑

M∈Mh

δM
∥∥∇hq

∥∥2

L2(M)

)1/2

in the sense of an inf-sup condition. The norm ‖·‖lps is an analogue of the PSPG

norm (3.38) and the proof that it is a norm on V ×Q̃ is the same as in Lemma 3.4.2.
One even has the following result.

Lemma 3.5.1 (Relation to the PSPG norm). Given stabilization parameters {δM}
and {γE} satisfying (3.110) and (3.45), respectively, one has

‖(v, q)‖lps = ‖(v, q)‖pspg ∀ (v, q) ∈ V × Q̃,

where the norm ‖·‖pspg is defined using stabilization parameters {δK} satisfying

0 < δ0
h2
K

ν
≤ δK ≤ δ′1

h2
K

ν
∀ K ∈ T h (3.124)

with a constant δ′1 independent of h and ν.

Proof. One has

∑

M∈Mh

δM
∥∥∇hq

∥∥2

L2(M)
=

∑

M∈Mh

δM
∑

K ∈ T h,

K ⊂M

‖∇q‖2L2(K)

=
∑

K∈T h

∑

M ∈ Mh,

K ⊂M

δM ‖∇q‖2L2(K)

=
∑

K∈T h

δK ‖∇q‖2L2(K) (3.125)
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with
δK :=

∑

M ∈ Mh,

K ⊂M

δM . (3.126)

For any M ∈ Mh such that K ⊂ M one gets δK ≥ δM ≥ δ0h
2
M/ν ≥ δ0h

2
K/ν. On

the other hand, using (3.120) and (3.115), it follows that

δK ≤ δ1
∑

M ∈ Mh,

K ⊂M

h2
M

ν
≤ δ1 (C ′E)

2
CT

h2
K

ν
.

�

Lemma 3.5.2 (Inf-sup condition for the bilinear form Alps). Let the conditions
(3.110) and (3.45) on the stabilization parameters {δM} and {γE} be satisfied and
let the inf-sup conditions (3.111) hold. Then, there is a positive constant C such
that for all

(
vh, qh

)
∈ V h ×Qh, it holds

sup
(wh,rh)∈V h×Qh\{(0,0)}

Alps

((
vh, qh

)
,
(
wh, rh

))

‖(wh, rh)‖lps

≥ C
∥∥(vh, qh

)∥∥
lps
.

Proof. Consider any
(
vh, qh

)
∈ V h×Qh and set s = ∇hqh. Then s ∈ L2(Ω)d and,

using the identity

(∇ ·w, q) + (w,∇hq) =
∑

E∈Eh
(w · nE , [|q|]E)E ∀ w ∈ V, q ∈ Q̃, (3.127)

that follows from integration by parts, one obtains

Alps((v
h, qh), (zh, 0)) ≥ (zh, s)− ν

∥∥∇vh
∥∥
L2(Ω)

∥∥∇zh
∥∥
L2(Ω)

−
∑

E∈Eh

(
zh · nE ,

[∣∣qh
∣∣]
E

)
E

(3.128)

for any zh ∈ V h. Our aim is to choose the function zh in such a way that the
term (zh, s) provides a control of

S :=
∑

M∈Mh

δM‖s‖2L2(M) .

For this one can employ the inf-sup conditions (3.111) which imply that, for any
M ∈Mh, there exists zM ∈ VM such that (cf., e.g., [40])

(zM , q)M = δM (s, q)M ∀ q ∈ DM , (3.129)

‖zM‖L2(M) ≤ β−1
LP δM ‖s‖L2(M) . (3.130)
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Since πMs ∈ DM , one gets

(zM , s) = (zM , πMs)M + (zM , κMs)M

= δM (s, πMs)M + (zM , κMs)M

= δM ‖s‖2L2(M) − δM (s, κMs)M + (zM , κMs)M .

Due to (3.130) and the Young inequality, one has

|δM (s, κMs)M − (zM , κMs)M | ≤ (δM ‖s‖L2(M) + ‖zM‖L2(M)) ‖κMs‖L2(M)

≤ δM (1 + β−1
LP ) ‖s‖L2(M) ‖κMs‖L2(M)

≤ δM
2
‖s‖2L2(M) + (1 + β−2

LP ) δM ‖κMs‖2L2(M)

and hence

(zM , s) ≥
δM
2
‖s‖2L2(M) − (1 + β−2

LP ) δM ‖κMs‖2L2(M) .

Thus, setting zh =
∑
M∈Mh zM , one gets

(zh, s) ≥ 1

2
S − (1 + β−2

LP )
∑

M∈Mh

δM ‖κMs‖2L2(M) .

In view of (3.113), one has

‖∇zh‖2L2(Ω) ≤
∑

M ′∈Mh

‖∇zh‖2L2(M ′)

≤
∑

M ′∈Mh

( ∑

M ∈ Mh,

M ∩M ′ 6= ∅

‖∇zM‖L2(M ′)

)2

≤ CM
∑

M ′∈Mh

∑

M∈Mh

‖∇zM‖2L2(M ′)

= CM
∑

M∈Mh

∑

M ′ ∈ Mh,

M ∩M ′ 6= ∅

‖∇zM‖2L2(M ′)

≤ C2
M

∑

M∈Mh

‖∇zM‖2L2(M) .

Using (3.122), (3.130), and (3.110), one derives

ν ‖∇zM‖2L2(M) ≤ C̄2
invνh

−2
M ‖zM‖2L2(M) ≤ δ1C̄2

invβ
−2
LP δM‖s‖2L2(M)

and hence
ν1/2

∥∥∇zh
∥∥
L2(Ω)

≤ C1S
1/2, (3.131)
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with C1 = δ
1/2
1 CMC̄invβ

−1
LP . Finally, using the Cauchy–Schwarz inequality, (3.121),

(3.122), (3.130), (3.110), (3.45), (3.120), (3.116), and (3.117), the last term in
(3.128) can be estimated by

∣∣∣∣∣∣
∑

E∈Eh

(
zh · nE ,

[∣∣qh
∣∣]
E

)
E

∣∣∣∣∣∣
≤

∑

E∈Eh, M∈Mh,

E ⊂M

‖zM‖L2(E)‖
[∣∣qh

∣∣]
E
‖L2(E)

≤ Ce (1 + C̄inv)β−1
LP

∑

E∈Eh, M∈Mh,

E ⊂M

h
−1/2
M δM ‖s‖L2(M)‖

[∣∣qh
∣∣]
E
‖L2(E)

≤ CE Ce (1 + C̄inv)β−1
LP

(
C ′E

δ1
γ0

)1/2

S1/2


∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)




1/2

.

Thus, combining the above inequalities and applying the Young inequality, it fol-
lows that

Alps((v
h, qh), (zh, 0)) ≥ 1

4
S − C2

∣∣(vh, qh)
∣∣2
lps

,

where C2 depends only on CM, CE , C ′E , Ce, C̄inv, δ1, γ0, and βLP . Setting

wh = 4zh + (1 + 4C2)vh , rh = (1 + 4C2) qh

and using (3.123), one obtains

Alps((v
h, qh), (wh, rh)) ≥ S +

∣∣(vh, qh)
∣∣2
lps
≥
∥∥(vh, qh)

∥∥2

lps
.

From (3.131), it follows that

∥∥(wh, rh)
∥∥

lps
≤ 4 ν1/2

∥∥∇zh
∥∥
L2(Ω)

+ (1 + 4C2)
∥∥(vh, qh)

∥∥
lps

≤ (1 + 4C1 + 4C2)
∥∥(vh, qh)

∥∥
lps

,

which proves the theorem. �

We now move on to error estimates. First, let us investigate the consistency
of the method.

Lemma 3.5.3 (Consistency error). Let the solution of (3.5) satisfy (u, p) ∈ H1
0 (Ω)d×

H1(Ω) and let (uh, ph) ∈ V h×Qh be the solution of the LPS method (3.109). The
LPS method is not consistent and it holds

Alps

((
u− uh, p− ph

)
,
(
vh, qh

))
=

∑

M∈Mh

δM (κM (∇p), κM (∇hqh))M (3.132)

for all
(
vh, qh

)
∈ V h ×Qh.
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Proof. The lemma is a simple consequence of (3.5) and (3.109). �

The term on the right-hand side of (3.132) represents the consistency error
and is estimated in the following lemma.

Lemma 3.5.4 (Estimate of the consistency error). Let {δM} satisfy (3.110) and let
p ∈ Hm+1(Ω) with 0 ≤ m ≤ k. Then, for any qh ∈ Qh, one has

∑

M∈Mh

δM (κM (∇p), κM (∇hqh))M ≤ Cν−1/2hm+1 ‖p‖Hm+1(Ω)

∥∥(0, qh)
∥∥

lps
.

Proof. Applying the Cauchy–Schwarz inequality, (3.110), (3.118), and (3.112), one
obtains for any qh ∈ Qh
∑

M∈Mh

δM (κM (∇p), κM (∇hq))M

≤
∑

M∈Mh

δM ‖κM (∇p− jM∇p)‖L2(M)

∥∥κM (∇hqh)
∥∥
L2(M)

≤ C2
κδ

1/2
1

ν1/2


 ∑

M∈Mh

h2
M ‖∇p− jM∇p‖2L2(M)




1/2
 ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)




1/2

≤ Cν−1/2


 ∑

M∈Mh

h2m+2
M ‖∇p‖2Hm(M)




1/2
 ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)




1/2

and the lemma follows using (3.114) and (3.115). �

Theorem 3.5.5 (Error estimate). Let the solution of (3.5) satisfy (u, p) ∈ Hk+1(Ω)d×
H l+1(Ω) and let

(
uh, ph

)
∈ V h ×Qh be the solution of the LPS problem (3.109).

Assume that the stabilization parameters satisfy (3.110) and (3.45) and that the
inf-sup conditions (3.111) hold. Then the following error estimate holds

∥∥(u− uh, p− ph
)∥∥

lps
≤ C

(
ν1/2hk ‖u‖Hk+1(Ω) +

hmin{k,l}+1

ν1/2
‖p‖Hl+1(Ω)

)
.

Proof. Let Ih and Jh be the interpolation operators satisfying (3.8) and (3.9).
From the proof of Lemma 3.5.2, it is known that there is a pair

(
vh, qh

)
∈ V h×Qh

such that

∥∥(uh − Ihu, ph − Jhp
)∥∥

lps
≤ CAlps

((
uh − Ihu, ph − Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖lps

.

With Lemmas 3.5.3 and 3.5.4, one obtains

∥∥(uh − Ihu, ph − Jhp
)∥∥

lps
≤ CAlps

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))

‖(vh, qh)‖lps

+ Cν−1/2hmin{k,l}+1 ‖p‖Hmin{k,l}+1(Ω) .
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Applying the Cauchy–Schwarz inequality, one gets

Alps

((
u− Ihu, p− Jhp

)
,
(
vh, qh

))
≤
∣∣(u− Ihu, p− Jhp)

∣∣
lps

∣∣(vh, qh)
∣∣
lps

− (∇ · vh, p− Jhp) + (∇ · (u− Ihu), qh)

and
−(∇ · vh, p− Jhp) ≤ ν−1/2

∥∥p− Jhp
∥∥
L2(Ω)

∥∥(vh, qh)
∥∥

lps
.

Using (3.127), the Cauchy–Schwarz inequality, (3.110), (3.45), and (3.8), one de-
rives

(∇ · (u− Ihu), qh) = −(u− Ihu,∇hqh) +
∑

E∈Eh

(
(u− Ihu) · nE ,

[∣∣qh
∣∣]
E

)
E

≤ ν1/2

δ
1/2
0


 ∑

K∈T h

h−2
K

∥∥u− Ihu
∥∥2

L2(K)




1/2
 ∑

M∈Mh

δM
∥∥∇hqh

∥∥2

L2(M)




1/2

+
ν1/2

γ
1/2
0


∑

E∈Eh
h−1
E

∥∥u− Ihu
∥∥2

L2(E)




1/2
∑

E∈Eh
γE
∥∥[∣∣qh

∣∣]
E

∥∥2

L2(E)




1/2

≤ Cν1/2hk ‖u‖Hk+1(Ω)

∥∥(vh, qh)
∥∥

lps
.

Combining the above inequalities and using the triangle inequality, (3.9), (3.118)
and Lemma 3.5.1, one obtains

∥∥(u− uh, p− ph
)∥∥

lps
≤ C

∥∥(u− Ihu, p− Jhp
)∥∥

pspg

+ Cν1/2hk ‖u‖Hk+1(Ω) + Cν−1/2hmin{k,l}+1 ‖p‖Hl+1(Ω)

and the statement of the theorem follows from (3.48). �

Theorem 3.5.6 (L2 estimate of the pressure error). Assume that the solution of
(3.5) satisfies (u, p) ∈ Hk+1(Ω)d × H l+1(Ω), that the stabilization parameters
satisfy (3.110) and (3.45) and that the inf-sup conditions (3.111) hold. Then there
holds the error estimate

∥∥p− ph
∥∥
L2(Ω)

≤ C
(
νhk ‖u‖Hk+1(Ω) + hmin{k,l}+1 ‖p‖Hl+1(Ω)

)
.

Proof. Using {δK} defined in (3.126), the proof of Theorem 3.4.8 can be repeated
without any changes. Then the statement of the present theorem follows from
Lemma 3.5.1 and Theorem 3.5.5. �

Theorem 3.5.7 (L2 estimate of the velocity error). Let the stabilization parameters
satisfy (3.110) and (3.45), let the inf-sup conditions (3.111) hold, and let the
Stokes problem (3.2) be regular. Assume that the solution of (3.5) satisfies (u, p) ∈
Hk+1(Ω)d ×H l+1(Ω), then there holds the error estimate

∥∥u− uh
∥∥
L2(Ω)

≤ C
(
hk+1 ‖u‖Hk+1(Ω) +

hmin{k,l}+2

ν
‖p‖Hl+1(Ω)

)
.
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Proof. Up to (3.60), the proof of Theorem 3.4.9 remains valid also in this case.
Then, instead of (3.61), one obtains from (3.132)

(
∇ · (u− uh), rI

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI

∣∣]
E

)
E

+
∑

M∈Mh

δM (κM (∇h(p− ph)), κM (∇hrI))M

=
∑

M∈Mh

δM (κM (∇p), κM (∇hrI))M .

Thus, instead of (3.62), one obtains the following expression for the last two terms
in (3.27)

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

=
(
∇ · (zI − z), p− ph

)
+
∑

E∈Eh
γE
([∣∣p− ph

∣∣]
E
,
[∣∣rI − r

∣∣]
E

)
E

+
∑

M∈Mh

δM (κM (∇h(p− ph)), κM (∇hrI))M

−
∑

M∈Mh

δM (κM (∇p), κM (∇hrI))M .

Analogously as in (3.63), but using also Lemma 3.5.4, (3.118), (3.125), and (3.124),
one derives

ν(∇zI ,∇(u− uh))− (∇ · (u− uh), rI)

≤ Ch
(∥∥p− ph

∥∥
L2(Ω)

+ ν1/2
∥∥(0, p− ph

)∥∥
lps

+ hmin{k,l}+1 ‖p‖Hl+1(Ω)

)∥∥u− uh
∥∥
L2(Ω)

.

Combining this estimate with (3.27) and (3.28), the theorem follows using Theo-
rems 3.5.5 and 3.5.6. �

The LPS method for the Stokes problem was introduced in [13]. A generaliza-
tion and unified analysis was presented in [72] where the stability with respect to a
norm containing the L2(Ω) norm of the pressure was established. The techniques
presented here are a special case of the analysis published in [64]. As one can see,
the LPS method leads to analogous stability and convegence results as residual-
based approaches. However, in comparison with residual-based stabilizations, an
important advantage of LPS methods is that they do not create additional cou-
plings between various unknowns. A drawback is that the local projections couple
pressure degrees of freedom that do not belong to the same mesh cell. Hence, the
sparsity pattern of the pressure-pressure matrix C in (3.4) is denser as, e.g., for
residual-based discretizations.
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Remark 3.5.8 (LPS method with Scott–Zhang-type projector). An LPS method
that uses a particular Scott–Zhang-type projector, which is well defined for L1(Ω)
functions, is proposed in [7]. Like the LPS method with overlapping macroele-
ments, it neither requires nested meshes nor an enrichment of spaces by bubble
functions. However, similarly as for the other versions of the LPS method, the
projector leads to a wider sparsity pattern of the pressure-pressure matrix. A fi-
nite element error analysis of this method and few numerical comparisons with
the symmetric GLS method from Section 3.4.3 for P1/P1 finite elements, which is
in this case equivalent to the PSPG method, are presented in [7]. The method is
absolutely stable. There are no assumptions on upper bounds of the stabilization
parameter in the analysis and the numerical studies show even a slight improve-
ment of the accuracy for large stabilization parameters. 4

A stabilizing term of the form

∑

K∈T h

α

ν
h2
K

((
I − Ph

) (
∇ph

)
,
(
I − Ph

) (
∇qh

))
K

is proposed in [31] for Pk/Pk finite elements, where Ph is some stable approxi-
mation operator from L2(Ω)d into the space of continuous piecewise polynomial
functions of degree k− 1. This operator was chosen in the numerical studies from
[31] as an extension of a nodal interpolation operator. The arising method is called
term-by-term stabilized method. The differences to already existing methods are
discussed in detail in [31]. Depending on the actual choice of Ph, it can be consid-
ered as an LPS method that is defined on a single mesh and with standard finite
element spaces. If Ph is chosen to be a global L2(Ω) projection, then the image
of the projection operator is different than for the method from [34]. In [31], a
finite element convergence analysis is presented that proves optimal orders for the
L2(Ω) norm of the velocity gradient and of the pressure.

A two-level LPS method was studied in [76]. Using this method, the pres-
sure gradient from the LPS stabilization term can be locally eliminated, which
facilitates the implementation of this LPS method.

In [11], the so-called residual local projection (RELP) method is proposed for
low order pairs of finite element spaces. It contains an LPS term for the pressure.
An additional pressure-pressure coupling is introduced by jump terms of the stress
tensor across faces of the mesh cells. Special cases of the RELP method coincide
with methods from [38] and [3]. The finite element error analysis presented in [11]
shows optimal convergence for the L2(Ω) norms of the velocity gradient and of the
pressure. A similar method, where the jumps of the stress tensor are replaced by
jumps of the pressure, is proposed and analyzed in [12]. The methods from [11, 12]
do not need multiple levels or extra degrees of freedom for computing the local
projection and all computations can be performed on the mesh cell level. However,
the stencil of some matrix blocks gets enlarged due to the jump terms.
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3.5.5 Stabilization with Fluctuations of the Pressure

A pressure-stabilized method that uses fluctuations of the pressure itself, instead
of the gradient of the pressure as the methods discussed in Sections 3.5.3 and 3.5.4,
was proposed in [38].

Let Qh = Pk or Qh = Qk, k ≥ 1, then the method utilizes the L2(Ω)
projection P k−1

L2 : Qh → P disc
k−1 onto the discontinuous piecewise polynomial space

of degree k − 1. Since the image space consists of discontinuous finite element
functions, the projection operator P k−1

L2 can be computed locally, i.e., mesh cell
by mesh cell. The discrete continuity equation of the method proposed in [38]
reads as follows

−
(
∇ · uh, qh

)
− 1

ν

(
ph − P k−1

L2 ph, qh − P k−1
L2 qh

)
= 0 ∀ qh ∈ Qh. (3.133)

There is no user-chosen parameter in (3.133).
A finite element analysis of this method for the equal order pairs P1/P1 and

Q1/Q1 of lowest order is performed in [20]. The inverse of the viscosity does not
appear in the stabilization term in contrast to (3.133). An extension of the method
to the pairs P1/P0 and Q1/Q0 is also proposed. The analysis shows that in all cases
the method is unconditionally stable and optimal error bounds were derived, e.g.,
linear convergence for

∥∥∇
(
u− uh

)∥∥
L2(Ω)

and
∥∥p− ph

∥∥
L2(Ω)

.

A similar method, which uses projections in a pressure space defined on a
coarser grid, was developed in [65]. The derivation of this method used ideas from
the variational multiscale framework.

The stabilization term proposed in [38] can be written in the form

ch
(
ph, qh

)
=
α

ν
qT
(
M̃ −M

)
q, (3.134)

where α ∈ R (α = 1 in [38]), p and q are the vector representations of ph and

qh with respect to the standard basis of Qh, M is the mass matrix with respect
to this basis, and M̃ is the mass matrix from the functions arising in the L2(Ω)
projection.

Subsequently, further methods with stabilization terms of type (3.134) were
proposed in [15] and [67]. The method of [15] uses as M̃ an under-integrated mass
matrix. Concrete examples for the bilinear form from (3.134) are given for P1 finite
elements in two dimensions, where

ch
(
ph, qh

)
=
α

ν

∫

Ω

(
Ih1 (phqh)− phqh

)
dx

and for P2 finite elements in 2d where

ch
(
ph, qh

)
=
α

ν

∫

Ω

(
Ih3 (phqh)− phqh

)
dx
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Here, Ihk , k ≥ 1, is the Lagrangian interpolation operator onto the space of contin-
uous piecewise polynomial functions of degree k. Optimal estimates for the L2(Ω)
errors of the velocity gradient and the pressure are derived in [15].

The method from [67] uses two local Gauss integrations to define the matrices,
where M̃ is defined by a first order Gaussian integration in each direction. This
method is proposed in [67] for P1/P1 and Q1/Q1 finite elements in two dimensions.
It is already observed in [15] that for these cases the method from [67] is equivalent
to the method already proposed in [38]. However, the methods from [15] and [38]
are not equivalent.

3.5.6 Continuous Interior Penalty Methods

Continuous Interior Penalty (CIP) methods use jumps of the pressure gradient or
the normal derivative of the pressure across faces of mesh cells for stabilizing the
inf-sup condition. The first method of this class was proposed in [29, 28]. However,
the use of jumps across faces of the mesh cells for pressure stabilization dates back
to a method proposed in [82]. For the Q1/Q0 pair of finite element spaces, this
method uses jumps of the pressure itself.

In [29], the stabilization term, which defines the matrix −C in (3.4), has the
form

1

2

∑

K∈T h

(
δ0h

s+1
K

∑

E⊂∂K

([∣∣∇ph · nE
∣∣]
E
,
[∣∣∇qh · nE

∣∣]
E

)
E

)
, (3.135)

where

s =

{
2 if ν ≥ h,
1 if ν < h.

Additionally, a jump term containing the divergence of uh is included in the
method studied in [29]. A finite element analysis for the P1/P1 pair of spaces
was presented. Assuming that p ∈ H2(Ω), the estimate

∥∥∇
(
u− uh

)∥∥
L2(Ω)

+
1

ν

∥∥p− ph
∥∥
L2(Ω)

≤ Ch

[
max

{
1 + δ0
ν1/2

, 1

}
max

{
hs/2, h(2−s)/2

}
+ ‖u‖H2(Ω)

+ max

{
1

ν1/2
,

1

ν
,
δ

1/2
0

ν1/2

}
max

{
hs/2, h(2−s)/2

}
‖p‖H2(Ω)

]

was proved. It follows that in the case ν < h, the error reduction of
∥∥p− ph

∥∥
L2(Ω)

is of order 1.5. Also the case that only p ∈ H1(Ω) holds was studied in [29].
The stabilization term of the method from [28] uses the jumps of the pressure

gradient instead of the normal derivative.
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Using classical CIP stabilizations, e.g., (3.135), connects pressure degrees of
freedom that do not belong to a common mesh cell. Hence, the matrix stencil of
C is denser than, e.g., for residual-based stabilizations.

A so-called local CIP method was introduced and analyzed in [30]. The ad-
vantage of this method is that it allows static condensation. As result, the matrix
stencil of the matrix C is substantially smaller than for the classical CIP meth-
ods. The local CIP method uses a so-called macro-mesh Mh, where each mesh
cell M ∈ Mh consists of a small number of simplicial cells K ∈ T h. Then, the
stabilization term has the form

∑

M∈Mh


 ∑

K∈M
δKhK


 ∑

E∈∂K,E⊂int(K)

([∣∣∇ph
∣∣]
E
,
[∣∣∇qh

∣∣]
E

)
E




 ,

where int(K) is the interior of K and

δK = min

{
h2
K

ν
, hK

}
.

As a particular case of the error analysis presented in [30], one obtains the esti-
mates for Pk/Pk finite elements, k ≥ 1,

∥∥∇
(
u− uh

)∥∥
L2(Ω)

≤ Chk

((
1 +

h

ν

)1/2

|u|Hk+1(Ω) + min

{
h1/2

ν1/2
,
h

ν

}
|p|Hk+1(Ω)

)

and

∥∥p− ph
∥∥
L2(Ω)

≤ Chk
(

(ν + h)1/2 |u|Hk+1(Ω) +

(
h+ min

{
h1/2,

h

ν1/2

})
|p|Hk+1(Ω)

)
.

The error reduction for the pressure is of order k + 0.5 as long as ν < h. This
higher order, even k + 1 for ν � h, was observed in the numerical studies of [30].

3.6 Connections to Inf-Sup Stable Methods with Bub-
ble Functions

If a pair of finite element spaces for approximating the velocity and pressure does
not satisfy the discrete inf-sup condition (3.3), one can construct a stable pair of
spaces by adding suitable functions to the velocity space. The velocity space V h

then has the form V h = V h1 ⊕ V h2 , where V h1 typically assures the approximation
properties of the space V h and V h2 guarantees the fulfilment of the inf-sup condition
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(3.3) for the given pressure space Qh. In this section we shall consider only spaces
of this type.

The functions contained in the space V h2 are often called bubble functions.
It was realized very soon [78] that there is a close relationship between stabilized
methods and Galerkin methods with bubble functions. Namely, if one drops the
bubble part of the solution of a Galerkin method with bubble functions, then one
sometimes gets functions which represent a solution of a stabilized method. For
linear problems, this relationship was also established in an abstract framework
via virtual bubbles in [10]. There is a lot of further papers devoted to investigations
of the mentioned relationship, see, e.g., [63] for references.

In this section we go a step further and consider also modifications of the
conforming discretization for the spaces V h = V h1 ⊕ V h2 , Qh to obtain equiva-
lent representations for a wider class of stabilized methods based on the spaces
V h1 , Qh. Such equivalences are helpful for a better understanding of the properties
of stabilized methods and for their theoretical investigations. Moreover, the tech-
nique of modified discretizations can be used for designing new stabilized methods.
The theory available for the modified discretizations then automatically provides
existence and convergence statements for the corresponding stabilized methods.

There are many examples of finite element spaces of the mentioned type. The
simplest choice for the spaces V h1 and Qh are piecewice constant functions for Qh

and continuous piecewise (bi-, tri-)linear functions for V h1 . To satisfy the inf-sup
condition, it suffices to use a space V h2 consisting of one vector-valued edge/face-
bubble function per each inner edge/face, see [17, 41]. In the triangular/tetrahedral
case, spaces Qh, V h1 consisting of continuous piecewise linear functions may be
stabilized using V h2 consisting of d vector-valued element bubble functions per
each element. This pair of spaces is known as the MINI element, cf. [5]. In two
dimensions, the same space V h2 can be used if V h1 consists of continuous piecewise
quadratic functions and Qh of discontinuous piecewise linear functions, cf. [36]. A
generalization of [5] to the quadrilateral case is described in [74]. Further examples
of spaces V h1 , V h2 and Qh can be found, e.g., in [49].

Since V h = V h1 ⊕ V h2 (which implies that V h1 ∩ V h2 = {0}), any function
vh ∈ V h can be written in the form vh = vh1 + vh2 where the functions vh1 ∈ V h1
and vh2 ∈ V h2 are uniquely determined. When there will be no danger of ambiguity,
we shall also use the notations vh1 and vh2 for arbitrary functions belonging to V h1
and V h2 , respectively. The conforming discretization (3.13) can be equivalently
written in the form: Find uh1 ∈ V h1 , uh2 ∈ V h2 , and ph ∈ Qh such that

ν(∇uh1 ,∇vh1 ) + ν(∇uh2 ,∇vh1 )− (∇ · vh1 , ph) = (f ,vh1 ) ∀ vh1 ∈ V h1 , (3.136)

ν(∇uh1 ,∇vh2 ) + ν(∇uh2 ,∇vh2 )− (∇ · vh2 , ph) = (f ,vh2 ) ∀ vh2 ∈ V h2 , (3.137)

−(∇ · uh1 , qh) − (∇ · uh2 , qh) = 0 ∀ qh ∈ Qh. (3.138)

It is assumed that the approximation properties of the space V h are determined
by the space V h1 and hence the interpolation operator Ih may be assumed to
map V ∩Hk+1(Ω)d into V h1 . Then it turns out (cf. Lemma 3.6.4 below) that the
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component uh1 of uh has the same asymptotic approximation properties as uh.
Therefore, it makes sense to consider uh1 as an approximation of the velocity u
whereas uh2 serves as a stabilization tool only. Note that one can compute uh2 from
(3.137) as a function of uh1 and ph. Substituting this uh2 into (3.136) and (3.138),
one obtains a discrete problem for uh1 and ph where the terms ν(∇uh2 ,∇vh1 ) and
(∇ · uh2 , qh) give rise to stabilization terms.

Let us demonstrate the procedure just described for the MINI element pro-
posed in [5]. In this case the spaces V h1 and Qh consist of continuous piecewise
linear functions with respect to a simplicial triangulation T h. Furthermore,

V h2 = [span{ϕK}K∈T h ]
d
, (3.139)

where ϕK are scalar element bubble functions defined on K as the product of
the barycentric coordinates on K and vanishing outside of K. Thus, ϕK |K ∈
Pd+1(K) ∩H1

0 (K). The proof of the inf-sup stability relies on the construction of
a Fortin operator, see [5] or [56, Section 3.6.1] for details. The component uh2 of
uh can be expressed in the form

uh2 =
∑

K∈T h

uK ϕK

with uniquely determined numbers uK ∈ Rd. To elimininate uh2 from (3.136)–
(3.138), one can employ that

(∇uh2 ,∇vh1 ) = (∇uh1 ,∇vh2 ) = 0 ∀ vh1 ∈ V h1 , vh2 ∈ V h2 . (3.140)

Indeed, since the bubble functions vanish on ∂K and the Laplacian of a linear
function vanishes, too, one finds by integration by parts

(∇uh1 ,∇vh2 )K = ((n∂K · ∇)uh1 ,v
h
2 )∂K − (∆uh1 ,v

h
2 )K = 0

for any K ∈ T h. Similarly, employing that the gradient of a linear function is
constant, one gets

− (∇ · vh2 , ph)K = (vh2 ,∇ph)K = ∇ph|K ·
∫

K

vh2 dx . (3.141)

Setting vh2 = ei ϕK , i = 1, . . . , d, where ei is the unit vector in the direction of the
ith coordinate axis, and applying (3.140) and (3.141), one obtains from (3.137)

uK,i ν ‖∇ϕK‖2L2(K) + ∂xi
ph|K

∫

K

ϕK dx = (fi, ϕK) = f̄hi |K
∫

K

ϕK dx ,

where f̄hi are components of the piecewice constant function f̄
h

defined by aver-
aging of f with the weights ϕK , i.e.,

f̄
h|K :=

∫
K
f ϕK dx∫
K
ϕK dx

, K ∈ T h .
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Thus, in view of (3.141), the second term in (3.138) becomes

−(∇ · uh2 , qh) =
∑

K∈T h

∇qh|K · uK
∫

K

ϕK dx

=
∑

K∈T h

∇qh|K · (f̄
h −∇ph)|K

(∫
K
ϕK dx

)2

ν ‖∇ϕK‖2L2(K)

=
∑

K∈T h

(f̄
h −∇ph, δK∇qh)K ,

where

δK =

(∫
K
ϕK dx

)2

ν ‖∇ϕK‖2L2(K) |K|
.

Therefore, inserting (3.140) in (3.136), one ends up with the following problem for
the linear part of the approximate solution: Find uh1 ∈ V h1 and ph ∈ Qh such that

ν(∇uh1 ,∇vh1 )− (∇ · vh1 , ph) = (f ,vh1 ) ∀ vh1 ∈ V h1 ,

(∇ · uh1 , qh) +
∑

K∈T h

(∇ph, δK∇qh)K =
∑

K∈T h

(f̄
h
, δK∇qh)K ∀ qh ∈ Qh .

It is known that
∫
K
ϕK dx = O (|K|) = O(hdK) and ‖∇ϕK‖L2(K) = O(h

d/2−1
K ),

e.g., see [1, Lemma 3.2, Theorem 3.3], and hence δK satisfies (3.44). Thus, one
finds that the MINI element leads for the linear part of the solution to the PSPG
method for V h/Qh = P1/P1 (up to the averaging of the right-hand side), see
(3.33).

To recover the PSPG method for other finite elements than the MINI element
or to obtain other stabilized methods, it would be convenient to drop some of the
terms from (3.136) and (3.137) representing a coupling between the spaces V h1 and
V h2 . Such modifications of the discrete problem (3.136)–(3.138) were studied in [62]
with the aim to reduce the size of the stiffness matrix which may be significantly
increased by enriching the velocity space V h1 by the space V h2 . Surprisingly, it was
shown that not all the terms in (3.136)–(3.138) are necessary for the solvability of
the discrete problem and for optimal convergence properties of the approximate
solutions. One can even proceed in a more general fashion and to multiply the
terms ν(∇uh2 ,∇vh1 ), ν(∇uh1 ,∇vh2 ), and ν(∇uh2 ,∇vh2 ) by some real numbers α1,
α2, and α3, respectively. In other words, the bilinear form ν(∇uh,∇vh) in (3.13)
is replaced by the bilinear form

ah(uh,vh) = ν(∇uh1 ,∇vh1 ) + α1ν(∇uh2 ,∇vh1 ) + α2ν(∇uh1 ,∇vh2 )

+α3ν(∇uh2 ,∇vh2 ) . (3.142)

The multiplication by α3 is considered since numerical experiments suggest that it
can reduce the velocity error for small ν. In addition, the right-hand side of (3.13)
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will be replaced by a functional fh ∈ H−1(Ω)d. In particular, fh defined by

〈fh,vh〉 = (f ,vh1 ) ∀ vh ∈ V h (3.143)

represents replacing the right-hand side of (3.137) by zero. Note that the relation
(3.143) defines a functional fh ∈ [V h]′ which can be extended to fh ∈ H−1(Ω)d

according to the Hahn–Banach theorem.
Thus, the following discretization of the Stokes problem will be considered

in the following: Find (ũh, p̃h) ∈ V h ×Qh such that

ah(ũh,vh)−(∇·vh, p̃h)+(∇· ũh, qh) = 〈fh,vh〉 ∀
(
vh, qh

)
∈ V h×Qh, (3.144)

with ah defined in (3.142).
To analyze the problem (3.144), we shall make additional assumptions on

the finite element spaces and the triangulations T h. We assume that there exists
a reference element K̂ such that, for each element K ∈ T h, one can introduce a
regular one-to-one mapping FK : K̂ → K with FK(K̂) = K. Moreover, it will be
assumed that the triangulations T h are shape regular in the sense that

‖∇̂FK‖L∞(K̂) ≤ C hK , ‖∇F−1
K ‖L∞(K) ≤ C h−1

K ∀ K ∈ T h .

Thus, denoting for any element K ∈ T h and any v ∈ L2(K)

v̂K = v ◦ FK ,

one has, for any K ∈ T h,

C hdK ‖v̂K‖2L2(K̂)
≤ ‖v‖2L2(K) ≤ C̃ hdK ‖v̂K‖2L2(K̂)

∀ v ∈ L2(K) , (3.145)

C hd−2
K ‖∇̂v̂K‖2L2(K̂)

≤ ‖∇v‖2L2(K) ≤ C̃ hd−2
K ‖∇̂v̂K‖2L2(K̂)

∀ v ∈ H1(K) . (3.146)

It will be assumed that

V h1 = {v ∈ H1
0 (Ω)d : v ◦ FK ∈ V̂1 ∀ K ∈ T h} , (3.147)

V h2 ⊂ {v ∈ H1
0 (Ω)d : v ◦ FK ∈ V̂2 ∀ K ∈ T h} , (3.148)

where V̂1, V̂2 ⊂ H1(K̂)d are finite-dimensional spaces satisfying V̂1 ∩ V̂2 = {0}.
The inclusion in (3.148) is considered to cover the case when the vector bubbles in
V h2 are defined using normal vectors to edges or faces of the triangulation. Then
one can prove the following two important results.

Lemma 3.6.1. The space V h = V h1 ⊕ V h2 with V h1 and V h2 satisfying (3.147) and
(3.148), respectively, satisfies

∥∥∇vh1
∥∥
L2(Ω)

+
∥∥∇vh2

∥∥
L2(Ω)

≤ C
∥∥∇vh

∥∥
L2(Ω)

∀ vh ∈ V h . (3.149)
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Proof. Since, in a finite-dimensional space, any bounded sequence contains a con-
vergent subsequence, it is easy to show by contradiction that

0 < Ĉ1 := inf
v̂1∈V̂1, ‖v̂1‖H1(K̂)

=1
inf

v̂2∈V̂2

‖v̂1 + v̂2‖H1(K̂) .

This implies that Ĉ1 ‖v̂1‖H1(K̂) ≤ ‖v̂1 + v̂2‖H1(K̂) for any v̂1 ∈ V̂1, v̂2 ∈ V̂2.

Thus, it follows from the equivalence of norms in finite-dimensional spaces that
Ĉ1 ‖∇̂v̂1‖L2(K̂) ≤ Ĉ2 ‖∇̂(v̂1+v̂2)‖L2(K̂) for any v̂1 ∈ V̂1∩L2

0(K̂)d, v̂2 ∈ V̂2∩L2
0(K̂)d

and hence for any v̂1 ∈ V̂1, v̂2 ∈ V̂2. Applying (3.146) and summing over all
elements of the triangulation, one gets ‖∇vh1‖L2(Ω) ≤ C ‖∇(vh1 + vh2 )‖L2(Ω) for

any vh1 ∈ V h1 , vh2 ∈ V h2 and the lemma follows. �

Lemma 3.6.2. Let V̂2 ∩ P0(K̂)d = {0}. Then the space V h2 satisfying (3.148) sat-
isfies ∥∥vh2

∥∥
L2(Ω)

≤ C h
∥∥∇vh2

∥∥
L2(Ω)

∀ vh2 ∈ V h2 . (3.150)

Proof. It follows from the equivalence of norms in finite-dimensional spaces that
‖v̂2‖L2(K̂) ≤ C ‖∇̂v̂2‖L2(K̂) for any v̂2 ∈ V̂2. Then (3.150) follows using (3.145)

and (3.146). �

Remark 3.6.3. The assumption V̂2 ∩ P0(K̂)d = {0} is satisfied for all common
bubble spaces V h2 . Thus, in particular, (3.149) and (3.150) hold for all the examples
of spaces V h1 and V h2 presented at the beginning of this section. 4

The following lemma shows that, for a finite element discretization of any
problem, the V h2 component of the approximate solution can be dropped without
influencing the asymptotic convergence properties of the approximate solution.

Lemma 3.6.4 (Estimates for the components of vh ∈ V h). Consider any v ∈
V ∩Hk+1(Ω)d and vh ∈ V h. Then one has

∥∥∇(v − vh1 )
∥∥
L2(Ω)

+
∥∥∇vh2

∥∥
L2(Ω)

≤ C
∥∥∇(v − vh)

∥∥
L2(Ω)

+C hk ‖v‖Hk+1(Ω) , (3.151)
∥∥v − vh1

∥∥
L2(Ω)

+
∥∥vh2

∥∥
L2(Ω)

≤
∥∥v − vh

∥∥
L2(Ω)

+C {h
∥∥∇(v − vh)

∥∥
L2(Ω)

+ hk+1 ‖v‖Hk+1(Ω)}. (3.152)

Proof. Due to (3.150) and (3.149), one has for m = 0, 1
∣∣vh2
∣∣
Hm(Ω)

=
∣∣(vh − Ih v)2

∣∣
Hm(Ω)

≤ C h1−m ∥∥∇(vh − Ih v)
∥∥
L2(Ω)

and hence it follows using the triangle inequality that
∣∣v − vh1

∣∣
Hm(Ω)

+
∣∣vh2
∣∣
Hm(Ω)

≤
∣∣v − vh

∣∣
Hm(Ω)

+C h1−m {
∥∥∇(v − vh)

∥∥
L2(Ω)

+
∥∥∇(v − Ih v)

∥∥
L2(Ω)

}.

Now (3.151) and (3.152) follow using (3.8). �
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Now let us investigate the properties of the discrete problem (3.144).

Theorem 3.6.5 (Existence and uniqueness of a solution of (3.144)). Let the con-
stants α1, α2, α3 used in the definition of ah satisfy α3 > 0 and |α1 +α2| ≤ 2

√
α3

and let the spaces V h and Qh satisfy the discrete inf-sup condition (3.3). Then,
for any fh ∈ H−1(Ω)d, the problem (3.144) has a unique solution.

Proof. Denoting α = (α1 + α2)/2, one has for any vh ∈ V h

ah(vh,vh) = ν (∇(vh1 + α vh2 ),∇(vh1 + α vh2 )) + ν (α3 − α2) (∇vh2 ,∇vh2 )

= ν
∥∥∇(vh1 + α vh2 )

∥∥2

L2(Ω)
+ ν (α3 − α2)

∥∥∇vh2
∥∥2

L2(Ω)

and hence it follows from (3.149) and the triangle inequality that, for some C > 0,

C ν
∥∥∇vh

∥∥2

L2(Ω)
≤ ah(vh,vh) ∀ vh ∈ V h . (3.153)

This and the discrete inf-sup condition (3.3) imply that the problem (3.144) has
only the trivial solution if fh = 0. Consequently, since the problem (3.144) is
equivalent to a linear algebraic system with a square matrix, it has a unique
solution for any fh ∈ H−1(Ω)d. �

Theorem 3.6.6 (Error estimate). Let the assumptions of Theorem 3.6.5 be satisfied
and let βhis from (3.3) be bounded from below by β0 > 0 independent of h. Assume
that the solution of (3.5) satisfies (u, p) ∈ Hk+1(Ω)d×H l+1(Ω), then one has the
error estimate

ν ‖∇(u− ũh)‖L2(Ω) + ‖p− p̃h‖L2(Ω) ≤ C ‖f − fh‖[V h]′

+ C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)
+ ν |1− α2|h ‖u‖H2(Ω) . (3.154)

Proof. Subtracting (3.13) from (3.144), one obtains for qh = 0 and any vh ∈ V h

ah(ũh − uh,vh)− (∇ · vh, p̃h − ph) = 〈fh − f ,vh〉+ ν (1− α1) (∇uh2 ,∇vh1 )

+ ν (1− α2) (∇uh1 ,∇vh2 ) + ν (1− α3) (∇uh2 ,∇vh2 ) . (3.155)

One infers applying (3.150) that, for any vh2 ∈ V h2 ,

(∇u,∇vh2 ) ≤ ‖∆u‖L2(Ω)

∥∥vh2
∥∥
L2(Ω)

≤ Ch ‖u‖H2(Ω)

∥∥∇vh2
∥∥
L2(Ω)

. (3.156)

Writing uh1 = (uh1 − u) + u, one gets

(∇uh1 ,∇vh2 ) ≤ C {
∥∥∇(uh1 − u)

∥∥
L2(Ω)

+ h ‖u‖H2(Ω)}
∥∥∇vh2

∥∥
L2(Ω)

.

Now, denoting

Ah = ‖f−fh‖[V h]′+ν
∥∥∇(u− uh1 )

∥∥
L2(Ω)

+ν
∥∥∇uh2

∥∥
L2(Ω)

+ν |1−α2|h ‖u‖H2(Ω) ,
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one derives from (3.155) applying (3.149) that

ah(ũh − uh,vh)− (∇ · vh, p̃h − ph) ≤ CAh
∥∥∇vh

∥∥
L2(Ω)

∀ vh ∈ V h . (3.157)

Using (3.151) and (3.20), one obtains

Ah ≤ ‖f − fh‖[V h]′ + C
(
νhk ‖u‖Hk+1(Ω) + hl+1 ‖p‖Hl+1(Ω)

)

+ ν |1− α2|h ‖u‖H2(Ω) . (3.158)

Setting vh = ũh−uh in (3.157) and using the fact that vh is discretely divergence-
free, one gets from (3.153)

ν ‖∇(ũh − uh)‖L2(Ω) ≤ CAh . (3.159)

Using the Cauchy–Schwarz inequality and (3.149) gives

ah(wh,vh) ≤ C ν ‖∇wh‖L2(Ω)‖∇vh‖L2(Ω) ∀ wh,vh ∈ V h,

which together with (3.157) and (3.159) implies that

(∇ · vh, p̃h − ph) ≤ CAh ‖∇vh‖L2(Ω) ∀ vh ∈ V h.

Thus, applying (3.3), one gets

‖p̃h − ph‖L2(Ω) ≤ CAh . (3.160)

Now, using the triangle inequality, (3.20), and (3.158)–(3.160), one obtains (3.154).
�

Theorem 3.6.7 (L2 estimate of the velocity error). Let the assumptions of The-
orem 3.6.5 be satisfied and let βhis from (3.3) be bounded from below by β0 > 0
independent of h. Let the solution of (3.5) satisfy (u, p) ∈ Hk+1(Ω)d ×H l+1(Ω)
and let the Stokes problem (3.2) be regular. Then there holds the error estimate

‖u− ũh‖L2(Ω) ≤
C

ν
‖f − fh‖[V h

1 ]′ +
Ch

ν
‖f − fh‖[V h]′

+ C

(
hk+1 ‖u‖Hk+1(Ω) +

hl+2

ν
‖p‖Hl+1(Ω)

)
+ |1− α2|h2 ‖u‖H2(Ω) . (3.161)

Proof. Let (z, r) ∈ V × Q be the solution of the problem (3.22) with u − uh
replaced by ũh − uh. Then all the relations (3.23)–(3.28) also hold with u − uh
replaced by ũh−uh. Thus, using the fact that ũh−uh is discretely divergence-free,
one obtains

ν‖ũh − uh‖2L2(Ω) ≤ Cνh ‖∇(ũh − uh)‖L2(Ω)‖ũh − uh‖L2(Ω)

+ ν(∇zI ,∇(ũh − uh)), (3.162)
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where zI satisfies
∥∥∇(z − zI)

∥∥
L2(Ω)

≤ Ch ‖z‖H2(Ω) ≤ Ch ‖ũ
h − uh‖L2(Ω). (3.163)

Since zI ∈ V h1 , one has

ν(∇(ũh − uh),∇zI) = ah(ũh − uh, zI) + (1− α1)ν(∇(ũh2 − uh2 ),∇zI)

and hence it follows from (3.155) that

ν(∇(ũh − uh),∇zI) =〈fh − f , zI〉+ (∇ · zI , p̃h − ph) + (1− α1)ν(∇ũh2 ,∇zI)
=〈fh − f , zI〉 − (∇ · (z − zI), p̃h − ph)

− (1− α1)ν(∇ũh2 ,∇(z − zI)) + (1− α1)ν(∇ũh2 ,∇z).

Applying (3.163) and (3.156) with u replaced by z, one gets

ν(∇(ũh − uh),∇zI) ≤C ‖f − fh‖[V h
1 ]′‖ũ

h − uh‖L2(Ω)

+ Ch
(
ν‖∇ũh2‖L2(Ω) + ‖p̃h − ph‖L2(Ω)

)
‖ũh − uh‖L2(Ω).

Substituting this estimate into (3.162) and using the triangle inequality and (3.149),
one obtains

ν‖ũh − uh‖L2(Ω) ≤ C ‖f − fh‖[V h
1 ]′

+Ch
(
ν‖∇uh2‖L2(Ω) + ν‖∇(ũh − uh)‖L2(Ω) + ‖p̃h − ph‖L2(Ω)

)
.

Then, (3.161) follows as a consequence of the triangle inequality, (3.151), (3.154),
(3.20), and (3.21). �

Remark 3.6.8. If fh is defined by (3.143), then, for any vh ∈ V h, one has
〈f − fh,vh〉 = (f ,vh2 ) ≤ ‖f‖L2(Ω) ‖vh2‖L2(Ω) and, using (3.150) and (3.149),

one deduces that fh satisfies ‖f − fh‖[V h]′ ≤ Ch ‖f‖L2(Ω). Moreover, one has

‖f − fh‖
[V h

1 ]′
= 0. Thus, if k = 1, the problem (3.144) leads to optimal error

estimates with respect to h for any constants α1, α2, α3 satisfying α3 > 0 and
|α1 + α2| ≤ 2

√
α3. If k > 1, optimal error estimates are obtained for fh = f and

α2 = 1. 4
Now let us discuss the relation of the modified discretization (3.144) to sta-

bilized methods. For simplicity, we confine ourselves to the two-dimensional case.
It is convenient to write the problem (3.144) in the equivalent form

ν(∇ũh1 ,∇vh1 ) +α1ν(∇ũh2 ,∇vh1 )− (∇ · vh1 , p̃h) = 〈fh,vh1 〉 ∀ vh1 ∈ V h1 , (3.164)

α2ν(∇ũh1 ,∇vh2 ) +α3ν(∇ũh2 ,∇vh2 )− (∇ · vh2 , p̃h) = 〈fh,vh2 〉 ∀ vh2 ∈ V h2 , (3.165)

−(∇ · ũh1 , qh) − (∇ · ũh2 , qh) = 0 ∀ qh ∈ Qh. (3.166)
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First, let us consider the case α1 = α2 = 0, α3 = 1, and fh defined by
(3.143). Let V h1 consist of continuous piecewise (bi)linear functions. If Qh consists
of piecewise constant functions, then one can set V h2 = span{ϕE nE}E∈Eh , where

ϕE ∈ H1
0 (Ω) are scalar finite element functions assigned to interior edges E of

the triangulation T h which have their supports in the two elements adjacent to
E and satisfy

∫
E
ϕE ds 6= 0, see, e.g., [17, 41] for particular examples of ϕE . The

vectors nE are again fixed normal vectors to the edges E. Defining ϕE in such a
way that the interiors of the supports of any two functions ϕE , ϕE′ with E 6= E′

are disjoint, one can compute uh2 from (3.165) and substitute it in (3.166), which
gives

(∇ · ũh1 , qh) +
∑

E∈Eh
γE
([∣∣p̃h

∣∣]
E
,
[∣∣qh

∣∣]
E

)
E

= 0 ∀ qh ∈ Qh ,

where

γE =
|
∫
E
ϕE ds|2

ν ‖∇ϕE‖2L2(Ω) hE
.

The usual scaling argument shows that γE satisfies (3.45). Thus, for the considered
spaces V h and Qh, the modified discretization is equivalent to the PSPG method
(3.33) for the spaces V h1 and Qh.

If V h1 is as above and Qh consists of continuous piecewise (bi)linear functions,

one can consider a general space V h2 = span{ϕhi thi }N
h

i=1 where thi are unit vectors
and ϕhi ∈ H1

0 (Ω) are finite element functions having their supports in one element
or in two elements possessing a common edge. To distinguish which element or
elements a function ϕhi belongs to, points Ahi different from the vertices of T h are
introduced. If Ahi lies in the interior of some element K ∈ T h, one requires that
suppϕhi ⊂ K and if Ahi lies on an edge E, one requires that suppϕhi lies in the
two elements adjacent to E and that thi is parallel to E. For triangular meshes,
one assumes that there exist two points Ahi ∈ K for each element K. In the
quadrilateral case, three points Ahi ∈ K are supposed for any K. In other words,
one needs two functions ϕhi per element in the triangular case and three functions
ϕhi per element in the quadrilateral case. In both cases, each function may be
common to two elements. Under further assumptions, see [63] for details, which
are satisfied for the spaces considered here, it can be shown that this space V h2
assures the validity of the inf-sup condition (3.3). For example, in the triangular
case, the space V h2 defined in (3.139) and leading to the MINI element can be put
into the above general framework. Then, for each element K, one has two bubble
functions ϕhi which coincide and are equal to ϕK . If T h consists of quadrilaterals,
the stability is assured by four bubble functions on each element, see [74].

In particular, as a special case of the general framework from the previous
paragraph, one can use spaces of the type V h2 = span{ϕE tE}E∈Eh , where tE
are tangential vectors to the edges E and Eh denotes the set of all edges of the
triangulation T h. The functions ϕE are constructed in such a way that the interiors
of their supports are mutually disjoint and they vanish on ∂Ω also if E ⊂ ∂Ω, see
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[63]. Using again the modified discretization (3.164)–(3.166) with α1 = α2 = 0,
α3 = 1, and fh defined by (3.143), one infers analogously as above that the
piecewise (bi)linear part of the solution to (3.164)–(3.166) satisfies

(∇ · ũh1 , qh) +
∑

E∈Eh
γE

(
∂p̃h

∂tE
,
∂qh

∂tE

)

E

= 0 ∀ qh ∈ Qh

with

γE =
|
∫

Ω
ϕE dx|2

ν ‖∇ϕE‖2L2(Ω) hE
,

which is a different type of stabilization than those discussed in the preceding
sections.

The spaces V h1 , Qh consisting of continuous piecewise (bi)linear functions can

be also used with a space V h2 of the type V h2 = span{ϕhi thi }N
h

i=1. In the triangular
case, let V h2 be the space of the MINI element defined by (3.139) and in the
quadrilateral case, it will be assumed that the elements of T h are rectangles and,
for any element K ∈ T h, four functions ϕhi with disjoint supports in K will be
used. The corresponding vectors thi are parallel to the edges of K, see [63] for

details. Using the same modified discretization as above and eliminating ũh2 , one
obtains

(∇ · ũh1 , qh) +
∑

K∈T h

(
∇p̃h, δK∇qh

)
K

= 0 ∀ qh ∈ Qh ,

where δK satisfies (3.44), i.e., one recovers the Brezzi–Pitkäranta method (3.106)
for the spaces V h1 , Qh. If fh = f and f is piecewise (bi)linear, one obtains the
stabilization

(∇ · ũh1 , qh) +
∑

K∈T h

(
∇p̃h − f , δK∇qh

)
K

= 0 ∀ qh ∈ Qh ,

which corresponds to the PSPG method (3.33) for the spaces V h1 , Qh.

Finally, let the spaces V h1 , Qh consist of continuous piecewise quadratic func-
tions on triangles. These spaces do not satisfy the inf-sup condition (3.3). Dividing
any element K ∈ T h into four equal triangles by connecting midpoints of edges
and introducing two vector bubble functions from the MINI element on each sub-
triangle having a common vertex with K, one obtains a space V h2 assuring the
stability. If one eliminates this space V h2 from the original conforming discretiza-
tion (3.136)–(3.138) and assumes that f is piecewise linear, one obtains the sym-
metric GLS method (3.65) for the spaces V h1 , Qh. However, one can also use the
modified discretization (3.164)–(3.166) with α1 = −1, α2 = α3 = 1 and fh = f
which guarantees the same asymptotic convergence rates of the discrete solution as
(3.136)–(3.138). Then, eliminating the space V h2 , one obtains the non-symmetric
GLS method (3.91) for the spaces V h1 , Qh.
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3.7 Numerical Studies

In this section, numerical studies with some of the stabilized methods will be
presented: the PSPG method (3.33) – (3.35), the symmetric GLS method (3.65)
– (3.67), the non-symmetric GLS method (3.91) – (3.93), and the LPS method
that utilizes a modified Scott–Zhang projector, see Remark 3.5.8. In addition, the
Brezzi–Pitkäranta method (3.106) with P1/P1 finite elements was incorporated in
our studies. For the sake of brevity, the results with this method are not presented
here since, in our experience, they were not better than, e.g., the results obtained
with the PSPG method.

Two examples were studied:

• an example for the Stokes equations (3.2) with prescribed solution, which
studies standard errors, their order of convergence, and the dependency on
the viscosity coefficient and on the stabilization parameter,

• an example for the stationary Navier–Stokes equations, a flow around a cylin-
der, which investigates the accuracy of computing quantities at the cylinder
that are of physical relevance, the dependency of the results on the dis-
cretization of the nonlinear term, and which provides a comparison to results
obtained with inf-sup stable pairs of finite elements.

All simulations were performed with the code ParMooN, [44, 84]. Linear
systems of equations were solved with the sparse direct solver UMFPACK [37].

Remark 3.7.1 (Comparative numerical studies in the literature). There are few
numerical studies that compare several stabilized methods already available in
the literature.

• Numerical studies at simple Stokes problems in [77] compare the PLS method,
see Section 3.5.2, the symmetric GLS method from Section 3.4.3, and the
method with orthogonal subscales from Section 3.5.3.

• A brief numerical comparison of the method based on two local Gauss in-
tegrations from [67], which is equivalent to the method from [38], and the
symmetric GLS method from Section 3.4.3 for P1/P1 finite elements (in this
situation the latter method is equivalent to the PSPG method from Sec-
tion 3.4.2 and the non-symmetric GLS method from Section 3.4.4) can be
found in [68]. For a driven cavity problem, it was observed that the pressure
approximation close to the boundary is more accurate for the first method.

• A brief comparison of the LPS method mentioned in Remark 3.5.8 and the
PSPG method for P1/P1 finite elements can be found in [7].

4
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3.7.1 Stokes Problem with Prescribed Solution

This example studies some of the stabilized discretizations in the framework of
the numerical analysis: the Stokes equations (3.2) possess a smooth solution with
homogeneous Dirichlet boundary data. In addition, the solution does not depend
on the viscosity coefficient ν. Errors in standard norms were monitored. The de-
pendency of the errors and the order of convergence on the viscosity coefficient ν
and on the stabilization parameter were investigated.

Consider the domain Ω = (0, 1)2 together with a polynomial solution

u =

(
u1

u2

)
=

(
∂yφ
−∂xφ

)
,

where φ is the stream function given by

φ(x, y) = 1000x2(1− x)4y3(1− y)2.

Due to this construction, the solution is divergence-free; furthermore, it has homo-
geneous Dirichlet boundary values on ∂Ω. The corresponding pressure p therefore
should have zero mean value, p ∈ L2

0(Ω). For this example, it is set to be

p = π2
(
xy3 cos(2πx2y)− x2y sin(2πxy)

)
+

1

8
.

The right-hand side f in (3.2) is set accordingly. Figure 3.2 shows visualizations
of the prescribed solution.

The stabilized methods involved in our studies are already mentioned at the
beginning of this section. For all of them, Pk/Pk pairs of finite element spaces
were considered with k ∈ {1, 2, 3}. Note that for the P1/P1 pair of finite element
spaces, the PSPG method, the symmetric GLS method, and the non-symmetric
GLS method coincide. The stabilization parameters of all methods have the form
δK = δ0h

2
K/ν and the numerical studies considered for most methods δ0 = 10i,

i ∈ {−3,−2.5, . . . , 0}. Only for the symmetric GLS method, we found that these
stabilization parameters were too large, since an irregular behavior of the moni-
tored errors could be observed, compare Figure 3.4 below. For this method, results
obtained with δ0 = 10i, i ∈ {−5,−4.5, . . . ,−2}, will be presented. Simulations for
ν = 10j , j ∈ {−6,−5, . . . , 0}, were performed.

In our computational studies, unstructured grids of varying fineness have
been employed, see Figure 3.2 for an example and Table 3.1 for more details. The
grids were generated with Gmsh [45]. The convergence order has been computed
via the formula log(eH/eh)/ log(H/h), where H and h are the characteristic grid
lengths2 while eH and eh are the respective errors on these grids.

In Figures 3.3–3.6, errors as well as convergence orders are shown for the
studied methods. The errors are those obtained on the finest grid level 4 and the

2In the case of uniform refinement, it is H = 2h.
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Figure 3.2: Visualizations of the solution of the Stokes example. Top: pressure p.
Bottom left: stream function φ together with streamlines and arrows of the veloc-
ity u. Bottom right: For illustration, a generated grid which is coarser than the
ones actually used.

Table 3.1: Details on the generated grids used for the Stokes example.

grid number number of degrees of freedom
level of cells P1/P1 P2/P2 P3/P3

0 38728 58821 233823 525009
1 52464 79545 316479 710805
2 68628 103911 413703 929379
3 86398 130686 520563 1169634
4 106838 161466 643443 1445934

order of convergence was computed with the errors on the two finest levels. The
PSPG method, the non-symmetric GLS method, and the LPS method only show
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a weak dependency on δ0. This behavior can be expected from the analysis of
the non-symmetric GLS method since it is absolutely stable. Furthermore, the
errors for the velocity are larger for smaller ν while the errors for the pressure are
larger for larger ν. This behavior reflects also the analytical results. These three
methods also show a similar behavior in the estimated convergence orders. The
orders of error reduction are often higher than expected for small ν, compare also
[56, Fig. 4.14]. This effect was observed also for inf-sup stable discretizations, e.g.,
see [56, Fig. 4.9]. To the best of our knowledge, an explanation for this phenomenon
is not known so far. The symmetric GLS method shows a more irregular behavior
with respect to the dependency on δ0, see Figure 3.4 for larger values of δ0 and
higher order finite elements. For small values of δ0, one can observe the same
behavior as it is described above for the other methods.

Figure 3.7 presents a comparison of the methods among each other. For
performing this comparison, for each value of the viscosity ν, the most accurate
result with respect to the L2(Ω) error of the velocity on the finest level was selected
for each method, among all values of the stabilization parameter. It can be seen in
Figure 3.7 that in many cases, in particular for P1/P1 and P3/P3 finite elements,
the curves are almost on top of each other, i.e., all methods gave very similar
results. Only for the P2/P2 finite element and small viscosities, the non-symmetric
GLS method led to slightly higher velocity errors and the LPS method to notably
higher pressure errors than the other methods.

We like to note that we obtained similar results as presented in Figures 3.3–
3.7 on structured grids that were generated by refining a coarse grid consisting of
two triangles regularly.

In summary, the PSPG, the non-symmetric GLS, and the LPS methods be-
haved in this example quite similarly. The most remarkable observation was that
the instability of the symmetric GLS method for large stabilization parameters
became visible already for rather small values of δ0.
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Figure 3.3: The errors (left) and computed orders of convergence (right) with
respect to the L2 (top) and H1 semi-norm (middle) of the velocity, as well as the
L2 norm of the pressure (bottom) for the PSPG method and P1/P1 (blue), P2/P2

(cyan), and P3/P3 (green).
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Figure 3.4: The errors (left) and computed orders of convergence (right) with
respect to the L2 (top) and H1 semi-norm (middle) of the velocity, as well as
the L2 norm of the pressure (bottom) for the symmetric GLS method and P1/P1

(blue), P2/P2 (cyan), and P3/P3 (green).
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Figure 3.5: The errors (left) and computed orders of convergence (right) with
respect to the L2 (top) and H1 semi-norm (middle) of the velocity, as well as the
L2 norm of the pressure (bottom) for the non-symmetric GLS method and P1/P1

(blue), P2/P2 (cyan), and P3/P3 (green).
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Figure 3.6: The errors (left) and computed orders of convergence (right) with
respect to the L2 (top) and H1 semi-norm (middle) of the velocity, as well as the
L2 norm of the pressure (bottom) for the LPS method and P1/P1 (blue), P2/P2

(cyan), and P3/P3 (green).
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pressure (right) for the considered methods and different polynomial degrees on
the finest level 4. The stabilization parameter δ0 is always chosen such that the
L2-error of the velocity is smallest among the used values for δ0. Note that lines
are often on top of each other, i. e., the methods led to very similar errors.

3.7.2 A Steady-State Flow around a Cylinder

The second example serves for assessing the stabilized discretizations mentioned
at the beginning of this section at a more challenging example. It is given by the
stationary Navier–Stokes equations

−ν∆u+ (u · ∇)u+∇p = f in Ω,
∇ · u = 0 in Ω,

(3.167)

and it requires the computation of coefficients which are of importance in appli-
cations. Furthermore, comparisons to some inf-sup stable discretizations are also
provided.

A standard benchmark problem for (3.167) is the so-called flow around a
cylinder problem defined in [80]. It is given by Ω = (0, 2.2)×(0, 0.41)\B0.1(0.2, 0.2),
where Br(x, y) is a (compact) two-dimensional cylinder (circle) with radius r cen-
tered at (x, y), ν = 10−3, and f = 0. On the top and bottom boundary as well
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as at the cylinder homogeneous Dirichlet condition are prescribed. At the outflow
boundary Γout = {2.2} × [0, 0.41], homogeneous Neumann (so-called do-nothing)
conditions are imposed while the flow is driven entirely through a parabolic inflow
on the left boundary,

u(0, y) =

(
1.2y(1− y)

0

)
.

Benchmark parameters are the drag and lift coefficients at the cylinder and
the pressure difference ∆p between the front and the back of the cylinder, see [80]
or [56, Ex. D5]. Reference values were computed in [59, 75], see also [56, Ex. D5]:

cdrag,ref = 5.57953523384, clift,ref = 0.010618948146,

∆pref = 0.11752016697.

For discretizing the Navier–Stokes equations (3.167), one has to choose the
discrete form of the nonlinear term. Several forms were proposed, which are equiv-
alent only if the velocity is weakly divergence-free. However, finite element velocity
fields usually do not possess this property. In our numerical studies, the so-called
convective form ((

uh · ∇
)
uh,vh

)
,

the skew-symmetric form

1

2

[((
uh · ∇

)
uh,vh

)
−
((
uh · ∇

)
vh,uh

)]
,

and the energy momentum and angular momentum conserving (EMAC) form [32]

(
2D
(
uh
)
uh,vh

)
+
((
∇ · uh

)
uh,vh

)
, D (u) =

∇u+ (∇u)
T

2
,

were tested. Note that the EMAC form has on the one hand several favourable
properties with respect to conservation of quantities, but on the other hand, it
computes a modified pressure. For calculating the benchmark parameters, a re-
construction of the actual pressure is necessary.

The nonlinear systems were solved with a Picard iteration. It was stopped if
the Euclidean norm of the residual vector was smaller than 10−10 or after 10 000
iterations.

Results are presented for simulations conducted on unstructured grids, which
were generated with Gmsh, see Figure 3.8 and Table 3.2. On each grid, the Pk/Pk,
k ∈ {1, 2, 3}, finite element spaces were applied for the stabilized methods and
the Pk/Pk−1, k ∈ {2, 3, 4}, inf-sup stable Taylor–Hood pairs of finite element
spaces. Stabilization parameters of the form δK = δ0h

2
K/ν with δ0 = 10i, i ∈

{−5,−4.5, . . . , 0}, were considered. In all pictures, the results for the stabilization
parameter with the smallest error with respect to the drag coefficient is presented.

The accuracy for the computed benchmark parameters is illustrated in Fig-
ures 3.9–3.11. For the drag coefficient, Figure 3.9, it can be observed that the
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Figure 3.8: Coarse grid, generated with Gmsh, used for the flow around a cylinder
example.

Table 3.2: Information on the unstructured grids used in the simulations, the
coarsest grid (level 0) is shown in Figure 3.8.

grid number number of degrees of freedom
level of cells P1/P1 P2/P1 P2/P2 P3/P2 P3/P3 P4/P3

0 1629 2697 7753 10281 18595 22752 34324
1 5340 8475 24805 32970 59980 73485 111175
2 11202 17475 51529 68556 125014 153243 232105
3 19076 29493 87307 116214 212180 260163 394281
4 29193 44880 133186 177339 324031 397377 602455
5 41973 64260 191046 254439 465171 570537 865215

results obtained with the convective and skew-symmetric form are usually more ac-
curate than those computed with the EMAC form. Using the inf-sup stable Taylor–
Hood pairs of spaces gave often more accurate results than using the pressure-
stabilized discretizations. For higher order pairs of spaces, the LPS method was
a little bit more accurate than the other methods. For the lift coefficient, Fig-
ure 3.10, again the EMAC form led to somewhat less accurate results than the
other forms of the discrete convective term. Among the stabilized methods, no
substantial differences of the accuracy can be observed. For higher order pairs of
spaces, the Taylor–Hood discretization was sometimes somewhat more accurate
than the stabilized methods. The results for the pressure difference are shown
in Figure 3.11. Again, the results computed with the Taylor–Hood pair of finite
elements were usually among the most accurate ones. For the stabilized discretiza-
tions, there is no clear picture. Often, the results from the LPS method belong to
the better ones.

Information with respect to the number of nonlinear iterations for solving the
Navier–Stokes equations is provided in Figure 3.12. Apart of coarse grids, it can
be seen that there are only minor differences between the discretization methods.
The lowest number of iterations, usually below 20, was needed for the convective
form of the convective term and the largest number, generally more than 50, for
the EMAC form of the convective term. It should be noted that there are values of
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Figure 3.9: Computed absolute differences to reference value for drag using the
convective (left), skew symmetric (center) and EMAC (right) nonlinear form on
the unstructured grids, see Table 3.2 and Figure 3.8.

δ0 for some of the pressure-stabilized discretizations where the nonlinear iteration
took much more steps than presented in Figure 3.12, even reaching the maximal
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Figure 3.10: Computed absolute differences to reference value for lift using the
convective (left), skew symmetric (center) and EMAC (right) nonlinear form on
the unstructured grids, see Table 3.2 and Figure 3.8.

prescribed number was observed.

Very similar results as presented in Figures 3.9–3.12 were obtained on the
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Figure 3.11: Computed absolute differences to reference value for the pressure
difference at the cylinder using the convective (left), skew symmetric (center)
and EMAC (right) nonlinear form on the unstructured grids, see Table 3.2 and
Figure 3.8.

more structured triangular grid from [56, Figure 6.5].
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Figure 3.12: The number of nonlinear iterations needed using the convective (left),
skew symmetric (center) and EMAC (right) nonlinear form on the unstructured
grids, see Table 3.2 and Figure 3.8.

To summarize, no fundamental differences between the pressure-stabilized
discretizations could be observed in this example. However, it could be seen that
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the benchmark parameters computed with the inf-sup stable Taylor–Hood pair of
finite element spaces were often more accurate.

3.8 Outlook

The Stokes equations (3.2) are the simplest equations for modeling flows with
incompressible fluids. This section provides brief comments concerning the ap-
plication of pressure-stabilized methods to more complicated equations, like the
steady-state or time-dependent Navier–Stokes equations (3.1).

Stabilizations that use only the pressure are independent of the type of equa-
tion. In particular, for time-dependent problems, the matrix block C in (3.4) has
to be assembled only in the initial time step, if the space Qh does not change
in the whole time interval. Later, only the matrix block A changes, due to the
nonlinearity of the Navier–Stokes equations. The assembling procedure is more
expensive for residual-based stabilizations, since there, the matrix blocks A, B,
and D change whenever a new assembling is performed, because the convective
field in the nonlinear term of the residual changes.

The matrix block C has for residual-based stabilizations the standard sparsity
pattern that comes from the pressure finite element space Qh. Pressure-based
stabilizations require in general an extended sparsity pattern, since degrees of
freedom of Qh are coupled that do not belong to a common mesh cell.

Implementing residual-based stabilizations for certain temporal discretiza-
tions, like the Crank–Nicolson scheme, is somewhat involved, since the residual at
former time steps is needed. In this respect the use of BDF schemes is easier.

In connection with optimization for flow problems, one finds in the literature,
e.g. [23, Sec. 7.5], that symmetric stabilizations are of advantage, since then opti-
mizing and discretizing commute. Stabilizations that use only the pressure possess
this property, whereas the only symmetric residual-based stabilization is the sym-
metric GLS method. But this method has the drawback of being not absolutely
stable.

Acknowledgment

The work of P. Knobloch was supported through the grant No. 16-03230S of the
Czech Science Foundation.



Bibliography

[1] Mark Ainsworth and J. Tinsley Oden. A posteriori error estimation in finite
element analysis. Comput. Methods Appl. Mech. Engrg., 142(1-2):1–88, 1997.

[2] Thomas Apel, Tobias Knopp, and Gert Lube. Stabilized finite element meth-
ods with anisotropic mesh refinement for the Oseen problem. Appl. Numer.
Math., 58(12):1830–1843, 2008.

[3] Rodolfo Araya, Gabriel R. Barrenechea, and Frédéric Valentin. Stabilized
finite element methods based on multiscaled enrichment for the Stokes prob-
lem. SIAM J. Numer. Anal., 44(1):322–348, 2006.

[4] Rodolfo Araya, Gabriel R. Barrenechea, and Frédéric Valentin. A stabilized
finite-element method for the Stokes problem including element and edge
residuals. IMA J. Numer. Anal., 27(1):172–197, 2007.

[5] D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes
equations. Calcolo, 21(4):337–344 (1985), 1984.

[6] Ivo Babuška. Error-bounds for finite element method. Numer. Math., 16:322–
333, 1970/1971.

[7] Santiago Badia. On stabilized finite element methods based on the Scott-
Zhang projector. Circumventing the inf-sup condition for the Stokes problem.
Comput. Methods Appl. Mech. Engrg., 247/248:65–72, 2012.

[8] Santiago Badia and Ramon Codina. Unified stabilized finite element for-
mulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal.,
47(3):1971–2000, 2009.

[9] Santiago Badia and Ramon Codina. Stokes, Maxwell and Darcy: a single
finite element approximation for three model problems. Appl. Numer. Math.,
62(4):246–263, 2012.

[10] Claudio Baiocchi, Franco Brezzi, and Leopoldo P. Franca. Virtual bubbles
and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl.
Mech. Engrg., 105(1):125–141, 1993.

[11] Gabriel R. Barrenechea and Frédéric Valentin. Consistent local projection
stabilized finite element methods. SIAM J. Numer. Anal., 48(5):1801–1825,
2010.

[12] Gabriel R. Barrenechea and Frédéric Valentin. Beyond pressure stabilization:
a low-order local projection method for the Oseen equation. Internat. J.
Numer. Methods Engrg., 86(7):801–815, 2011.

[13] R. Becker and M. Braack. A finite element pressure gradient stabilization
for the Stokes equations based on local projections. Calcolo, 38(4):173–199,
2001.



88 Bibliography

[14] R. Becker and M. Braack. A two–level stabilization scheme for the Navier–
Stokes equations. In M. Feistauer, V. Doleǰśı, P. Knobloch, and K. Najzar,
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