Universal algebra 2

6th problem set

Problem 1. Let $B, C \unlhd \mathbf{A}$ (by different terms). Show that then there is a common term t such that $B, C \unlhd^{t} \mathbf{A}$.

Problem 2. Let A be a finite algebra such that every $\{a\}$ is an absorbing subuniverse of \mathbf{A}. Prove that \mathbf{A} has a near unanimity term.

Problem 3. Let \mathbb{G} be a digraph. The smooth part of \mathbb{G}, which we denote by $\operatorname{smooth}(\mathbb{G})$, is the largest $U \subseteq V(G)$ such that the digraph induced by U on \mathbb{G} is smooth ("smooth" means that each vertex has at least one incoming and at least one outgoing edge). Find a primitive positive definition for smooth(\mathbb{G}) (the definition might depend on \mathbb{G}).

Problem 4 (Walking). In this problem, we use the following notation: Take an algebra \mathbf{A} and $R \leq_{s d} \mathbf{A}^{2}$. Let \mathbb{P} be an oriented path with a designated starting and ending vertex and let $B \subset A$. Denote by $B^{+\mathbb{P}}$ the set of $a \in A$ for which there exists a $b \in B$ from which there is a \mathbb{P}-shaped path from b to a (using edges from R). Prove that:
a) if $B \leq \mathbf{A}$, then $B^{+\mathbb{P}} \leq \mathbf{A}$,
b) if $B \unlhd \mathbf{A}$, then $B^{+\mathbb{P}} \unlhd \mathbf{A}$.

Problem 5. In this problem, we will show that the complete graph on 3 vertices does not have any nontrivial idempotent polymorphism.

1. Verify that idempotent polymorphisms of \mathbb{K}_{3} are exactly the polymorphisms of the relational structure " \mathbb{K}_{3} with constants" defined as

$$
\mathbb{K}_{3}^{c}=\left(\{1,2,3\}, E, c_{1}, c_{2}, c_{3}\right)
$$

where $E=\left\{(u, v) \in\{1,2,3\}^{2}: u \neq v\right\}$ and $c_{i}=\{(i)\}$ for $i=1,2,3$.
2. Verify that all polymorphisms of \mathbb{K}_{3}^{c} of arity at most 3 are projections.
3. Let f be an n-ary polymorphism of \mathbb{K}_{3}^{c}. For $i=1,2, \ldots, n$, we define $f_{i}(x, y)=f(x, \ldots, x, y, x, \ldots, x)$, where the y is on the i-th place. Prove that each $f_{i}(x, y)$ is equal to either x or y and there exists at most one i such that $f_{i}(x, y)=y$.
4. Show that in the situation of the previous point we cannot have $f_{i}(x, y)=$ x for all i. (Hint: Absorption lives here.)
5. Show that if f is an n-ary polymorphism of \mathbb{K}_{3}^{c} and i the uniqe number such that $f_{i}(x, y)=y$ then f is the projection to the i-th coordinate.
Problem 6. Let G be a commutative group, \mathbf{H} be a proper subgroup of \mathbf{G}. Prove that H does not absorb G.

