6th problem set

Problem 1. Let $B, C \leq \mathbf{A}$ (by different terms). Show that then there is a common term t such that $B, C \leq^t \mathbf{A}$.

Problem 2. Let \mathbf{A} be a finite algebra such that every $\{a\}$ is an absorbing subuniverse of \mathbf{A} . Prove that \mathbf{A} has a near unanimity term.

Problem 3. Let \mathbb{G} be a digraph. The smooth part of \mathbb{G} , which we denote by smooth(\mathbb{G}), is the largest $U \subseteq V(G)$ such that the digraph induced by U on \mathbb{G} is smooth ("smooth" means that each vertex has at least one incoming and at least one outgoing edge). Find a primitive positive definition for smooth(\mathbb{G}) (the definition might depend on \mathbb{G}).

Problem 4 (Walking). In this problem, we use the following notation: Take an algebra **A** and $R \leq_{sd} \mathbf{A}^2$. Let \mathbb{P} be an oriented path with a designated starting and ending vertex and let $B \subset A$. Denote by $B^{+\mathbb{P}}$ the set of $a \in A$ for which there exists a $b \in B$ from which there is a \mathbb{P} -shaped path from b to a (using edges from R). Prove that:

- a) if $B \leq \mathbf{A}$, then $B^{+\mathbb{P}} \leq \mathbf{A}$,
- b) if $B \leq \mathbf{A}$, then $B^{+\mathbb{P}} \leq \mathbf{A}$.

Problem 5. In this problem, we will show that the complete graph on 3 vertices does not have any nontrivial idempotent polymorphism.

1. Verify that idempotent polymorphisms of \mathbb{K}_3 are exactly the polymorphisms of the relational structure " \mathbb{K}_3 with constants" defined as

$$\mathbb{K}_{3}^{c} = (\{1, 2, 3\}, E, c_{1}, c_{2}, c_{3})$$

where $E = \{(u, v) \in \{1, 2, 3\}^2 : u \neq v\}$ and $c_i = \{(i)\}$ for i = 1, 2, 3.

- 2. Verify that all polymorphisms of \mathbb{K}_3^c of arity at most 3 are projections.
- 3. Let f be an n-ary polymorphism of \mathbb{K}_3^c . For i = 1, 2, ..., n, we define $f_i(x, y) = f(x, ..., x, y, x, ..., x)$, where the y is on the *i*-th place. Prove that each $f_i(x, y)$ is equal to either x or y and there exists at most one i such that $f_i(x, y) = y$.
- 4. Show that in the situation of the previous point we cannot have $f_i(x, y) = x$ for all *i*. (Hint: Absorption lives here.)
- 5. Show that if f is an n-ary polymorphism of \mathbb{K}_3^c and i the unique number such that $f_i(x, y) = y$ then f is the projection to the i-th coordinate.

Problem 6. Let **G** be a commutative group, **H** be a proper subgroup of **G**. Prove that H does not absorb **G**.