Universal algebra 2

5th problem set

Problem 1. Let \mathbb{G} be the graph consisting of one (symmetric) edge. Show that there is an idempotent Taylor operation in $Pol(\mathbb{G})$.

Problem 2. Prove that if a nontrivial idempotent algebra \mathbf{A} does not have a Taylor term, then $HSP(\mathbf{A})$ contains a nontrivial algebra whose all operations are projections.

Note: For **A** finite, this result can be improved to just $HS(\mathbf{A})$ (this is due to Bulatov – if you are bored, try proving it on your own).

Problem 3. Prove that the algebra $\mathbf{A} = (\{0, 1, 2\}, \times)$ with the operation \times defined by the following table does not have a Taylor term.

×	0	1	2
0	0	0	2
1	2	1	2
2	0	2	2

Hint: What subalgebras does A have? Why should we care about them?

Problem 4. In this problem, we will show that the complete graph on 3 vertices does not have any nontrivial idempotent polymorphism.

1. Verify that idempotent polymorphisms of \mathbb{K}_3 are exactly the polymorphisms of the relational structure " \mathbb{K}_3 with constants" defined as

$$\mathbb{K}_{3}^{c} = (\{0, 1, 2\}, E, c_{0}, c_{1}, c_{2})$$

where $E = \{(u, v) \in \{0, 1, 2\}^2 : u \neq v\}$ and $c_i = \{(i)\}$ for i = 0, 1, 2.

- 2. Verify that all polymorphisms of \mathbb{K}_3^c of arity at most 3 are projections.
- 3. Let f be an n-ary polymorphism of \mathbb{K}_3^c . For i = 1, 2, ..., n, we define $f_i(x, y) = f(x, ..., x, y, x, ..., x)$, where the y is on the *i*-th place. Prove that each $f_i(x, y)$ is equal to either x or y and there exists at most one i such that $f_i(x, y) = y$.
- 4. Show that in the situation of the previous point we cannot have $f_i(x, y) = x$ for all *i*. (This is probably the hardest part of the proof. If you get stuck here, move on to the next point.)
- 5. Show that if f is an n-ary polymorphism of \mathbb{K}_3^c and i the unique number such that $f_i(x, y) = y$ then f is the projection to the i-th coordinate.