Universal algebra 2

4th problem set

Reminder: A relation $R \leq A^{n}$ is subdirect if projections of R to all coordinates are A.

Problem 1. We will show that Abelian groups don't have definable principal congruences. The signature of Abelian groups will be $(+,-, 0)$ where we take expressions like $(-3) x$ to be abbreviations for $(-x)+(-x)+(-x)$.

1. Verify that in Abelian groups we have $(x, y) \in C g(a, b)$ if and only if there is $n \in \mathbb{Z}$ such that $x+n \cdot a=y+n \cdot b$.
2. Show that if Abelian groups had DPC, then there exists k such that for any G Abelian group and any $x, y, a, b \in G$ we have

$$
(x, y) \in C g(a, b) \Leftrightarrow \bigvee_{n \in \mathbb{Z},|n| \leq k} x+n \cdot a=y+n \cdot b
$$

Hint: Look at your lecture notes.
3. Show that formulas from the previous point are do not work for the Abelian group \mathbb{Z}.
Problem 2. Consider the CSP where we decide if a primitive positive sentence of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{n} E\left(x_{i_{1}}, x_{j_{1}}\right) \wedge E\left(x_{i_{2}}, x_{j_{2}}\right) \wedge \cdots \wedge E\left(x_{i_{k}}, x_{j_{k}}\right)
$$

(where $k, n \in \mathbb{N}$, and $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k} \in[n]$) is true. The possible values of the x_{i} 's are in $\{1,2, \ldots, 5\}$ and the relation E is the "house" symmetric graph given by the 12 pairs
$E=\{(5,1),(1,5),(1,2),(2,1),(2,3),(3,2),(2,4),(4,2),(3,4),(4,3),(4,5),(5,4)\}$
(draw a picture). Show that we can reduce 3-coloring to this problem.
Problem 3. Find a subdirect binary relation $R \subset A^{2}$ and an unsatisfiable primitive positive sentence ($=$ CSP instance) of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{n} R\left(x_{i_{1}}, x_{j_{1}}\right) \wedge R\left(x_{i_{2}}, x_{j_{2}}\right) \wedge \cdots \wedge R\left(x_{i_{k}}, x_{j_{k}}\right)
$$

Problem 4. Let R be a subdirect binary relation (on a finite set A) invariant under a semilattice operation. Show that then any primitive positive sentence of the form

$$
\exists x_{1} \exists x_{2} \ldots \exists x_{n} R\left(x_{i_{1}}, x_{j_{1}}\right) \wedge R\left(x_{i_{2}}, x_{j_{2}}\right) \wedge \cdots \wedge R\left(x_{i_{k}}, x_{j_{k}}\right)
$$

is true.

Problem 5. One variant of CSP is the counting CSP where the goal is to find the number of assignments that satisfy a primitive positive sentence. Let's say that our sentences use (multiple copies of) only one relation - the relation R which is

$$
R=\left\{(x, y, z) \in\{0,1\}^{3}: x+y+z=1 \quad(\bmod 2)\right\}
$$

Use linear algebra to formulate a polynomial time algorithm that solves this counting CSP.

