
Universal algebra 2

4th problem set
Reminder: A relation R ≤ An is subdirect if projections of R to all coordinates
are A.

Problem 1. We will show that Abelian groups don’t have definable principal
congruences. The signature of Abelian groups will be (+,−, 0) where we take
expressions like (−3)x to be abbreviations for (−x) + (−x) + (−x).

1. Verify that in Abelian groups we have (x, y) ∈ Cg(a, b) if and only if there
is n ∈ Z such that x + n · a = y + n · b.

2. Show that if Abelian groups had DPC, then there exists k such that for
any G Abelian group and any x, y, a, b ∈ G we have

(x, y) ∈ Cg(a, b)⇔
∨

n∈Z,|n|≤k

x + n · a = y + n · b.

Hint: Look at your lecture notes.

3. Show that formulas from the previous point are do not work for the
Abelian group Z.

Problem 2. Consider the CSP where we decide if a primitive positive sentence
of the form

∃x1∃x2 . . . ∃xnE(xi1 , xj1) ∧ E(xi2 , xj2) ∧ · · · ∧ E(xik , xjk),

(where k, n ∈ N, and i1, . . . , ik, j1, . . . , jk ∈ [n]) is true. The possible values of
the xi’s are in {1, 2, . . . , 5} and the relation E is the “house” symmetric graph
given by the 12 pairs

E = {(5, 1), (1, 5), (1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5), (5, 4)}

(draw a picture). Show that we can reduce 3-coloring to this problem.

Problem 3. Find a subdirect binary relation R ⊂ A2 and an unsatisfiable
primitive positive sentence (=CSP instance) of the form

∃x1∃x2 . . . ∃xnR(xi1 , xj1) ∧R(xi2 , xj2) ∧ · · · ∧R(xik , xjk).

Problem 4. Let R be a subdirect binary relation (on a finite set A) invariant
under a semilattice operation. Show that then any primitive positive sentence
of the form

∃x1∃x2 . . . ∃xnR(xi1 , xj1) ∧R(xi2 , xj2) ∧ · · · ∧R(xik , xjk).

is true.

1

Problem 5. One variant of CSP is the counting CSP where the goal is to find
the number of assignments that satisfy a primitive positive sentence. Let’s say
that our sentences use (multiple copies of) only one relation – the relation R
which is

R = {(x, y, z) ∈ {0, 1}3 : x + y + z = 1 (mod 2)}.

Use linear algebra to formulate a polynomial time algorithm that solves this
counting CSP.

2

