Universal algebra 2

3rd problem set

A critical pair is given by two rules $l_1 \approx r_1$, $l_2 \approx r_2$ (possibly the same rule taken twice). We rename the variables in both rules so that the variables of $l_1 \approx r_1$ and $l_2 \approx r_2$ are disjoint. Next we take an address *a* such that $l_1[a]$ is defined and not a variable and there exists a most general unifier θ for $l_1[a]$ and l_2 . The pair is θr_1 and $\theta l_1[a: \theta l_2 \rightarrow \theta r_2]$.

Problem 1. Explain why it is a bad idea to consider the simpler looking pair $\theta r_1, l_1[a: \theta l_2 \to \theta r_2].$

Problem 2. Show that there was an error in problem 4 of the last set: The system \mathcal{E} of equations $w(x, x, y) \approx w(x, y, x), w(x, y, x) \approx w(y, x, x), w(x, x, x) \approx x$ gives a graph $D(\mathcal{E})$ that is *not* finitely terminating.

Problem 3. Find all critical pairs of the system $x(yz) \approx (xy)z, 1x \approx x$.

Problem 4. Show that the equality $f(f(x)) \approx g(x)$ gives rise to a term rewrite system that does not have confluent critical pairs.

Problem 5 (Problem 4 from set 2 as it should have been). Show that the system $w(x, x, y) \approx u(x, y), w(x, y, x) \approx u(x, y), w(y, x, x) \approx u(x, y), u(x, x) \approx x$ is compatible with some reduction order and has confluent critical pairs.

Problem 6. The term rewrite system given by $f(f(x)) \approx g(x)$ is not convergent. Add one more rule to it to make it convergent.