Universal algebra 2

3rd problem set

A critical pair is given by two rules $l_{1} \approx r_{1}, l_{2} \approx r_{2}$ (possibly the same rule taken twice). We rename the variables in both rules so that the variables of $l_{1} \approx r_{1}$ and $l_{2} \approx r_{2}$ are disjoint. Next we take an address a such that $l_{1}[a]$ is defined and not a variable and there exists a most general unifier θ for $l_{1}[a]$ and l_{2}. The pair is θr_{1} and $\theta l_{1}\left[a: \theta l_{2} \rightarrow \theta r_{2}\right]$.

Problem 1. Explain why it is a bad idea to consider the simpler looking pair $\theta r_{1}, l_{1}\left[a: \theta l_{2} \rightarrow \theta r_{2}\right]$.

Problem 2. Show that there was an error in problem 4 of the last set: The system \mathcal{E} of equations $w(x, x, y) \approx w(x, y, x), w(x, y, x) \approx w(y, x, x), w(x, x, x) \approx x$ gives a graph $D(\mathcal{E})$ that is not finitely terminating.

Problem 3. Find all critical pairs of the system $x(y z) \approx(x y) z, 1 x \approx x$.
Problem 4. Show that the equality $f(f(x)) \approx g(x)$ gives rise to a term rewrite system that does not have confluent critical pairs.

Problem 5 (Problem 4 from set 2 as it should have been). Show that the system $w(x, x, y) \approx u(x, y), w(x, y, x) \approx u(x, y), w(y, x, x) \approx u(x, y), u(x, x) \approx x$ is compatible with some reduction order and has confluent critical pairs.

Problem 6. The term rewrite system given by $f(f(x)) \approx g(x)$ is not convergent. Add one more rule to it to make it convergent.

