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PREFACE

These notes are an énlarged version of the lectures I gave at the
Mathematisches Institut der Universitéf Bonn during the winter semester
of the academic year 1980-81.

The first eight chapters essentially reproduce with slight modifications
the text of a first draft which appeared in the Vorlesungsreihe des SFB 72
Bonn in February 1981. The last chapter describes some of the new con-
tributions appeared since then.

In preparing these notes I have taken into account lectures and semi-
nars I have given in these last few years; but mainly I have taken advan-
tage of many discussions I have had with colleagues and friends, among
them G. Anzellotti, S. Campanato, J. Frehse, W. Jager, O. John, J. NeCas,
J. Stard and particularly my friends E. Giusti and G. Modica. It is a
pleasure for me to take the opéortunity and thank them. Moreover, I want
to thank S. Hildebrandt for having invited me to give these lectures at the
University of Bonn, and for comments and stimulating conversations.

I also would like to acknowledge with gratitude the hospitality of the

University of Bonn and the support of SFB 72.

MARIANO GIAQUINTA
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MULTIPLE INTEGRALS IN THE CALCULUSOF
VARIATIONS AND NONLINEAR ELLIPTIC SYSTEMS

Mariano Giaquinta

0.. Introduction ,
The aim of these lectures is to discuss the existence and differentia-
bility of minimum points (or, more generally, of stationary points) of

regular functionals in the Calculus of Variations; i.e. functionals of the

type
0.1) fF(x, u(x), Vu(x))dx
Q

where @ is anopensetin R", n>2, u®®) = W), -, uN®), N >1,
is a (vector valued) function defined in ) and Vu stands for {Dauiia =
1,---,n, i=1,...,N. ‘Regular’ means that F(x,u,p) is convex in p.

In 1900 D. Hilbert posed the following two problems in his well-known
lecture delivered before the International Congress of Mathematicians at

Paris (n=2, N=1):

1. (20th problem) ‘‘Has not every regular variation problefn a solution,
provided ‘certain assumptions regarding the given boundary conditions are
satisfied, and provided also if need be that the notion of a solution shall

be suitably extended?”’

2. (19th problem) ‘‘Are the solutions of regular problems in the Calculus

of Variations always necessarily analytic?”’

These two problems have originated such a great deal of work that it

would be very difficult even to quote the different contributions. For an
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account of some of them we refer to the conferences of E. Bombieri {311 For the plan of the notes we refer to the contents. We only mention
and J. Serrin [269] and to the nowaday classical books of " that as far as possible, each chapter and each section are written indepen
0.A. Ladyzhenskaya and N.N. Ural’tseva [191] and C. B. Morrey, Jr. [231] dently of the others, even despite of shortness.

(for the case N=1).
Starting with the remarkable result of S. Bernstein in 1904 that any c3

solution of a single elliptic nonlinear analytic equation in two variables is
necessarily analytic, and through the work of many authors (among others
L. Liechtenstein, E. Hopf, T. Rado, J. Schauder, J. Leray, R. Caccioppoli,
L. Petrowsky, C. B. Morrey, Jr., etc.) it was proved that every sufficiently
smooth stationary point of (0.1), say ok , is analytic, provided F is
analytic. v

On the other hand, by direct methods in general one can only prove the
existence of weak stationary points in Sobolev spaces.

So the following problem arises: are weak minimum points of class cle

This gap from Sobolev spaces up to C! was filled in 1957 by the
fundamental work of E. De Giorgi {69] in the scalar case N =1.

All the attempts to fill the same gap in the vector valued case N >1
were unfruitful, and in 1968 E. De Giorgi [71] and E. Giusti and M. Miranda
[138] gave examples of functionals of the type (0.1) with nronconntinuous
minimum points.

The works of C.B. Morrey, Jr. [232] and E. Giusti and M. Miranda [139]
then start the study of the ‘partial regularity’ in the vector valued case.
And in these notes we shall confine ourselves to report on some recent
results on the partial (which means regularity except on a closed ‘small’

singular set) and everywhere tegularlty, esp fglally in the vector valued

gnd b Aol ~5§,¢» .t ”3‘*
case N>1. Some backgt unds are also presented
T

Our main goal will be to point out some of the methods that have been
introduced. Many 1mportant topics, such as existence and uniqueness,
W AOBRE L M e
have only been hinted at. So we are far from being complete. Moreover

applications such as to differential geometry or to problems in mechanics

are omitted.




Chapter'l
MULTIPLE INTEGRALS IN THE CALCULUS OF VARIATIONS:
SEMICONTINUITY, EXISTENCE AND DIFFERENTIABILITY

1. Multiple integrals: first and second variation
Let Q be an open set in the Euclidean n-dimensional space RT.
For the sake of simplicity let us assume that { be a bounded and con-
nected open set with smooth boundary; moreover, assume that n >2. We
shall denote by x = (x,---,x ) points in R" and By dx =dx,, -, dx
or d€" the Lebesgue volume element in RM.1) .
Let u(x) = (ul(x), -, ulN(x)) be a vector valued function defined in
with value in RN, N>1. We shall denote by Du or ‘Vu/ the gradient

of u, i.e. the set {Dauh} a=1,-,n; h=1,-,N, where D, = &i .
We shall consider multiple integrals of the form *

(1.1) Jlul = fF(x,u(x),Vu(x))dx
Q

where F(x,u,p): QxR¥xR™ , R. Of course the domain of the func
tional J will be a class of functions, which we shall call admissible
functions. We shall look at the problem of minimizing the functional J[u]
among the admissible functions. Then we want to study qualitative
properties of these minimum points (assuming that there exists at least

one) or more generally of the stationary points, which are called in this

setting extremals of J.

1
)We shall also use the notation ‘meas A’ or ‘!AI’ for £n(A).

6
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Simple examples of functionals of type (1.1) are the Dirichlet integral:

Dlu] = f |Vu|2dx

Q.

and the area integral:

Alul :f 1+ |Vu|?dx .
Q L 4

Both these two functionals are defined on scalar functions, i.e. N=1;
variational integrals defined on classes of vector valued functions appear
for instance in the mathematical theory of linear and nonlinear elasticity,
in the theory of plasticity or elastoplasticity and in differential geometry,
for example when studying H-surfaces or minimal immersions.

It is worth remarking that the relations between minimum problems for
functionals (1.1) and boundary value problems for a class of partial differ-
ential systems (elliptic systems) are very strict, as we shall see.

In this section we start by recalling a few classical results from the
Calculus of Variations, such as Euler equations and second variation for
the functional J in (1.1). sy

Let us assume that the function/J/in (1.1) is of class cl, and let
us consider the functional Jlu] as defined in CI(K_Z, RMN). For a given
¢ ¢ C'(R",RY), let

K = {u fCl(S—),RN):u:q‘) on 0}

be the class of admissible functiéns; and assume that u be a minimum
point for J in K. For ve¢ C‘(’;(Q,RN) and t ¢ R, the function u +tv
is still an gdmissible function (or as it is usually said tv is an admissi-

ble variation); therefore we must have
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d -
I J[u+tv]|t=0 =0

i.e.

1.2) f[F i(x,u,Vu)DaviJrF i(x,u,Vu)vi]dx =0 Vv fo;(Q, RNy .
P, u
Q

Here and in the following we use the convention that repeated indices are
summed: here a goeés from 1 to n and i from 1 to N.

We shall call the left-hand side of (1.2), as in current literature, the
first variation of J at u and (1.2) the Euler equation (in its weak
formulation) of J at u. §

If moreover we assume J;Q,u sufficiently smooth (for example of

class C?) then we can integrate by parts in (1.2) getting
f[—DaF {(x, 0, Vo) +F &y, Vu)]vidx =0 Vv e CB"(Q, RM)
Py u
Q

and hence

1.3) -D,F jx,u,Vu) +F (x,u,Vu) =0 in i-1, “ON
Py u ‘
i.e.

F. .(x,u,Vu)D D JiF (x,u,Vu)D WaF . (x,u,Vu) -
p(llp']B «’B pu ¢ PoX :

a a

-F x,u,Vu) =0 i=1,---,N
u -

which is a quasilinear system of partial differential equations: linear
with respect to the second derivatives and nonlinear with respect to the
first and zero order derivatives. (1.3) is called the Euler equation (in its

strong formulation) of J at u.

‘I. SEMICONTINUITY; EXISTENCE AND DIFFERENTIABILITY 09

For example, the Euler équation for the Dirichlet integral is
Au =0
82

n
where A= % 2 s the Laplace operator, while the Euler equation for

i=1 gx.2
1

the area functional is2)

n
9 _ D 0.
é 9%, V1 +|Vul?

REMARK 1.1. In deriving the Euler equation for the functional J we
have considered the Dirichlet problem, i.e. we chose as admissible func-
tions the functions u e Cl(ﬁ, RN) with prescribed value ¢ on the
boundary of . Let us now assume that u minimizes the functional J
among all functions v ¢ Cl(f—l, RN). Then all functions v € Cl(ﬁ, RN) are

admissible variations; hence we get

f[F ;®,u, Vo) Davi+F i, Vu)vildx = 0 vv eC1(@,RY)
Pg u _
Q

and integrating by parts

1.4) f[Fui—DaF Jvidx + fvani(x,u,Vu)vid0= 0 VveClQRY).
a a

Q Y]

Here v =(vy,---,v,) denotes the unit outward normal to 0J2. Since (1.4)

holds for all v ¢ C‘(’)°(Q, RYY, we deduce that (1.3) also holds and therefore

o s Wk % ek
2)Note that the left-hand side represents n times the mean curvature of the
surface {(x, u(x))er}; therefore: a surface of least area has zero mean

curvature.
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v F'vid(f:O
f“ Pg

oY)

vv € CHQ, RN

that is we have the so-called natural conditions

v, F i(x,u,Vu):O on dQ, i=1,-- N.

a

For instance if u minimizes the Dirichlet integral without boundary con-

ditions, then it is a solution of the Neumann problem:

Au =0 in Q

d—uzuDu:O on o).

dv a-a
REMARK 1.2. Let us consider the problem

min J[u]

uekK

where now K is any convex subset of, say, Cl(ﬁ, RNy, for example

K=§ueC1(§—2,RN):u=q§ on GQ,uizxi in iél,-‘-,N§

(of course we assume Xi < ¢>i on 0@ in order to grant that K 4 @ ).

Let u be a minimum point and let v eK; forall te fo,11
tv+(1-t)u = u + t{v—-u)

is an admissible function, hence

Jlul < Jlu + t(v -w)] vt ¢ [0,1]
but this time we can only state that
d Jlu+t 1. >0
T J u + t(v—u) It=0 >

i.e.

1. SEMICONTINUITY, EXISTENCE AND DIFFERENTIABILITY - 11

1.5) f[F i(x,u,Vu)Da(ui—-vi)-l-F i(x,u,Vu) (ui—vi)]dx <0 VveK.
Pa u
Q

(1.5) is called a variational inequality.s)

Let us now assume that J be of class C? and that ue Cl(ﬁ, RM)
minimize J among all functions v ¢ CI(Q, RN) with, say, prescribed

poundary value. Then for all ¢ ¢ C(l)(Q, RY) we must have
(1.6) &2 Jlu+te] >0
’ dt2 ‘t=0 - '

If n=N=1 and Q=(a,b), then (1.6) becomes

1.7) f[Fpp(x,u,h)q§2+2Fpu(x,u,h)gsgz;muu(x, u, W) $21dx > 0
Vo e C%)(a,b) .

By approximation it follows that (1.7) holds for all Lipschitz functions ¢
which vanish on the boundary. Choosing now, for x € (a,b), & sufficiently
small, & =¢, where ' '

(0 if G<x<xy-—c¢
%(x—x0)+1 if xg—e<x<x,
$e(x) = 9

~1€(x~x0)+1 if xg<x<xy+e

0 if x0+s§x§b

\

and letting & go to zero, we obtain, for all x, € (a,b), the necessary

condition

3)For more information on variational inequalities see e.g. D. Kinderlehrer,
G. Stampacchia [18s5]. '
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Fyp(o, ul ) uxg) > 0,

that is called Legendre-condition. ,
If we repeat this derivation for the case n>1, N =1 we obtain for

the minimizing point u at each x; €

(1.8) Fpapﬁ(x o ulxg), Vax &€, 20 VECRT

B

which is still called Legendre-condition. In the general case n > 2,N>1

we get instead

1.9 F; J.(xo,u(xo),vu(xo))fagﬁximZo vEé ¢ R, VA ¢ RN

Papﬁ

which is called Legendre-Hadamard condition.

Partially justified by the above considerations is the following defini-
tion: the functional Jlul is a regular multiple integral of the Caleulus of
Variations if the Legendre-Hadamard condition holds with ;}?;;{J:I;gquahty
for all € ¢ R™ - {0%, A e RN — {0} and all (x,u,p). ]

Let us note that for N =1 the regularity condition is equivalent to

the strict convexity of F(x,u,p) with respectto p and to the ellipticity

condition of the Euler equation, while in the case of systems, N>1, the f

situation is quite different. The convexity condition (or strong ellipticity)

of F wit}{respect to p is

1.10) [Gou Vogiel >0 VIEY 0

PaPp B

and this condition is stronger than the regularity condition. But in the ‘
W B AGD Y i
sequel we shall often speak of regular integrals meaning that (1.10) holds
instead of (1.9).
Now one could ask whether the regularity condition is also sufficient
in order to have u be a minimum point. The answer is negative in general

and there are classical and elegant theories (for example Weierstrass

- a= (aly e,

1. SEMICONTINUITY, EXISTENCE AND DIFFERENTIABILITY 13

. theory, Hilbert’s invariant integral theory, Jacobi field theory) dealing

with the problem of finding sufficient conditions for u to be a minimum
point; but we shall omit them and refer to the books quoted below. We

would only like to note that for functionals of the type

Jlul = fF(x,Vu)dx
Q

with F(x,p) convex with respect to p, stationary points are also mini-
mum points (among functions with the same boundary value). In fact from
the convexity we have
Ju] - Jlul < fF { x, V) (D ui-D, U dx
Py
Q

which is equal to zero since u=U on ) and u is an extremal.

In the sequel it will happen that we consider more general variational

fF(x, Su, DMu)dx

Q

integrals of the type

where Su stands for {D%M|a| <m-1, h=1,--,

N, D™u stands for
D%Mla| = h =1,

N,m is an integer >1 and a is a multi-index

o) (a; nonnegative integers). Here

glal

D% =
@y . %y 508y
ax1 ‘9"2 ~-~6xn

and |a| =a;+a,++ay
Let F = F(x, 7],5) and denote by p the variable (n,f) the Euler

equation is
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N ‘
. 2 2 prh(x, du, DMu) Da¢hdx =0 V¢ eCq(Q, RM)
Ya .

B )

or, in its strong formulation,

S (1)l y,0u,D™) -0 in @ h=1,N

lal<m ¢
which is a system of quasilinear partial differential equations of order 2m.

In this case the Legendre-Hadamard condition becomes

2 F (%, Ou, Dmu)§a+B >0 vé e RD
PP

lal=|Bl=m

if n>2 and N=1, fa=ffl-§;2-~---§:n, while it assumes the form

N
S 3 ry j(x,su,omu)§a+ﬁAiA330 VE e RD, VA ¢ RN

S (gl P

if n>2, N>1,
It may happen that we shall also consider functionals for which the
order of derivatives of u depends on which component we are considering.

These functionals give rise to Euler equations of the following type

N
2 2 fA‘iz(x, Du) Daqﬁidx =0 Vo e CH(Q, RM)

i1 ‘a‘fmi Q

where this time Du stands for D%} i=1,---,N, la| <m; and m; are
nonnegative integers.
Finally, for more information, particularly on the classical theory, one

may refer to any of the many wonderful books on the Calculus of Variations,

1. SEMICONTINUITY, EXISTENCE AND DIFFERENTIABILITY 15

cuch as the ones by N.T. Akhiezer, G.A. Bliss, O. Bolza, C. Caratheodory,
R. Courant, P. Funk, J. M. Gelfand and V. Fomin, J. Hadamard, M. Morse,
G. Talenti, L. Tonelli, L. C. Young and others; in particular one may refer
to C.B. Morrey [231] and S. Hildebrandt [156] for what concerns our treat-
ment, and for the one-dimensional case to the lecture notes by

-

§. Hildebrandt [157], where one can also find historical references.

2. Semicontinuity theorems
Let us first recall a few general topological facts. Let X be a
topological space. We say that J:X >R U {+} is lower semicontinuous

(L.s.c.) if forall a «R

Ug = {x X : J(x) > al
is an open subset of X, or equivalently
VaJ = {xeX:J(x) < al

is a closed subset of X. It is not difficult to prove the following char-

acterization of l.s.c. functions: J:X - R U {+eo} is Lis.c. if and only if

EJ = {(x,a) e XxR:J(x) < a}

is a closed subset in X x R.

The following proposition will be more useful for us:

PROPOSITION 2.1. If J:X » R U {4} is Ls.c., then for x = lim x;,

. 1200
we have

Jx) <lim inf J(x;) .
i—>00

If moreover X satisfies the first countability axiom (i.e. for all X € X,
there exists a countable fundamental system of neighborhoods), then the

converse holds. -
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We have moreover: let {Ji}iel be a family of l.s.c. functions, then

J= sxilp']i is l.s.c.
The next theorem plays a fundamental role in the following

THEOREM 2.2 (Weierstrass). Let J:X » R U {+} be a Ls.c. function
and let K be a éubset of X satisfying one of the two following
conditions :
i) K is a compact subset of X.
ii) K 1is a sequentially compact subset of X (i.e. from every
sequence of points in K we can select a subsequence converging
to a point of K),

Then there exists a minimum point for J in K.

We can state a little bit more. The function ] will be called

sequentially lower semicontinuous (s.l.s.c.) if for X; > X in X we have
Jx) < lim inf J(x;) .
i-»o00
Then we have

THEOREM 2.2 Let J:X » R U {+e} be s.l.s.c. and let K be a
sequentially compact subset of X. Then there exists a minimum point

for J in K.

We note that if X satisfies the first countability axiom, then compact
subsets of X are sequenfially compact; aﬁd if X isa metrié space, then
compactness and sequential compactness are equivalent. Finally we re-
call that the supremum of s.l.s.c. functions is a s.l.s.c. function.

Let us now consider the problem of minimizing a function J defined
on a set K. Generally, K is not equipped a priori with a topology. So
our minimum problem can be seen as the problem of introducing a topology
on K for which K is a sequentially compact set and ] is as.ls.c.
function. Note that in order to grant that J be s.l.s.c. we need in general
a rich topology, while for the compactness of K the topology need not be

too rich.

T R R

P D R R

R

R R
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We shall seé that this cdmpromise can be satisfactorily reached for a
jarge class of multiple integral functionals working on Sobolev spaces
akm(@Q, RY). ,

We recall that the space Hk’m(Q) is the space of the functions
1 ¢ L™Q) with (distributional) derivatives up to order k in L™(Q).

Let Q be a bounded, connected open subset of R" and let F be a

function

F(X,y,z):QxRN <« R™ 5 R

such that

i)y F>0
ii) F is measurable in x for all (y,z)
iii) F is continuous in y for all z and almost every x
iv) F is convex in z for all y and almost every x.
Then, for almost every x, F(x,y,z) is a continuous function with

respect to (y,z) ,4) therefore it follows that if

w:QCRML RN
p:QCR" - R™

u(x) = ('), -, uWNE)
p(x) = (p(x), -+, P™(x))

are measurable functions, then x - F(x,u(x), p(x)) is measurable in Q 5

Hence we can consider the functional

Jlu, pl = f F(x, u(x), p(x)) dx
Q

which may also have value +oo.

4 PROPOSITION. Let f(y,z) be continuous with respect to y ¢ RE for all
z ¢ R™ and convex with respect to z for all y. Then
i) z-~ f&}{/, z) are equicontinuous functions for y lying on a compact subset
of R ’
ii) f is continuous in the product space Rk x R™.

SZPROPOSITION. Let h(x,y) be measurable with respect to x € R® for all il
y ¢ R® and continuous in y for almost every x. Let w: R 5 R¥ be a measura-
ble function. Then x - h(x, w(x)) is measurable.




——
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In the applications it will often be m =n-N and p(x) = Vu(x), but
it is more convenient to have results in this more general situation.

We now want to prove

THEOREM 2.3. Let Q be a bounded open set in R and let

F(x,y,2z): @ x RN x R" 5 R be a function satisfying i) ii) iii) iv). Suppose
that {uhf converges to u in Ll(&:l, RMY and {ph¥ converges weakly to

p 'in Ll(Q,Rm) for each Q@ CC Q.9 Then

4 i ; 1 N 1 m
ie. J iss.ls.c. in Lloc(Q’R ) % Lloc(Q’R dweak -

Proof. We shall divide the proof in two steps.

15! step. Assume, besides the hypotheses of Theorem 2.3, that there
exist the derivatives of F with respect to z and that (v) Fé(x,y,z) is
measurable in x, continuous in (y,z) for a.e.x, then the conclusion of
Theorem 2.3 holds.

Let us choose a sequence, which we still call (uy, ph) such that

Iy, ppl - 1i?j£f Jlup, p ]

We can also assume that uy(x) »u(x) a.e. in QCCQ. For a fixed

’'CCQ, suppose that

JQ,[U,p] = fF(x,u,p)dx < oo,
Q/

9 CCQ means that the closure of §} is contained in {}, i.e. Q cQ.

1. SEMICONTINUITY, EXISTENCE AND DIFFERENTIABILITY" * 19 .

From Egorov’s7) and Lusin’s®) theorems, we deduce that for all ¢>0
there exists a compact subset K C @’ suchthat u and p are continuous

on K, u,~1u uniformly on K and that

@21 f F(x,u,p)dx <e 9
Q'\K

af ]Q,[u, pl = +o, we can find K CQ’ such that JK[u,p] > %- .) Since

F is convex in z, we obtain

m
F(x, up, pp) > F(x,up, p) +2 % (x,uh,p)(p;—pi) =
i=1 1
m
@.2) - Fltup,p) + 3, o (x,u,p) (o P +
‘ =1 !

+

>

[%F‘ (X, uh; P) - 5701:; (X, u, P)] (p;l—ph) .
i=1

1

Suppose now that the vector F,(x, y,z) be continuous in (x,y,z): then,

since pp ~ P 10) iy LI(Q; R™) and F,(x,u,p) is bounded on K, we get

7)Egorov’s theorem: Let fh’ f:A>Y, where A isa ;,L-measurable set
with p.(A)< 400 and Y is a separable space. Suppose that fh ->f W-a.e. Then
forall €> 0 there exists a measurable subset B with I,L(A\B) < g such that

fh - f uniformly on B.

8)Lusin’s theorem: Let | be a Borel (or Radon) measure; let f be a
p.-meésurable function with value on a separable metric space Y and let A be a
p-measurable subset with (&) < 4o0. Then for all €> 0 there exists a closed
(compact) subset C such that HANC) <e and flC is continuous.

9)We use the Absolute Continuity theorem: Let f be p-summable. Then
for all £> Q0 there exists 8 > 0 such that f‘f\ dx < ¢ for all measurable set A
with. u(A) <95. A

3

55 1O)By -~ we mean weak convergence.
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- .
}}ij’: fz 5371? (x,u,p)(p;—pl)dx =0.
i=1
K

On the other hand, because of the Banach-Steinhaus theorem, the
Ll

to Fz(x,u,p) in K, hence

Therefore, taking into account (2.1) and (2.2), it follows

JQ,[u,p] —e < Jglu, pl = 111:20 fF(x,uh,p)dx <

K

< liminf | F(x,up, pp)dx < lim inf J . [up,p].
Sl f (x uy Ph) X S lgl_)i? JQ Uy PR
K

If JQ, [u, p] = +e0, we have

L < gplupl < lim inf Jlup, py] .

This gives the result in step 1 under the stronger condition that F, be
continuous. Now we want to get rid of such a condition, and this can be

done by using the following lemma which we state without proof:

LEMMA 2.1. Let Q be a p-measurable subset of R® with pED) < too,
Let h(x,y): QXRQ

- R be measurable in x and uniformly continuous in

H

y for a.e.x. Then for each 8 > 0 there exists a closed subset Q5 CQ
with y(Q\QB) <8, such that h(x,y) is continuous in Qg x Rz .

-norms of p, and p are equi-bounded, F,(x,uy,p) converges uniformly
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Let ﬁs go back to the proof of step 1. Since the L™-norms of u, up,
and p are equi-bounded by a constant L. on K, the function Fz(x,y,z)

satisfies the hypotheses of Lemma 2.1 in

KxiyeRV:|ly| <Lix{zeR®:|z| <L} = KxAxB.
Therefore there exists a closed set ©2”CK (" compact) such that
F (x,y,z) is continuous in Q"xAxB

JQ,, [u,p]b > JK[u,p] -€.

And now we can repeat the proof given above in 1" and get the result.

2"d step. In order to get rid of the differentiability assumption on F we
use the following remark, see [72]. Under the assumption of Theorem 2.3,
the function F(x,y,z) can be obtained as the limit of a nondecreasing
sequence of nonnegative functions Fj(x,;y,z) which are measurable on x,
infinitely differentiable in (y,z) for a.e.x. and convex in z for a.e.x.

and for all y. Then, from step 1,
i)
T T, pl = f Fj(x, u, p)dx
Q/

are s.L.s.c. in LY(Q, RY) x L1(Q, Rm)weak for all 2°CQ, and from .thlS
the conclusion of the theorem follows immediately taking the sup in j

.e.d.
(and Q7). 4-¢

Let us‘ define

1 if x| <t
/ teN

b (x) =
t \0 if x| >t

then we have
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fF(x,u,p)dx = sup fF(x,u,p)qSth
. Cot
Q Q

hence: the conclusion of Theorem 2.3 holds for unbounded open subsets
of R%, too.
By using Holder inequality (for bounded ) and the above remark it

follows immediately

THEOREM 2.l4. Let Q be an open setin R™ and let i) ii) iii) iv) hold.
Suppose that for all 2 CC Q) (u, pp) converges to (u,p) in LS(Q, RY) x
L9(Q, R™)

weak’ 1 Ss<e, 1<g<eo, then

Jlu, pl < lix;x_)iorzf ][uh, ph]

ie. Jlu,pl is s.ls.c. in LS, RY) »x LYQ, R™yeak -

Note that Theorem 2.4 obviously extends to the case in which each
S . .
component ug,p; lies in different L ! and i spaces.

And now we come to the case of variational regular integrals:

THEOREM 2.5. Let Q be an open set in R". Assume that i)...1v)
hold with m = nN. Then the functional

Jlu] = fF(x,u,Vu)dx
Q

. . . 1,
is s.l.s.c. with respect to the weak convergence in H 2(9, RY),

lo
15q<+oe,

Proof. 1t is sufficient to prove the theorem in the case where (0 is
bounded. If now up ~u in HIIO’E(Q, RY), from Rellich theorem it follows
that uy - u in LP(Q, RM) v Qcc Q; hence (up, Vup) converges to

(u, Vo) in LYQ, RY) x LYQ, R™N)
Theorem 2.4. q.e.d.

k and the result follows from

Let us note that in order to apply Rellich theorem we need d{} smooth

(for example continuous): for this reason we stated all theorems with con-
vergence in © CC (.

Finally we obviously have:

THEOREM 2.6. Let Q be an open set in R" and i)...1v) hold. Then

the functional

Jlul = fF(x,ﬁu,Dmu)dx
Q

X . N
is s.l.s.c. with respect to the weak convergence in Hv;‘;’g(ﬂ, R™)

1 <q < eo.

More on semicontinuity. Here we would like to state without proof a
few interesting results on semicontinuity.

Let us still consider the functional

I, vl = LrF(x,u,v)dx
Q

where F(x,vy,2):8 x RK « R™ ,, R satisfies i)...iv), and moreover
0 < Fx,y,z) <MA+z[) M>0 s>1
for a.e.x. and for all (y,z). Then we have, see [72]

THEOREM 2.7. Let Q be a bounded (or such that meas {} < +o ) open

set in R®, Then

i) for all fixed u ¢ LP(Q, R¥) 1 <p < +eo, the functional
v - ][u,v]

is strongly continuous in LIQ, R™) forall q>s.

ii) the functional

u - Ju, vl

1. SEMICONTINUITY, EXISTENCE AND DIFFERENTIABIEITY: ¢ 235
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1s strongly equi-continuous in LP({, Rk)‘ for v in a bounded
subset of LYQ,R™) q>s, 1<p< oo,

Since in a normed space a convex subset is closed if and only if it is

weakly closed, and the functional
v e LYQ,R™) 5 Jlu,v]
is convex, we deduce that |
v > Jlu,v]

is Ls.c. in LYQ,R™) q>s, forall ueLP@Q RY 1 < p <400, Now

from the proposition in the footnote 4) we get

THEOREM 2.8. Under the assumption of Theorem 2.7, the functional
Jlu, v] is Ls.c. in LP(Q, Rk) x LYQ, Rm)weak for 1<p<+w and q>s.

From Theorem 2.8 one could now deduce Theorem 2.3 (see [72]1{156]).
We would like to remark that the assumptions in Theorem 2.7 cannot be

weakened. ‘
The second set of results we want to state refers to functionals of the
type
(2.3) Jul = fF(x, Lu, Mu)dx
Q

see [891[35], where F:Q x RKx R™ L R still satisfies i)...iv) and L, M

are (not necessarily linear) operators defined on a Banach space X

L:X - LYQ,RY
M:X - LYQ,R™) .

Functionals (2.3) play an important role for example in the linear (and

maybe nonlinear) elasticity theory.
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From Theorem 2.3 it follows

THEOREM 2.9. Suppose that L and M are sequentially continuous
from X with the weak topology in respectively LU, RK) with the
strong topology and in LYQ, R™) with the weak topology. Then the
functional ] in (2.3) is s.Ls.c. with respect to the weak topology of X .
If moreover we assume that
0 < F(x,y,z) < CA +|z|%) c>0, s>1

we have

THEOREM 2.10. Suppose that L be sequentially continuous from X

with the weak topology in LI(Q, Rk) with the strong topology and that M
be linear and continuous from X with the strong topology in LY(Q, R™),
q >s, with the strong topology. Then the functional Jlul in(2.3) is

s.l.s.c. with respect to the weak topology in X.

Notes. Several semicontinuity results for variational integrals were
obtained by L. Tonelli and C. B. Morrey, Jr.; these results were then
simplified and extended by J. Serrin in two well-known papers [264][265].

J. Serrin essentially proved

THEOREM 2.11. Let F(x,u,p): Q2 x R x R™ > R be a nonnegative,
smooth function which is convex in p. Suppose that up,u ¢ Hllo’é(Q) and

.1
u, ~u in LIOC(Q) , then

h-oo

Q Q

fF(x,u,Vu)dx < lim inf fF(x, uh,Vuh)dx .

Apart from the smoothness assumption, Theorem 2.11 is more general
than Theorem 2.3. In fact the equiboundedness of the LI(Q)-norrns of

Vuh is not needed. Theorem 2.11 was extended to the vector valued
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case, N >1, by Morrey [231] Theorem 4.4.1, but as it has been shown by
G. Eisen [79] the proof is not correct, and moreover the result is not true:
for N>1 it ‘is not possible to avoid the boundedness of the L1-norms of
Vuy, .

Now the literature on the problem of semicontinuity is very broad,
among others see [72][25]1[61][170]1250]180] and {67] and its bibliography
for the semicontinuous extension of variational functionals.

The proof of Theorem 2.3 comes from [231] Theotem 1.8.2 and [72];
while Theorems 2.7, 2.8 are taken from [72] and Theorems 2.9 and 2.10
from [35][89].

As far as the convexity condition on F(x,u,p) in p is concerned,
we would like to note that it is necessary in the scalar case N =1
(classical proofs of this fact are available, see [21][206] for proofs under
sufficiently weak assumptions), but it is very far from the necessity in the
vector valued case, N > 1. Natural conditions, in the case N >1, would
be the Legendre-Hadamard or the quasi-convexity condition of C.B. Morrey
[231] Section 4.4.

While we point out the importance of the problem, especially for the
applications [19][20], we refer to [231] Section 4.4, [215] and [19][21][22]

[23] for results in this direction.11)

3. An existence theorem

We now want to apply the semicontinuity results of Section 2 to study-
ing some minimum problems for regular multiple integrals.

Let us start with a simple case. Let F(x,u,p):Q x RN x RN L R

satisfy 1)...1iv) in Section 2. Moreover let us suppose that

3.1) F(x,u,p) > v|p|™ m>1, v>0,

11)See also Chapter I1X.
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We shall éonsidef the problem of minimizing the functional

‘] ful = fF(x, u, Vu)dx
Q

among functions with a prescribed value on the boundary of .

First we want to make a few remarks on condition (3.1). We recall
that a convex function f(z) defined on R™ in general does not have a
minimum point: one needs more information on the behavior at infinity.
For instance one of the following conditions would be» sufficient to ensure
the existence of a minimum point for f(z):

(a) f increases at infinity, i.e. for all z there exists p(z) such that

if |£]> p(z) then £(¢)>f(z)

() lim f(z) = +oo

Z |00

(c) f is coercive, i.e. there exist p > 0 and a > 0 such that for

2l >p  £G) > alzl
im f—(E)—=+<>o.
@k

Note that a condition of the type (3.1) =-(d) = (¢) = b) = (a).
The functional J[u] is s.l.s.c. in Hl’m(Q,RN) m > 1; note that

jlu] is still s.ls.c. if instead of F >0 we assume

F(x,u,p) > vip|™ - x(x) x e LY .

Let now ¢ be a function defined on dQ which is trace of a function

¢ e HL™(Q, RY) for which J[$]< +eo. For example, this can be granted
by the estimate

€)) - ' F(x,u,p) < c(+[p|™) -

Then the answer to our existence problem is positive. More precisely, let

iuhi be a minimizing sequence, i.e.
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u, - ¢ ¢ H™(Q, RY)

J[uh] e inf{][u] ‘u e HLM(Q, RMu-¢ ¢ H%)’m(Q, RM)} < 4o

from (3.1) we get

v f}Vuhlmdx < J[uh] < const independent of h .
Q

On the other hand, from Poincaré inequality, we obtain

fluh|mdx < const ‘:f]uh-gglmdx + f|¢|mdx] <
Q Q Q

< const f|Vuh\mdx + const f[IV¢|m+qu|m]dx .
Q Q

Therefore

Huh“Hl,m(Q RN, < const independent of h.

1 : .
Now, as H'™(Q, RN) is a reflexive Banach space for m > 1, passing
eventually to a subsequence, we have {uh} converges weakly to a func-
tion ug e Hl’m(Q, RY) such that u—c ¢ H(l)’m and, because of the semi-

continuity theorem,

Jlu,] < lim inf .
0% = h-oo J[uh]
Concluding, we have that uy minimizes J[u] in the class

tu e HU™Q,RN) u-¢ e HL™(Q, RN
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We would like to remark that for m =1 we cannot carry on the above
argument, because bounded sets of ub(qQ, RN) are not weakly compact.

This is the case for the area problem
f\/l + |Vul? dx > min
Q

u=¢ on d).

In this case we can estimate uniformly the H!'! norm of a minimizing
sequence but we cannot deduce (in fact it is not true) that any subsequence
converges weakly in Hi-l,

Now we want to state a theorem of existence which is general enough.

First let us recall the following proposition

PROPOSITION 3.1. Let fu,} CHVY(Q,RN). Suppose that

i u < const independent of h
) “ h“HI’I(Q,RN) > P

ii) the set functions Q- i\% uhldx, Qc Q, heN, are uniformly
Q
absolutely continuous, i.e. Ve > 0, there exists &(¢) > 0 such

that if meas ( < 6, then

f]Vuhldx<s VheN.

Q

Then there exists a subsequence of {“h} weakly converging ‘in
HI’I(Q, RN) to some function u ¢ Hl’l(Q, RN). On the other hand, if
{uhi is weakly converging in HL1(Q, RN) then i) and ii) hold.

Now assume that

F(x,u,p) > vlp|, v>0
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then, for a minimizing sequence, i) of Proposition 3.1 holds. The idea is

that if one has also
Ipl P F(x,u,p) > +ec  for Ipl - +oo

then ii) of Proposition 3.1 also holds. This is expressed by the following

proposition
12 .
PROPOSITION 3.2.1%) Let f(z) be a continuous function such that

lim |z] 7T E(2) = oo .

Z [0

Then for each M there exists a function ¢(p), p(p) >0, lim ¢(p) =0,
such that p=0 "

f Ip(x)ldx < P(meas Q)
a

for all Q and p(x), provided that

ffo(p(x))dx <M.

Q
Now we can state the following theorem

THEOREM 3.1.13) Let Q be a bounded open set with smooth boundary.
Suppose that
) Fx,u,p):Qx RN x RN L R be measurable in x for all u,p,
continuous in u for a.e.x. and all p, convexin p for a.e.x.

and all u

12
)See [231] Lemma 1.9.1 for the proof.

1
3see [231] Theorem 1.9.1 for the proof.
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ii) there exist a continuous function fo(z) ‘R™™ L R such that
F(x,u,p) > fyp) YVu, Va.e.x

lim |z| -1 fo(z) = +o0

Z |00

iii) (boundary data) X™ be a nonempty family of functions QRN
weakly sequentially compact in Hl-1(Q, RY) ;

iv) X be a nonempty family of functions (1 - RN weakly sequentially
closedin HV'1(Q, RY) such that each u € X coincides on o)
with a function u™ ¢ X*

v) there exist ug ¢ X such that

J[UO] = fF(X,uO,VuO)dx < too
Q

vi) J be bounded from below.

Then the functional

Jlul = fF(x,u,Vu)dx
S

takes on its minimum for some u ¢ X.

Obviously a similar theorem can be stated for functionals of the type

fF(x, Su, DMu)dx .

Q

Theorem 3.1 permits the solution of minimum problems of different
kinds, such as for example Dirichlet or Neumann type problems, optimal
control problems and even problems with (pointwise or integral) constraint.

But we shall not insist on the applications.
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Interesting existence theorems have been stated in [23] for functionals
which satisfy an intermediate condition between the Legendre-Hadamard
condition and convexity; we refer to [23] and to its bibliography for such

results. 14

4. The direct methods in the Calculus of Variations
The methods used in Section 3 for proving the existence of a minimum
point for the functional Jlu] are known as direct methods in the Calculus
of Variations. As we have seen the idea is to show that:
i) the integral to be minimized is bounded from below (in the class
of admissible functions), so that the infimum, and therefore a
minimizing sequence, exists ‘
ii) (continuity) the inte-gral to be minimized is s.l.s.c. with respect
to some kind of convergence in the class of admissible functions
iii) (compactness) the minimizing sequence (or at least there exists a
minimizing sequence which) converges with respect to the con-
vergence in 1i) to an admissible function.
Once i), ii) and 1iii) are established the result follows immediately.
Of course direct methods can be used in class of functions different
from Sobolev spaces and for general (not necessarily integral) functionals.
Direct methods were used by Riemann, who obtained many interesting
results on the ‘geometrical theory of functions’ by assuming the ‘Dirichlet

principle’: there exists a unique function which minimizes the Dirichlet

Dlu] = fWul2dx
Q -

among all functions u ¢ C1{(Q) N Co(ﬁ) which take on given value on the

boundary K); moreover that function is harmonic on Q.

integral

-

14)Se:e also Chapter IX.
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Riemann’s work was criticized by Weierstrass because boundedness
from below does not imply the existence of a minimum point. Probably
because of this criticism the direct methods were neglected and it was
only!) after 1900 that Hilbert [154] and Lebesgue [194] rigorously
established in certain important cases the Dirichlet principle by using
essentially direct methods.1®) Later these methods were used and popu-
larized by Tonelli in a series of papers and books. He applied them to
many single and double integral problems, working in classes of absolutely
continuous functions and with uniform convergence. Tonelli was able to

deal only with integral functionals for which
F(x,u,p) Z mlp‘ka k>n

and with a few particular cases in which k =n =2 (think of Sobolev
imbedding theorem).

These difficulties were overcome around 1930 by C. B. Morrey who
made use of function classes of the type of the Sobolev ones.

The use of Sobolev spaces simplifies a lot the existence theory for a
large class of integral functionals, but it has to be remarked that we pay
for this simplification in terms of the regularity problem: are the weak
minimum points classical functions?

It has to be noted that direct methods had already been used by Haar,
Radd in the class of Lipschitz functions; in particular Haar [146] (see
T. Radd [256]) was able to show the existence of a unique solution in

c%1(Q) of the variational problem

fF(Vu)dx - min

Q

u=¢ on JQ

15)Let us quote the attempt of C. Arzela [1 5]. .

16)gee also D. Hilbert [155], B. Levi [201], G. Fubini [100],-J. Hadamard [147]
among others.
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assuming that n=2, N=1, F(p) be strictly convexb, Q be strictly
convex and ¢ satisfy the ‘three points condition’. These methods were
extended to the n-dimensional case by many authors (M. Miranda,

G. Stampacchia, P. Hartman, D. Gilbarg, among others).

Analogous methods were also developed by S. Bernstein mainly in the
spirit of studying second order partial differential equations (Euler equa-
tions) and exploited deeply by J. Serrin, N. S. Trudinger, Bakel’man, etc.
(see [17][18]{129][268]).

We must also recall that direct methods have been used for the
(parametric) Plateau problem by J. Douglas, R. Courant, E. J. McShane,
M. Morse, C. B. Tompkins, C.B. Morrey among others and, more recently,

by many authors of the German school; one may refer for example to

Morrey [231] Chapters 9 and 10, R. Courant [65] and J.C.C. Nitsche [249].

Finally, starting from the pioneering work by E. De Giorgi,
E.R. Reifenberg, H. Federer, W. H. Fleming, F. J. Almgren on (geometric
measure theory and) Plateau problem and parametric elliptic integrands,
see e.g. [4][64][851{134][10]{219]1[32] direct methods were used for the
nonparametric area (mean curvature, capillarity...) problem in the class of
BV functions (i.e. L1-functions whose derivatives are Radon measures
with bounded total variation) by many authors, among others E. Giusti,
M. Miranda, M. Emmer, L. Pepe, U. Massari, L. Simon, K. Gerhardt,
M. Giaquinta etc.; one may refer to [133][136][219]1{10]. Results for

general functionals with linear growth

Jlul = fF(x,u, Vu)dx ) :
Q

Ip| < F(x,u,p) < c(l+]|p))

have been obtained in [124][6], see also [8] for the vector valued case

(in connection with a problem in elasto-plasticity).
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5. On‘the differentiability of regular integrals: weak solutions to the

Euler equations

Let us consider the regular integral

Jl = fF(x,u,Vu) dx .
Q

HPoNiE
Besides the assumptions in Sections 2 and 3, we suppose now that

5.1) E[L[E] < aylul™ + 2 lpl™ + 500

y e LY, a;,a, nonnegative constants.

Let u ¢ H'™(Q, RY) be a minimum point in some subset K of
HL™Q, RY) of admissible functions and let us assume that T + Av also
belongs to K for all v ECO(Q R™) and A e(-1,1). We can consider

By ‘?é’d
the differential quotlent at zero of the function

J) = Ja+av]

given by
l(_)l)_;\_;]@ - fdx f[F i(x,ﬁ' + tAv, VU + t}\Vv)vi +
u T
Q o T
+ F i(x,;ﬁ + tAVv, VT + )\tVV)Da' Vi]dt .
a
Since
T+ o] < [al + M
|Va + tAVv| < |Vu| + M
and hence
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1
U[F (G- F ()DL vlldt) <
« <
u p
a
4]

< ag([al + M + a,(IVa]+M™ + y(x)

using the uniform summability theorem of Lebesgue!”’ we can pass to the

limit for A > 0 under the integral, getting that U satisfies

(5.2) f[F i (%, u, Vu) Davi +F 0, Vi)vildx =0 Ve coQ, RN .
Pg u
Q

Note that if @ is smoothand 1 <m <n, since

<clu m* = L _ Soholev exponent

”u”Lm*(Q,RN) Hl’m(Q,RN) fi-m

we can assume instead of (5.1)

, E3
(5.1) IF L IR | < ay fu™ 4, p|™ + y(x)

while if m > n instead of m* in (5.1)" we can take any exponent
1<r<+oo,

We could now say that T is a weak solution of the Euler equation of
the functional J, but this is not fruitful for our next considerations,
especially in connection with the regularity theory, see for example [266]
(1911[231]. It is more convenient to refer as weak solutions to the
‘stationary points of J’, i.e. functions for which the first differential_;of
J is zero. But in order to differentiate the functional J we need a few

more assumptions.

17)THEOREM. Let {fh} be a sequence of uniformly summable functionsl(i.e.

Ve>0do(g) such that
E C{Q meas E<0(£):>f[fh| <e)
E
converging pointwise. Then

J lim £, dx = lim
Q h-oo . hooo

[ G0dx
Q
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Fifst let us consider the simple case

Jlul = fF(x,u,Vu)dx
Q
with
Ip|? - Ax) < F(x,u,p) < clp|? + x(&x)

where A and yx are nonnegative Ll-functions, and assume moreover that
. . . . . 1,2
F be of class C!. At least formally, if J is differentiable in H" =,

then its differential at u must be

(5.3) £ eHLVAQ,RY) - f[Fpi(x,u,Vu)Dafi+Fui(x,u,Vu)§i]dx.
i ,
Q

For a moment assume n >3. Noting that V& ¢ LQ, R™) and (because
of Sobolev theorem) ¢ ¢ L2°(Q, RN), in order to have (5.3) have a meaning

we must assume that

Fi(x,u,Vu)eLz(Q) i=1,---,N, a=1,-,n

a
F.(xu,Vu) eLZ@) i=1,-,N _ =
u TRLTA AR + 9n
* _2n
2" = the dual exponent of 2 )

This is granted, taking into account Sobolev’s theorem, for example by the

following growth conditions:
n
24 Ppl)

(AN

le(x, u, Vu)v| plx ;) + |u]

a2 142
ulx,(0) + u[™2 4 fp| ]

IN

(5.4) ]Fu(x, u, Vu)|

2n

X; € LA, x, e LMA(Q)



T mnd

N

38 MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIC SYSTEMS

or more S1mp1y by

1
Fyl [Fpl < v V=(+ul?+p|?»2.

If n=2, condition (5.4) becomes
q
12

IFp(x,u,p)I < plxy ) + [u]® + [pl]

2{1-1

ulx (0 + [uld7t 4 p] ( q)]
a4

X1 € LAQ), x, e LI HQ), 1<q< too.

(5.4) lFu(x, u, p)|

IN

Now it is easy to verify that conditions (5.4)(5.4) are also sufficient

for the differentiability of J[ul. Precisely we have:

THEOREM 5.1. Let F(x,u,p): Q2 x RN « R"™W L R pe measurable in x-

and of class Cl in (u,p) for a.e.x. Suppose

—AMx) S FGoup) < pV2exx) A x e LA

and that conditions (5.4)" for n =2 and (5.4) for n >3 hold. Then the
functional Jlu] is differentiable in H!’ 20, RY) and its ftirst dszerent:al
at u is given by (5.3).1%)

R RETITR

Partially justified by this theorem it is usual to introduce, assummg

in addition F of class C?, the following set of conditions

- A < F(x,u,p) < uv? v, A >0
IFpl! inxlr IFulr lFux‘ S /LV
Fou b [Pyl < n

mEF<F <xum§@<Mm2

aPp

VE: m,M>0

18)see[231] Theorem 1.10.3 for the proof.
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and to refer to them as the ‘common conditions of Morrey’ or ‘the natural

assumptions of Ladyzhenskaya and Ural’tseva’. Assumptions (I) reduce
simply to

2_X <F(x,p) < uV?

Fyl. Py < ¥

(I)bis

ml-§|2 <F Vrf;m,M>»O

o EpEl < Mg
&P B

V-(+|p|dH%

in case F = F(x,p) does not depgnd explicitly on u.

Note that (I) can be weakezed tékmg into account Sobolev’s theorem
as in the beginning of this section.

While assumptions (I)bis are ‘natural’, the same is not true for condi-
tions (I) or (I) weakened by using Sobolev’s theorem, i.e. (5.4) (5..;4)'.
fact it is quite unnatural to assume that Fu increases of the same order,

with respect to p, as Fp. For instance, for the simple functional

fa(u)]Vu\de

Q

il

| Jlul

N=1,0<m<a@<M, m<alw<M
we have
. 2 2
Fol ~Ipl,  F, =a’@lpl® ~ [p|

+2 21—
and not [F | ~ [p| or |F,| ~ lpl Tn>2, [F| ~|pl d

1<q<+4 for n=2.

[ -

Because of that, it is usual to introduce a second set of assumptions
still called ‘natural assumptions of Ladyzhenskaya and Ural’tseva’ or

‘common conditions of Morrey’ and precisely
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W2 -\ < F(x,u,p) < u(R)V2

¥ “

N ) -
F Py L 1Byl < p®RYV?

IA

Fol, [Fupls IFepl < wRV

(n mPIE <F 56w pELE) <MBIE? vE; m®) >0
PaPly B

V= ph?

ul? <R.

As it is clear, assumptions (II) do not grant the differentiability of the

functional J[u], but we have

THEOREM 5.2. Assume that for |u] <R

W2 X < F(x,u,p) < u(R)V2

|F.

72
ul SRV

lel < uRV .

Then the functional Jlul is differentiable in H2 N L=(Q, RY) and its

differential at u is still given by (5.3) where instead of H''2 one has
toread H'2 N L>(Q, RN .19 '

In the following we shall refer to assum-ptioﬁs (D or (II) respectively
as the controllable growth conditions and the natural growth conditions.
"And we say that u is an extremal of the functional J[ul or a weak solu-

tion to the Euler equation of the functional J[u] if

(@) controllable growth conditions hold, u ¢ H'%(Q, RN) and satisfies

(5.5) f[F i(X, u, Vu)Dagéi +F i(x, u, Vu) qﬁi]dx
Pq u :
Q

19)See [231] Theorem 1.10.3 for the proof.

1. SEMICONTINUITY, EXISTENCE AND. DIFFERENTIABILITY

for all ¢ ¢HYQ,RY), or

(b) natural growth conditions hold, u € H12 n L0, RY). and
satisties (5.5) for all ¢ ¢H) N L2Q,RY).

More generally we shall deal in the following with weak solutions to

nonlinear elliptic systems of the type

(5.6) f[A‘il(x, u, Vu)D ¢" + B;(x, u, Vu)¢lldx =0 V¢ ¢ CF(D)
Q
which in general are not Euler equations of a variational integral. The

term ‘weak solution’ will have the same meaning as in (a) or (b) above

with the formal change

and elliptic will mean that

A‘}‘pkf;fé >vlE2 VEv>0.

We would like to remark that one can also consider systems with any

polynomial growth condition, i.e.
A%, 0, p)| < c(lpl™ + )

and even higher order systems with any polynomial growth conditions; but
in general we shall not do that in the following.

It is worth remarking that starting from the work of L. M. Visik [297]
and Leray-Lions [199] there is a very large literature on the existence of
weak solutions to nonlinear elliptic systems of the type (5.6) (at least in

20)

the case of controllable growth conditions: see for example [204]

20)The: same is not true in the case of natural growth conditions.
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Finally we refer to [192] for weaker conditions under which one.can
derive the first variation of a regular functional; and we mention that there
are a few more papers dealing with this problem, see e.g. [153] and 1ts

bibliography.

From now on we shall assume that a
Pood & wmadh 62 g

shall deal with the prbblem of regularity.

weak solution exists and we -

~Chapter. I -
AN INTRODUCTION TO THE REGULARITY PROBLEM

As we have seen in Chapter I, by enlarging th\e g}:aje of competmg
functions we are able to prove the existence of generahzed solut1ons to
minimum problems for variational integrals, but we pay this simplicity with
the new problem of the regularity of generalized solutions. .

The aim of this chapter is to state what we mean by ‘regularity
problem’, to give a short historical account and finally to present.some
counterexamples to the regularity for solutions of nonlinear elliptic

iati i i lued
stems or minimum points of variational integral defined on vector va
sy

functions.

1. Reduction to quasilinear and linear systems

Let us first consider a stationary point of the simple regular integral

Jlul = fF(Vu)dx
Q

or more generally a weak solution to the elliptic system
- D A%(Vu) = 0 i=1,.,N
| ition (D)., i.e. AS eC!
where Aa~(p) satisfy the controllable growth condition (I)y;., i.e. A
i

Ai@) < c-lpl \Aﬁp}g(p)l <L
1.1 N
K @ELEL > NE? Va0
Ps
43
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and ‘u eHl"z(Q RYN) satisfies
) lAl | <L
a jh)

1J(h>

| ~ AP SAEZ Ve,
(1.2) fA?(Vu)Da&dx -0 V¢ cHLQ,RY). fabpy 2 Ml |

Q

If we now insert in (1.3)

¢ = h  ux + he,) —u(x)] n2

First we want to show how the well- known quotient method will enable us
to ‘linearize’ system (1.2).

Let us choose an integer s, 1 <s <n, and set eg for the unit

we obtain

[ls

vector in the x direction. If ¢ is a function with compact support in

Q .
and |h| is small enough, we have u(x + he )~ u(x) 2

h

u(x +heS) —u(x)
h

2

1;2 dx < const f
ol I
R2

BZR

f AVuGx +heg)) - A{Va()ID bidx - 0

A

Now for almost every x

;
+
|

Vgl <

where 7 €CHBR), By CCQ, 0<n<1, n=1 on Bg,y, Vgl < /g,

1 ie. 2
he )—
A%V (x+h @ d ,a f M dx < const independent of h
i(Vu(x +he)) - Ai(Vu(x)) = | A Vu(x +hey) + (1-t) Vu(x)) dt = ] h
1 0 . R/2 )
Napd wE
= ¥ i i | t D Hl2B RM and therefore that
_fAi i (tVu(x +he ) +(1-t) Vu(x))dt - D [ud(x +he_) - ud(x)] | which implies that D u ¢ Bg /40 ) 0 .
0 pﬁ B S k u e le 2, RN), by a standard-covering argument.”’ Moreover, passing
, oc
hence, Setting 1 1)Here we have used the well-known
‘ B PROPOSITION. We have a
AZ a ‘ ! ‘ i t k=k(€, Q) such that if
A (x) = A, . (tVux +h 1- i (a) For each ' CC () there exists a constan
ijh) f IP,JB (x +he)+(1-t) Vu(x))dt _ | } D LRI and < -12_ e L O then
0 i
“ T < k||D V” .
we get f H h’SV”LP(Q’) < kg LP(D)
j j i | P} 1 < p< 4. Suppose that there exists a constant k
J h ] f () Let veL (D, p
1.3) f lj(h)(X)D e+ 6?1) u’(x) Da¢idx -0 ‘ i such that for h < hg

‘CC
il g, S CCO

and clearl
Y then st e LPQY) and

LRSS

T+ e o et el

ey 16 cubiPAON QCC O than 0 waD v oin LPQQ)Y, Here
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to the limit for h going to zero in (1.3), we immediately deduce

fA”i‘pj (Vu)DB(DSuj)Da¢idx -0

V¢ e HL(Q, RY)
9 B

spt ¢ CQ

which can be rewritten as a quasilinear system for the vector valued
function

1.4) U -l - CRONAI

jzl,"',N
as

(1.5) fals A‘fpj (U)DIBUiDaqSiI dx =0 V¢ e HYQ,R™)  (sptgpc Q).

0 B

Note that (1.5) is a quasilinear elliptic system, in fact

N n
- |
aslvApr@ Gt 2 33 @l

1,s=1 a=1
In conclusion we can state

THEOREM 1.1. Let y H(Q, RY) be a weak solution to the elliptic

system (1.2), where the A’

satisfy the controllable growth conditions.
Then u ¢ H2’2(Q, RN)
. loc

, and the vector valuyed function U in (1.4) is a
solution of the quasilinear elliptic system (1.5).

The method we have used in deriving Theorem 1.1 is the well-known

difference quotient technigue see [2471.%) Roughly spe'aking the idea is to
differentiate the system

(1.6) - D,A%(Vu) = 0 i=1,..,N

_—

2)Seé also [2] and [239]

for the difference quotient technique applied to linear
boundary value problems,
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‘obtaining this way

H=o.
- D.a(AL;pJ. (Vu)D,Dgu ) =0

B

has only to replace the ordinary derivatives with the difference
" One has

tient and use the proposition in footnote 1) Chapter II.

’ : .
quow uld like to remark that in case of linear systems with smooth

e wWo
coefficients . ,
a o0
af8 =0 i=1,--N, AT ccC

1.7 - Dy(Aj; ) DBu ) i

AT o N

by differentiating, or more precisely by differencing, we get
y € ’
! j ! j i I
¢ A 5’] =0 i=1,--,N s ,ver,m
- Da[Aij (x)DaDsu +A1JXSD wl]

d then we can start again differentiating, and so on: this way one
. Q). This
obtains that the weak solutions to system (1.7) belong to C™({})

irst ste
does not work in the nonlinear case (1.6) (we have to stop at the firs p)

and in the quasilinear case

ip ¢ldx = Vo e HL(Q, RY) .
(1.8) IA%B(u) D,u'Dge)dx = 0 ¢ HY
Q

This is formally clear, as a differentiation would give

D_u’D u
f A?jﬁ(‘l)Da(Dsul)DB Pldx + f Aijuy(u) 50D u'Dg
Q Q
and the second term on the left-hand side is not welzl (iefinecll‘I forw -
— ’ . We sha
b € Hé’z(Q, RM). But it is not even true that u e Hloc(Q’ R

ich do not
see in Section 3 weak solutions to systems of the type (1.8) whic

] . ’ ’ 7 )'
ad, for I] 1 see 1191 I
belollg to H ((2 R ) (thlS is true inste
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Theorem 1.1 holds in general for nonlinear elliptic systems of the type

1.9) f [Acil(x, u, Vu)Daqﬁi +Bi(x,u, Vu)¢i]dx = 0 Vb e H})(Q, RY)
Q

under controllable growth conditions. More precisely we have

THEOREM 1.1° Let y H(Q, RN) be a weak solution to the elliptic
system (1.9), where Aai and B, satisfy the controllable growth condi-

tions. Then y ¢ lec;g(ﬂ, R™) and the derivatives Dou s=1,--,n verify

a j a 7 . a
410 f [Ain Gou, VH)DBDSUJ ’ Aiuj(x’ 4, Vu)Dgu! + AixS(X, u, Vu) +
Q B

* 8B, u, Vu)ID_grldx - o
for all ¢ ¢ H(l)(Q, RNy sptd C Q.

The proof goes on as before, only a few technical complications will
appear: we refer to [231],

We note that now it is not possible to read system (1.10) as a second
order quasilinear elliptic system with respect to the unknown vector‘ U as
in (1.5); but, adding one more index as in (1.5), it can be seen as a fourth

order quasilinear system in y.

evenif B =0 and Aciz = A?j’g(u)D uj, as we have already stated. But we

have (see [2311[1911[122] for further information):

-

THEOREM 1.2. Lef y ¢ H1:2 n L2, RNy pe 5 weak solution to system
(1.9)3) where Aciz and Bi satisfy the natural £rowth conditions. Then,

-
I (1.9) we now must reaq ... Ve e H) N L Q, RYy.
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ver o 2,20, RNy and (1.10) holds
ver U € c%, RY), we have u ¢ Hloc( )

‘moreo
~ 1 0L, RY).
call ¢ e Hy NLT(Q,RT)

et us assume that for R small the oscillation of u on B2R bls
Proof. Le 92 in (1.9 , cing
:“"r '>"‘h't1y:sma11 Putting as before ¢ = DS(DSu 7“) in (1.9) !
icie . n
SUthl' 1d test function in BR , R <dist (xo, o) A RO, RO small, we
a standar !

‘,,e‘a sily get

| 4.2
. f\Vzu?nde < cf[(leIVu\z)n2 + [Vul2|Vg|? + [Vu|*n?1dx

1292 ug = f u= Bgl f udx we obtain
Br Br

2.12,2 .
f!Vu|4n2 <c {f|Vu|2[7}2I+\Vq\2|u—uR|2]dx + o;c;u- flv ul“n }

>Th fore, replacing 7 by 772 and using the assumption, we deduce
ere s

fIVUQ4n4+f\Vzulzn4<f[n2+lu—uR\4\Vn\4+quIQ!Vﬂ\znz]dX

while putting ¢ = (u—uR)Wu

. 1[“!&&1’;5; used
hich concludes the proof, apart from the fact that we should have )
w
ivati q.e.d.
difference quotients instead of derivatives. -
ystem

We shall refer to system (1.10) as the system in Varzat;og ofs /stem

it 1 ] des the
(1.9). Concluding we then have: it is always possible to 5{;%‘%76% he .

it1 ile only con-
system in variation under controllable growth conditions, whi 'y

i 1 jation if natural
tinuous weak solutions are solutions to the system in vari

.. d
growth conditions hol .
Let us now consider the system (1.9) and suppose for a mome

i % and B, are smooth, say of class C* or
(@) the functions A; an i

analytic
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(b) the weak solutions to system (1.9) are functions of class
cl,a .74)' 5)

Thus we can read system (1.10) ai{?ﬁ&ggig §y§tem with Holder
continuous coefficients and therefore rely ogi‘if‘:’ewli.r‘lear theory for higher
differentiability properties. To be more precise, let us consider system
(1.6) and assume Acz €C*™ and ueCH%. Then for each fixed s,

1 <s <n the function D u is a weak solution to

f AT D DWID,glax <0 Ve Y0, RY

with

Ao - 1 (Vue) ccOs.
°p

But from the linear tl"éeory (see Chapter III) we now know that Dsui €
1,a a 1 :
CIOC(Q) , hence Aij x) e Cl(;g and then the linear theory again tells us

that D_u' ¢ C%:¢
s loc’ and so on.

We can now say that once we know that extremals, or weak solutions to
nonlinear elliptic systems, are functions of class C!:® (or of class coe
in the case of quasilinear systems like in (1.8)). Then higher regularity is
a consequence of the linear theory for elliptic P.D:E. '

But in general we are only able to find extremals or weak solutions in
HY'? (or sometimes in H'2 N L™ ); therefore there is a gap in the

regularity scale.

4) 0,a
) By C (Q) we denote the class of continuous functions satisfying a
Holder condition of order a, i.e. ’
_ —-a
[u]O,a = sup ‘x—yk ‘u(x)—u(y)l < 4oo,
x,y €Q
k,a k
C EQ) denotes the class of C (Q) functions whose k-derivatives are Holder
continuous with exponent a.
S Phen it ; My allevpy 0
en it is irrelevant to assume controllable or natural growth conditions.
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The regularity problem (for nonlinear elliptic systems) is exactly the
problem of filling this.;gap. )
2. A very brief historical note

It would be very difficult to quote all the many different contributions
to the regularity problem for linear and nonlinear elliptic systems. Here
we shall confine ourselves to reporting about some fundamental steps
mainly in connection with the nonlinear theory.

Probably one of the first results on the regularity problem for nonlinear
equations is due to S. Bernstein [26] 1904, who proved that each solution
of class C?2 of a nonlinear elliptic analytic second order equation in the
plane (N =1, n=2) is an analytic function. We must say that the
analyticity of solutions of a single linear elliptic equation with analytic
coefficients had already been proved by J. Hadamard in 1890.

Then different proofs were given of Bernstein’s result; and in 1932
E. Hopf [169] proved an analogous analyticity theorem, still for one equa-
tion, but in arbitrary dimensions. In 1939 I. Petrowsky [253] proved the
analyticity of solutions of a class of elliptic systems, and around 1957
C.B. Morrey, L. Nirenberg and A. Friedman gave the final contributions in
order to prove the analyticity of solutions of general linear and nonlinear
elliptic systems (see e.g. [231]). So we can state, as in the end of the
first section: every sufficiently smooth solution of a linear or nonlinear
analytic elliptic system is an analytic function.

Here we must recall at least the contributions by R. Caccioppoli (371
1933,5) Schauder [260]1 1934, A. Douglis, L. Nirenberg [73] 1954 and
S. Agmon, A. Douglis, L. Nirenberg [311959-64 to the regularity theory of °
linear systems. ‘

Let us go back to the problem of the starting point. In 1912
L. Lichtenstein [202] proved that a C? extremal of a double regular

integral is of class C3 (and therefore analytic, if the equation is

6)See also [38] [39] [198] and particularly [40}.
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analytic); the same result was then proved by E. Hopf [168] in 1929 under
the assumption that the solution be C1'®, And in fact, as we have seen
at the end of Section 1, in the above claim sufficiently smooth means
Cl,a . 7) ’

Actually in dimension n =2 and for equations N =1, C.B. Morrey
was able to prove in 1938 Bernstein’s result for Lipschitz solutions,
solving this way Hilbert’s problems we have stated in the introduction, in
the case of the functionals considered by Haar and Radb (compare with
Section 4 of Chapter I), see [221] and also [222]. But the assumption
“u is a Lipschitz solution’ was not sufficient in general to prove
regularity. )

So no real progress was made on the regularity problem, except for the
two dimensional case (1938-39 [220], see also [2211[222]) where it
happens that minimum points of quadratic functionals (n=2, N>1) are
Hélder continuous, until the celebrated result by E. De Giorgi [69] in 1957,
see also J. Nash [237]. Let us illustrate it.

Let us consider the variational integral

2.1) J] = fF(Vu)dx
Q
where N=1, n>2 -
mlp|? < F(p) < M|p|? m>0
IF,l < Mip]

‘Vf;u>0

vIER” < Fpapﬁ(mfafﬁ < Mg

and let u ¢ HI’Z(Q) be an extremal, i.e. a weak solution to

7)Rea11y, C1 is sufficient, see [225].
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pr (Vu)D, ¢pdx = 0 Vo e HY(Q) .
a
Q
As we have seen in Section 1, the derivatives of u Dsu, s=1,---,n,

are weak solutions of the equation

f FpapB(Vu) DB(DSu) D, pdx =0 V¢ e HYD) .

Q

Now under the assumptions we have, we can only say that

a3
FpapB(Vu(X)) = A" (%)

are measurable and bounded functions. So the regularity problem would be
solved if we could show that weak solutions to linear elliptic equations

with L™ coefficients are Holder continuous: that this is true is exactly

De Giorgi’s result.

THEOREM 2.1 (De Giorgi). Let u ¢ HY(Q) be a weak solution to

faaB(X)DauDﬁ ¢dx =0 Vb e H%)(Q)
Q

where aaﬁ(x) e L™(Q) and

aaﬁfarf 2V|§l2 vé, v>0.

B

Then u ¢ C{)’a(Q) for some positive a, and, for @ CC{}, ”u”CO,a
oc

~ <
i &~
c(Q, ) \IuHLz(Q)-

By means of this theorem, the Hilbert problems of the introduction are

completely solved for functionals of the type (2.1) with N =1, n arbitrary:



©.54 » MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIGC SYSTEMS

in particular if F in(2.1) is an analytic function, then each extremal of
(2.1) is analytic.

During the years 1959-60 C. B. Morrey, O.A. Ladyzhenskaya,

N.N. Ural’tseva, G. Stampacchia stated analogous results for general
linear equations with noncontinuous coefficients and even for nonlinear
equations, proving that weak solutions (in the sense of Chapter I) to
elliptic nonlinear second order equations, N =1 (under controllable or
natural growth conditions) are smooth (see (18911911, [2311(2831]). This
way the regularity problem for one single equation can be considered as
solved.

Besides a result by J. Nedas [238] for a class of higher order equa-
tions in dimension 2, no result was obtained during the years 1957-68
for the case N >1. Many new proofs of De Giorgi’s result-were given
(for example by Stampacchia, Moser, Landis, etc., see e.g. [129]) but
none of these could be extended to cover the case of systems, although
there was some hope in this sense,

In 1968 E. De Giorgi [71] showed that his result for equations cannot
be extended to systems; in fact it does not hold for systems.

In the next section we shall present some examples which give a

negative answer to the problem of regularity for systems.

3. The vector valued case: some counterexamples to the regularity

Let us start with De Giorgi’s example.

EXAMPLE 3.1 (De Giorgi [71], 1968). Let Q be the unit ball around the

origin in RN, n > 3. Consider the regular functional defined in

H1-2(Q, RN)

»

o . n . 2
3.1) J[V] :f 21 lDavl‘2 + 21 ((n—2)5 +n |ITZ)Da‘V1 dx
a,1=
Q

)= a,i=

whose Euler equation is
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(’3.2)V f B(X)DBHJD ¢1dx = Vo e HIO(Q,Rm)

Q
with

X

a XX‘B .
B(X) = 8aﬁ811 +[(n 2)8a1+n F(—\——] [(n 2)8,8J+ l 12}

Lo .
a .
It is easily seen that Aijﬁ e L™(Q) and that there exist constants
0 <v <M such that

Ve < affeiel cwg2 o ve

Moreover one verifies that the vector valued function
1

u(x) = x-]xl_y y = ;—{1—[(2n—2)2+1] 24

which belongs to H12(Q, R but is not bounded, is an extremal of the
functional (3.1), i.e. a weak solution to (3.2); it is also the unique mini-
mum point for J[v] in (3.1) among the functions with vector x as pre-

scribed value on the boundary.

In order to verify the above it is sufficient to note that system (3.2) is
satisfied in a strong sense in BI(O)\{O} and then use the following

lemma,s) which is a slightly sharper version of a lemma due to De Giorgi.

LEMMA 3.1. Let Q be a bounded open set in R", n>2, x,¢Q,
u e HVZQ, RN N CZ(Q\{XO§, RY) and suppose tha\t

-D [A?jﬁ(x,u,Vu)Daui] = fj(x,u,Vu) 1<j<N

B

in Q\{xoi, where we assume that

8)It will be the same for all counterexamples which follow.
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A‘fjﬁ(x, u(x), Vu(x)) « CHQ\fx }) N L=(Q)

£, u(x), Vax) € CoQ\x o}

and
lf(x, u, p)| < alp|? +b

for x ¢Q, ueRN, pe R™W  ab constants, f = (fy, - fy). Thenit
follows that

fA?jB(x,u,Vu)DauiDﬁ¢idx - ffj(x,u,vu)¢idx
Q Q
for all ¢ ¢H' N LQ,RY) (or in HL(Q,RY) if £=0).

We note that, since x|x| 7 s the gradient of the function [x|?7Y
apart from a constant factor, it follows that u(x) = [x|>7” is a weak solu-

tion to the fourth order elliptic equation
Dy Dy [A?jk(x)DiDj ul =0

A?jk(x) being the coefficients defined above. Remark that ]xlz—y is un-
bounded for n >5.
" We refer to [246] for a counterexample of the type 3.1 in connection
with the theory of elasticity.

Example 3.1 shows that it is not possible to extend to systems
De Giorgi’s result in Theorem 2.1, and therefore to show regularity of the
extremals of variational integrals in the same way as in the scalar case.
But it leaves open the question whether weak’solutions to quasilinear

systems of the type

f A%B(u) DauiDB $ldx = 0 Ve e HY(Q,RY)
Q
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with A‘fjﬁ smooth and

V€12 < A‘;jﬁf;fgg <ME? VE WSO

can be regular. The following modification of De Giorgi’s example due to

E. Giusti and M. Miranda [138] gives a negative answer.

EXAMPLE 3.2 (Giusti-Miranda [138], 1968). Let {} be the unit ball

around the origin in R™, n > 3. The vector valued function

ux) = x|x|71

which belongs to HL2(Q,RY), is a weak solution to the elliptic system

(3.3) f A‘i"jﬁ(u)DauiD[_3 pldx =0 V¢ cHYQ,R™
Q

where

. 4 wB 4__uly®
(3.4) AijB(u) = 81] 8aﬁ + [Bﬁl + oy} lljrru|2] |:5ai + n-2 1u+‘1u\2} .

Note that the coefficients A%‘B(u) are real analytic functions in u. More-
-1 . L.

over Giusti and Miranda prove that x[x| is, for n sufficiently large,

the unique minimum point among functions v € HY(Q,R™) with v =x on

o) of the regular functional

n

Jlvl = fF(v,Vv)dx = f{ 2 IDile2 +
Q .

i,j=1
Q
3.5

n -

S (s it Iz:_lvv’?)oivi]z}dx.

i,j=1
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Exampfe 3.2 gives a final negative answer to the regularity problem
for minima of functionals satisfying natural growth conditions. But, while
it excludes the possibility of obtaining the regularity through general
results for systems of the type of system in variation, leaves open the

problem of the regularity of extremals of functionals of the type

Ju] = fF(Vu) dx .
Q

Before considering this question, let us make a few remarks.
First note 1that system (3.3) is invariant under translations, hence also
(x-x) |x—x0| is a weak solution to system (3.3). Therefore we see

that the singular set of solutions depends not only on the system but on

the solution itself,

. -1 . .
Since x|x| = is the gradient of the function v(x) = |x|, then v(x)

is a weak solution of the fourth order quasiiinear elliptic equation
D, D, (AK(Vv)D.D:v) = 0
h ¥ k\j iV =

with coefficients A}iljk given by (3.4).
Simple modifications of Example 3.2 pfovide systems with unbounded

solutions and solutions which do not belong to H12’2(Q) . The following
example is taken from [244]. o

EXAMPLE 3.3. Set

afs i 12y-2 i Bl 12y—2
= gty o [ oo 2R o oo

1+ul?x 1+ ul?|x]2V

where ’

Y O V1

(-2y)2(n-1)2
Then u(x) = x| . x, which belongs to H1'2(B1(O), R™), is a weak

solution of

f A‘fjﬁ(x, u)DauiDB Ppldx =0 V¢ ¢ Hy(@, R™)
Q

and obviously, for y > 3—5—2, it does not belong to Hf(’xz:(ﬂ).

We must mention that independently from Giusti-Miranda, analogous
examples were provided by V. G. Maz’ja [208], and now different exten-
sions are available, see for example J. Frehse [91], M. Giaquinta [105],
S.A. Arakcheev [11].

Note that all counterexamples are iﬁ dimension n >3, in fact, as we
shall see, in dimension n =2 we have regularity (at least in the case of
controllable growth conditions).

Let us now come to the case of regular integrals of the type

(3.6) Jlul = fF(Vu)dx .
Q

EXAMPLE 3.4 (NeCas [241][242], 1975). ]J. Necas presents a functional
of the type (3.6), n>3, 0QC R", with F analytic, satisfying the

growth conditions

ple@) < c,—BC 0,1,
a+lph

where u is a vector with n? components, and the ellipticity condition
|

3.7 _E_gleoP s cr vEev0
dp,] o’

holds for n sufficiently large: it is a 2-times differentiable functional

with definite positive second differential for n large. This functional has

as extremal (and, hence, as minimum point in the class of functions with
the same boundary value) the vector valued function u%x) whose com-

ponents are

' IL. AN-INTRODUCTION TO-THE REGULARITY PROBLEM /- 59
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0ij _ Xi¥j

Ix]

u

0 . . . .
Note that u” is a Lipschitz function, but it is not of class C1l. Necas

also presents a second order system of the type

(3.8) fak(vu)ok¢ dx =
Q

Ve e HY(Q, R

. , . ij
with analytic coefficients akJ . satisfying for n >3 the weaker ellipticity
condition

ad @&l > cle2

Véie>0
and for n > 5 the ellipticity condition
(39) flj aB 2
: &0 > clgl VE, c>0

aaﬁ

which has the same function uo(x) defined above as a weak solution.

Necas’ functional is the following

1 au au j M aulj aukk aulj ak 518 5 ik
[hadad s adakk ) gl auck B g g
;[{2 ax dxk 2 axi axj i6Xa>aX1 aXB(1+|VU|) dx
with

A=2 -1
n(n—l)(ns—n+1)

p = - 4 +nA )
n?_n41

One sees i 0 Té€ |
by calculation that u® is an extremal and, noting that A and p

ot
g0 to zero when n - «, one proves the ellipticity. We refer to the quoted
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paperé for the other examples. We would like to mention also [126][243]
where one can find systems of the type (3.8) with C* and analytic
coefficients satisfying the strong ellipticity condition (3.9) for n >3 and

for which u(x) = (uij) where
. 1 1
) = i 1H 5. 1x|

is a weak solution.?’

It is worth remarking that we haven’t any examples of a nonregular
function u:QC R® 5 RY n =3, which is an extremal for a functional of
type (3.6) satisfying the natural growth condition and the ellipticity

condition. 10)

However the counterexamples stated above are sufficient to say that
weak solutions to nonlinear elliptic systems or extremals of regular
integrals in the vector valued case are nonsmooth (in general).

The situation gets much worse when passing to consider quasilinear or
nonlinear systems under natural growth conditions. As we have already
seen, H1'2 is not anymore the natural class for a weak solution to start
with, and this even for a single equation (N =1) in two independent
variables (n =2), see also [191]. Now we want to give some more justi-
fication of that.

Let us consider the equation
(3.10) , —Au = |Vu|?
in the ball B(0) =ix:|x| <R} R<1, in R?, with the boundary

condition
u(x) =0 for |Xi =R

9>Note that all the counterexamples in 3.4 are invariant by translation.

10)It would be very interesting to have a counterexample of the type
u:QC R - R N = 2, 3; compare also with [193]
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This boundary value problem has the regular weak solution u(x) =0, as *
well as the irregular ‘solution’ - u(x) = log log |x| -1 log log R eHl’z(BR(O)).
(Compare with [191].) Hence we see that equation (3.10) violates the
‘principle of local uniqueness’ of weak ‘solutions.’

The same happens in the case of Euler equations of regular functionals,

as it has been noted by J. Frehse [93].

EXAMPLE 3.5 (Frehse [93],1975). Let n=2, N=1, r=e"!. The

functional

Jlul = f 1+ +eu110gle12)_1] qulzdx

B_(0)

has u(x) = 0 as minimum point in the class of functions with zero boundary

value and u(x) =12 log l;og Ix] 1 HI’Z(Br(O)) as ‘extremal.’

Therefore (in the case of natural growth conciitions) we are led to
consider definitively H12 N L™ as the natural class where to start with
weak solutions. But the most convincing argument in considering
HY'2 N L™ as the correct class is maybe the fact that, as we have
already said, weak solutions in HY2 N L™ of nonlinear equations,

N =1, under natural growth conditions are smooth, see [190] and
Chapters VII, IX of these notes. ‘

For systems, i.e. N>1, we cannot expect regularity under natural
growths, compare with Example 3.2; but because of the quadratic growth
on the right-hand side the situation becomes even worse, as shown by the
two following examples due respectively to S. Hildebrandt, K. -O. Widman

[164] and J. Frehse [92], see also E. Heinz [150].

EXAMPLE 3.6 (Hildebrandt-Widman [164], 1975). Let n=N=3. The

vector valued function

u(x) = x- x| 7!

is a weak solution to

- Au = uWu\z

1I. AN~INTRODUCTION3TO THE. REGULARITY PROBLEM o
g2 N L for the functional

f aCjul) [Vu[? dx

Q

and an extremal in

provided a(t) is a smooth function with a’(1) = -2a().

EXAMPLE 3.7 (Frehse [92], 1973). Let n =N =2. The vector valued
function u(x) = (ul(x), uz(x)) with

ul(x) = sin log log |x| -1 u2(x) = cos log log x| -1

which belongs to g2 n L, is a discontinuous weak solution of the

system
Aul = g ulru? jyy)2
1+ \ul2

2 1
CAg? = 29U Vg2
1+ \ulz

Let us explicitly remark that in dimension n =2 weak solutions of

elliptic systems with natural growths may be irregular, and moreover that
in Examples 3.6 and 3.7 the leading part is diagonal.

It is worth remarking that no variational counterexample (i.e. system
which is the Euler equation of a regular functional) of the type in Example
3.7 is available, see [158] for a discussion (see also [1421[258D).

Recently J. Frehse [96] has shown in dimension 2 a functional of the

f F(x,u, Vu)dx

Q

type

which has the vector valued function u in Example 3.7 as an extremal.

Unfortunately the function F(x,u,7) is analytic in (u, ) but only

measurable in x.
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LINEAR SYSTEMS: THE REGULARITY THEORY

In this chapter we shall present the Schauder-type estimates for linear
systems in divergence form. These estimates are well known, see for 7
example [3][73], but here we shall present a (maybe not so well-known)
method, which appears in C.B. Morrey [225] and S. Campanato [45], to

obtain them without using potential theory. This way we shall also state

a few estimates we shall use in the following.

1. An integral characterization of Holder continuous functions
1 .
Let B(x(,R) ) be the ball in R" of radius R around x,. The
well-known Sobol i 1 i
’ v S olev theorem states that if u ¢ H 'P(Bg(xg) with p>n,
then u is Holder continuous with exponent a =1 - &, [If p<n, u is
not necessarily Hélder continuous. ’ i

For x ¢Bg(xg), 0<r<&x)=R - |xx,|, letus consider the non-
increasing function

1.1) r - f [Vu]pdx.z

B (x)

The following classical result due to Morrey, see [231], states that if the
function in (1.1) goes to zero fast enough uniformly in x, then u is

Hélder continuous. More precisely we have

THEOREM 1.1 (Dirichlet growth theorem). Let’ u e Hl’p(BR(xo))
1<p<n. Suppose that for all x ¢ Brxy), all 1, 0<r<d(x)=R- |X—xol

) a use th t r e y
We shall 1so e not [e] when no confusion
ation BR(XO) or mor s1mpl s h

64
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f VulPdx < LP (g_)n—pw#

B (x)

holds with 0< p<1. Then ue CO’“(BP(X o) forall p<R; moreover if
lx-y| < ‘125) the following estimate holds:

luG) -u@)| < el ﬂﬁl_%[‘”T
< » Py [t B ]

We refer to [231] Theorem 3.5.2 for the proof.

In this section we would like to prove a more general result, due to
S. Campanato [43], see also N.G. Meyers [214], which implies Theorem 1.1
and characterizes Holder continuous functions, see Theorem 1.2 below.
This result will be very useful for studying the regularity of weak solutions
to elliptic P.D.E. Although in the following we need only Theorem 1.2, we
prefer to state it in the setting of the space Lp”\ and P defined
below. In fact these spaces are vety interesting in themselves and from
time to time they will simplify our exposition.

Let @ be a bounded connected open set in R™ and let us denote
Ux,p) = QN Bx,p)
diam Q@ = sup {|x—y|:x,y eQ} .

DEFINITION 1.1 (Morrey spaces). Let p>1 and A>0. By LPA(®)

we denote the linear space of functions u € LP(Q) such that

1
1.2) sup  p f lu|PdxP < oo

full =
LPAQ) e
0<p<diamQ Q(x,p)

It is easy to see that Hqu 5 in (1.2) is a norm respect to which

LP’A(Q) is a Banach space.
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Obviously
A

lull) < diam Q)P
b P el o g

fuall =
P00, Ilulle(Q)

hence LPUQ) =~ LPQ).

Recalling that if Ll i
uel () a.e.x, is a Lebesque point, i.e. for a.e.x

u(xo) = lim 1 f u(x)dx

p-ot 1B(O, p)]
Qxg.p)

b . .. . .
y using Holder inequality, we see that LP’A(Q) reduces to the z
ero

£ .
unction for A >n. Also from Hélder inequality we get

LLHQ) c LPAQ) 4 nzA 0=
Cif A=A *
) 1 p Z q p S q *

Finally

1
o
”u“LP,n(Q) Soglully @, = [BO,D)

lux )| < sup 1L 2 -5
ol < pP wnpn lulPdx |P Ix, p)| P a.e.x,

Q(xo,p)

therefore

1
laly < @ P llu
n ”LP’I‘(Q) :

We can ies j
collect the properties Just stated in the following proposition

PROPOSITION 1.1. We have
a) LP%Q) ~ LPQ)

b) LPAQ) ~

L)

©) LPAD) — {0} for A>n
d) LYHQ) ¢ LPAQ) if p<gq, BzA o

q

0
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One could moreover show that

1. there exist functions u e LP’A(Q) 0<A<n,
to any LI(Q) for q>p

2. L=() is not a dense subspace in LP’A(Q.).

which do ndt belong

Set

1 uG)dx .2
uXO:P \Q:(Xo, p)\ f
Q(xo,p)

DEFINITION 1.2 (Campanato spaces). Let p > 1 and A>0. By

SEP’)\(Q) we denote the linear space of functions u € LP(Q) such that

1
sup P—)\ f lu(x)—uxo’plp dxtP < +o0.

X g€
0<p<diam Q

@3y lulpx =
Q(XO,P)

QP’)\(Q) are Banach spaces with the norm
lalop g, = Ml p gy * Mo

and one sees that u e QPJ\(Q) if and only if

sup  p inf j lu-c|Pdx < oo
xéQ) ok
0<p<diamQ Q(x,p)

As in the case of Morrey spaces, using Hslder inequality, we get

n-A, 0-H

PuiKQ) c MY pla, BTz g

[
2)When no confusion may arise, we shall also write u

1
u, P:uP: f‘udx:—J f“dx'
o B
B, IB,! B,

instead of u ,
nstea xo,p

with the meaning
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Since

- p < op-1 p Y
f lu uXO,Pl dx <2 f lulPdx + 1x,, p)| ]uxo’pl
Uxgp) Qx,p)

and

|11X0,p|p < Qx| 7t -flulpdx

Q

we see that for A <n

and therefore: for <A< n we have Lp”\(Q) C gp,/\(g)‘

The following regularity condition on leads us to state exactly the

relation between Morrey and Campanato spaces.

DEFINITION 1.3. Let A >0. The bounded set Q -is said to be of type
(A) if for all xo €Q and p <diam Q

IQ(XO’P)‘ > Aph.

This condition excludes that may have sharp outward cusps; for

‘instance all Lipschitz domains are of type (A) for some A.

We have

PRO’P"OSITION 1.2. Let Q be of type (A) and 0.< A <n. Then S‘ZP;)‘(Q)
is isomorphic to Lp"\(Q) .

Proof. We have

A p -1] - n-h
(1.4) P f |u] dx < 1% p f [u~uXOJP|de+wnP luxo’plp

Qxq,p) Qx.p)

' TTY Yoo
~ IIl. LINEAR SYSTEMS: THE REGULARITY THEORY

e, i order to proveithe theorem, it is sufficient to estimate uniformly -
Hence, 1n

P;)\ gp:A ). For
pn')‘lu p\p (in fact we already know that L ) C @)
X,

0<r <R we have

P
\uxO,R’“xo,r\p < 2P Hu(x)_uxo’R\p N \U(X)—uxo’rl }

and integrating with respect to x on Ux g, 1)

p-1 _ Pdx +
<2 a f lu(x) uXO,R\

‘u"o’R—uxo’r ~ Ar
Qx5 R)
+ f \u(x)—uxoyr\pdx
Q(xo,r)
from which the estimate A o
A)lul \RPr P
1.5) luXO,R_uXO,l‘l < Cl(P¢ ) lu p,A
follows. 4 |
Set now R:; =21 R; then (1.5) implies
i
- <c,R P lul )2
-6 0 o R uxo'Rm\ -1 P,
which, taking the sum from 0 to h, gives .
, —n

R.P. .
l“XO R——uXo,thLl\ aS cz(n,p,)\, A)[u]P’A he1

i i h a wa
Choosing now h and R with diam Q<R <2diam {1, in such a way

that Ry 4 =p we get

l

PY <
2P—1{\ux0’R\P+ luXO,R_uXO,p\ § <

I

oy p

(WA

P _A-np, P
2P—1{\ux0’RlP+02P [“]p,)\}
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and finally from (1.4)

-A
P P '
; f lulPdx < const {[u]p,,\+|uX0’R[P} < const [ju

)IEP:A Q .
)Q@Op) s (4)

q.e.d.

T A
. he spaces £P and LPA are not isomorphic for A > n (this is
obvious for A >n). In fact, for example, the function u(x) = log x

. ,1
belongs to LP:1(0,1) v p>1 but is not bounded.3) Therefore

L) =~ LPA@) 7 £Pn(Qy

Let us now consider the case n'<A < n + p. We have

THEOR i i
EM 1‘.2 (An integral characterization of Holder continuous functions)

L L
t etb Iz be of t.}pe (1‘) and n <A < n p. ihe” ‘E A'(Sz') 1S ISCIHCIFIU:
o the Space C Sl w = — eovV € I 4 W
( ) Ith a . MOT over lf u g (Q) Ith

A>n+p, then u is constant in ().

Proof. Let u ¢ Co’a(Q) and X e Q(xo, p). We have

lu(x)-u, | < 2%@
< 2%%u]
XpP cO,a(Q)

and therefore

[u <
]p,/\ < const [U]CO’Q(Q) .
Now assume u ¢ £Py/\(Q) with A>n. For R>0, set R. =2-R. Fo
, i = . r
k <h, from (1.6) we get ) !
A-n

1.7 : -1
‘uXO’Rk‘uXO'Rhl < const - [u]p,ARkp .

3) 3
Note that, if we argue as in the proof o roposition 1.2, we see that the

mean values of fuﬂéthllS u € , alt ough not equi-bounded, a y
1 [p: Q 1th h i-b ded lways blow
up not faster than ilog Rl , l.e. ( )

ol = O0E .
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Therefore the sequence {ux Rh} is a Cauchy sequence for all xq e (.
0’
Then set
u(x,) = lim u .
( 0) hooo XO’Rh

Now we show that ﬁ(xo) does not depend on the choice of R. In fact

for r <R if we choose j>i such that

-1
R]+1<IISR] l'i:2 L

using (1.7) and (1.5) we get
‘uXO,Ri_uxo,ri‘ S ‘uXO,Ri_uXO,le * luXo,Rj_uxoﬁ'i‘ -
Aan An An
< const [u]p,;\[Ri | R; P ] < const [u]p,)\ "R P

On the other hand {ux Pi converges, for p - 0", in LYQ) to the func-

tion u, so we have u= u a.e., and going to the limit for h » e in (1.7),

taking k=0, we get
A-n
p

1.8) luy g—uG)| < const [uly ) - R

that is, {ux,R} converges uniformly to u(x) in Q. Now since X »>uy g

are continuous functions, u(x) is continuous. Finally we show that u

is Holder-continuous. Let x,y ¢{} and R = |x-y|. We have
1.9) |ux)-u@)| < lux,zR_“(X)l + lux,zR_uy,le + luy,2R~u(y)l .

The first and third terms on the right-hand side of (1.9) are estimated in

(1.8). For the second term we have

lux,QR_uy’QR‘ < \UX,QR—U(Z)\ + lu(z)"uy’le

and integrating with respect to z over Qx,2R) N Ay, 2R)
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lug 2r =1y Hrl < 190, 2R) N Oy, 2R)|

f Iu(z)_uxlgR’dZ + f |u(z)—uy’2R‘dy

Q
(x,2R) Q(y,2R)

i.e. using Holder inequality

A—i
,ux,zRf“y,le < const IQ(X,ZR)ﬂﬂ(y,2R)I_1[u]p )‘R_p“nﬁl

B . ;
ut {(x, 2R) N Oy, 2R) > (x,R), hence 1Qx, 2R) N Qy,2R)| > A .RD

Therefore we finally get
A-n
[u(x)~u(y)| < const [u] o 5
< u . P _
b "R = const [u]p’,\’x—yi P
I .
n order to complete the proof, it remains to estimate supu. Let y be

such that u(y) = uq; we have

’U(X)| < Iu ’ i
Q! + const [u] /\(d1am M < const u
. p, - ” HQP’)‘(Q) )

The second part of the theorem is now obvious d
. q.e.d.

Si . .
ince in the following we deal mainly with local problems, we shall

use Theorem 1.2 in the following weaker form:

THEOREM 1.3. Jf

f ]u-ux’p|pdx ScptPr 4 e(0,1]

B
p(X)

[ . :\/\ . ‘
or X 1nan open set Q and for all p < min (R, dist (x, Q) (for some

R . .
o), then u is locally Hslder-continuous with exponent a in )

REMARK i 3
1.1. Because of Poincaré’s inequality
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f \u—uxoplpdx < const pP f |Vu|Pdx

- it is clear that essentially Theorem 1.1 follows from Theorem 1.3.

REMARK 1.2. Theorem 1.2 permits to prove also Sobolev theorem: if

- ue HU'P(Q) p>n, then ue C;)o'(lz_n/p(ﬂ). In fact, by using Poincaré’s

inequality, we obtain

— < . \ <
f Ju uxo,pidx < const - R f Vuldx <

Bp(xo)

1 n
- fn-_—+1
< const( f W“ipdx)p Rn P ’

Bp(xo)

BP(XO)

We have not considered the case A = n. Actually studying the space
PPN(Q) requires deeper results. One could show in the case (1 = ‘a cube
of R’ = Q, that £P:N(Q), also called BMO (the space of functions with
bounded mean oscillation), is isomorphic for all p to the so-called John-

Nirenberg space gO(Q) , which can be defined in one of the following
equivalent ways:‘
DEFINITION 1.4 (John-Nirenberg space). u belongs to gO(QO) if and

only if
a) there exist two positive constants H and B such that

meas {x €Q: {u(x)—uQI >0} < He‘:80|Q|

for all 0> 0 and all cubes Q with edges parallel to the ones

of Q0
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b) there exist two positive constants k and M such that for all

cubes Q with edges parallel to the ones of Q,

fexp(k!u—uQ’)dx < M|Q] .
Q.

We shall not prove this characterization, for which we refer to F. John,
L. Nirenberg [178].

We end this section with a few bibliographic remarks and some exten-
sions of the above results.

Special cases of Morrey spaces were introduced by Morrey already in
1938. The result due to John-Nirenberg [178], which probably is the
deepest one in this field, is of 1961. But it is after 1960 that these
Spaces were introduced in a systematic way'by S. Campanato [43][44](46]
and studied by many authors, among others [49][47], N. G. Meyers [214],
G. Stampacchia [280](281], J. Peetre [251], L. Piccinini [255] (see also
the references of these papers). A systematic approach can be found in
S. Campanato [53], A. Kufner, O. John, S. Fucik [187], E. Giusti [135] and
J. Peetre [251] for what concerns mainly the interpolation theory, ¥

Extensions and generalizations of these spaces are also available: we
refer to the works quoted above and to their references. Here we confine
ourselves to quote only one extension due to Campanato [44] and state an
interpolation theorem [281][47].

Let us denote by ‘?k ,» k a nonnegative integer, the class of polynomial

in x of degree <k.

DEFINITION 1.5, gﬁ’)\(ﬂ) P>1,A>0, k>0, is the class of functions
u ¢ LP(Q) such that

[u], A = sup ™ inf [u@)-P(y)[Pdy| < +o .
k XEQ Pe k
. >0 Q(x,r)
-
) 4)Maybe it is worth remarking that .gp’/\(ﬂ) are good spaces of interpolation:
BMO is the dual space of Hardy’s space, see Fefferman-Stein [88].

7s
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Then we have N
a) for A>n+ (k+1)p, 531?;' Q) = ?k

for k=1 N oA
) if 0<A<n+p, & (Q)Az [R2(0)! N

~ 1l,a _
i) if nep<Ai<n+2p, @ = CVAY), a=—F—

A 0,1
i) for A=n+p, & ic «©.

For k>1 we have

A p,A
i) for 0<A<n+kp, Si @ = £ @
ii) for A =n+kp we have a limit space ék(ﬂ) .
A k,a _A-n_ 4
P ~ cky), «
iii) for n+kp <A <n+(k+1)p, Ek Q) = co%D) 5

' i 81] permits
The following interpolation theorem due to G. Stampacchia S ) p
i elliptic
to avoid potential theory in studying the LP-theory for 1;ne:r f;;r
icati -theor
systems, see [58] (see [123] for an application to the L y
stationary Stokes system).

in R" ube in
THEOREM 1.4. Let Q be a bounded open set 1 R and Q ac

S T:LP(Q) -~ LPQ) for p, 1<p <+°°‘
T: 6D »> &5Q)

and MZ' Then T

. g M
be linear and continuous with norms respectively M,

is linear and continuous from

LyQ) - LYQ)

for all q, p<q<+ and

ITal g q, < ¥l g q,

where k =k(n,p,q,M;,M,, \Q\/\Q\)

2. Linear systems with constant coefficients

I thl eC‘ 10n we s consi T 1 nea 1 p y
n S S hall ons (le 1 e‘ I el iptic s stems Keduced to the
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leading part with constant coefficients >’

@1 D0 iy,

Elliptic means that the coefficients satisfy the Legendre-Hadamard
condition

@.2) A;Bfagﬁqini >vIEPR vg & s

and we shall prove two simple estimates, see [45] [225]. These two esti-
mates (Theorem 2.1 below) will play a fundamental role in the whole
regularity thepry, and not only for linear systems.

Let us start by proving a very simple estimate to which we shall refer
as Caccioppoli inequality : '

PROPOSITION 2.1. Lef u e HI(Q, RY) be a weak solution to system
(2.1), i.e.

By o i 1 N
2.3) fAij DﬁuJDa(;Sldx:O Ve e Hy(Q,RY) .
RY)
Then for all Xg € andall R< % dist (x oK) the following inequality
holds
(2.4) . f IVu!?dx <L f [u]?dx .
RZ

Bplxg) B,p(xq)

As we shall see, Caccioppoli type inequalities hold for a large class

of linear and nonlinear elliptic systems (see for example the beginning of

Section 1 Chapter II and Chapter VI) and despite their simplicity, they are

the starting point of the regularity theory: one could say that once

-—

S)We shall confine ourselves to second order systems, but one can see that

just by formal changes all resuylts of this section (as well as of this chapter)
extend to higher order systems,
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~ Caccioppoli inequality holds then we have some result of regularity,

although this is not completely true.

Proof. Although it is a very simple and standard one, let us give the

roof (see Chapter II). Let 7 be a standard cut off function, i.e.
P

_ Vnl <€/, . Inserting
77€C000(B2R(X0)’ OST]SI’ T).—:l on BR(XO)’ | Tl\— R

¢ = unz in (2.3) one immediately obtains

f A‘ileB Dg(uln) Dy(ulmdx < c{ f luf V7] [V(un)] +f|u12Wfl‘2} :

Now by means of Fourier transform, we see that

VflV(un)lzdx < J‘A(iljﬁ DB(ujTl) Da(uin)dx

i q.e.d.
and the proof can be easily completed.

REMARK 2.1. Going into the proof of Proposition 1.1 (choosing 7 as
¢ d noting that if u
before but with =1 on Bp and |Vp| < /R—p ) e.m g e
is a solution to system 2.1'also u-A, A =const, is a solution, o
immediately that Proposition 2.1 can be stated in the following stronger
1
form: if u is a solution to system (2.1), then for all x, €} and for a

p <R <dist(xy, ) the following estimate holds:

2 _c “A2dx .
(2.5) f [Vu|“dx < (R_p)2 f lu

B, () BR\BP

REMARK 2.2. By using the quotient method and Caccioppoli’s estimate,
. ‘ . - - h
as we have remarked in Chapter II, one can prove immediately higher
i . all weak
regularity for weak solutions to system (2.1). For instance: all’

1 i . let u be a weak
solutions are C™ functions; more precisely we have awed




78  MULTIPLE INTE Qe : J
TIPLE INTEGRALS AND NON]"_;INEA‘R ELLIPTI(C, SYSTEMS

solution to syst . : : s
ystem (2:1), then for all Br /», CBg CQ andall k

2.6) fall

< c(k,R) ul 6
HY(Bg /,) ILZ(B , )

R

see e.g. [2][233].
We now state the two estimates:

T .
HEOREM 21. Let u be a Weak SOIUtIOn to S}’Stem (21). Jhen thet'e
. { { ’ ? ?

for i
each xg €{Q and 0<p <R <dist (x o 9 the following estimates

hold
2.7) 2 p\1
ul?ax < o£) Ju[2dx
Bplxo) Bp(x)
(2.8) f lu—u 24y < o n+2
xgpl 9% < C(ﬁ) , ’“*“xo,R|2dX-
Bp(xo) BR(XO)

Proof. L R i
et p<7/y and k>n, using (2.6) and Sobolev imbedding

theorem, we obtain

2
f lul®dx < cp® sup |ul? < e®R)p"lull k
By (xg) HY(

<e®)p? f lul?dx .

Brixg)

B, (xg) R/2

6)
Let us re

clase ok Wint:r; that (2.6) holds also for elliptic systems with coefficients of
Coefﬁgiems - f':ourse c.(k, R) depending also on the Ck— norm of the
Continuity s ;)fr'o\{uied R is sufficiently small (depending on the modulus of
Pl iio(fnelefir‘:tts). dTl:s can be seen by differentiating and freezing the
An. - and then worki i i a
incquality. W refer amnie o [2] [239] ng as in the proof of the classical Gérding

 inequality (2.5) on the right-hand side.
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Now it is easily seen, using a rescaling argument, that
(R) = const R, ie. (2.7)with p< R/2 . Since (2.7) is obvious for
< R/2 , we have (2.7) for p <R. Estimate (2.8) can be proved in the

ame way; or it is enough to note that the derivatives of u are also weak

solutions, hence from .7

f qu[de < c(l%)n f ]Vul2dx

B,(xg) Bp(xg)

and to use Poincaré inequality on the left-hand side and Caccioppoli
q.e.d.

REMARK 2.3. It is worth remarking that estimates (2.7) and (2.8) hold for

all derivatives of u, since all these derivatives are weak solutions of

system (2.1).
Let us recall that for u ¢ Hm'p(BR(x o) there exists a unique poly-

nomial P _,(x) = mel(XO’R’ u; x) of degree <m-1 such that

f D*u-P _dx = 0

Br(xg)

forall a, la|<m-1-

C
Pm—l(x> = 2 E‘B‘ (X_Xo)'B

la|<m-1

CB’a R*IH-Z!(I‘ f DlB+2audx

2|al<m-1-|B| By (xg)

with €B,a =B o m, B,a).
Moreover the following Poincaré type inequality holds: For every

0 <s<t<m there exists a constant ¢ = c(n,p,s,t,m) such that
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f S, DYu-P_ )Pax <

BR(XO) b/lzs
< p(t‘s) .
< ¢R f S IDY(u-P,_)[Pdx .
Bg(xg) b’[:t

Then we immediately get

REMARK 2.4, Let u be a weak solution to system (2.1), then

(29) f ’U—Pm_l(xo, p,u; X)l2dx S C(I%)ﬂ+2m f quz .

Bp(xo) BR(XO)

Now we would like to prove a more precise estimate of the type (2.7)
for harmonic functions. We have:

PROPOSITION 2.2, Let u be a subharmonic function, then the function

R - R1T fudx

Bg

Is a nondecreasing function,

Since if u is harmonic u2 (and |Vul?) is subharmonic, from

Proposition 2.2 the estimate (2.7) follows with ¢ =1 .

Proof. From Gauss-Green formula it follows

< dll ~1 d
0 < f g do = R" iE f u(x,+R6O)dg

aBR(xo) dB(0,1)

1IL° LINEAR SYSTEMS: . THE REGULARITY THEORY: .4 g1~

e. the function R - f u(x0+R0)d0 is nondecreasing. Therefo/re/.u,
'. 0B(0,1)

R
f udx ‘f p"dp f uxg+po)do <
0

Bg(xg) JB;(0)
R
§f pnf1 dp f u(x,+Ro)do = gn f u(x,+Ro)do =
0 dB(0,1) JdB(0,1)
= lé % udx
B

And now since ¢(t) < -lt; @’(t) implies that k @(t) is nondecreasing, we

.e.d.
can conclude. :

Let us prove a few results, which are well known for harmonic func-
tions, and are a simple consequence of the established estimates.
Let us start by considering Caccioppoli inequality (2.5) and let us

-1
choose p = R/2 , A =[Bg\Bg /! f udx. Then we get

. BR\BR/Z
2
(2.10) f IVul?dx < 1—5—2 f ‘“’“BR\BR/z\ &
BR/Z BR\BR/Z

and using Poincaré inequality

f qulzdx <c f \Vu]zdx.

BR/2 BR\BR/Z
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Now filling the hole, see [300], i.e. adding ‘¢ times the left-hand side we

get
f IVu|?dx < ¢ f{Vu|2dx 0=_CS_<1.
- c+1
BR .

Br/2

From which it follows immediately, for R - oo, that: the only entire weak

solutions to (2.1) with bounded Dirichlet integral are the constants. This

result follows immediately also from (2.8).7

Now let us assume u bounded and n =2; then from (2.10) it follows

f IVu|?dx < const independent of R

Br/2

therefore: -in dimension 2 the only bounded solutions to system (2.1) are

the constants,®) compare also [94]1{209][210].

It is worth remarking that these Liouville type theorems follow by

using only Caccioppoli inequality, therefore they hold for instance for
systems of the type )

- Da[A?jﬁ(x)DBuj] =0 i=1,-,N

with coefficients A;.‘B eL™ and, satisfying the strong ellipticity condition

Bisi o e .
AG Gakh 2R w0,

From estimate 2.9) we immediately derive: if u is an entire weak

solution of system (2.4) which grows polynomially at infinity,

polynomial,
-

More precisely we have: if R !
u = const.

then it is a

f 'Vulzdx -0 for R>+o0, then
. BR
8)Using the remark in the footnote 7) (this chapter):
n>2, then:.f IVu|2 <R7? J ‘ulz < cR72
B

R Bor

if u is bounded in Rn,

, therefore u = const.

LI LINEAR SYSTEMS: THE REGULARITY THEORY © = 83+

Finally we would like to refer to [123] for extensions of the results of:

| this section to systems of the type of stationary Stokes system.

In the following we shall need the maximum estimate stated below

| ion 1 2.1
PROPOSITION 2.3. Let u be a weak solution in Bp to system (2.1)

ith u=¢ on 0By and ¢ bounded. Then u is bounded in By and
wi = :

sup |u| < ¢ sup ‘95‘
BRpH, oo

with ¢ ‘independent of R.

by means
This result is a consequence of a more general result, proved by

i also
of a representation formula for the solution u, (see Canfora (59], see

[263]).

Actually it will be sufficient for us to have it in the following weaker

form (cf. [60]).

: 2,n—2 nN
PROPOSITION 2.4. Let ¢ ¢ H''2 N L=(Bg,RY) with V¢ elL gaR,R )
and let u be a weak solution to system (2.1) with u — ¢ e Hy(Bp, RY).

Then sup [u| < clsup |p| + [Vl

-
2,n—-2 nN
L=072Be, R
Br Br R
with c ‘independent of R.
Proof. Let x ¢eBy and ,
d = dist(x,dBg) = lx—y| y ¢ By .

We have for all 0<p<d

flulzdxfc(gi)n f|u12§c(§-)n f [u}? <

B, (x) By B2aNBR

p
o(3) d“s};glgb\% f b2 dx

B(y,2d)NBg

I
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As Poincar€ inequality is valid for u -¢ in B(y,2d) N By (see for"
example [278], in fact the function u — ¢ is zero on a sufficiently large
subset of JB(y, 2d)f“lBR ) we obtain

ln f lul?dx < c|sup |¢|2 + 42N f IV(u - ¢)|? dx
Br

P
Bp(x) BZd(Y)nBR

which concludes the proof, since from the global version of Theorem 2.2

below, see [45], also Vu ¢ L2’H‘2(BR), . q.e.d.

Finally, let us consider linear nonhomogeneous elliptic systems with

constant coefficients reduced to the leading part:

(2.11) DA D) Dm0 o1

In order to illustrate the idea of C.B. Morrey [225] and S. Campanato [45]

we want to prove now:

THEOREM 2.2. Let us suppose fia € glz(;-)‘(ﬂ), A<n+2, and let
' C
ue Hlloc(Q’ RN) be a weak solution to system (2.11). Then
2,A nN d @ o,u S 1 ... =1, ..
Vu E£10C(Q’ R"™). In particular if £ eCIOC(Q) i=1,-,N a=1,--.,n
then the first derivatives of all weak solutions to (2.11) are Hélder con-

tindous with exponent y.

Proof. Let Bg(xg) CCQ and let v e H'(Bg(x), RN) be the weak solu-
tion to the Dirichlet problem?’

aB i
fAij DBV DaqS dx =0
Q

Vb e H{(Bg(xy), RY)

vV-u e HIO(BR(XO), RY) .

9)The existéfhce of such a functicn is an obvious consequence of the well-
known Lax-Milgram theorem.

’
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By Theorem 2.1 and Remark 2.3 we have for all p <R

’ P n+2 Zd
(2.12) f WV_(VV)xO,p‘deSC ﬁ) IVV—(VV)XO,R\ X .

B, (xo) Br&g)

On the other hand, if we set w =u-v, we have w =0 on 0dBy(xq) and

o . . N
fA?j‘BDBwJDa¢‘dx f (ff‘_fi",‘xoﬁ)oa<¢>1 Vé cHYBE RY).

By (xg) Brixg)

"In particular we may take ¢ =w, so that using the ellipticity relation

and Hoélder inequality we easily get

f‘VW‘ZdX E C f\f—fXO,Rlde .
By Bg

(2.13)

" Now putting together (2.12) and (2.13) we obtain immediately

n+2 )
f |Vu—(Vu)X0,p|2dx < cl(%) f |Vu—(Vu)XO,P| dx +

BR(XO)

+c, flf»fxo’Rlzdx
BR '

and because of the assumption on f

Bp(xo)

n+2 2
2.14) f \Vu—(Vu)XO,dexgcl(%) f IV““(V“)XO,RI dx +

B BR(XO)

p(xo)

+ °2[f]£2,)\ : RA .
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Now the result would be a simple consequencke of Theorems 1.2, 1.3 if in

"(2.14) we could write const [f]gz,/\'p)\ instead of Cz[f]£2,A'RA‘ This

is in fact possible and is stated in the lemma below (cf. [45][225]1[123]).

q.e.d.
LEMMA 2.1. Let ¢(t) be a nonnegative and nondecreasing function.
Suppose that

$(p) < A[(l%)a ; e] #(R) + BRB

forall p <R<R, with A, a, 8 nonnegative constants, B <a. Then

there exists a constant €g = €o(A,a, B) such that if €< £g, forall
p <R <R, we have

s < (8) o+ 2]

where ¢ is a constant depending on «, B, A.

Proof. For 0<7r<1 and R<RO, we have

B(R) < A%l +e %] &(R) + BRB .

Choose now 7 <1 in such a way that 2Ar% = 7Y with a > y > B and
assume that £OT_a <1. Then we get for every R < R,

$(R) < 1Y HR) + BRB

and therefore for all integers k > 0

¢>(rk+1R) < rqu(TkR) + BrkBRB <

I

k
rk+t DY (R) 1 BrkBRB E AP <

j=0

IA

cr&DB4R) + BRA] .

Choosing k Such that rX*IR < p < KR , the last inequality gives at

once (2.15). q.e.d.
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3. Linear systems with continuous coefficients
Let us consider linear elliptic systems with variable coefficients of
the type

3.1 '—Da<A%B(X)DB“j)+Daff=0 i=1,-N.

We have:
THEOREM 3.1. Suppose that A?J,Beco(ﬁ) a,B=1,n, ij=1,-,N,

fia € LQ’A(Q) 0<A<n, and let u be a weak solution to (3.1). Then
Vu ¢ LZ’A(Q, R™) and for all QO cCc
loc

10)

1Vul < o@,9)![Vu]

f }.
LZI’\(QO,R“N> Lz(Q,R“N)Jr | “L2')‘(Q,R“N)

Proof. We use the standard Korn’s device of freezing the coefficients.

Let Bp(xy) CC Q, in Bg(x,y u is a weak solution to

. ) .
- Da(A(-:j'B(X())D ul) + DaFi =0

B

F{ = £+ [A?jB(xO)—A?jﬁ (X)]Dﬁ ul .

Therefore as in the case of a system with constant coefficients using

(2.7) for Vu, we get

f ]Vulzdxgcl(pﬁ)n f}Vul2+c2 f]f—lezdx+c3m2(R) fqulde
Br Br Br

Bp(xo)

where o(R) is the modulus of continuity of the coefficients on Bg(x):

“ 1/2
o(R) = sup {2 IA;ﬁ(X)—AiJ—'B(XO)lz} :

BR(xO)

10)Of course C(Q, QO) depends also on the modulus of continuity of the.
coefficients.
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Now if R is smaller than some Ry, c3co‘2(R) is small enough anii we

can use Lemma 2.1, obtaining the result immediately. - q.e.d.

Note that if f ¢ L2 n-2+2p
oc, 0<,1<1

weak solution u is locally Hélder continuous with exponent . 1

then Vu ¢ L1262—2+2# and therefore the

THEOREM 3.2. Suppose that A ﬁ eCY HQ) ij=1,---,N ,a,B=1,.

f ecO#Q, RNy o< p<t, and Iet u be a weak solution to (3.1). Then
Vu ec,loog(s), R™) and for all Q,ccQ

[Vu]o,y,QO < cf|fVul| b,

L2(Q,RnN)+ “f“CO,y(Q,RnN)

Proof. As in Theorem 3.1, using (2.8) for Vu we obtain for BPCBRCCQ

(3.2) f[Vu (Vu),|2dx < c (”

B
P

f‘vu (VU)RI dx +

f_ 2 a)B . R2HU 2
f| frl dx +c, sup[Aij ]0,;1 R f|Vu|

Bp Bg

and, since we know from Theorem 3.1 that Vu ¢ L207€ yg¢> 0, we

n2 [
f qu—(Vu)pl?'dx < Cl(l%) IIVu—(Vu)R|2dX +
Bp Bp

obtain

f|f—le2dx + ¢, ROF2HE

Br

i.e., using Lemma 2.1, that Vu e Cﬁ;g(ﬂ) ,» forall B <pu. In particular

11
M rle L @) p>n, then £ e L2242 p=1-1.
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o Vu is locally bounded. We may then use inequality (3.2) again getting

f|Vu (Vu) |2dx < ¢ (p flvu (VU)R|2dX +

cg RO+2p
which concludes the proof, still through Lemma 2.1. q.e.d.

Theorems 3.1 and 3.2 are taken from S. Campanato [45]. They also
appear in Morrey [225], the proof of Theorem 3.1 being essentially the
same, while the proof of Theorem 3.2 is less transparent. Campanato’s
approach, which we have described, is instead more simple and useful.
The method used here can be also used for showing regularity of weak
solutions to complete (and even higher order) systems. With simple sup-
plementary tricks it can be used for studying the boundary regularity (see
[45] for the Dirichlet problem; but the same method works for example for
the Neumann problem, see e.g. [123]). Then one is allowed to use the
interpolation Theorem 1.4 (also locally) getting this way the LP-theory
for linear systems without potential theory, see [58][123].

Finally we would like to remark that the following result on higher

order regularity can be easily deduced:

THEOREM 3.3. Suppose that At,z_ﬁ € Ck’“(Q) , fe Ck’f‘(Q,RnN),

0<u<1, andlet u bea Weak squtzon to (3.1). Then
ue CEIHQ,RY).




’ Chépte’r v

SYSTEMS IN VARIATION: THE INDIRECT APPROACH TO -
THE REGULARITY

As we have seen in Chapter I, there is no hope of proving everywhere
regularity for weak solutions to nonlinear elliptic systems, even in the
simple case L
(0.1) ~Da[A?jB(x, u)DBuj]:O i=1,,N.

The aim of this chapter is to present some partial regularity results for
solutions of some nonlinear elliptic systems, essentially systems in
variation of nonlinear systems satisfying controllable growth conditions.

These results are due to C. B. Morrey [232], E. Giusti, M. Miranda
(139], E. Giusti [131] and are the starting point for the regularity theory
for nonlinear systems. They read as: let u be a weak solution; then u
is smooth in some open subset Q,CQ, and the singular set Q \Q, is
small. "

Roughly speaking, the main idea of the proof is the following one: If
some quantity, for instance F Iu—ux R|2dx , that ‘measures’ the
BR(XO) o’
regularity in a neighborhood of Xy, is small enough, i.e. u varies very
little for x near Xq, then the blowing up of u happens to converge to
a solution of the ‘tangent operator’ which is a constant coefficient opera-
tor; therefore X, must be a regular point for u, as it is for the limit of

the blown-up functions. This idea is very similar to the one used by
E. De Giorgi [70] and J.F. Almgren [4] for proving the regularity of para-

metric minimal surfaces.
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1. Quasilinear systems: almost everywhere regularity

In order to illustrate the main idea, let us start with the simple quasi-

linear system

N n
1.1) 2 2

A‘:J,B@, u)DauiDB pldx =0 V¢ eHLQ,RY)

L,j=l q,B=1 Q
where A(.I.B(X,u) are continuous functions satisfying
1]
af <L
(1.2) A4 (x,wf <
aB £ pi )
a3 afeiel 22 ve.

\ a .
For the sake of simplicity let us assume that the Ai.B are uniformly con-

tinwous functions in Q x RN. Then we have, compare with [139]

THEOREM 1.1. Let u ¢ HYQ, RY) be a weak solution to (1.1). Then
there exists‘ an open set {}, C{ such that ‘u is Hoélder continuous in

Q

0’ and
meas (2-Q,) = 0.
The proof uses the following three facts and is essentially contained

in the Main Lemma 1.1 below:

(a) Caccioppoli inequality: for 0 <p <R <dist (XO, a0)

f ]Vu\zdx < (RQ : f lu|?dx
‘ P

B Gxg) ~ Qplxg)

where Q = Q(n,N,L). 7
(b) Estimate (2.8) Chapter III: let b(ilj’8 be constants satisfying (1.2),
(1.3); then there exists a constant c = c(n,N,L) such that if

V€ Hl1 n LZ(BI(O), RY) is a weak solution to
oc
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aBp ip 4 1
fbij D,v DBc]Sde:O V¢ eHy

B
p

then for all 0<p <1 we have
U0, p) < cp?U(0,1)
where
U(xy,R) = R f - 2dx .
0 |ll uXO’R‘
BR(XO)

(c) Let a;ﬁjh) be a sequence of measurable functions satisfying
(1.2),(1.3) and converging a.e. in B(0, 1) to a(ilj‘8 verifying (1.2)
(1.3). Let uy, be a sequence in Hlloc N LZ(BI(O), RY) such that

(1.4) A g yugyd) = f a;’?h)(x)Dau%h)DBqﬁjdx =0 V¢ ¢CL®B(0,1),RY)

and
Upy>u  weakly in LB, (0),RY) .
Then u cH; (B,(0),RY) and for all p<1
(1.5) g, > U strongly in 'LQ(BF')(O),RN)

(1.6) Vu<h) > Vu weakly in LQ(BP(G), Ry

and moreover

(1.7)  Aw, o) = f a;B(X)DapiDB Hldx = 0 V¢ ¢ CL(B,(0), RY).

Proof of (a)(b)(c): (a) It is sufficient to take, in (1.1), ¢ = un® with 7

the standard cutt-off function, compare with Section 2 in Chapter III.
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(b) See Theorem 2.1 in Chapter III.
(c) Since the Uy, are equibounded in LZ(Bl(O),RN), from

Caccioppoli inequality it follows that Vu<h) are equibounded in
Lz(Bp(O), RN) for p <1. Then (1.5) and (1.6) follow. Now we prove
(1.7); we have

(18) A(h)(u(h): (]S)*A(U, ¢) = A(u(h)—u, ¢)+A(h)(u(h)’ qS)—A(u(h), (;S) .
From (1.6) we obtain
A(u(h)-u,(j))eo for h -

while if p <1 and spt ¢ C BP(O)

|A(h)(u(h): ¢’)—A(U(h): ¢)| < fla(h)(x)—a(x)\ |Vu(h)| lv¢| dx <

1/2 1/2
< c(qS)(f \a(h)—a|2dx) ( f IVu(h)|2dx>

B p(O) BP(O)
and therefore
A(h)(u(h)’ @) — A(u(h), @) -0 for ho-eo
which, through (1.8), finally gives
A(h)(u(h)x (;{)) - A(u) ¢) - 0 .
This concludes the proof because of (1.4). g.e.d.

MAIN LEMMA 1.1, Forall v, 0<7<1, there exist two positive con-
stants ey =¢4(7,n,N,L) Ry =Ry, n,N,L) such that if ue HY(Q, RN
is a weak solution to (1.1) and for some Xq € {1 and some R <R, A

dist (x, d) we have

(1.9) U(xq,R) < €}
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then
(1.10) U(xy, 7R) < 2¢72U(x,, R)

where c 1s the constant in (b).

Proof. Let us assume that the lemma is not true. Then there exist
r, 0<7 <1, a sequence {x(h)§ C{}, a sequence &, - 0, a sequence
Ry - 0 and a sequence Uhy € HI(Q, RY) of weak solutions to (1.1) such

that
U(h)(Xh, Rh) = gﬁ

U(h)(xh,rRh) > 2c¢ r2eﬁ .
Translating X}, into the origin and blowing up, i.e. setting

’ -1
e R

we have

af h i '
f Ajj Ctn+Ryy, ey )(Y)+“<h>xh,Rh)DaV?h>DB¢de:0 Ve eCo(B1(0),R™)

B, (0)
h
V( )(0’1) = f|v(h)(Y)|2dy =1
“ B,y
1.11) v 1) > 2cr2

Now, passing eventually to a subsequence, we have
Vihy @V weakly in LB 0) RN)
( ) y 1 b

Ve - 0 a.e. in B,(0)
pP

a3
Al] (Xh’u(h)xh,Rh) - 1)

IV.- THE INDIRECT ,A'PP,RQACH TO THE REGULARITY

B

and, hence, taking into account the uniform continuity of the A;x; SWe
J

have
af3 a3 .
Aij (Xh+Rhy’ Ehv(h)+u(h)xh,Rh) > bij a.e. in BI(O) .

From (c) then we get

fb‘i"jBDaviDﬁcﬁjdx -0 V¢ eCLlB(0),RY)
B
and hence, because of the estimate in (b), we must have
V(0,7) < ¢7r2V(0,1) .

On the other hand, using the semicontinuity of the norm in L2 V(0,1) < 1 ,
and because of (1.11) and (c)

v(0,7) > 2cr? .
Therefore we obtain a contradiction. q.ed.

Proof of Theorem 1.1. Let 0<a <1 and choose 7 in such a way that
2cr%72% - 1. Let x;¢Q and R<R;Adist(xg, 00) be such that

(1.12) U(x,R) < e3(r,n,N, L)
then we have from (1.10)

U(x, TR) < 72 U(x(, R)
and hence

Uz, 7R) < Ulx,R) < g5 .
By induction, it follows for every integer k

Ulx o, *R) < 722K U(x(, R)
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and hence for every p <R
' 2a
(1.13) Ulx g, p) < const(l%) Uk, R) .

On the other hand, since U(XO, R) is a continuous function of xg, if
(1.12) holds for a point Xq € 0, then there exists a ball B(x o- 1) such

that for every x e B(x,r) we have

2
U,R) < £y -

We then conclude that (1.13) holds uniformly for all x in B(xo, r), and

therefore for every x ¢ B(x, 1)

f lu(Y)fliX,pizdx < const ptt2@

B
p(X)

so that u is Holder continuous in B(x, 1) with exponent a, 0<a<1,

see Theorem 1.3, Chapter III. In conclusion, there exists an open set

QO C @ such that the solution is locally Hélder continuous, with exponent
a, in QO' Note that the set Qo is nonempty and independent of a, in

fact x4 ¢ Q, if and only if

lim inf f[u~uY R|2dx =0.
X
BR

R—>0+

From that, since for almost every x ¢}

Ux, p) = f |u——ux,p|2dy—>0

BP(X)
it follows also the estimate

meas (A\Qy) = 0. g.e.d.
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Let us remark explicitly that we have also proved that the singular

set is given by

ONQ, = {xeQ:1im inf f |u_uXO’R.|2dx>0
R-0T
BR(XO)
We would like to note that Theorem 1.1 holds also under the weaker
assumption that the coefficients A?jﬁ(x, u) be only continuous in Q x RN s

but in this case we have only

O\Q,C{xeQ:lim inf f Iu_ux,R|2dX>0 u N

ReO+
Bp(x)

U {x :sup lu, gl =+ oo},
R E
More precisely we have

THEOREM 1.2. For every My >0, there exist two positive constants
egyRg such that if u(x) is a solution to system (1.1) in Q ( A ’8 being

only continuous in Q x RN), and if for some x,€{ and R< R A

dist (x ), o)
1
f |u|2dx<Mg f |u—ux0,R]2dx<sg

BR(XO) BR(XO)
then u is Holder continuous in a neighborhood of Xg-

We omit the proof and we refer to [139] for it, since we shall see a
different proof in Chapter VI.

The method described in this section applies to the study of more
general systems; in Section 4 of this chapter we shall see some of the

results that have been obtained.

Dinstead of f |u|2 dx < M% one could require lux R| <Mg.
0!
BR(XO)
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We first want to improve the estimate of the measure of the singular

set, precisely we want to present the result by E. Giusti [130] that per-

mits to state:

H=2\e) = o

k . . .
where H¥ is the k-dimensional Hausdorff measure. We shall do that in

the next section, while in Section 3 we shall say something more about

the singular set.

2. The singular set

Hausdorff measure. First let us rapidly recall the definition and a few
properties of the Hausdorff measure. Let X be a metric space and ] be
a family of subset of X containing the empty set. Let

¢:J > [0, + 0]

be a function such that ((¢) = 0. Whenever E C X, we define

u{(E) ~ inf {2 LRy Fy ], UFy O, diam Fy < e} .
h=0 -

The fact that p > Es for 0<e<8 <+ implies the existence of

wE) = lim p(E) = sup pu(E) whenever ECX.
E—>0+ £0 .

The set function p is called the result of Carathéodory’s construction
from and J - it i [ }
¢ J -and it is usual to refer to ke as the size ¢ approximating

measure.

It is easy to verify that u is an outer measure for which the Borel
sets are measurable.

Appropriate choices of ¢ and J yield measures i of basic geo-
metric importance; several such measures are defined and studied in
H. Federer [85] to which we refer for more information. Here we are

1ntereste'd in the so-called k-dimensional Hausdorff measure in RD

’
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which corresponds, for X = R , to choosing

J = the family of open sets in R
@.1) (F) = o) -2 ¥diam F)

wy = measure of the unit ball of Rk

and is denoted by Hk(E) , l.e.

}(k(E) = 2_kwk sup inf {2 (diam Fh)k ;
&0 h=0

o0

{F},} countable family of open sets,

Fy DE, diam Fy < e} .
h=0

It is usual to define also HOE) as follows: whenever E contains a
finite number of points, then HOE) is just the number of points of E,
otherwise }(O(E) =400, HO is called the counting measure.

One easily verifies that one obtains the same Hausdorff measure Hk
by letting J be the family of closed subsets of R" or the family of all
subsets of R". Therefore K% is a Borel regular measure.

With the same choice of ¢ in (2.1), but letting J = the family of
balls of R", the result of Carathéodory’s construction is called the

k-dimensional spherical measure on R, denoted by Sk , and clearly

HkE) < SkE) < 2KHKE) .

" But it happens that Hk L Sk in general.z) Note anyway that the subsets

of Hk measure zero coincide with the ones with zero Sk measure.
It is easily seen that if }(k(E) is finite then }(k+E(E) -0 V>0,

it is usual to define the Hausdorff dimension of a set E as

dimyE = inf fkeRT:HEE) = 0},

2)See for example Besicowitch, Math. Ann. vol. 98 (1927), vol. 115(1938),
vol. 116 (1939). :



B T e T

100 MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIC SYSTEMS

Finally we have: i) the n-dimensional Hausdorff measure coincides
with the outer n-dimensional Lebesgue measure, and therefore for a

Lebesgue measurable set E
HuE) - €nr)
ii) subsets E with zero K0! measure do not disconnect ().

On the pointwise definition of H1/P functions. It is well known that
Llloc functions can be defined almost everywhere as limit of their
averages on balls. The following theorem gives an estimate of the dimen-

sion of Lebesgue points for H!:P functions:

THEOREM 2.1. Let Q be an open set of R and let u be a function
. 1,p <
belonging to Hloc(Q) p<n. Set

G :§Xf-Q:;I1im uXP}U{XfQ: lim luxp‘=+°°}'

p->0* p-0T

Then for all ¢> 0

Hn—p+s(G) -0

ie, dimHG <n-p.

In particular, if we choose in the equivalence class of u the function
u® defined for x £ G as

u¥x) = lim u

ot NP

Theorem 2.1 permits to precise the pointwise value of u e H1 P except
on a set whose Hausdorff dimension does not exceed n-p. Results of
this kind can be found for example in M. Aronszajn et al. [12][13] [14],

P =2, and in H. Federer [84], H. Federer, W. P. Ziemer [87] for functions
u whose derivatives are measures, in particular p =1. Here, for the

proof of Theorem 2.1 as well as of Theorem 2.2 below, we follow E. Giusti
[130].
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The proof of Theorem 2.1 is based on the following result which has a:

relevant role in estimating the singular set of solutions of nonlinear

elliptic systems.
THEOREM 2.2, Let Q be an open set of R", v be a function in
Ll (@ and 0<a<n. Set

loc ;

E, = {x¢Q: max lim p~¢ f lv(y)|dy >0
pe0+ B (x)
p

Then we have

HYE,) =

: 3
We need the following covering lemma. )

LEMMA 2.1. Let A be a bounded set in R" and let r:x - 1(x) be a
function defined on A with range in (0,1). Then there exists a

sequence of points X; € A such that
B(xj, r(x) N B(xj, 1(x))) = for 4]

2.2)
QB(Xi,3r(xi)) DA.

Proof. Let us consider the family

Sr(x)<1} .

TP

B = {B(x, r(x)):
1

L
"2
Since A is bounded, there exists a finite subfamily of disjoint balls

B

1T {B(xl,r(x »: L)<t izt eny)
2

2 -

3)Thls lemma, together with Lemma 1.1 of Chapter V, gives a weak version of

Besichovitch covering theorem.
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which i . . . .
ich is maximal in the sense that each ball in 31’1/2 intersects at

least one element in B1,1/2 . Once we have constructed Ry, X
3 1.2
. L . J
among the balls B(x, r(x)) with 2771 <1(x) <27) which do not intersect
any of the balls B(xi, r(xi)), i=1,..., n; we can find a finite family, say

04 q =0 (eventually void), of balls such that each B(x, 1(x)) with

i, Sl
27172 <rx) < 270 intersects at least one of the balls in {B(xi r(x:)):
s’ 1 M

i=1, .-, nj+1}' The sequence of the centers of these balls satisfies (2.2).

In fact the balls B(x;, r(x;)) are disjoint by construction; for x ¢ A there

exists X; such that

B(x, r(x)) 0 B(x;, 1(x,)) + ¢

and 2r(xi) >r(x). Hence
\xfxi| < r(x) +r(x) < 3rlxy)

and therefore x ¢ B(xi, 3r(xi)). q.e.d.

Proof of Theorem 2. 1t will be sufficient to show that for each compact
subset K C Q
H*F)=0 where F-=E,NK.

Set
F&) — lxcF: max lim p~@ f v(y)ldy >s™!
p—>0+
- Bx,p)
obviously
F-U FS.
s=1

Hence it will be sufficient to show that for all s

(2.3) HeEGy 2o,

Let Q be a bounded open set with K C Q C QCQ and d=1 A dist(x, &Q).

[
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Forall e>0, 0<e<d, and forall x ¢ F®) there exists r(x),
0 < r(x) < ¢ such that

w e [ ok

B(x,r(x))

Let {Xi% be the sequence in Lemma 2.1 (corresponding to A =F

r(x;) ). We have

@4 <2 f [v(y)ldy = 2s f ve)ldy -

! B(x,,r;) UB(Gxy,r))

(s) 4. =
1

This inequality, since a <n, implies

n-a a
meas {U B(x;, i)} = o, zf? < wpe zri <
i i

(2.5)

I\

2s w 'Y f\v(y)ldy w, = B, D] .
Q

From (2.5) and the absolute continuity theorem of Lebesgue (applied to
(2.4)) it follows that the right-hand side of (2.4) goes to zero when ¢~ 0;

therefore taking into account (2.2) and the definition of Har®)y, 2.3)

follows. qe.d.

Proof of Theorem 1. Let us consider the subset E, corresponding to the

function v = [Vu|P. In order to prove the theorem it will be sufficient to

show that
GCEn—p+& Ve>0.

Fix x, € ), the function

-1

B(0,1)
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(o, dist(xo, D) ; and, since

d ) n
dr "xgr T @ f Z x;Dju(x +rx)dx
1

B(0,1) =

d t/p
d -1
dr uxo,r‘ s (mn o f IVufpdx> .

B(xo,r)

it follows

(2.6)

For ¢ 0<e <p, if XOf/En~p+e we have

1/p
-1 — -
sup W' n+p—e f qulP SL<te

B(xO,r)

g =1a % dist (x ), 902)
hence from (2.6)

~1+&

<Lr P

L% UX g1

and therefore, for s <rg

which implies that X £ G.
In general it is not true that
Hr=P) - g

as the function v(x) = (- log |x[)1/4 shows.

g.e.d.
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- The singular set Q\QO. Let us now come to the singular set Q\QO,;;&W

As we have seen, weak solutions u e Hl’z(Q, RN) to the elliptic system

_p [o%P i i1 ...
Da[Aij (x,u)DBu];O i=1,.--,N

. . .. a . . -
with continuous coefficients A..B are Holder continuous in an open set
i

QO (depending on the solution) and
O\Q, ¢ 3, UZ,
where ‘

2, ={xeQ: lim inf f |u(y)—uX,R|2dx>0

R-0T
BR(X)

22 = {xeQ: s;p lux,Rl =t oo} .

Note that because of Poincaré’s and Caccioppoli’s inequalities

3, ={xeQ: lim inf R?D f|V(y)12dx>o

R-0"
BR(X)

Moreover, by adapting for example the argument in [213],*) we can show

that u e Hllc;g(ﬂ) for some p >2. Hence

1
R%1 f |Vu|? < C(Rp——n f qu{p)p .

BR(x) BR (x)
Therefore

EIUEQCEH)UG

4)See anyway Chapter V.
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where

E, p =1x: max lim pP f [VulP > 0
p~)0+ B
p(X)

G =1{x:4 lim uy HHUdx: lim ’ux,p, = 4oof .
p->0+ p~>0+

And from Theorem 2.1 and 2.2 it follows that
}(“‘P“(Q\QO) =0 Ve> 0

where p is a suitable real number greater than 2. Note in particular that

Hr-2q \2p =0 |

i.e. the singular set is empty in dimension 2.5)

Therefore we can conclude:

THEOREM 2.3, In Theorem 1.1 and in Theorem 1.2, f,
Q\QO, we have

or the singular set

Hr=9q \2yp =0

for some q > 2.

All counterexamples in Chapter II Section 3 show solutions with
singular set Q\QO = a point in dimension 3. From that, one can con-

struct examples for which the singular set is a line in R4, a plane in

R® and so on. Therefore we could ask: is the dimension of the singular

set of a weak solution to system (1.1) less or equal to n-3, i.e,

K-35\ ey < 0 Ve>07?

This question, in its generality has no answer up to now; we refer to

Chapter IX for a special case in which the
-

5)Note that, since u ¢ Hll’p(Q) for some p > 2,
oc

answer is yes,

because of Sobolev theorem
u is locally Holder continuous in Q.
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3. More on the regular and singular points

Roughly speaking, Theorem 1.2 asserts that'if u is sufficiently
close to a constant vector in a sufficiently small ball, then it is regular
near the center of the ball. On the other hand De Giorgi’s theorem,
Theorem 2.1 of Chapter II, implies that if a solution u(x) of system (0.1)

lies on a straight line

ux)=v.gx) +7 7eRY, v ST o fx: x| =1}

then u is regular, since it satisfies an elliptic equation.
Starting from this remark E. Giusti and G. Modica [140] have proved
that if the vector u(x) remains close to a straight line in a neighborhood

. . 1 1
of some point Xq € Q, then u is regular near xy. More precisely

THEOREM 3.1. For each M1 there exist constants £y and R, such
that if u(x) is a weak soluticn to system (1.1) and if for some X € Q,

R <R, adist (x,, 090), veS™l 7 RN, || <M; we have

f lu|?dx < M2

BR(XO)

:F lu—7|dx - f (u-m, V)RNIK g -

BR(XO) BR(XO)

and

then u is regular in a neighborhood of Xq-

Proof. We shall give only a sketch. The proof goes on as in Theorem 1.1,
using De Giorgi’s estimate (Theorem 2.1 Chapter II) instead of the esti-
mate in (b) Section 1: if in (1.1) A;‘B = Bij AaB(x), AcB ¢ L™ then for
the weak solutions u =v.g(x) + 7 we have

< Qlel ,

“gucoﬁ(B L (Bl) .

1/2)
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Then the idea is to reduce ourselves to applying Theorem 1.2, i.e. to

prove that for every M, we can find €; in such a way that

jﬁ a2 <M My -2m, \TT70

BTR(X

o’

and
2. 2
Jﬁ l“““xO,R S €
Brr(xg)

where M, and € are the constants in Theorem 1.2, provided r is
e \1/0
chosen suitably, and precisely as 7 = min ’% , (MO—) J If this were
0

false, then Xhr s Vi €1 4 0, Rk + 0 would exist such that

f a2 dx < M2

R k

(3.1) k
f luk-ﬂk[dx — f ](uk—nk, Vk)’dx S Ek
Rk(xk Rk(xk)
but either
f luy |2 > M2

Brg, ()

or

f o~ g 1> 6

BTRk<Xk)
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Blowing up, i.e. considering
viy) = upxp +Ryy)

one sees that {Vk} converges to v, v satisfies the elliptic system

f Af‘jﬁ("o‘: VOO Dgldx =0 Vg cCYQ,RY)

B
and
flvl2 < M3
BT
but either
2
3.2) :f|v|2dy > Mg
BT
or
2
3.3) f|v—v0,rt2dy > g -
BT ‘

On the other hand passing to the limit in (3.1) one sees that for p<l1

f(lv‘”l—i(V—ﬂ,V)Ddyzo p<1
B,
so that
v(y) = 7+ (viy),V)v = 7+ gy)v

and we can conclude that
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B

flv’2 < sup |g|? +Mf = (2Q2+1)va = %—M%
1/2
B,

J£|V_V0,TI2 < Jclg—go,,l2 < 2Q2m2,20 < L.
B, B,

These two inequalities contradict (3.2)(3.3).

Now we would like to describe rapidly the connection between Liou-

ville type theorems and regularity for Lipschitz solutions®’ of nonlinear
systems

(3.4) - Daa(iz(x, u, Vu) + b,(x,u,Vu) = 0 i= 1, --,N.

This connection was pointed out by J. Frehse [94] and studied by
M. Giaquinta and J. Necas [125] [126], see also B. Kawohl [184].7)
We say that system (3.4) satisties the Liouville property (L) if

Vxped, V&« RN, every solution v to system

a

- Daai(XOJ fl VV) =0

in RY with |Vv|<c <+ isa polynomial of at most first degree.
Now we have

THEOREM 3.2. Suppose a?, b, smooth. Denote by K the class of

weak solutions u to (3.4) satisfying

]

<c,.
HI’N(Q,RN) - "1

_—

6)We recall that Lipschitz solution

S are in general nonregular, see example
3.4 in Chapter II.

7)Where bounded solutions to systems of the ty

We refer also [209] [210] [212] and to [167] [159] fo
different context.

pe in variation are considered.
r Liouville type theorems in a

q.e.d.

' 1IV. THE INDIRECT APPROACH TO THE REGULARITY "~

As'sume‘ that the Liouville property holds. Then for u ¢ K and for all
Q'CcC

(3.5) < c2(Q') .

Hu“Cl’a(Q’,RN) >
In particular Liouville property implies regularity.

Proof. We give here an idea of the proof. The main point is to show that

if x5’ then
2 5 0
(3.6) VU(x,R) = J: Wu—(Vu)XO!R\ dx o

Brxo)

i ’ i ; 1t
uniformly with respect to x; in (" and u in K; then the resu
follows as in Theorem 1.1, using the system in variation of system (3.4).

In order to prove (3.6), set

up® = R u(xq+Ry) -u(xy)]

X = x0+Ry and set OR for the image of {}. Then we get

f[a?(XoJrRY’ Rug +ulxg), Vyug) Dy’ +
3.7) °R

Hdx = co
+ by(x(+Ry, Rug +u(x), VyuR) Rop'ldx =0 V¢ spt ¢ R

while the system in variation gives

(3.8) f [V;uRIQ dx < c(r)
‘ B,(0)
for R< %— dist (32, o)) . ~
Now if (3.6) were false, there would exist Xy > Kg € O, Rk -0 and

Ueky € K such that

g
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VU R > 550,

But, because of (3.8 s i
use of (3.8), we can suppose that u(k)Rk >p in HI’Z(BR(O))
Vr >0, and from (3.7) we get k

f aj(x, &, V,»D,pldx = 0
Rl’l

where & = [j i
& kiTo up(xg). Moreover |Vp S¢<+e0, sothat p is a poly-

nomial of at most first degree. Hence

- 2 T

B, (0) B
1

R

k

> Vu®e Ry

gives a contradiction.
q.e.d,

Moreover we have, see [173] see also [212], that regularity implies
Liouville property; more precisely: if (3.5) holds for all uekK, then
property (L) is true. The proof we give here (see [212] for a different one)

is based on the following argument, see [173]: Let v he a solution to
D 42 )
-Daj(Ww)=0 i=1,---,N

. n .
in R" with |Vv|<c < to, and assume osc Vv on R®" = > 0. Now
. »

also
V(XO +Rx)
R ~ R

are s i i i
olutions with |VVR| S ¢ <+eco. However, since osc VVR in any
neighborhood of the origin tends to « as R - %, there cannot be a com-

mon modulus o inui i i icti
1lus of continuity for the functions VVR in contradiction to (3.5).
Therefore osc Vv - 0, ie. v is linear.

IV. THE INDIRECT 'APPROACH TO THE REGUELARITY . 113
We refer to [126] for some applications. For instance from the fact
that (L) implies regularity one can deduce that for n >1 N=1 or n=2
N > 1 solutions are smooth, and that, under some explicit control on the
a
ratio between the maximum and minimum ‘eigenvalue’ for the metric 92_ ,

s

solutions are also smooth (compare also with Koshelev [186]); for the

optimality of the ratio in the last statement see [120].

4. Systems in variation (controllable growth conditions): regularity results
As we have already said, the first partial regularity result for solutions

of nonlinear elliptic systems, N >1, is due to C.B. Morrey [232]. He

considers weak solutions u = (ul, v uy, ul ¢ Hmi’ (9] m; > 1,

i=1,--,N of elliptic nonlinear systems of higher order

4.1) i S

=1 lalfmi

Af(x,Du)D%ldx = 0 Vgl e C()

Q
where Du stands for {D%!} |a| < m;; i=1,---,N, under controllable
polynomial growth conditions, i.e.
AT, p)l, 1AL, (x, p)| < MvE1
s

A% Gl IAY  Gop)l < MVE?
IPB IPBXS

N
2 € 2 X AL mr > vl

ij=1 iaizmi ipB

|B|=mj

V2=1+2 2 (P(il)z-

i=1 |alimi

Vo, m>0
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Let k>2. As first step Morrey shows that under (4.2) it is possible to
derive the system in variation, compare with Section 1, Chapter II. and see
also [23_1] [297]. Precisely we have

THEOREM4.1. Let u he a weak solution to system (4.1), and (4.2) hold
: m.+1,2 B
with k>2. Then ul ¢H @ i=1,-,N, VK2 yl.20q) e
loc loc

vector p‘ie = U}Xﬁ 8) satisfies

—or.af j Oay i 00
(4.3) f\]k 2[aij’BpJG,B+Veia]§l’adx =0 VchO(Q, RN)
Q
where the a’s and e’s are bounded and measurable and

vk=2,98 5 _ A% . (x, Du(x)) vk-1.%2 _ pa (x, Du(x)) .
1 1p}3 1 ixg

Note that for k =2 smy=1,4i=1, --,N, system (4.3) reduces
essentially to a system of type (1.1), compare with Chapter 1I.
Then Morrey proves the following

: m
THEOREM 4.2. Each yl belongs to Clolc(QO) where O, is an open
subset of Q and £(Q \\QO) =0,

The idea of the proof is very similar to the one we presented when
proving Theorem 1.1, although the proof is more involved.

Theorem 4.2, in case k=2, m=1,i=1,...,N, was proved for
systems of the type (1.1), which include Systems in variation (Theorem 1.1)
by Giusti-Miranda [139] who also simplified the proof very much, and im-

proved the estimate of the singular set as
(4.4) H=tangy < 0.

Then, as we have seen, Giusti [130] improved (4.4), still for systems of
the type (1.1), getting
—_—

8)Herie we use the notation u,x(g = Deu and more generally Wy = p%u.

V. THE INDIRECT APPROACH TO THE REGULARTI;

HP@@\Qp = 0
for some p>2. ' N B
The result of Theorem 4.2 was then extended, in the spirit of [139], to

solutions of systems of the type (4.3).
More precisely, let us consider the quasilinear elliptic system

S . a .
JﬂVk—zE 2 {2 2 AijB(x,Su)DBuJ+

Q i=1 lotlfmi =1 lB[:mj
4.5)

+ b?(x, 5u)} D%ldx = 0 Vo' e CT)

icients
where Su stands for DYul' h = 1,---,N, |yl <my, and the coefficien

AaB are continuous functions satisfying
ij '

A% <L
ij

i s A‘.Iﬁf(if{jgzlﬂz veé
ij=1 la‘:m. !

]Bl:mj
while
N
S O03 bl <xv?
i=1 Ia\Smi
where

N .
v2 -1 +2 E IDalIl‘Z .

i=1 ‘a‘(mi

Denote by Hm’k(Q) the épéce of functions such that
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k-2

vT a,i 2 i
D%t e L) la| <m! i=1,... N

k—2 a1 I .
V D u e 2 =m. 1= I e
1()12(9) ‘al i ’ IN .

Then we have, see [131]9) [132]

THEO

- REM 43 Let k>2 and y ¢ gmk be a solution to svstem (4.5)
en there exists an open set Q,CQ such that ul ¢ Cmihl,a(ﬂ ) |

0 < < 1 n—2+¢ o
@ <1, and H"2Q\Q ) =0 veso,

Moreover

THEORE 4.3 |
M 4.3°. Under the hypotheses of Theorem 4.3, suppose that for

some p, 2<p<n, we have either

T

N
k; .
\Y PZ E
f ID%!|Pdx < 4 o 2<p<k
. Sp<

Q =1 Ial:mi

or

N
f‘ lDaullde<+m k<p<m .,
o 7 ﬁ

1 [aJ:mi
Then for all ¢> 0 HO=PrQ\Q y = 0 10
o =0.

Still i
11l assuming controllable polynomial (k +2) growth conditions, it

remains for us to consider the case 1 <k<?2

In this .
see [231] case the quotient method seems not to work because VK2 < 1
» but Morrey [231] (Theorem 1.11.1” and Section 5.10) show tha
. a

one can derive the ion i
equation in variati i
ation provided inimi
U minimizes a regular
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functional and m; =m =1 Vi. The same proof seems to work for the
case my =m > 1, u being still a minimum point, but it is not clear what
happens in the general case (4.1), 1 <k <2.

Anyway, we are allowed to consider the problem of the regularity for
solutions of systems (4.5), 1 <k <2. The only result in this direction,

still in the spirit of [139], is due to L. Pepe [252].

THEOREM 4.4. Let u ¢ Hl’k(Q) be a solution to system (4.5), m; =1

i=1,.--,N, 1 <k<2. Then there exists an open set QO C Q such that
i 0,a S, n—k-+e _

u eCloc(QO) i-1,---,N and H (Q\QO)_O.

The extension of this result to the case m; >1 doesn’t seem straight-
forward, and it is not even known whether the estimate of the singular set
is ‘optimal’ or no.

All these results, even with the few gaps we have seen, give a good
description of the regularity of weak solutions to nonlinear elliptic systems
or extremals of regular functionals with controllable polynomial growth
conditions. They also permit, as we have seen in Chapter II, to show
higher regularity of course in the ‘regular set’ Q, (which is connected if
Q is) provided the data are regular, compare with Chapter VI, Section 1.

Unfortunately the results given above do not apply if natural growth
conditions hold,!!? and the methods used to get them do not seem to carry
over. In Chapter VI we shall present a different method, due to
M. Giaquinta and E. Giusti [113] which permits to obtain some regularity
results for nonlinear systems with natural but up to now only quadratic,
polynomial growth. This method uses LP-estimates for the gradient of
the solutions which we shall prove in the following chapter.

Of course, the partial regularity results open new problems. We would

like to close this section stating some of them:

11)With the exception of Theorems 4.1, 4.2 that hold also under natural condi-
tions provided m; =1 i=1,--,N and k> n, see [232]. For an analogous
result for general systems of the type of systems in variation, see [57].
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Singular set: There is the general problem of studying the singular set.
In particular we can pose the following questions:

1. Is the singular set analytic or semianalytic?

2. Let us choose X in Q with for example }(“—2(2) or
Hn=3+¢(2) =0 Ve, does an elliptic system exist with the solution
having exactly X as singular set?

3. Are the singularities in dimension 3 isolated? (Compare with
Chapter IX.)

Topological properties : among these

1. Is the regularity a generic property (with respect to the coefficients
and/or the data)?

2. Is the class of systems with everywhere regular solutions dense,
connected .., ?12)
And finally there is the general problem of giving reasonable conditions

for the solutions to be everywhere regular.

-
1 . cepe
2)1t is not difficult to prove that the class of quasilinear system (1.1) whose
solutions are smooth is open with respect to the uniform convergence of the
coefficients, see the proof of Theorem 1.1, Chapter VI

‘% “CHAPTER V'
REVERSE HOLDER INEQUALITIES AND LP-ESTIMATES

Let us consider a weak solution u of the elliptic system
af i - (=1, N
- D ul=0 i=1,--,
(0.1) Da[Ajj (x) Bu]
where ASB e L=() and

B

then, as we know, we have the following Caccioppoli inequality: for

A‘;‘f.f;gi S €2 VE w0

By C O

and using Sobolev-Poincar€ inequality

2/
2 c q i _ 20 <9
Vul%dx < I [Vu|9dx 4= =5

B
Br/2 R

which can be rewritten, dividing by RD, as

1/2
0.2) ( f ]Vu]zdx> < C<J£wu[qu)

Bp

1/q D

Br/2

1)7Cfdx= 1 ffdx.
A Al A

119
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Except for the fact that integration is made on different sets, inequality /
(0.2) can be seen as a reverse Hélder inequality.

In Section 1 we shall prove a general theorem, implying in particular
that from (0.2) higher integrability of the gradient of u follows, and in
Section 2 we shall see some applications to nonlinear elliptic systems.
In particular, in Section 2 we shall prove a few LP-estimates, p > 2, for
the gradient of weak solutions to nonlinear elliptic systems, which are
interesting by themselves and will be one of the main tools in studying
regularity in the next chapter.

Finally, in Section 3, an LP-estimate for.the gradient of minimum

points of nondifferentiable functionals is proved.

1. Reverse Holder inequalities and higher integrability
Roughly speaking, we shall state in this section that the reverse
Holder inequalities propagate in the exponents; more precisely we shall
prove that a function g is LP-integrable for some p >q if the LY9-means
of g over cubes do not exceed the Ll-means of g over suitable cubes
for more than a fixed factor plus good terms, see Theorem 1.2 below.
Probably the first result in this direction is due to F. W. Gehring [103]%
(for more information see also [62] and the references there), and it is
stated in terms of maximal functions.

Suppose h ¢ LIIOC(RH) , h>0, the maximal function
M(h): R™ - [0, + o]
of h is defined by

M(h)(x) = sup ﬂa h(y)dy
R

Bp(x)
and we have:3)

2)In connection with the theory of quasiconformal mappings.

3)We refer to E. M. Stein [285] for the proofs.
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(’a)' if h e LB(RM), ivf p <+, then the function M(h) is finite
‘ almost everywhere

(b) almost everywhere in R™ h(x) < M(h)(x)

(© if h e LP(R®) 1<p<-oo, then M(h) ¢ LP(RY) and

< c(n, p)h]

Let g be a nonnegative function defined on a cube Q of RP, and
think of g as zero out of Q,% then Gehring’s result [103] is the

following:

THEOREM 1.1. Suppose that almost everywhere on Q
Meh < bM(

where b is a constant >1. Then g ¢ LP(Q) for pelq,q+¢) and

1/q

Q

1/p

(o)

where ¢ and c are positive constants depending only on q, b and n.

But Theorem 1.1 is not yét useful for us. In fact, because of the
restriction that g must be zero in R®\Q, (0.2) does not allow us to use
Theorem 1.1. So we would like to have a local version of it. Now we
come to state this local version.

Set
Qrkxy = fxe RM: lxifxoi{ <R i=1,--,n}
consider two nonnegative functions g ¢ Lq(Ql(O)) g>1, fe Lr(Ql(O)) ,

r>q, and extend them equal to zero in R" \Ql(O). Denote by d(xo)
the distance of x ¢ Q,(0) from the boundary of Q,(0)

4)This is essential for the validity of Theorem 1.1, compare with [103] and
the appendix in [121]. .
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For a nonnegative function h(x) ¢ Llloc(Rn) define the local maximal

function Mg (h) of h as
0

MRO(h)(X)\: sup f h(y)dy .

R<R0
BR(X)
Then we have

THEOREM 1.2. Suppose that almost everywhere on Q,(®

(1.1) M,

q q
L d(x)(g )(x) < bMi(g)(x) + M(f) + Qlﬁl\(gq)(

where b>1 and 0<6<1. Then g cL{)OC(QI(O)) for pelq,q+¢ and

L L 1
p q P
1.2) ( :F gpdx) < c{(:F qux) +( JE fpdx) }
Q1 /2(® . Q) Q)
where e=e(b,0,q,n) and c =c(b,d,q,n) are positive constants.>)

As Theorem 1.2 is invariant by translations and dilatations, the

following proposition follows immediately

PROPOSITION 1.1. Let Q be an n-cube. Suppose
q

1.1y f gddx 50( fgdx) + ffquJr@ fqux

Qrxo) Qr&p) Qorxg) Qor®*p

for each x,€¢Q and each R < %- dist (x4, dQ) A Ry, where R, b,0 are
constants with b>1, Ry >0, 0<0<1. Then g GL{J Q) for

oc
pelg,g+e) and

5)
In fact they also depend on r. Moreover, on the right-hand side of (1 1) we

may have M1 d( )Ar , Wwhere 7'0 is a positive constant.
—d(x

g g e e e
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1

(el - (F)

Qr Qr Qr

o=

for Q,x CQ, R<R,, where c and & are positive constants depending
onlyon b, ¢, q, n (and r).

Proposition 1.1 has been proved first, with 6 small, by Giaquinta-
Modica [121], Proposition 5.1. The idea of the proof is the same as the
one by Gehring [103] plus a more refined covering argument of the type
due to Calderon-Zygmund [42] stated in Lemma 1.3. Then Theorem 1.2
has been proved by E.W. Stredulinsky [287] in a slightly different way.
The proof we present here is taken from M. Giaquinta [107] and is strictly
related to the one in [121]; for a proof in a simpler situation see [111].

Let us remark that a higher integrability of |Vu| follows immediately
from (0.2) through Proposition 1.1 setting

2n
g = Wu\n+2

and q= n+2

Before proving Theorem 1.2 we now state a few lemmas we shall use.
The first one is a covering lemma closely related to the more refined
and well-known covering theorem by Vitali,®) see for example Stein [285).

(Compare also with Lemma 2.1 in Chapter IV, and footnote 3), Chapter IV.)

/ 6)VITALI COVERING THEOREM. Suppose that a measurable set E is
covered by a collection of balls {Ba}, in the sense that for each x € E, and

each £ >0, there exists a B G{B }, so that xEB , and 53“(13 y<e.
ag ag ag

a
Then there is a disjoint subsequence of these balls Bl' B2, Bk’ +++ S0 that
PYE-UB,) =
K k

see for example Saks [259] or Federer [85].
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LEMMA 1.1. Let E be a measurable subset of R™ which is covered by
the union of a family of balls {Bj} of bounded diameter. Then from this

family we can select a disjoint s&bsequence B,,B,, -+ so that
El < cm Y (B
k

for example ¢ =3" or 5% will do.

The second lemma is an obvious extension of an inequality for Stiltjes

integrals proved, for example, in [103],

LEMMA 1.2. Suppose that q €(0,+) and a €(1, +), that h(t), H(t):
[1, +) > [0, +00) are nonmcreasmg functions with

1. lim h(t) = lim H(t) =

too0 tooo
+ 00
2. -f s9dh(s) < alt3h(t) + tIH(t)) tell,+e).
t

Then

o0

_ | q _alp-9)
ft dh(t) < PR ) ( ftqdh(t)> -G 5 < fthH(t))
1 1

1

for pe[q,ai_lq).

Proof. Let us first assume that there exists j € (1, +) such that

h(t) =0 for t elj, + o)
and set -

o0

j
() = - ftfdh(t) - —ftrdh(t).

1 1
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Let ﬁow p €(0,+). Integrating by parts we obtain

j j

1.3) I(p) = I(g) +(p—q)ftp_q_1 (—fsqdh(S)) dt

1 t

Using assumption 2 we have

i j

j j
f tp*q—l(ﬁ f sqdh(s)) dt < a [ f tP~Th(t)ds + f P! Hﬁ)dtJ =

1 t 1 1

o

=~ —h(l) +2 I(p) - %H(l) + % (—ftp dH(t)>
1

h1) > Li@) - HQ) .

and

Therefore

] o0

(1.4) ftpﬂ 1( fsqdh(s)) t < —%I(q)+%l(9)+%(~ fthHa))-

1
From (1.3), (1.4) we obtain
() < 1@ - 552 K@) + 3 (p-a) Ip) + @ 21 f tPdH()
1
i.e.
P“_a(pp‘__‘v I(p) < 31@) +a 23 f tP dH(t)
v

and the result follows when h(t) =0 for t € [j,+ ). In the general case,

integrating by parts, since h(t) is nonincreasing, we have
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Lo g
JG) < ~f t4dh(0) + jh(0)
i

: 1 Y ]
and therefore using assumption 1 T/ I

ifnG) < - ftqdh(t) je(, +o).
j

Set now
h(t) tell,jl
hj(t) =
0 te [j, + oo)
hj is nonincreasing, and

(=S

- fsqdhj(s) < a[t9h(t) +tIH(Y)] .

¢
Therefore, as in the first part of the proof

j j ‘/

_ftpdh(t) < —ftpdhj < 2 _(a l)q( ft dh(t))
1 1 1. €
i f it
alp-q) et ]
T a -G Dp <_ f tde(t)) B h 7

1

and we obtain the result letting j > o. g.e.d

Now, for convenience, let us suppose that the cube Q,(0) in Theorem
1.2 is actually the n-cube

Q = {x eR™: |x, | <g_ i=1, ---,n}’
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and set
Cq ={xeRn:|xi|<%— i=1,"':bﬂ}

Cp = fxeQ:27 X <dist(x,9Q) <2781} kN,

Obviously one has

=ucC,.
Q U Cy

Finally we need the following subdivision lemma, see [121], which
generalizes the well-known argument of subdivision”) due to F. Riesz in
dimension n =1, known as ‘Calderon-Zygmund’s subdivision argument’,

see [42].

LEMMA 1.3. Let g ¢ LY(Q) g>0 and &> f gdx. Then for every
Q

>3 there exists a sequence of n-cubes {Q(k)}k N with sides

parallel to the axes and disjoint interiors such that

j .

nk _an onk
1.5) .2 rf< chdxgo" 3m.nK. &

' o
Cly

g<o2m.2mkK & ae on C\UQY,  VkeN.
i

7)LEMMA. Let Q0 be an n-cube, u eLl(QO) and k be a positive constant

such that
£ Juldx < k.
Qo
Then there exists a sequence of open disjoint n-cubes Qi C QO with sides
parallel to the ones of QO such that
i) Jul<k a.e. in Q\UQ;
i) k< |u|Q <2 Vi
i
iii) Ei‘.lQi| <kt [ lg\dx.
Qo
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Proof. For each fixed k, we use the Calderon-Zygmund argument,

making the first subdivision in 3" cubes and all the others in 2" cubes

Th‘ . 1 .
is way. vrle obtain a sequence of cubes {Ptk)§ which satisfy the last
two conditions in (1.5). Now we have

j 1 -0 A
'p(k)' < ¢lgn.g nk'3nfgdx < (%)n_zﬂnk < o-nk
Q

. O .
T : J _ 1 .

hereforg either P(k) NCr=¢ or P(k) CCy. Taking for each k the
cubes P!

k) with nonempty intersection with (ojk we get the result. g.e.d.

REMARK 1.1. i j i
31 1. The diameter of the n-cube Q(k) in Lemma 1.3 is less or

equal to =/ 2k , hence
. j 1 .. j
diam Q) < 5 dist (Qj(k), dQ)

provided ¢ > 6+/.

Proof of Theorem 1.2. Choose ¢ > 6yn and set

ay = (Un.2nk)1/q

g(x)

— f 6 =

e, f 0
G(x) = 6&x) = aj.'G(x) in o
g(x) " 6 >0 o

61/2

”g”q,Q + ”f”q,Q

f(x

: if 6
lelly o + g

I
o

F(x) = J&) = e 'F(x) in C

g1/2; x)

: if >0
lellg o + 0

E(h,t) = {xeQ:h(x) > t].
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The first step consists in proving that

(1.6) J‘ qux<a[tq—1 f gdxﬂcr1 J‘ jdle

EG.0 G, EJ,0

for t e¢[l,+o), where a is a constant which depends on n, q, b, 0
and j is given by )

J = Mig9).
We begin by remarking that assumption (1.1) can be rewritten as

1
a1l M d(x)(GQ) < BMIG +F) + OM(GY F = MI(F9)

1 L
in fact from (b) it follows MIF®) < MMIFD). Now fix tell,+e) and

set
a.mn s = A-t

where A is a constant >1 to be chosen later. Since

1 if 6=0

fo
if 6%0

Q Vo

L. i
we can employ Lemma 1.3 to obtain a disjoint sequence of n-cubes Q(k)

such that j '
Quey € Ci Vi keN
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that is
j
Qi)
: j
§<s in Ck\UQ(k)-
Then
o i
ik
and hence
2q ¢ i
(1.8) f Gddx 52 fgjqu < OnSquQ(k)l '
ik i ik

EG.) )

Qo

Now we want to estimate the right-hand side of (1.8). We begin by elimi-
r}ating the_ term OMA(GY) in (1.1)". Set (~2 ={xeQ: (1.1) is true},

) ~ .
Q= j':Jk Q.(k)’ and note that |Q]| = |Q| . For xe¢ Qj(k), since diam Qj(k) <
%- dist (Q](k)' 9Q) we have

n

ads < jEqux<nM ad) < n2Mcd
k - 1—d(x)( ) < nTMGT

[ST=

i
Qo
and, since \/§< 1, there exists a ball B around x such that

n

1.9 n—z—\/ga?(sq < /OM(GY) < lé_l qudx .

B

n/2 /2

Bl < Lo [G%dx < n'
ak Vo a4
B k

Therefore (4 + 0)

-]
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i.e.

radius of B < (1;2—k < é—dist(x, 30Q) .

Then from (1.9) it follows that

q 1 q
MG (x) < \/@M d(X)(G )

[ o

and hence for x € Q

(1.10) M,

@) < —B_MUG+F) &) .
2—d(x)

1-+0

Note that (1.10) is obviously true if 6 =0. Now for x GQJ(k) n (~)

n

25 ;
9 < 2B MAG+F
(O € i MIG D)

so there exists a ball B around x such that

1 q
2= -~
(1.11) (@) < 1#_ \}/3‘9 (f(am) dx)

from which follows that

_ 1
dius of B < n2(—B_ T _L1_.2
radius O ﬂ(l\/a) m

Now, choosing a suitable A = A(n,B, ), we easily see that B has
nonempty intersection at most with Cy_;,Cy, Cry - Then we get from
1.11)
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1
n =

nz_g IR
s < l_—ﬁ :F(S*‘J)dx

B

taking also into account that A = 2n/qak.

Now
1
5\ |
At Bl < | nZB. @4 7
B| < 1o { f Gdx + f de+2t|B|}
BNEY, b BNE(J,1)
hence, if moreover
1
TO\T
x> ol nB
1-+/6

we finally get

ol < 09O [ g, [ e

BNEG,1) - BNE(],t)

The family of balls B obviously covers (~) , therefore, using Lemma 1.1

’

there exists a numerable disjoint subfamily {Bi} such that

161@@)2%5@[ fssdx+ f jdx]

E(,t) E{J,b)

f Gdx < c(n,q,b,@)tq'l[ f Gdx + f jdx:l .

E(Q}S) EW, 0 E(J,t)

i.e.
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On the other hand, obviously

4dx < (:(n,q,b,e)tq_1 f Gdx

EGo\EG, s B,

so that (1.6) is proved.
The second step is now to derive (1.2) from (1.6). Set

h(t) = f@dx

@0

H(t) = f Jdx .

EJ,t)

Since for a nonnegative function u and r>1

+ 00
f ufdx =—f ur_ld( f udx)
E(u,t) t E(u,s)

we easily see that hypotheses of Lemma 1.2 are satisfied (with p and q

replaced by p-1, g-1), so that, using also property (c), it follows

fg’de < c{f@qu + f]deJ
Q Q

Q
which immediately gives the result. q.e.d.

We close this section by noting explicitly that reverse Holder inequali-

ties in the same ball are very much stronger than the ones with bail: and
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double ball. The following considerations may partially illustrate the
difference. | |
Let us assume that for f> 0 the following Holder reverse inequality

holds:

q
(1.12) JC fqu§b< f fdx> VR <R,

Qrxq) Qgxgy
then for E C BR we have

1 1
q 1 q 1
g EL}!
(1.13) ffdx < (ffqu) ~\E1l 4 < ( ffqu) (N_Q_Q) 91Qgxl <

E E QR

and

PROPOSITION 1.2. Let us assume (1.12). Then there exists a constant
such that for all R <Ry

ffdx < ¢y f fdx .

Qg Qr/2

¢y

Proof. Let us choose a <1 in sucha way that

i ,QR\QaR\)l—& per
Qg _

Note that « is independent on R. Then (1.13) with E = Qx\Qur
yields
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f fdx < 3 ffdx
Qr\R Cr
i.e. '
ffdx: ffdx+ f fdx < ffdx+ﬁ ffdx.
Qg Qqr Qr\Qqr Qar Qg
Therefore
ffdng‘ffdxg 1 fdem
1-B -(1-p)?
Q Q Q
R aR a2R
and by iteration we get the result. g.e.d

A simple consequence of Proposition 1.2 is the following

PROPOSITION 1.3. Assume (1.12) holds. Then f cannot have a zero of

infinite order at x, except that it is identically zero.

Proof. We have

ffdx < ck f fdx = cKR2ky —L__ f fdx .

R-275Y
Q Q B
R "R-27K R-27K
Choose now y in such a way that cy- 27Y -1, then
ffdx < RV_l_k f f dx
R-279Y
Q B
R R.2k

and if



136  MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIC.

lim

. 1
Jim (R-Z*k)y f fdx = 0

B
R-27K

it follows that f=0.

q.e.d.

Let us remark that the i V
order of zero at Xq is finite and depends on cy.

0 . .
ne sees immediately that Proposition 1.3 does not hold if instead of
(1.12) we assume that

q
]qudxgb(ffdx) VR <R,

Q
R QR

2. p_ . .
L¥-estimates for solutions of nonlinear elliptic systems

As we have already seen, we have

THEO 1 ‘
REM 2.1. If u e H'(Q,RY) is a weak solution to system (0.1), then

Vu is locally p-integrable, i
s e |Vul e LP (Q), f '
locW¥ » tor some p>2 and for,
BR C B2R )
; 1

: Il? 3
2.1 (fIVulpdx) < c( f |Vu[2) .
Br

Bor

In thi i
his section we want to prove analogous LP-estimates for weak

solutions to general nonlinear elliptic systems of the type'

2.2) —DA(XuVu)+B(xuVu)— i=1,.--,N

A‘s far as we know, the first LP-estimates for solutions of elliptic
equations with nonregular coefficients (i.e. L™ coefficients) are due to
B.V. Boyarskii [33]1{34] who considered first order Beltrami’s type elliptic
systems in dimension two. These results were then extended to all dlmpen—

sions by N. G. Meyers [213]. The main tool of their proofs is the Calderon-
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Zygmund inéquality for singular integrals [42] and the method is ultimate-
ly based on the LP-theory for équations with constant coefficients through
a perturbation argument. We shall present a simple variant of it at the end
of this section.

This method cannot be extended in order to cover solutions ofvsystem
(2.2). Here we shall rely on a Caccioppoli type estimate and Proposition
1.1. The results we shall present are essentially due to M. Giaquinta-

G. Modica [121] and N. G. Meyers, A. Elcrat [216].%)

Finally, let us remark that the exponent p is not very large; in fact,

in each dimension, it tends to 2 as the ellipticity becomes ‘bad’, see

example 2.2 below due to N. G. Meyers [213]; compare for a result in the

opposite direction [145][175)

Nonlinear elliptic systems. For the sake of simplicity we shall confine

ourselves to considering second order nonlinear elliptic systems satisfying

controllable or natural growth conditions of order 2, k=2, compare

Section 4 of Chapter IV.
Let us remark explicitly that the method and the result can be carried

over to higher order systems with general polynomial growth k >1, with

only technical complication, see [121][216].
Let us begin by considering weak solutions to system (2.2), assuming

that controllable growth conditions hold, i.e. conditions (I) of Chapter I,

Section 5.

I. we have
lult/Z + fia)

A%, 0, V0l < py(IVal  +

#2(lvu\2(1_fl_) + Juft + £

IBi(x, u, Vu)|

IN

8)In [216] there are some gaps.
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2n

n—_—z- if n>?2

any exponent if r =2

r

fig € LD, f, e L@
here elliptic means

. 9)
2.3) Ax,u,p)pl > Alp|? = py fulf - £2

with f ¢ L2(Q); A is a positive constant and I1, fy are nonnegative

constants.

Without loss in generality we can and shall suppose r > 2.
Let us remark that conditions I are the minimal ones in order to con-

sider weak solutions in the sense that u belongs to Hl'z(Q, RM) and

satisfies

@2.4) f[A‘i‘(x,u,Vu)Dagz;i +B,(x,u, Vu) pildx = 0
Q

forall ¢ ¢ Hé(ﬂ, RNy, compare with Section 5, Chapter I.
We have

THEOREM.2.2. Suppose that I holds and that f, f e L), f; ¢ LS(Q)

with ¢>2 and s > ‘1. Then there exists an exponent p>2 such

that, if u e HL-Q, RY) is a weak solution to (2.2), then u e H1 p(Q RN)

Moreover for Bp , C B CQ, we have

9)Let us remark that the strong ellipticity condition

a i¢j 2
AL EiEL > g
implies (2.3). . B
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L
2

( JC (]u]r+|Vu|2)z_d>;) < c{(jﬁ(|u|f+|vu12)dx> +

B
Br/2 R

(fe gy (2 )

provided R <R,, where c = c(n, A, s Bos p) and R isza constant
depending on u for n>2 and on u only through the L“-norm of the

o=

(2.5)

gradient of u if n=2.

Proof. Set f = (f ), (f;,) - Choose as test function in (2.4)

f=
_ <c/R.
¢ = (u-ug)n® with 7eCFBg), 0<n<1, n=1 on Bg,y, |Vg[<c/
Then we get

)\fqu\2772dxSuzf\ul‘nz+ff2n2+#1I\Vu\lu—uRlannl+
- f o gV + f i Ju—ug 7Vl +

+p1f|Vu] |u ugln dx+u1f|u - URlﬂ +
. f Fllu-ugl?

Now we have

(2.6)
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. N
I£] fu—ug [5%dx < f lu—uerdx> ( {f]r_ldx> "<
5 .
n(i——l— +1 r 1-1
<R ) (f |Vu|2dx)2( 1Eyr—1dx) f <

- < fquI?'dx +’%R.2[n(%_;_)+l](flflri_ldx)z(l—%)
Bp |

Br

L -1
f’u|r—1fu—uR|7]2dx§(f}u;uR|rdx)r(f {ulrdx)1 '
. ,

BR B

1 .
o f’"’"R’rd“r%l flulfdxs

Br B

I

R

B

rin(i-L + 7
<cR l:(r 2) IJ(f IVulzdx)2 1 f]Vulerc f|u|rdx
R Br

Br

2(1-1 5 -+
.fIVul ( r)lu—uRlnzg(f]u—uR]tdx)r(fiVulzdx)l ! <
R

BR B

V. REVERSE. HOLDER INEQUALITIES AND LP-ESTIMATES

f‘ulrdx S‘c f‘u”“R‘lr"'C f\uer <
BR BR BR
11 r 4 i
cRr[n(‘"E)H]( f \Vu|2d>92 f\vulzt.
BR BR

r(l
<ot CIBR‘(f lu| 2dx)

Br Br

(AN

Nal} ]

+
o
)
A
“—
=
o,
\N/

for q>1.

141

Hence from (2.6) it follows for ¢ >1 and ¢> 0 (adding to the left-hand

side f lulfdx )

Br/2
f (Vu|?+ |uHdx < ¢ é flu—ulezdx +

Br/2 Br

q >
r— q = ~
+ IBR|<jc|u1 de) + f(|f12+|f|2+\F12)dx+

Bp Bgr

+'; [& + Rr[n(lf—%)ﬂ] ( f |Vu|2’)2_—1 +
Br

2.7)
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where

B

1 2
- n %—J—) o 2_(1‘?) 1
F =R 2 f{ﬂr*‘ldx) £2 -1
R ¥

Now note that, because of the absolute continuit

r 1 1
n>2 (in fact 2——1 5> 0) and simply since n %—az— +1>0 if
J IVul? on the right-hand side of (2.7) goes

to c-e¢ when R -0, Bp

y theorem of Lebesgue, if

n =2, the coefficient of

Therefore, dividing by RT, setting

using the Sobolev-Poincare inequality and choosing ¢ suitably
for R less than some R,

: 2
f (ul*+VulHdx < c{(f(IVUDqHuI 2)dX)q+

Br/2

+ f(lf]2+{flz+lﬁ‘|2)dx; +1 f |Vu| 2 dx
Br : Br

which, Ehrough Proposition 1.1, obviously gives the result if F = 0.
If F is not zero we work as fOIIOWS
X € QR R <R

we get

(2.8)

Fix a cube QRl ; for each
o and for each R <1 > dist (x, GQR ) (2.8) holds with
F given this time by |

. [(_‘2)@( [ ld);—(—%—)

Qg

r

1
f2 r—1

1
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and now the result follows as before, for the arbitrarity of the cube QRl

and with a simple use of Hélder mequahty ' q.e.d.
An application of Sobolev theorem gives immediately

COROLLARY 2.1. Under the assumptions of Theorem 2.2, if the dimen-

sion n is two, then u is locally Hélder-continuous.

Now we want to consider weak solutions to system (2.2) under natural

growth conditions, and we shall distinguish two cases:

II. we have

\Ac;(x, u, Vu)|

A

pl(\Vu\ + fla)

\Bi(x, u, Vo) < p (]Vu‘\%E +£) e>0

IN

eL2Q), f; e LYD)

ia
and elliptic means

a i 2 2
Ai(x,u, P)Pa > MP\ - #1f

with £ e LA(Q); A, p, pt, are allowed to depend on u.

or
1. the same as in II except that

\B‘/i(x,u,Vu)l < ;L(IVul2+fi) .

Let us recall, compare with Section 5, Chapter I, that now ‘weak solu-
tion’ means that u ¢ H! N L=(Q, RY) and (2.4) holds for all
1 0 N
peH, OL Q,RM).

Then we have

THEOREM 2.3. Suppose that Il is tulfilled and that £, f,, e LY, ¢>2,
f, € LS(Q), s >1. Then there exists an exponent p > 2 such that, if
u e HZ2 N L=Q, RY) is a weak solution of system (2.2), then
1,p N
u e Hloc(Q" R™).
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If I holds and f, £, €LY, o>2, f,e LS, s>1,
exists an exponent p > 2 such that, if u ¢ H1 ‘nL (@, RNy,
is a weak solution to system (2.2) with

then there
lul <M,

(2.9) 2uM < 2

the 1,p N
n u eHIOC(Q,R ).
In eithe
r case for BR/2 C BR CQ we have
1

(Bf qulde)ﬁg c{‘(j: IVulde) 5+ (jc(]f’%z'fia'2+2ffil)gdx)é}

R/2

provided R <R, with R, depending on M and the 1.2

where ¢ = c(u, 4, A, ). -norm of Vu,

Proof. Putting as before o)

=(u-ug)n? in (2.4) we get

A V 2.2 2 g
fl ul 7 dx < Hq ff 7]2 +2,u1f!Vul ’U“URMIVT]I +
" f (€l b g 91V 4 f D] a—ug In? +

7y |2—¢€
+ l‘f’VU' IU~uR'772 (or +#f'Vu|2lu_uR|T]2).'

Noting now that under assumption Il and (2.9)

. 2 .

'(0>21 fl fLS(Q)y
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while under assumption II

#fqulH\u—uRk <

2— €

() (o)

c(M)RE f |Vu|?dx

B

AN

R

we get the result as in the proof of Theorem 2.2. g.e.d.

It is worth remarking that a smallness condition like (2.9) is necessary
for systems, as shown by the following modification of Frehse’s example,

example 3.7, Chapter II, due to S. Hildebrandt, K. -O. Widman (1641

EXAMPLE 2.1. For n=N=2, u-= (ul,uz) = (sin(o log log lxl“l),

cos (o log log |x| 1)) is a weak solution to
— Au = f(u, Vu)

where

2
f(u, p) = (u1 + 2, u?

—‘—‘;) Ipl?® .

Here we have M=sup|ul =1, p=1+0 2, A=1. And obviously
u ¢ HUP for p>2. Therefore we see that for pM>X no LP-estimate

can hold. 19

Assumption (2.9) can be instead eliminated in the case of equations,

N =1. Infact we have

HI holds with f, f, ¢ L),

Then the conclusions of Theorem 2.3 are true.

PROPOSITION 2.1. Suppose that N =1,
s>1.

lo)The question whether instead of (2.9) we may only assume UM < A or not
is open.
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tlu—uRI2

Proof. Putting ¢ =(u-ug)e 7, n as before, in'1)

f[Aa(x, u, Vu)D_ ¢+ B(x, u, Vu) ¢1dx = 0 Ve H(l) n Lé’;’(Q)
Q ¥

< . .
ince for scalar functions (it is not true for vector valued functions)
2 2
4'u_uR| [Va|? = |V|u~uR|212

2lu-ugl [Vu|? = |Vu [V]u-ug?|

we get

tlu-ug|?
Vul? R tlu-up
f’ ulte 7 dx+—f1V|u ugl?le ’nzdx <

tlu—u,|?
< const ”'Vuf jaugle R v
tlu 2
+f|Vu||V|u—uR|2|e luug n?

+ f(l(f N2+ EDe tlu-ug |2}

Br

and choosing t sufficiently large

-_—

11
)Compare with [191] [164].
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' |2 : u-u, |2
fqu\zet'“‘“R' 7 < cq‘?st{flu—uRlzet‘ ® g2
| u-—-u 2
- f(l(fa>|2+lf\>etl 3 I
Br

To conclude it is sufficient now to proceed as before, taking into account
t'u—uR‘2 . .
that e is estimated by constants from above and below. q.e.d.

From Sobolev’s theorem we have

COROLLARY 2.2. Under the assumptions of Theorem 2.3 or of Proposi-

tion 2.1, if n=2, then u is locally Hélder-continuous.

If we had considered higher order systems, say of order 2m, with
polynomial growth k > 15" compare with Section 4, Chapter IV, the results
of Corollaries 2.1, 2.2 would sound as: if mk =n then u is Holder-
continuous. In this general setting, this has been proved by Morrey [231]
in case of functionals (compare also with Section 3), and with a different

method (the ‘hole filling technique’ [300]) by K. O. Widman [300] and

. T.G. Todorov [293]. These authors show that |Vu| belongs to L2A

(compare Section 1, Chapter III) which is a weaker result with respect to
the p-integrability, but enough for deducing the Hoélder continuity via the
Dirichlet growth theorem, see Chapter IIIL.

We would like to remark that, in the borderline case mk =n Frehse
[90] had prd&ed the boundedness of solutions and I. V. Skrypnik [270][271]
[272] the continuity of solutions.

REMARK 2.1. If

N
A(;(x,u,Vu =2 2 D w +a? {(x,0)
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with .
AP 2%y e oy
1) 1y
and all the assumptions on the ‘lower order terms’ remain unchanged, the
results of this section are true under the Legendre-Hadamard condition

atbe ¢

B VSC,/\;V>O.

MM > pig)2)y2
To see this, one only has to work with the lower order terms as before;
while on the leading term one has to localize and use Fourier transform
as in the proof of Garding’s inequality [102][2][239], compare with
Chapter III.

REMARK 2.2. Under natural growths II, for instance in the case

_Au:IVuP’ 1+2<}/<2,<n23

n

(2.10)

we have considered weak solutions weH! N LY satisfying

fVu Vo dx =f|vu|y¢ ‘

for all ¢ H(I) N L™, Actually, the notion of solution can be weakened,
in fact (2.11) has a meaning for all ¢ ¢ Hé nL2/2y, Therefore one
could be led to consider as solutions to system (2.10) functions

weH! N L2727 satisfying @11) for all ¢ eHp N L2277,

But Ladyzhenskaya and Ural’tseva have shown, for equations, that

(2.11)

this is not a good starting point for weak solutions, compare the introduc-
tion and Section 7, Chapter 4 of [191]; in fact, if we want to prove Hélder
continuity of weak solutions, it is necessary (and sufficient for equations)

to have
y—1

n—
(2.12) ueHL2NL 20
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Actuélly in this situation an LP-estimate holds, too. We confine our-

selves to showing that in the simple case of equation (2.11). Inserting

¢ = (u—uR) 712 in (2.11), 7;2 the standard cut off function, we get

IWUIZdXSé f\u—uR\2+ f\Vu|y|u—uRl

BR/2 BR BR
and since
Y
5 2 'z
2- <
f\VuP’lu—uRldx < ( f \Vu|2) (f lu—ug| de) <
BR BR BR
_2 47

¥ = y1 257 2
2 2 nS—

(L e T
krEBR Br

Br
18

n_)./_:.];
< fqul2~[fkul de}
Br | Br

the result follows in the standard way. .
Finally we would like to point out that the methods and results of this

section have been extended to studying certain variational inequalities,
see L. Boccardo [29], M. Giaquinta [108] [109], and to studying systems of
the type of the stationary Navier-Stokes system, see M. Giaquinta,

G. Modica [123].

A system in variation. Let us suppose that controllable growth con(.iitions
‘7 flold and that A‘; , B, are smooth. Then we can derive the system in

variation and if the polynomial growth is k =2, we get a fourth order

system of the type considered in the previous subsection, compare with
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Section 1, Chapter IT; therefore we obtain an LP-estimate also for the

second derivatives of the weak solution to system (2. 2), see [1211[122].

This is not true anymore if we are considering polynomlal growth

k > 1; then the system in variation is of the form: (recall that now v
stands for Vu ):

(2.13) f Vk‘Z[Az_ (x, V)Dﬁvi +b{(x, v)ID, pt =
Q

Ve e CH(Q, RY)

compare with Section 4, Chapter IV, and it is not of the type considered

up to now in this section. Still jt would be interesting to have an
LP.estimate especially in order to obtain an estimate of the Hausdorff
dimension of the singular set, compare with Theorems 4.3, 4.3" of

Chapter 1V.
Let us consider weak solutions to system (2.13) where, we recall

1

V= V@) = (1+]u2)?

A%B | <L
1)
Afff;f;; GE

and, for the sake of simplicity, assume b;l =0. Then we have

THEOREM 2.4. There exists an exponent p > 2 such that

vk/2 € Hll(;g(ﬂ) . Here we are assuming the polynomial\growtb k>2.

F1 . .
Proof. 12) Inserting in (2.13) b = (u-A) 7;2 , N being a standard cut-off

function, we obtain

—-_—

2) . s .
This proof is due to E. Giusti (private communication, beginning of 1979).

SR

.
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, ' _ 2
f vk=2 vy |2 dx <& f\’k 2 Ju-A|%dx
. . T R?
B,
Br /2 ‘ R

Now it is not difficult to verify that

VE2(y) [u- 2|2
k-2 k-2
IV 2 (@u-V 2 A2

< absolute constant

_ k-2 k-2
2
therefore, choosing A in such a way that V ZMA=(V %@ wg and

and applying Sobolev-Poincaré inequality we obtain

k
f IVV2|2dx < }%(

B
Br/2 R

ALl 2n

and the result follows as in the theorems of the previous subsection.

g.e.d.

The result and the proof of Theorem 2.4 do not extend straightforwardly
to solutions of the higher order systems (4.5) in Chapter IV, nor even to

solutions of second order systems with 1 <k <2,

Boundary estimates. Since, roughly speaking, Caccioppoli inequalities
hold up to the boundary, the method for obtaining higher integrability
described above can be carried over up to the boundary. We shall not do
that for general boundary value problems and we shall confine ourselves
to the Dirichlet problem, moreover for the sake of simplicity, we shall
restrict ourselves to considering weak solutions to the Dirichlet problem

for the Laplace operator
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fVu Védx =0 Ve e H%)(Q) ' And, since 9 is srgooth (and Q bounded), we have meas Q,rx)\D)
0 . ‘ >y meas Q2R forlit))me y > 0Q; hence, e%fending u,v zero outside of
' NQ, we get
Q2r, &
u-v ¢ Hi(Q) 2
; a
. ¢ 3 2 . q 2 .

assuming that J{} be smooth and that the boundary value v ¢ H1:S(Q) f [Vul” < const {( JE [Vu-vv] dx) ' f v }
for some s> 2. ‘ q Qr Q,xN%2 QanQ

Let

A QRO be an n-cube in R? with QRODQ +é. For x eQRO and

. In conclusion if we set
5 dist (x, aQRO) we have three possibilities:

L Q; @WNa=¢ " /IVqu for xeQNQg
‘ 5 g(x) =
2. QiR(X) n [QRO\ Ql=¢ \0 for xe¢ QRO\ Q
2
3 Q; WN0Ed  Q, mNEQ.\D 44 W[4 for x<QNQ
R 3r R, . / v R,
2 2
f(x) =
In case 2, as we have seen, we have Xi;“ \ 0 for x GQRO\Q

) 2 )
q
IVH 2d < q & :/211
f " =€ [Valddx 4 n+2°

we obtain VX ¢ QRO and R < ¥ dist (x, 8QR0)
Qr)

fhucef( £ [ el

R

Q. (
3 .
2 ~

In case 3 we have, since for 7 e C(l)(B3 (x)) 7=1 on Qr(®) (w-v)pe
3R

Hy®, - 7 Q) Q,p(x) Q,p(x)
which implies, through Proposition 1.1,
f Va2 < ] f lu-v|?+c f Vvi? < ‘
Qg ) Q3RnQ Qs nQ
2 ER ’ 13)Here we use the following Sobolev-Poincaré theorem
PROPOSITION. Let u le’p(QR), p>1. Suppose that ﬁ“{erR:u(x)=oi >
ﬂﬁnQRf, 1> 0, then . .
= cont {é f u-vl® f 'VV|2} : C S 1olP* a0 < o [ [ValPF
Q,rNQ Q,xN0 %k Or

where c is a constant independent of R and p* is the Sobolev exponent of p.
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L

( Jﬁ Wulpdx>p§c{<f ;vulzdx)i(\f Wv,p)*’} We have

o~ - ~ a

nQ nQ - NQ : 2dx < |'|f|%dx f = (f)

QRO/Z QRO ?RO : f‘vvl x < f| l :
Q Q

for some p > 2. } ’

and frbm the LP-theory for the Laplace operator
The perturbation argument. Let us describe how to obtain an LP-estimate

for solutions of linear systems with L™ coefficients relying on the £ a
> . N : D Pdx < o) | I Pax .

L¥ theory for systems with constant coefficients (the Laplace operator) aV = 1

and a perturbation argument, see [213] [240][50]. o *! Q

| First let us consider the weak solution u %Hé(Q, RNy 14) ¢ . -
For r > 2 fixed, Riesz-Thorin interpolation theorem, >’ see e.g. s

af3 j a .
“Palh0Bgul e Dm0 i N tells us that r(p-2)

c(p) = le(rPE—2) 2<p<r

| J where AZ,B e L(Q)

i i i i f in {2,r].
'A(,Z,‘B’ <L hence c(p) is a cgntmuous and non.decreasmg function of p
! Let we Hcl)(Q, RNy be the solution to

aP g i 2 } ‘
Aij fafézvlfl V‘f,’v>0 7AWl_fi=0 LN

and to simplify assume that A(,Z,B = A,Ba.

‘ . 2*
Y i we have |V2w| ¢ L%(Q), in particular |Vw| ¢ L2*(Q), and

Then we have

Ayl < clf )
% |D% NLQ*(Q) <cf HLQ(Q)

THEOREM 2.5. There exists a number p, such that for 2 < p;<‘ Py
Vu e LP and

J fZlDauilpdx < c“Elf?lhflfIde} VP, 2<p<p,.
Q" ) Q

|
|

Proof. Let Ve H(l)(Q, RY) be the solution to

15) RIESZ-THORIN THEOREM. Let u - Tu be linear and ®;, a))-strong, i.c.

ITul] <kl i=1,2.
iy - T Ll

Then, fo; all tf[O, 1], T maps Lp(Q) into LPEY Whete

11—t t 1 _ 1=t t
Aviip %9 i-1 ... N R 9 4
— v+ .= 1= AERE .
a1 . and moreover
-_— 1I-t,t
r ITall o < kg kgl ‘
14ye assume £} smooth. LY LP)
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1
Then u ¢ Hy(Q, RN satisfies

aBy i i .
fAij Dgu Da¢1dX=fh?Da¢‘
Q Q

e

Y e H{(Q, RY)

where

a a {
h: = f 1
i f1 + Daw .
Let us now consider the linegr transformation

THYRO,RY - aha, v

defined as: Tu is the unique solution to
. A%B
VoVg = (6.6 oo b ip i i ~
f i f ii%f "1 Pl e f Wb Ve CHEQRY.
Q Q Q
Remarking that
Aaﬁ ¢,
ij .
%% - - Campl <
Aaﬁ 1 - Aaﬁ 1

<66 o A1 \rigjl2 ij\iilz
ij “af3 L fafﬁ BijBQB_T né”,JB

1

< (1‘%)(f2 puauilpdx)p

Q a,i

we get
a 1
Ajj . P p Aa,B
E 2 3(1331]'“T DBuJ dx] = sup fa_ﬁ __il D ujga
o “ilsi\ Sled |, <1 IJaJB L |"B78i
LP@Q) 0

iR e
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Therefore for v =Tu
fElDavilpdx < c(p){flhﬁpdx . (1_1%) fz {Dauilpdx}
Q Q Q a,l

and for vy = Tu1 and v, = Tu2

r(p—2) .
f S D, vl -vi)Pax < P (1-2) f >, ID, @l - ub)Pdx
Q Q

and we see that, for p smaller than some Pg>2, T is a contraction,
hence there exists a unique fixed point u,, which obviously coincides
with the solution u. » q.e.d.

The local estimate can now be obtained by remarking that nu, with

7€ CB"(BR) , satisfies

~ D(AD(7u)) = - DA Du + D(AuDy) .

EXAMPLE 2.2 (N. G. Meyers [213]). Let (x,y) be the coordinates in the

plane. Consider the equation

2.14) (auX +buy)X + (bux +cuy)y =0

where

y2
a=1-01-4%
x2+y2
b=(1—y2) Xy
X2+y2
2
c=1-(Q1-p% X
X +y2

énd p is a fixed constant, 0 < <1. Then we have: the eigenvalue of
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“the coefficient matrix are #2 and 1, the function
g1
u(x,y) = (x2+y?) 2 &
is a solution to (2.14) and [Vul e Llp for p< 2 but
oc u

’

—
2
f’Vu!l_#dxdy = 4o,
By

Therefore we have

2<p0<1%7/'

and we see th
at for p -0, Po » 2+ Analogous examples can be con-

structed in each dimension. Note that for p-1

[145]1[175]. Pg > =, compare with

3. An LP-est; ini ;
mate for minimum points of nondifferentiable functionals

Let us consider the multiple integral

3.1) Ju] = fF(x,u,Vu)dx
Q

where we assume

) F(x,u,p) is measurable in x forall (u,p)eRN RnN

tinuous in (u,p) for a.e. x ¢

and con-

ii) th 31 it1
) there exist two positive constants w A\ and a nonnegative c
stant K such that "

m
HpI™-K < F(x,u,p) < Alp|™ + K _

f
orall (x,u,p) e x RN x RAN ,» Where m is a real number > 1
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In this section we want to show that the gradient of minimum points of
Jlul in (3.1) under the assumptions i) ii) is higher integrable. Note that

it is not assumed that F(x,u,p) be convex with respect to p. More
precisely we have

THEOREM 3.1. Let uce HE™Q, RNY be a minimum point for Jlul 16)
and let i) ii) hold. Then there exists an exponent q > m such that

u e Hlléccl(Q, RN); moreover for all X € Q and R <dist(x, dQ) the
following estimate holds :

1

a
(3.2) ( J: 1+ |Vu])qu> < c( :F 1 +[Vu™ dx)

BR(XO)

=] Lo

Br /2o
where ¢ is a constant independent of u.

This result is due to M. Giaquinta, E. Giusti {1141

Before provingvit, let us make a few remarks. In Section 2 we have
proved various LP-estimates, but none of those results applies to the
case considered in Theorem 3.1. In fact first of all we are not assuming
any differentiability on F and no ellipticity, i.e. convexity of F in p.
But even if we assumed that F be smooth and strictly convex in p, we
would have to require growth conditions on F,, Fp; and if natural growth
conditions held, then we could show that (3.2) holds only if u is bounded

and F, satisfies a smallness condition, compare with Section 2.

i

16)This means that
Jlu] < 3]
for all ve Hl’m(Q,, RN) with u—v € H%)’m(Q, RN) , or more weakly (if Q is
unbounded) .

Iglel < 3lv]

forall 2CCQ and ve Hl'm(fl, RN) with u—v e H%)'m(fl, RN) .
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We are allowed to use the results of Section 2 only if
1) Fis smooth, F(x,u,p) =

F(x,p) (i.e. there is no explicit depen-
dence on u Jand F satisfies na

tural growth conditions or

2) F is smooth, satisfies natural growths,

N=1 and u is bounded.
Let us now come to the proof.

Proof of Theorem 3.1. Fix Xg e and t<g <R in such a way that

Bpxy) CQ and choose 7 ¢ CB"(BS) 0<9n<1 with ]

=1 on Bt and
c
Vgl < éTlt The function

V= u+ n(u—uR)

is a competing function, therefore

Jll < jlv]

which implies

#IIVu:mdx~K48315c<m>A f<1-n>mwm+
B

BS

+c(m) A f}Vr]fm fu-uRfm+KlBS|

BS
ie.
(3.3) fqulmdxfcz[f ]Vulmdx+(s—t)‘m f’u—uRfm+KfBRﬂ.
B, B.\B, B

R

Now we fill the hole, i.e. we sum to (3.3) ¢
we get

(3.4) f]Vu{deSH f]Vuiercs[(s—t)‘m f[u~uVR]mdx+fBRg |
B

o times the left-hand side and

Bt s BR

SR

3.5) f IVu|Mdx < c, |:R—m f lu—ug|™dx + ‘BRH '
© Br o

S
ko

V."REVERSE HOLDER INEQUALITIES AND LP-ESTIMA
- C
0= —2_ <1.
1+ c,

t t 1 ht‘haﬂd Slde Of
£

we Would llke (o] ellmlna e 1he qut term on the I

NOW

(3.4) getting

Br/2

I fact thlS can be done by means Of Lemma 3-1 below, then, through a
n

i $ inequality, (3.5) gives
simple use of the Sobolev-Poincaré ineq

m

q
| =M 0y
:F (1+|Vupmdx < cs(f(1+\Vu\)qu) q=—
B :
Br/2 - R
’ iti q.e.d.
and the result follows from Proposition 1.1.

. ned i
A 3.1. Let f(t) be a nonnegative bounded function defined in
LEMM A, ton
f r.<t<s < T, we
[rg.7¢1, 79> 0. Suppose that for 7, <
(3.6) : f(t) < [A(s-t)™® + B} + 01(s)

‘ . Il
nonn g 1 nstan h < <
Whel‘e A,B,a, 9 are no. egative co ants wit 0 '9 ]. lhen tor a

70§p<R§r1 we have
) f(p) < cl[AR-p™ + BI
where c is a constant depending gn a and 0.

Proof. For p and R fixed, let us consider the sequence {ti}izly"' iad
rool. or ’

defined by ~ (1= (R -p)
to=p  ty -t = A0

0<r«<1,.
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By iteration from (3.6) we get

1 -
K _ .
f(to) <46 f(tk) + [(1 f\r)a (R-p)™® 4 B] OE Vﬁlr ia

If we now choose 7 in such a way that 7729 <1 gpng go to the limit for

we get (3.7) with ¢ = c(q, §) = 1-17%1-9r%1,

k- o,

q.e.d.

REMARK 3.1. By using Lemma 3.1, one could prove all results in Section

2 using Proposition 1.1 with 6 =0,

REMARK 3.2, Analogous L9-estimates can be obtained in the same way

(compare also the proof of Theorem 2.2), by assuming instead of ii)

mlpl™ = ylulo—fm < Fx,u,p) < Alp|™+Ty|0gm

where
mn .
— <i-m if an>m
g
=any exponent if n=m

f,g e LY(Q) r>m.

REMARK 3.3, Going through the proéf of Theorem 3-1, it is easy to se;r
that it holds also under the weaker condition that u be'a ‘strong-quasi-

.. , . .
minimum’, i.e. there exist two constants ¢ and ¢ such that

Jlul < ¢ Jiv]

forall v ¢ Hl’m(ﬂ, RN satisfying v—uy ¢ H(l)’m(Q, RNy and

Hv—u“Lm*(Q RY, <&, m* being the Soboley exponent of p. In this

case (3.2) holds only for R less than some R, depending on u.

As a simple consequence of Sobolev theorem we now have

COROLLARY 3.1, Suppose m =g, Then the minimum points of the func-

tional J[ul] are Hélder-continuous functions.

T T
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’fhis is the well-known result of Morrey [231], Chapter 4.3.

MARK 3.4 Since it is calculable how much we gain in summability of
G | iti 2
radient (compare with the proof of Proposition 1.1 and Lemma 1.2)
. 1 it1 stant A, such that if m>n-A,,
have: there exists a positive con o

5 the minimum points of Jlu] are Holder-continuous, compare also
en

REMARK 3.5. As in Section 2, the estimates of this section can be ex-
E 5.

y . 1
t nded up to the boundary, provided  is smooth and the boundary value
e

1s in suitable LP-classes.

We conclude this section by ptesenti,g:;g the simple proof of Corollary
é 1 due to K. -O. Widman [300] and for thé sake of simplicity we assume

ulpl? < F&x,u,p) < Alp|® +b .

Let x be a Lipschitz function, such that x = C on Bp, x=1 on
< c/R and let
aBzR’BZRCCQ” 0<x <1 on B,p, Vx! <

For v =(u~a)y+a, we have

f F(x,u,Vu)dx < f F(x,v,Vv)dx

Byg ‘ Bor

i.e.
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w fquizde
Bor

f F(x,v,Vx(u—ba)+Vu-x) + fF(x, v,0) <

Byr\Bg Br
< const { f Vx|?lu-a|? + f qulz+R2}
B)r \Bg Byr\Bg
and using Poincare inequality B
fqu|2dx <K f IVu|? 4+ cR2
Br

Bor\Bg

Now we may add K times the integral on th

e left to both sides of the last
inequality and diyide by K+1 to get

f!Vu[zdx < KL-;I f_’Vu[de+KR2
Br Bar

which, upon iteration, yields

f{Vulzdx < c(RB)O{ f {Vu|? +\(2R1)0}
1
BR .

B
2R1

for all R less than some R,, with ¢> depending on ‘K and k. This

inequality obviously implies the result (compare with Chapter III).

Chapter VI OACH
. ECT APPR
SYSTEMS: THE DIR
NONLINEAR ELLIPTIC SYSTEMS: TH

-

, we want to present the direct approach to th.e stlfdy of
e Cha'pterf solutions of nonlinear systems due to M. Glaqux‘nta,
> régula:]t[};;] and M. Giaquinta, G. Modica [121}{122]. It relies
et (1 turbation argument like in Chapter IIl and uses as '

?tely o LP-estimates we have stated in the last chapter. This
‘entiallltoo: t:;seto handle quasilinear and nonlinear systems both under
allow ..
th::j,lable and natural quadratic growth (I:tonfiltizzisr. il generality, <
 In general we shall not prove the results in

shall give a
is mainly to show the idea of the proofs. Anyway we
r'aim is m

QuaSﬂlneal SyStemS C and C re, UIalltP

L t us beglﬂ by COIlSlderltlg t]le Slﬂlple Secoﬂd Oldet quaSﬂllleaI Systerﬂ
€

i . : 1 RN)
: . : a if.6id V¢ e Hy(€,
(11) fAO;E(X,u)DauIDB¢]dX = ;‘r[fi(x)DaqS e idx :

Q Q

§

where we assume

i) AaB(x u) are continuous functions satisfying
i (x,
1)

St

8% 0] <L
1)

‘1.2) : o
( WP weisl >vg)2 VE V>0
ij et

165
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ii) £ ¢ LP(Q) p>n; f, e LYQ) q>n/2.
Then we have

THEOREM 1.1. Suppose that i) ii) hold and that u eHYQ, RY) pe 4
weak solution to system (1.1). Then there exists an open set QO cQ
such that u is locally Hélder continuous with exponent min (1 —% ,2 —g
in Q. Moreover }(n_S(Q \QO) =0 for some s>72.

We have already proved ihis theorem in Section 1, Chgpter IV, assum-

ing for simplicity the coefficients to be uniformly continuous and ‘f;lzfj =0.

Here we want to present the direct proof of [113]. In order to illustrate
the main idea, we shall distinguish the two cases of continuous and uni-
formly continuous coefficients.

First, let us assume the coefficients uniformly continuous; then the

main ideas are contained in the proof of the following lemma.

LEMMA 1.1. Under the assumptions of Theorem 1.1, if the coefficients

a . . .
Ai:B are also uniformly continuous, for every Xq € Q and every
J

PR, 0<p<R< dist(xo, 00) A1l we have the inequality

n
f IVu|?dx < ¢y [(%) +X(XO,R)] f IVu|%dx +c,RA72+2y

a3 PO Prio)

- mi e L}
y—mm(l p,2 g

X(xy R) = g<R+R2_n f [Vu'zdx) |

BR(XO)

where

4

g(t) being a function going to zero as t goes to zero, and €y, C, are

constants.

| ; ARITY 167 .
. V1. THE DIRECT -APPROACH TO REGULARITY

P | = V i th v
’ | A - AL" (X u ) and let \' be the Sol.utlon to €
3 rOOf. Let 130 : . 0’ "X ,R )
D]‘lichlet pt Oblerﬂ
18 . . )
]]() a j 1’”.’ R/Z(XO

1.4) N
( ; v_u eHlo(BR/z(XO)’R ).

e; éee Section 2, Chapter III, for all p<R/2

f\w\?dggc(”ﬁ)ﬂ f V|2 dx

BR/Z(XO)

Then we hav

and therefore

’ ' |2 dx .
Vu|?d <c(E.)n f Vul2dx + c f IV (u-v)|
(1.5) k u\ x<elp L
(xg) Br(xg) Br/2%o
B (x
p-0 ‘

and
If we set w =u-v, we have w = 0 on aBR/Z

(ZB lD de:
f Aijola” p?

BR/Z(XO)

ip & (f:D ¢ +£,61)
f ‘[A‘i‘ﬁ(xouxo'R)—A??(x,u)]Dau DB¢ + f o,
) ’ B /20
B (x
“R/2Y0

1 N
for every ¢ € H‘O(BR/TR )

1Culat we m y take ¢ w, 0 h 3 USIng the elllphClt in (
Ill art a S t at

and Hélder inequality, we get
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f IVu)2dx < ¢ f E'TAC;jﬁ(x,u)—Aaiﬁ!\z]VuFdx +

Br/a&g)

Br/2Gxo)
1/2%*
(1.6) +c f Elfﬁde + f lw|2*dx .
BRr/2(g) B /p(xg)
n+2 1)
. ( f 2 lfiln+2 . )

Br/a&xo)

Now

Bg

2n | 12 2/
n ) 2n n) 2)
n42-20 n-242 (20
fE'fi’mz Sz(flfi!q S Epe— (-2
BR . BR

_—
1)l"“rom now on we

shall do all the calculatio
depending on the Sobol

ns for n> 3. Simple changes,
ev imbedding theorem,

have to be done for n=2,

2)Note that it would be Asufficient to assume instead of ii) that

2n n
—,—=(n-2420)

f(il € L2’n_2+20(Q), and fi € L2 nt2 o> 0.

(See Chapter III for the
definition of Lp"\.)

2/p
) lef?’?'dx < 2 flf?lpdx Rn( “[27 < copst Rnh2+2 (I—g)
BR
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V1. THE DIRECT APPROACH TO REGULARITY

B

3 H N i A t. e exiISts
‘ e CcO 1 y aSSllIllpt ion on bel €eX1S a non
ecause Of th ntinu t 1) ( )
f tion ot mcre lﬂg @ = »
as’ concave continuous in 0
urictio. m t 3 n
( ) ( 0
ve 1

N
pat for x,y €¢Q and u,v € R
2
18P, vy - 4%, | < a2+ luv]?) .
ij o’ ij

sfore we get from (1.6)

f IVw|?dx

Br/2 Br/2

INA

—2+2y
c f w?|Vu|?dx + cR? Y

2
W = a)Z(R2+\u—uXO‘R| ).

' he Othef ha“d uSlng t]le Lp'esti"late (Iheoreﬂl 2.1 Chapter V) a“d t]le
t ]

undedness of «, we have (for some ¢>2)

0—2
=2 4x <
fcoz |Vu|?dx < f [Vu]?dx fcu
B
B R/2
Br/2 R/2
o-2
17
<c f‘Vu\zdx fcodx
B
Br R

and, as  'is a concave function, we have
s’

fm(RQJrh)dx <w RZ+ fhdx

Br Br

i t) is a
: inui ncave. In fact, if a(
3)i.e. the modulus of continuity can be]takii CZ(O) % e
continuous and bounded function in [0, +oo] wil :

(t) = inf gA(t)' A\ concave and continuous with A(t) > a(t)k
w(t) = :

will do.



170 - MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIC SYSTEMS

Therefore we get

f w? [Vu|? dx < cco(R2+ f lu-u,, R|2d~x) A[A|Vu|2.
0
B BR

R/2 Brlxg)

Finally, putting together (1.5) and 1.7,

with a simple use of Poincard
inequality,

we get (1.3) for all p <R/2. Since (1.3) is obvious for
R/2<p<R, we get (1.3) for all p<R.

q.e.d.

Proof of Theorem 1.1 (in case of uniform

ly continuous“coefficients): Let
X5€¢{, R< dist(xo,aﬂ) Al. Set

$(xo,R) = R2-N fqul2dx.

Br(xp)

From (1.3) we get for 0 <~ <1

pe

@8 B R) < ¢ Moy, Ry Mr24(x, R) + c, 2RV |

Let now y<a <1 and choose 7 in such a way that

since we have

X(xg,R) = g(R? $(x,,R)) < P

provided R is less than some R, , and ¢(x0, R) is less than some «¢

l ’
setting c, M2 Hy, we get : .

Pxo:7R) < r2%g(x0 R) + HR2Y .

Therefore by iteration we obtain

4

V1. THE DIRECT APPROACH TO REGULARITY -

< k-1gy2y § [2@ P <
$xgyR) < PO, R) + Ho(rR) >

s=0
2ky
R?Y <€
R)+Hy———| 7 1
< I}ﬁ(xo, )+ Hy szWTZajI
provided
PxR) < gg 260 < 8
i t
and R <Ry <Rj issuch tha
RY

H.— . < EO .
072)/—7'2a

<R,, then
We can then conclude: if ¢(xg, R) <g, for some R 0
bx g, FR) < 26572

and hence for any p <R,

2y
p
1.9) $(x g p) < const (ﬁ) ]

Now the proof goes on as in Theorem 1.1, Chapter 1V. ?ince qS(;O, lt?;e;s
a continuous function of x,, if B(x g R) < ¢ fora point x, e) ,hence
there exists a ball B(x,,r) such that &(x,R) <gy Vx e B(xos,r ;ion 1
(1.9) holds for every point in B(x,, r). Then it fcjllows, see eicth expc,ment
Chapter III, that u is locally Holder continuous 1n B(x, 2 twthe eponen
y. In conclusion, there exists an open set QO C Q such t .a o

is locally in CO'V(QO). Moreover {0, is nonvoid and x, is regu

and only if

lim inf R f Vul?dx = 0

+
R-0
Bp(xg)

i.e.
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oNQ, - {xeﬂ:lim inf R2—0 fJVulzdx >0}
R—>0+
Bp

and because of the results in Section

: 173
GULARITY
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VL :

2
IAGx, )~ Ay, )| < O, [x-y|*+lp-al®) .

f Ct m y de S on the
|.lllle thé Odulus 'Of Contlllult Of the IA\ S pend
Iﬂ acl, thlS )

fficients.
freeze the coe

int where we

pOlrl

2, Chapter IV, and the LP

t Ch t we h ‘ES!I h sSing a elore the ()’ull edaness an the concav lty O and
av mat en S f C (0]
e e u g
T ’
laS ap er l h b d d d h f

the LP-estimate, we get
}(H‘S(Q \QO) _—
fOI’ some s > 2 )

H f |A(x, u)—A(xOUXO,R)PWUIZdX <

q.e.d. 5
REMARK 1],

It is worth remarking that xg €2

R/2
R <R, we have

2
-n \Vu\de) f\Vu\ dx
[uX I,R2+R2 f
X( o'R

i for |r] <M, anc
(r,t) goes to zero for t going to zero uniformly
t) g /
where XU,

o if and only if for Some

R2-n f fVufzdx < &

Brxg)

taking into account (1.10)

PR 2
P R+
Vul2dx < c ﬁ) " X(‘“Xo»R‘
us coefficients): Now let us |
assume the coefficients to be only continuous Instead of uniformly con- By(xq) _
tinuous. Then we get exactly as before .11 \Y \2dx + cRO22Y
| +R7P f [Vu|? dx Ve
- B (Xo)
f IVu|2 dx gﬁc(g)n f Vu|? 4 Br(xg) R
Bp(xo) BR(XO) Now write X(XO’ R) instead of
(1.10)
24x) .
, | p2 Rz—n f ]Vu\ >
A(x, W) -V(x. u 2 |Vu|2dx +cRI-2+2y X lux ,R"R i
W -Vxo,u, o) 0
o’ Bp(xq)
Br/2
. - M, we have
Now there exists g nonnegative bounded function (t, s) increasing in t Since for fixed .
. . . B . . < T
for fixed s and in s for fixed t, concave in ¢ » Continuous in (t, 0) X, R fficients uniformly
the coe
with w(t,0) = 0, such that for all Xy €8} and for all P,q9 with ,pl <M Dps we are working locally in () we may assun?e

in
continuous with respect to x
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provided quo rl < M;, R is less than some R, and ¢(x,,R) =

= Rz—n f qu}

2dx is less than some &1, as before we get
Brxy)

¢_(XO, R) < Tza(ié(XO’ R) s Hley .<
On the other hand

k
5)
u < ju + H,(n,N,r JPSRYL/2
I XO,TkRI < XO'R’ 5(n )Z b(x, )

Therefore by iteration we get

QS(XO,TI{R) < Tzkaq()(xo, R) + Hl(rk—lR)Zy E [TZa—Z)/]S -
” s=0

’ 2
[¢(XO,R) +H1 R*Y J,Zky <

r2Y _;2a

k
u < u H. l/2 2 ¥S <
I Xoﬂ'le - l ‘-Xo;R‘ + )_JIEO - T

172 1
‘uXO,RI +H2€0 i S M

_r 1

\

)Compare with [121][131] F‘oy all p <dist (xo, QQ) we have, see the proof
of Proposition 1. 2, Chapter III:

2 1/2
Yxg,7p , ]S( / [uGx)—u | dax) i
X0 TP Txgp Bp(xo) X0
+rR/2 F Iu(x)ﬂlxoirppdx)l/zS
P(X0> :
5
< cm)i(r2™ f IVuIde)I/Z 4 0/2

@*™" [ |Va|2an172},
BP(XO) p(xo)

Therefore the estimate follows simply from the inequality

Iu u + z u . —u ) .
XO’TkR - "o = ‘_1' Xp T'R xo,r“lR

"GULARITY
* V1. THE DIRECTAPPROACH TO REGULARL

. Providéd

M
< R, < Rl
P(xoR) <o u Ux g RIS -2‘ 2eg < gy 0

en in such a way that
nd provided also that ¢, and R are chos
a

H —2 — <gp,
1 F2y _20

M
H51/2 1 1
0 1_7.}/

Now we can conclude: forany M, if

Ml
\uxo’Rl < 7

for some R < RO(Ml) , then

$(xq, TR) < 2eq7

which implies, as before, the result

REMARK 1.2. Note that x4 ¢ Q, if

sup |u ,R\
R 0

and if for some R <R M) we have

¢’(X o’ R) < EO(Ml)

2ka

<M< +o0

R20 f\vu\zdx<eo(M)

BR(XO)

ici lable.
where R, and ¢, are explicitly calcula

Note moreover that this time we have

' - 2dx>0p U
Q\QOC{er:IiminfRzn f |Vu|*dx > ]

R N

BR(x 0)

U {x eQ:sup luX’Rl = 4o} .
R

175



176 i MULTIPLE INTEGRALS AND NONLINEAR ‘ELLIPTIC SYSTEMS
Let us now consider the general quasilinear elliptic system
a . . a . .
(1.12) Ai;.B(x, u)DBuJDa¢1 dx = f[ai (x, u)Da¢1+bi(x{ u,Vu) p!ldx
Q Q

forall ¢ ¢ CJ(Q,RYy, and assume that controllable growth conditiong
hold. More precisely let us assume that

I, -(leading part): At;jﬁ(x’ u) are continuous functions in QxRN Satis{ying

[ﬁﬁ&ml L

I

gﬁ&w;gg

Iv

vIER2,

I,-(lower order terms) : aia(x, u) and bi(x,u,Vu) are measurable for all

u e HYQ, RY) and the following growth conditions hold

1¥&NNS#ﬁMU%ﬁQ

Ib;(x, u, V)| < #2(|Vuf2(}_%‘)+ a1 +f;)
I% if n>2
any exponent if -2

fiaeLp(Q) p>n;fieLq(Q) q>2£ .

Then we have, see [1217:
THEOREM 1.2, Let I1 and 12 hold and fet u pe a weak solution to

system (1.12). Then there eXISts an open set Q, such that y ¢ Co’a(QO) ,

a = min {1 —% , 2‘(%) ; moreover }(n‘S(Q\QO) =0 for some s>7.

' ' SHEE 177 ¢
“+: VI THE DIRECT APPROACH TO REGULARITY:

» p it u a‘\S’ V+W whete vV 1S the Solutlon to the Dlrlchlet
We S ]. S

details: )
' prob lem

i j=1,-,N in Bg ,(xp
aB YD.vi) = 0 j=1,.-, R
ADB(Aij (XO’ UXO,R a

(113) N
o |v-u e H{Bg /plxe), RY) .

Then we have, as usual,

| ) 2
(1.14) f\Vv\de < (k) f Vul
Bp

Br/2
and w satisfies

i J =
fAO;?(xO,uXO’R)Daw Dﬁ¢

Br/2

B 1 Jdx +
= f [A(;;,B(xo, uXO,R)'AC:j (%, u)]Dau DB¢ X

Br/2

(1.15)

+ f [a?(xy u)Da ¢i+bi(xy u, Vu) ¢1]dx
Br/2

(6] : ow W i !; ¢ =W etting as iﬂ
e ut in (1.1 ) » g
fOr al]. € HO(BP /27 R )- N p

the proof of Theorem 1.1
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|Vw‘2dx <1 2, 2 '
f ; > X IUXO,RI’R +R<4n f W“|2) .
Br/a(xo)

BR(XO)

Vul2 n- 2
f(l ul“+ [ul™Hdx + fla (x,u)]? +const(f{b (x, UVu)|“+2dx>

Since now

a( 2 iﬂ_
a. (x, < =
i, wW)|* < const f’“[n 24y 4+ const RM-2+2y

Br B

R
n+2
X

(franatif®.

c f 2n 2/n )
< const (IVu 2 n—2 2n
[ ’ + lu, Ydx - (,Vu'2+ ’uln—2)dx + const RI—2+2y

BR B
R

and

2n
lu’n 2dx < n-2 \ =
f const hl—uRJn 2 4 const Rfu, 72 <
0’ -

Br
2
vE n-2
< const 2 2n
(f Vu| dx) fyvu,2+const Ry -2
: B XoR
R B

R

we finally obtain

n+2

VL “THE DIRECT -APPROACH TO REGULARITY . . 179
. m .
f \Vu\z |u\“ﬁ2)dx < const I:( ) + w(xg, R)]
B .
P

2n . omn
f(\Vu\2 +|u|"2)dx + const R"luxo’Rlﬂ“2 + const R2+2Y

Br

where

2
n-2
o(xo R) X(luXOIRl,RZ"n f\vu'\zdx>+<flvu12dx> +
Br Br

2n 2/n
+ const [f(\uln"QHVu\z)] .

Br

The result then follows, essentially, as in the proof of Theorem 1.1, see

{1211 g.e.d.

As a simple model of the general situation in Theorem 1.2 one can .

look at the single equation
(1.16) ~Vu = [Vul

. 2 .
with y<1+% if n23‘.
Now we want to consider the case of natural growth conditions, i.e.
1 +f21— <y <2(n>3), distinguishing for convenience the two cases
1+'2rf<y<2 and y=2.
For the sake of simplicity, let us consider weak sclutions in Q of
the nonlinear system

(1.17) —Da[Ao;J‘,B(x, u)Dﬁuj] = f,(x,u,Vu) i=s,,N

where
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II1 - (leading part), A[iljﬁ (x,u) are continuous functions in Q x RN
satisfying
IAO."’.B(X,u) < L(M) M =sup ju|
1] Q
AP, weig s vODEZ Ve ban s o
ij @B =
and

112 -(lower order term). f(x, u,Vu) ;s measurable for all uH! NL>Q, RN)

and
@ [fGx,u,p)] < aMy[p|2 4 p ©
or (for n > 3) \
®) [fGx, u, p)] < aqu) [p]? 4 b 1+2 <y <2,

and

f A?J’B(x’ DD, glax - f £(x, u,Vu) pidx
€ 0

forall ¢ ¢ HJ N L>@Q, RN
We have, see [113]121]
that III and 112 (b) hold, or 111, Ilz(a) hold and moreover

(1.18) 2a(M) - M < v(M) .

Then there exists an open set Qo CQ such that y ¢ Co’a(QO, RNy for
every a <1; moreover Hn‘q(Q\QO) =0 for some q>2.

the following

—_—

6)Instead of b= const We could assume b eLP P>n/2.

We recall that ‘g is a weak solution’ means that ueH! N L, RN)

Y 181
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A v Q and
9. With the assumptions of Theorem 1.3, for every x €
2. Wi 1 ‘ o

1 . 0 < p <R <dist (XO' dM) aAl, we have the inequality

o' R, p

f (1 +|Vu|?)dx §c[(%)n+x(x0,R)] . f 1+ [Vu|?»dx

BR(XO)

BP(XO)

2
X R) = g(RH f Vul d")

BR(XO)

't‘)”going to zero as t goes to zero.

b f. Let v be the solution to the Dirichlet problem
rool.

~Da[AOiL§3(x0, uxo"R)DBuj] =0 in Bg
u on OBR/z
v =
en we have |
f |Vv|2dx < const (%)n f[vu\2dx p <R/2
Bp<x0) Bp

“and (see Proposition 2.3 of Chapter III)

sup lvl § const M .

Br/2

IQOW li we Sse w=u—V we ve W = 0 on ()B aﬂd
e t y ha R/2
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(ap o |
f %ij Fortg, w0 Dy f N S AR

B

+ffi¢>i Vg eHl N L™

In particular, we may take

as usual,

f Vw|2dx < ¢ fquIzdx co(R2 R? f}Vu|2)

Br/2 By

. f (w192 [y .

Br/,2

(1.20)

As for what concerns the last integral, we have

(1.21) f lwldx < chleydx < cR{ f IVw|2+1R} .

Br
/2 R/2

Introducmg this inequality in (1.20) and recalling that R < 1
are bounded we get

f Vwl?dx < c f(lVUI2+1)dx
Br/2 B

, w? and w

and hence, choosing s—f in (1.21)
f lw| < c-R- f(1+|Vu|2)dx.
Br/2 - Bg

® =w, getting by means of the LP-estimate,

V1. THE DIRECT APPROACH TO REGULARITY @ 183

q-2
g , - W
f|wnw125c f<1+|Vu|2>dx< JCW) <
B Br/2
q-2
o\ 29
< f(1+|Vul2)dx<R2 :F(1+]Vu\2)dx)
Br Br/2

refore our result is obtained for p <R/2, -and since it is obvious for

R/2< p <R, the proof is complete. q.e.d.

MARK 1.3. It is worth remarking that the smallness condition (1.18),

apart maybe from the factor 2, is necessary, as Example 2.1 of Chapter V
ghows. Moreover, we would like to point out that it enters in the proof of

Theorem 1.3 only through the LP-estimate in Theorem 2.3 of Chapter V.

E'EI‘he conclusions of Theorems 1.2 and 1.3 only under II,, IIZ(b) can be
improved to be an everywhere regularity result, i.e. Q= Q, if we
assume instead of I,, II, that the ‘leading part is smooth.” By that we

essentially mean that the solutions to system

_ Bul
D, (A DB]

be Holder continuous. More precisely assume for example that
| (1) AO;j‘B = Acitfg(x) ¢ CY%Q) and the Legendre-Hadamard condition
holds or
(ii) Aaij‘8 - SijAa'B(x), A“B(x) ¢ L™(Q) and

Aaﬁfagﬁ SVER VE; v 0

or
(iii) AC;JB = Aoilf}(x) e L™, v|£|?< A(;B(f(;fé <'L|¢]? and ’i is near

to 1.



Then we have

THEOREM 1.4, Assume that (i) or (i

1,(b) hold. Then the conclusions of

Theorems 1.2, 1.3.-hold with
Q,-0.7 |

Proof. Split u =v4w where v is the solution to the Dirichlet problem

a3 :
—Da(Al.jODBvJ) =0

i=LoN in By (x))

v—u eH(I)(BR/Q(XO), RY)

and where

A‘:;.B(x o in situation (i)

a%B

ijo -

LtSaBBij in situation (ii).

Suppose now to be under hypothesis If
1.2, we get (1.19), where this time y(x

enough respectively in the situation @
easily.

0 R) goes to zero or is small

or (iii), and the result follows

Let us suppose to be in hypothesis I,. Then we get

Bp(xo BR(XO)
+c2l'\’n“2+2y+c3 f V2dx
- Brxg)
‘ 2n
v2 o ,u[n—Z .
_— \

7)For results in the case II(a) we refer to [275].

i) or (iii) hold, and that I2 or

5(b); then, as in the proof of Lemma

n
f (V24 [Vu|2)dx < Cl[(l%) +X(X0,R)] f (VZ+|Vu|?dx +
) , ,

VI.. THE DIRECT APPROACH TO REGULARITY ) 185

, . ' 2,0 (5_ £} therefore
ote that V? le\;‘f, >0, then v €Lige (@ 1+€)’ crete

I
L2:9, and since
c

lo
: n
n—2
flV—VP|2dx < const (f]Vulzdx) -
Bp Bp

N

Vel ‘n—

‘hen step by step we reach the thesis.
" The theorem remains to be proved in situation (ii). To do that we

plit u=v+w as before with

aﬁ aﬁ
Bjo = %yt T

and then it is sufficient to note that from the De Giorgi-Nash theorem one

easily gets

B
2 P 24
f Vol2dx SC(R) f IVv|*dx
Br/2

'Bp(xo)

for some B >n-2. Then the proof goes on as before (see anyway the

proof of Theorem 1.1 in Chapter VII). q.e.d.

REMARK 1.4. For the sake of completeness, it would be worth trying to
extend the above regularity results in the case of the natural growth

‘Ilg(b) to the weak solutions considered in Remark 2.2 of Chapter V.

Finally, we would like to point out that all the results we have stated
hold for higher order systems; we refer to [121] for the statements and the
proofs. For part of the result in Theorem 1.4 we refer also to [205]. |

' So far we have proved, in different situations, that the weak solutions

to elliptic systems of the type (1 .17) are Hélder-continuous everywhere in
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p-2

. N 2p
f [Vw|2dx < c|R + (RZ—n- f(l+|Vu|2)dx) +

Bp Br

Q orin Q except for a closed singular set ¥. Now when the coeffi-
cients of the system are more than merely continuous, the solution u(x)
will show higher regularity in Q or in Q= O\X. To prove that, as we

have seen in Chapter II, one usually introduces the solution in the coeffi- p—2

P
+w(R2+cR2‘n f!VUIZ) f(1+qul2)dx.
B

R Bgr

cients and in the right-hand side, and then relies on the regularity results
for linear systems. However, as the right-hand side of (1.17) shows a
dependence on Vu we first have to prove that u e C1'%Q) or Cl’a(QO),
This can be done following the method of Ladyzhenskaya Ural’tseva .
[191]; here we present the simple proof taken from [113], see also [119] Therefore, since u ¢ Co’a(Qo)- Va<1 and, because of the assumptions,

[116].

we have
w(t) < ct?/?

THEOREM 1.5. Let u ¢ Co’a(QO), for all a <1, be a weak solution to
system (1.17). Assume that HI and Il ,(a) hold and that the coefficients

A?j are Holder continuous with exponent o. Then the derivatives of u

for the modulus of continuity , from (1.22) we get

fwu_(vu)PFdxgc{(g)mz f[\Vu—(Vu)Rlzdxh

B (xg) Brxg)

o
2
+ROZ a[2 +opT:” .

’ ~2
n+2 If a is chosen so close to 1 that [2+op—p—] a>2, we may conclude
f IVH;(VH)‘O‘ZdX < C[(%) f Vu- (Vu)Rlde + from (1.23) (compare with Chapter III) that Vu is Hélder-continuous in

are locally Holder-continuous with the same exponent ¢ In QO'

Proof. Let Q, Cc Q,, Xg e, and R< é— dist (x, dQy) A1. We may

1.23)
split u=v+w in B(xo, R) as before, and using estimate (2.8) of (

Chapter III for Vv we get

i iti i Vu is’ bounded. Now,
B ), with some positive exponent. In particular
a.22y Fpto By . ‘
since
2
' f ! dx:’ . j‘]VWI2 < c{ f(w2+}w|)\Vu]2dx + flwldx}
B
B
) Br Br R
Now, compare with the proof of Lemma 1.2, for some p > 2 we have
we obtain

v f|VW‘2 < C‘Rn+20+ flwldxl .
; Br R .




188 ‘
+¢°®  MULTIPLE INTEGRALS AND NONLINEAR ELLIPTIC SYSTEMS

The last integral is easily estimated as

Br B

1/2 042 1/2
f‘W! < (wan)l/z(f‘w]2) < constRT(f wa|2)
Br
R

and therefore

f IVw|2dx < const R1+20

Bg

Introducing the last inequality in (1.22) we get the conclusion
2. Nonlinear systems: Cl:@ regularity

In thi . .
n this section we shall consider general nonline
divergence form

. n
a
@.1) - 21 DA, wVu) = By(x, u,Vu) i1 N
a= 2’ k)

and we shall suppose
. a
i) IA,'(X: uw,Vu)| < L@+ [Vul)

ii —1,Q 7 '
i) (1+p) Ai(x,u,p) are Hblder-continuous functions with some

exponent & on ) x RN uniformly with respect to p, iLe.

A% a
lim sup i(x+0, ut, p) -A(x,u,p)

(0,7)(0,0) A +IpD (o] + 7Y S k(u) < o0

. A0
iii) Ai(x, u,p) are differentiaple functions in p Wwith bounded and

continuous derivatives

G <L
5

q.e.d,

ar elliptic systems of
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qv) the ‘strong ellipticity condition

A (x,u,pELEL > A|€)? VE, A>0
1pJB a B

d

y) forall ue H110" N L¥Q, RNY B(x,u,Vu) is measurable and

'B(X!uyvu)l i alplz + b *
Up to now we have considered only systems with quasilinear leading
rt. Of course full nonlinearity, as in (2.1), was permitted, but only in
e case that it would be possible to reduce the system to a quasilinear

e (a fourth order system) via the differentiability theory, compare

This forces us to make an ‘unnatural’ assumption on the behavior of
the derivatives AO_[ j(x, u,p), namely that A(% j(x, u, p) has a growth in
‘ iu iu
p of the same order as Acf i (x,u,p), i.e.to suppose that

1p’8
a
A" G, p)l < L
iu
We recall that under assumptions i)...iv), B =0, H!'2-solutions are

generally not in the space Hi;i(ﬂ, RY).

In this section we want to present some regularity results for elliptic

. .
 ‘systems under the ‘natural’ assumption ii), which corresponds, if Ai are

differentiable in u, to the natural growth condition
a
A" .(x,u,p)| < L{+[p]).
iu)

These results are due to M. Giaquinta, G. Modica [122], see also
P.-A. Ivert [1711{172], and they sound as

THEOREM 2.1. Let u e H'%(Q, RN) be a weak solution of

n .
2.2) Y D, A%, u,Vu) = 0 i-1,--,N.
a=1



MULTIPLE INTEGRALS AND NONLINEAR EL’LIPTIC 'SYSTEMS
Suppose that i)... iv) are satisfied. Then the first

iy ' derivatives of u are
older-continuous in a
n open set (. Moreover '

(2.3) M\, C 3 U z,
where
z - [ . . .
1 {Xfﬂ- lgri;gf f Vu~(Va), g[?> 0}
Bp(x) '
2, = 1xeQ: sgp(!uX,RM(Vu)x,Rl) = ool .

In particular meas «Q \QO) =0.
THEOREM L2np»

) 2.2, Let ueHL2 0y (Q,RYY he a weak solution of system
(2.1). Suppose that 1)...v) hold and that, if |u| <M

2.9 2aM < A,
Then the first derivatives of u are Holder-continuous in an open set
Moreover Q\QO C'Zl u 22; in particular meas (Q\QO) =0. ’

s

A . R
) ctually, higher order and more general nonlinear systems are con-
< .
idered in [122], but here we shall confine ourselves to the simple case of

second order systems referring to {122] for the general situation

Th . .

| e method of the proof is very similar to the one in Section 1 the
main new tool being the sharper LP-estimate for the gradient stated in
Lemma 2.1.

Before going into the proof of Theorems 2.1

2.1 it is i
few remarks. worth making a

Fi .
irst, as far as the estimate of the dimension of the singular set

(2.3) and the result in Section 2
Chapter IV it follows that if ¢ H2:P N 2n en l ’
‘ueH“PQ R >
), p 5 th

}(“—P+E(Q\QO) =

Q\QO is concerned, we notej‘that from

0 Ve>0. Let us recall that one has u ¢ H2/P for some
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2", if the oscillation of u on small balls is small, for example if u
continuous (or Holder-continuous) (note that this is true in dimension 2),
ompare with Chapter II and the end of the next section; of course we

iave to assume more on the smoothness of Aai and B;.

; However, we do not know if the estimate of the dimension of the .

gular set can be improved in general, or if the almost everywhere
egularity is optimal.

As for the smallness condition (2.4), in the quasilinear case it is
atural apart maybe from the factor 2, as we have seen; but here we show
“n:1y almost everywhere regularity instead of regularity except on a closed
et of zero (n-2)-Hausdorff measure; so it is not clear whether it is
natural, compare with the results of E. Heinz [152] and M. Griither [143],
ho in the very special case of 2-dimensional H-surfaces are able to
prove almost everywhere regularity without assuming any smallness condi-
tion such as (2.4). ‘

Finally, while Theorem 1.1 permits to answer the problem of the regu-

larity of minimum points for regular multiple integrals of the type

fF(x,Vu) dx

Q

(see Chapter II) at least when assuming natural growth conditions and in
the sense of regularity except on a closed ‘small’ singular set, we want to
remark that Theorems 2.1 and 2.2 leave the regularity problem still com-

pletely open for HYX(Q, RY) minimum points of general regular integrals

f F(x, u,Vu)dx . >

Q . S\

8)See next section and Chapter IX.
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Let us now prove Theorem 2.1.9)
Set

¢(X0,R) = f IVu—(Vu)Rlzdx
BR(XO)

AR A%

ijo = lleB(XD’ X R,(VU)

,R/4)

1

4]
Then system (2.2) can be rewritten as

e PuljoPgel) = DGR D 0, -

“DalAg, 1y VaGe) - A, uGo), Vu()t

Split u as v+w where v is the solution of the Dirichlet problem

—D(A'B VJ)‘ 0

jo B in Bp 4y

vV-ue H(l)(BRM(XO)’ RN .

Then we have for every p<R/4, see Chapter III,

f Vv —(Vv)g 1% dx

Br/axg)

9 p n+2
f Vv -(vv),| 'dx < C(E)

BP(XO)

—_—

{122].

‘;‘Jﬁ - fAOinj (xq, uXO,R’(VH)XO,RM+t(vu(x)‘(vu)x0,R/4)) dt .
B

)Smce the proof of Theorem 2.2 is very similar we shall omit it and refer to

‘VI. “THE DIRECT APPROACH TO-REGULARITY -

’ ‘ n+2
f qu—(Vu)p|2dx <c %) f [Vu—(Vu)Rlzdx +

Bp(xo) , Br(xg)

re f |Vw|?dx .

Br/axg)

.6)

i’ Now w € Hil)(BR/4(X0)' R™) satisfies

0B

Br/a Br/a

2.7)

f [A(;(X origsVu(x)) - Acz(x ux),V u(x))]Dagbi

Br/a

N i =w, we get
for any V(ﬁeH}J(BRM(xO),R ). Hence, choosing ¢ =w, we g

A 2
fivw|2dx§ f2|A‘;§30_A‘§§3|2\Vu—(Vu)R/4I +
Br/4 Br/a
(2.8) 2
+ f SIA%(x g u g, Vu(x)) - A, u(), Vux))|2 .

Br/4

Let us estimate the second integral on the right-hand side of (2.8).

From Assumption (ii) it follows that there exist a non-negative

193

f %P DgwlD, pidx = f [A??O-Af ][Dﬁulj—(Dﬁu’)x(yR /40,8 +

. . ion k(t
bounded and continuous function #(t,s) and an increasing function | (t)

such that
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a) (t,s) is increasing in t for fixed s and in s for fixed t
b) x(t,s) is concave in s |
c) 7t 0) =0 and (t,s) < k(t)s5/2
d) for every x,y ¢ u,v e RN, p e R®N and for every i ‘1 N
i=1, ..,
a=1,:,n the following inequality holds

1AG,w,0) - A%y, v, )] < otlul, xoy (24 fu-v ]2 (1 + |p)) .

For example we can take 7(t, s) = k(t) 55/2 A L. Therefore

a
f zlAi(Xo,uR,Vu(x)) ‘A?(X’u(x)’VU(X))Izdx <

Br/a

< fnﬂuRl, =% 01?4 u(x) ~ ug ) (1 + [Vu])? <

B
R/4

2/q 1-2/q
<c f(1+|Vu|)qd)> (fn) .

Br/4 Bk /4

10)

1—2/q'
Sc (1+quI2)dx( JC ndx) e
B

R/2 Br/2

- , 1-2/q
< f (1+|Vu] )dxn(|uR|,R2+ f|u—uR[2dx> <
) <
Br

R/2

1+e
< k(IuRDR“ﬂ(f(l +Vul?) dx) £=0 (1 _%)
)

) BR
—_—
10)
In fact we have: le -
¢ let u be a weak.soluti
and i S ution to system (2.2) and let i) iii
nd iv) hold. Then there exists a 9> 2 such that l,q( 2)1\}3nd let i) iii)
ueH TALRY) and for

xn €8} d 1- i
0 and R< 3 d1st(x0, I we have

|
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Noting nowthat [ (1+ |Vu|?)dx can be estimated in terms of

B
R
1+ l(Vu)R]2 and ¢(x,,R), we obtain

f EIAC;(X oURy Vu) - AO;(X u,Vux)|? <

2.9 BRr/a
< Hy(lug |+ (Vg + ¢ (R /DR,

H,® being an increasing function.
Let us estimate the first integral on the right-hand side of (2.8).
From assumption iii) it follows that there exists a nonnegative

bounded and continuous function w(t,s) such that
a) w(t,s) is increasing in t for fixed s and in s for fixed t
b) w(t,s) is concave in s for fixed t
c) o(t,0)=0

d) for every (x,u,p)(y,v,q) € QxRN
every ij=1,-,N, a,f=1,--,n the following inequality holds

<R with |ul+|p] <M and for

lAczpj ) - 5 @val < oM, -y |2+ lu-vi?+lp-ql?) .

B P8

Therefore the first integral on the right-hand side of (2.8) is estimated by

f wz\Vu—(Vu)R/4\2dx
Br/a
with

© = oc@L + Jug|+ (VW] + b R /2] Vu= (Vu)g PRE

( F a+Vuplan?/T<e £ 1+ |Vu|Hax
Bglxq) Byr(*¢) '

compare with Chapter V.
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Now we need the following lemma which we shall prove at the end of the

section.

LEMMA 2.1. Let u be a weak solution to system (2.2) and let assump-
tion i)...1v) hold. Then there exist 7>2(r<q), ¢>0 anda constant

¢ such that for every X3¢ Q and R <dist (xg, Q) the following esti-
mate holds

2/m .
( f Wu-<vu)R/4|"dx) <c :qu_(vu)RPdu

(2.10) Brraxq Bg(xy)
+hlug [+ 1(Va)g [+ (x o, R)/2) RE
where h(t) is an increasing function.
From Lemma 2.1, taking into account the boundedness of », we

deduce
2/m

fmZIVu—(Vu)R/4|2dx§( fIVu—(Vu)R/4I"dx)

°R/4 Br/4
2.11)

Br/a Be,, By
+ R (lug |+ (Vg +h(x R)1/2)} )

On the other hand, being @ concave in s, we have

f © S W+ fug|+ (Vg |+ 6x g, R) /2, by, RY) |

Br

27 1-2/m 1-2/m
= ‘ 12
. < f@ff’, .dx) Sc(kfﬁ)mdx) { f fVu~(Vu)R/2.| dx +

0197
"\ {V1. "THE DIRECT APPROACH TO REGULARITY

deduce
onclusion, putting together (2.6), (2.8), (2.9), (2.11) we dedu

A 2.2. Let u be a weak solution to system (2.2) and let assump-
MM 2.

S ) l‘/) hold- jhen thEIQ exiSt pOSItIVe ConStantS C and € Such
1)... .
very X € Q and 0 < p < R < 1n (l d]S' (XO aQ)) the iollOWlng
or € 0 » ’

stimate holds:

: +2 v 24
f \Vu—(Vu)p]zdx < C[(}%)n +X(XO,R)] : f [Vu—(Vu)g|“dx +

+ ¥(xo,R) - RM®

1/2
N(xgR) = olug|+I(Vu)g|+ @GR, ¢xo.R )
W(xR) = Hllug|+ (V)| +p(R)! /)

fon i ] iformly for
(t,s) being an increasing function in t going to zero uniformly

:'M <M as s goes to zero, and H(t) an increasing function.

Now the proof of Theorem 2.1 follows the lines of the proof of

Theorem 1.1.

| i <r<1l, as
i Proof of Theorem 2.1. Inequality (2.12) can be written, for 0

£

-n
(x4, 7R) < A 2(x o, R +7 0 23 (x 0, R)] + ¥(xo,R) TR

-0 =1.
Let now ¢<o0<2 and 7 be chosen in such a way that 2Ar

Since for fixed M1 we have

X(X OyR) < Tn+2

€1
provided that |ug| + [(Vu)g| <M; and @(R) be less than some ¢

setting HO _ \I;(Ml)rfn
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we have: if for some R

lug| + [(Vu)gl <M, , #(R) < &, (M,)
then
#(x, 7R) < r7(x,R) + HRE .

On the other hand for every k

k
le+l(Vu>Tle < lugl+1(Va)gl +H, (,N, ) s B SRYL/2 |
s=0

w

Therefore by induction we get

Bl ™R) < K00 R L TRy S (o
s=0

= ¢(X0;R)+HO R* TkE < g

€7 1

1

/2 1/2 &

€

Pl OV < ruR|+l(vu>R|+H1(i) SICCN
s=0

2

1/2 1/2
+ € < u |+|(V € 1 ‘
1 S ugl+i(Vu)g |+ M, (= 1/2
N2 1_7E/2 et s My
if
R <R oy < f M
0 PER) <, Jug|+ [(Vu)g] < 21 ,

and if & and R, are chosen in such a way that

1/2
e%/2+H1(.E.1) -1 < &
2 1-rE/2 2

07 0 7% for R<R,.

@14 b(x,p) < const (RL) )
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Then we can conclude: for any M, if

oM £
2.13) \uRl"' I(VU)R\ < 5 d(R) < 7
or some R < Ro(Ml) , then
¢(x0,fkR) < g ke

and hence, for every p <R,

€

0

-~ Now, since ¢(xy,R) and [ug] + |(Vu)g| are continuous functions of x,

if (2.13) holds for a point x, ¢ {2 then there exists a ball B(xg,r) such
that (2.13) (and therefore (2.14)) holds for every x ¢ B(x ). Then it

follows that the derivatives of u are Holder-continuous in an open set

i Q,. Obviously one has Q\Q,C ?‘1 U 22 , and the estimate meas (2\Q,) =0

is a consequence of the Lebesgue Theorem. q.e.d.
Now it remains to prove Lemma 2.1.

Proof of Lemma 2.1. Define

6x,y) = A%y u(y),Vu() - Ax,u(),Vu(x))

n

Y cieyi? .

i=l a=1

G 2(X ,Y) =

Mz

Fix X ¢Q and p <dist(x,d€). Forevery v= (V(il) and almost every
y €8} ,
a a L. ~afd i j
Ally,uy),Va() - A a0 = 3, 3, AL Ogul) -y
=1 B=1

where

i
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~ B P .
A(;j :fA(: j(y’u(Y)’V+t(Vu(X)—V))dt
B

and, of course,

A BI<L

A‘ffaifg > A2 e,

Hence, for every ¢ cHO(Q RNy and almost every vy we get

..aﬁ . . . .
(2.15) f Ajj Dgul D sl dx = f G{(x,y) D, B (x)dx .
Q 0

Let now ¥ ¢Q, and let n be a standard test function on B(x —p)

7=1 on B{F, 5 - Inserting ¢ = (u(x) -u’ -Vu(x)- (x»x))n and

3
X_
i

=Vu(y) in (2. 15) we deduce the following inequality

f IVu(x)—Vu(y)lzdxsc{# f oy -V

Bp/2® B, @ KN
- 4f
+ 2 1
f G (X,Y)’ < C{;ﬁ f lu—uY 3 p~(Vu)_ C(x-%)|%4dx +
—_ Ly YJP
B, (X) By, () 4 ‘
2P

+ fGQ(X,y)deLPnIVu(y)—(VU)_ lz}
e v.p

e 3
S eCR(B X)) n=1 on B{X,> and v =(Vu)_
Mmoo " 4 p) v.p
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ch, via the Sobolev-Poincaré inequality, by taking the average in y

B(?% p) , beéomes

' | am \h
f dy JC Vu(x) - Vu(y)|?dx < c{( f [Vu - (V“)y Pln+2dx)

@ By ® p&)

Hw

Slw

2
JL dy f G2x,y)dx + f Vu(y)-(Va)_ 5 [2dy!.
Y:ZP
B (y) B (X) By &M
ZP
On the other hand, inserting ¢ = (u(x)-u_ -(Vu)_ (x—i))n2
X,p VP

in (2.15) we deduce

f Vu(x) - (Vu)_ \2dx<c: f g - (x—x>12dx+
Y,

B3 x) BP(X)

p
+ f Gz(x,y)dx}

Bp(i?)

: and by the Sobolev-Poincaré inequality and taking the average in y on

B(y, p) we conclude
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fqué<Vu>_3 |2dx < JCIVu@)—(Vu)_ |2dx <
X,2p 22

By (8 B3
af 2
2.17) -
{( JC |Vu<x>—<-Vu>y FQ) f dy ch <x,y)dx}.
BP(FT) p(Y) B (X)

Since now for every p > 1
(2.18) f Vu—-(Vu)_ |Pdx < f dx JC [Vu(x) - Vu(y)|P dy
VP -
BP(Y) B, By
from (2.16) and (2.17) we get

:de JC Wu(x) Vu(y)|?dx <

B (Y) B (X)

, 2 2
(2719
c( jﬁ dy IVu(x) - Vu(v)l"+2d) chy f GX(x,y)dx
BP(Y)‘ Bp(i) Bp(y) Bp(x)

Vxyel, p <dist (%, o) Ndist (v, 9.
Therefore, applying Proposition 1.1 of Chapter V in OxQ with

2n 2
2n 142
g = [Vu@) - Vu) ™2, |Gy B, q=1+ 2~ 6=0,

»

we get for some 7 >2, for any X € Q and R< dist (x, a )
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2/m

( f dy f {Vu(x) - Vu(y) |ﬂdx) <

Br/ao)  Bryalxo)

<c J: dy f IVa(x) - Vu(p)l? +

Br/axg)  Bg (xg)

2/m

f dy f - G™(x,y) dx)

Br/a(xg)  Bgr ()

which taking into account (2.18) and

Jﬁ Vu(x)-(Vu)_ |?dx = f dy :F |Vu(x) - Vu(y)| 2 dx
X,p

Bp(;(‘) Bp&) Bp(f)
becomes
2/m
( :F \Vu(Vu)XO’Rlndx) S{
Br/a&xo)
(2.20) ) a/m
7 dx
< Vu-(V 2dx + ¢ J: dy :F G'(x,y) )
T |
Bg /p(x¢) Brraxe)  Br®

In order to get (2.10), it only remains to estimate the last integral in (2.20).

Let 7(t,s) be as before and set
a(x) = n(lugl, \X—x0l2+|u(x)—uR|2) .

Then we have




204 MULTIPLE/INTEGRALS AND NONLINEAR'ELLIPTIC SYSTEMS

C\/m
( f dy f G"(x,y>dx) <

5( dey f lA"{(y,u<y>,Vu(>‘<»—A“i(xo,uxo,R,Vu<x>)|"dx)

Br/axg)  Bg g

1/m
+ < f dy JC lAO-IL (x,u(x),Vu(x))oniL (XO’uxo,RrVH(X))|"dX> <

1/m
< ( f a"(y)dy f 1 +(Vu))"dx) +

Br/2(x0) Bp /5(xq)

1/m
+ ( f a"(x)(1 +»|Vu(x)l)"dx) .

Br /2

(2.21)

1/m

Now, from the LP-estimate and the boundedness of 7 we deduce

1/m 1/2
( f(ulvul)"dx) sc<f(1+wu12>dx>
' R

B

R/2 B
1/m 1/m
( f aﬂ(Y)dY) <c ( :’C a(y) dy)
Br/o Br/2

while, since 7(t,s) is concave in s and n(t?O) =0, g(,s)< k(t)85/2
using Poincar€ inequality we get i

+
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f )iy < nﬂuRg,Rz + Jflu—uRde) <

Br/2 Br

)

< k(\uRl>R5<JC<1+Wu\2>dx)

Br

On the other hand, if #<s<q, g being the exponent in the LP-estimate

for |Vu|, we have

/s 1-7/S
f (%) (1 + |[Vu@) )7 dx < c( JC @A +[Vu))® dx) ( % adx) <
Br/2 Br/2 Br/2
/2 1-m/s
§c(f(1+qu\2)dx) (:Fadx)
Br Br

Hence, the result follows from (2.20) and (2.21) because of the estimates
of the terms on the right-hand side of (2.21) and noting that [ A+ \Vu\Z)dx
can be estimated in terms of 1+ l(Vu)Rl2 and ¢(x,R). Br q.e.d.
3. Minima of quadratic multiple integrals: N>1

As we have remarked, the results in Section 2, although quite general,
do not cover the case of minima of regular multiple integrals in the calculus
of variations.

Let us consider a regular multiple integral

(3.1) ’ Jlu; Q1 = fF(x,u,Vu)dx
Q
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with
(3.1 Ipl? — k < F(x,u,p) < alp|? + k

and let u e Hllc’)z(ﬂ, RY) be a local minimum point, i.e. let us assume that

for all ¢ ¢ HL1-2(Q, RYY with sptéh CC Q we have

Jlu; sptép] < Jlu+¢; spt ] .

Then no previous result answers the question of the partial regularity of

u D (
Here we want to present a contribution!?2? to this problem due to
M. Giaquinta, E. Guisti [114].

functionals, i.e. multiple integrals of the type

a,8 i J
fAij (X,U)Dau DBU dx

It refers to the special case of quadratic

(3.2) Acf ) Ajﬁia)

Let us assume that the coefficients A‘:ﬁ are bounded continuous
J

functions in Q@ x RN and satisfy the Legendre-Hadamard condition

) aﬁ
(3.3) A (x,u)e:ifjnanﬁ > ME[2|yl? VEm; A>0.
Moreover we suppose that the conclusion of Theorem 3.1, Chapter V holds
for the functional (3.2). Of course this is true if inequalities (3.1)" hold,
but this does not seem to follow from (3.3). Inequalities (3.1)" would

instead follow from

A?f(x’u)fifé SAER Ve As 0.

11)As we know u is generally not everywhere regular, compare with Section 3
Chapter II. Let us again note that the functional J is not differentiable in H’
and that we are not allowed to think of u as a solution of the Euler equation,
compare with Section 5 of Chapter I.

12)For more results we refer to Chapter IX.
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We shall prove the following theorem, where for the sake of simplicity,

& shall assume that the coefficients A i be uniformly continuous and

HEOREM 3.1. Let the hypothesis above be satisfied, and let
«HL 2(Q, RY) be a local minimum point for the functional in (3.2). Then
loc

0, N
ere exists an open set (1, C such that ueC a(QO,R ) for every

f |Vu|?dx > EO=

BR(XO)

<1. Moreover we have

0€Q: lim inf R*™

Q\Q, - { im in

(3.4)

where ¢, is a positive constant independent of u. Finally

]{“_q(Q\QO) =
‘for some q > 2.

Proof. Let x5¢8, R< é— dist(xg, 92}, and let v be the solution of

‘the variational problem

af3 TN
f Ai‘j‘ (xo,uR)Dav Dﬁv dx - min

Bp(xq)
v-u e H{BLxp,RY) .

Since the coefficients are now constant, the Euler operator is coercive

and the problem has a unique solution. Moreover, we have

i i inuous, increasing
13)’1‘his implies, as we have seen, that there exists a contin , ,

function @: R*-R* satisfying @(0) =0, w(t) <M, and such that
2 12
‘Aaiﬁg(x, u)—Aai?(y,vﬂ < w(\xfyl +lu—v‘ )

and moreover @ is concave.




208

MULTIPLE INTEGRALS AND NONLINEAR ‘ELLIPTIC SYSTEMS

y : 14)
(3.5) f [Vv|Pdx < cy f [Vu|Pdx

Br(zg) Bp(xq)

and for every p <R, compare Chapter III

n
(3.6) f;vv|2dx5c2(%) f|Vv|2dx.

Set now w =u-v; we have w eH(l)’Z(BR, RN) and therefore

a . .
cq fle[zdx < fAi?Exo,uR)DawlDBdex .

BR BR

On the other hand

af ) )
fAij (xo,uR)DaleBdex =0

Bg

and therefore

af3 . . a . .
fAij (xo,uR)DawlDBwJ dx = fAi;_B(xO,uR)DaulDBwJ dx =
Br Br

- f[AoiL;.B(X0,uR)—AL:J,B(X,u)]Da(uiJrvi)Dlejdx+ f[ATjB(x,V)—A(:jB(x,u)]Davi
BR - BR

af3 in o j af3 in j
+ fAij (x,u)Du DBuJ— fAij (X,V)DaleleJ dx .
B B

R R

14)This follows either from the LP

-theory for elliptic operators with constant
coefficients, or from the results in Cha

pter V,

D deX+

B
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V : last two
" gince u minimizes J, and u=v on dBg, the sum of the

‘terms is nonpositive. Therefore

f‘Vdex <cy f[v\Vu12+lVVIZ][wz(RQ+\ufuglz)+w2(R2+lU‘VP)]dX ‘
; B

BR R

‘ p_ . .
Taking into account the boundedness of @ and the LP-estimate in

Theorem 3.1, Chapter V, we deduce

2/9

f‘vul202dx < c3<f\Vu|qu)
B, Br
1-2/q
<cq f(1+qu\2)dx (f“’dx)
Br

Byr

1-2/q

S

Br

and using (3.5) with p=gq

J\\Vv‘za)zdx < C-6 f(1+\Vu|2)dx( fcodx)
Br' Bor Br

Since @ is concave, we have

fm(R2+lu~v\2)dx < w(R2+ f}u—v[zdx) <
’ B

Bp ) R

. 2-n 2
< a)(R2+c7R2_n fle\zd)a < w(R2+c8R f\Vui dx)
Br

Br

1-2/q

and similarly
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Jﬁw(R +|u~uR|2)dx <w R2+c8R2_rl f|Vu|2dx\

B
R
Br

In conclusion

1-2/q
\V 2 2 —
fl w| dxgcgw(R +c10R2 n f’Vulex) f(1.+|Vu|2)dx
Br
Bor

Br

and from (3.6)

f(l +|Vu|®ydx <

B
P

. ,

< P 2 -

SN O R ey
Bg

1 ;.
for every p <R < ¥ dist(x, 0Q).

The result now fOJ.lOWS as in the proof of Theorem 1.1

1

1—

0

]‘ f(1+{Vuf2)dx

Bor

REMARK i ' »
3.1. By adapting the proof given above, compare also with

Theorem 1.5,
it is not difficult to show that if the coefficients A B are

Hold
er-continuous, then the first derivatives of the minimum pomt u a
locally Hslder-continuous in QO. )

REMARK 3.2. A similar theorem has been prox}ed by R. Schoen-

K. Uhlembeck [261] for h i
armonic maps between manifolds minimizi
energy functional. e e e

The case of i inuous
(nonuniformly) continuous coefficients, as we know, needs

s
ome technical adjustments both in the statement and in the proof. W
shall leave the details to the reader. )

D)

q.e.d.
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“ pPROBLEM. Does the result of Theorem 3.1 hold for minima of general

regular multiple integrals (of the type-(3.1)) in the calculus of variations?

Closely related to the above problem is the following question.

PROBLEM. Let us consider a weak solution u to the elliptic system
a
(3.7) "DaAi(V“) =0.

Is it true that there exists a number &g > 0 such that whenever
R¥ M [Vu|2dx < e, then x is a regular point for u, i.e. u is
Holder-continuous in a neighborhood of x ?15)

We conclude this section and this chapter with some remarks on the

two-dimensional case.
From now on assume n =2. Under the assumptions of Theorem 2.1 or

LP for some p > 2, then, by Sobolev theorem, u ‘is
loc y s

Holder-continuous. Therefore, see Theorem 1.2, Chapter II, we have

u € H2 2(Q RY). More precisely, choosing in the proof of Theorem 1.2,
Chapter II, first ¢ =D_[(Dgu~ Eym?l and then ¢ = (u—qu)qu[2 we

deduce

(3.8) fqu|4 4dx +J‘\V2ul2 4dx <f[7) +|u~u2R|4\V17|4

+ ]Vu~§\2\V7]l2772]dx .

2.2 we have u ¢H

Now, taking & = (Vu)X R’ We have, using Sobolev-Poincaré inequality
0’ .

15)Note that the equation in variation of (3.7) is a quasilinear system in the
derivatives; therefore, from Theorem 1.1, we may deduce that the derivatives of u
are Holder-continuous in a neighborhood of xg whenever

7L qu—.(Vu)x Rlz dx
Bp(xq) o’

is small enough.
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12
:F|V71| [Vu-¢]2 < C( JEIVQ lmzdx)
Bor
an I an 4
f‘VTI|4Iu—u2R|2§c( |Vu|n+4dx) SC( f|vu|n+2dx)
BZR BQR

and from (3.8)

An 20 n4p
f [1+1Vu[n+2+|V2uln+2] 1 g4y <

BR(XO‘)
n+2
2n T
( 1+ ]Vuln+2 Wz [n+2]dx) .
Byr&o)

This, through Proposition 1.1, Chapter V, gives that u ¢ lec;g for some

p > 2. Hence we can conclude’

PROPOSITION 3.1. Under the assumptions of Theorem 2.1 or 2.2 of this
chapter, if n =2, then the derivatives of weak solutions are Hélder-

continuous everywhere.

Since the local minimum points u ¢ H!'2 of the regular multiple
integrals (3.1),(3.1)" are Hélder-continuous in dimension 2, see Section 3

of Chapter V, then we obtain (compare with the proof of Theorem 1.5).

PROPOSITION 3.2. The local minimum points of the functional (3.1), (3.1)

are, if n =2, Cl-Hslder-continuous. Therefore, if F is analytic, the

local minimum points are analytic functions (if n =2 ).

‘Chapter VII

NONLINEAR ELLIPTIC SYSTEMS: SPECIAL STRUCTURES
AND EVERYWHERE REGULARITY

In Chapter IV we stated the general problem of finding reasonable

conditions under which weak solutions of nonlinear elliptic systems are

~everywhere regular.

In this chapter we shall consider a few situations in which it is

g possible to show regularity everywhere.

’. 1. Single equations

Let us consider a nonlinear elliptic second order equation in diver-

* gence form

“a.1) ~D,a,(x,u,Vu) + b(x,u,Vu) =

under natural growths, i.e. we assume: the functions aa(x,u,p) and
b(x,u,p) are measurable in x and continuous in (u,p); aa(x,u,p) are

differentiable in p; moreover

la Gx,u,p)| < e +1p)

(1.2) IbGeu,p) < c(l+1pld)
<L D

o
\%(x,um)
B

and the ellipticity condition holds:

1)These. assumptions could be slightly weakened, but that would introduce

only technical difficulties.

213
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(1.3) Rag g S uE? vE vso
' apﬁ acg = ’ '

Here L and ¢ may depend on M =sup |u|.

A well-known result due to 0. A. Ladyzhenskaya and N. N. Ural’tseva
[190] states:2)

THEOREM 1.1. Under the assumption (1.2), (1.3), all bounded solutions

to equation (1.1) are Holder-continuous.3)

Here we want to present a different proof, which relies on the partial

regularity. The proof’s method is taken from [109][114], see also [296],.

Proof of Theorem 1.1. In order to underline the main points, let us divide

the proof in three steps:

I. Under our assumptions, see Proposftion 2.1 of Chapter V,4) we have

1,9
u e Hloc(Q) for some q >2 and

1/q 1/2
( :f (1+1Vul)qu) < C<J£(1+|Vu|2)dx)
Bg

Br/2

for BRCQ.

2)0. A. Ladyzhenskaya and N. N. Ural’tseva use an extension of De Giorgi’s
technique [69]; a different proof is due to N.S. Trudinger (compare [12 9]) who
uses Moser’s technique [234] {235].

For results under controllable growth conditions we refer to [267], see also
[283] and [227] [231].

3)We recall that the boundedness condition is necessary, compare Section 3
of Chapter II.

We note that from (1.3), (1.2) it follows that
aa(x,u,p) Py > vlp|2 — const

which is the hypothesis actually needed.
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1I. By the simple‘standard‘ﬂ device of setting

.1

aa(x,u,p) - aa(x’u,O) = f aapﬁ(x!u:tp)dt ’ pIB

0

‘we can reduce to the case where in (1.1)

aa(x,u,Vu) = Aaﬁ(x) DBu
with

> v|€|2 s v>0.
Aaﬁ(x) eL (Q‘) AaB gagﬁ > ‘g‘ Vf >

Now split u as u=v+(u-v) where v is the weak solution to the

Dirichlet problem

f Agg(x)DgvD,s =0 Vo e Hi(Bp(x o)

BR(X 0)
v-u e HYBL(x ) -

Then we have from De Giorgi-Nash’s theorem

f |Vv|2dx < c(%)n_2+2y f IVv|2dx

B, (xg) Br(xg)

forall p <R and for some y>0. Moreover u-v, which is bounded

since u and therefore v are bounded, satisfies

anlg(x)DB(u—v)DaqS =fb(x,u,Vu)¢ Vo ¢ Hé(BR) N L*Bg)

Bgr
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hence, using step I and the boundedness of u, we get

f]V(u—v)|2dX < cf(]u—v| |Vu|2+lu—v|)dx <

Br
q-2

2q
f(l +|Vu|?dx <R2 fu + Wulz)dx>

Bor Bor

Now, as in the proof of Theorem 1.1, C}lapter VI, it follows that u is

Holder-continuous in an open set QO and

INQ, = {x€Q: lim inf RZ™ f |Vu|?dx > Eo( -
RS0
Brxq)

III. The final step is now to show that QO = i.e. that for every Xg

there exists p such that

(1.4) p2 ™ f [Vu|?dx < ¢,

Bp(xo)

2
Choosing as test function ¢ = uet‘ul n we easily get

f AaBDB ’U2| D77et'ul dx +t fA BDu uD |u|277(-:‘tlul dx +

BorGp) Bor

: 2

+ f AqgDguD,uetlt %y < ¢ { f Val2lufethel® f }
Bor B)r

IN

Cl{ fWuuwumet'“'zm fv}
Bor

BZR
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and choosing t large enough

-

2 2
f IVu[ZetM ndx < —c, JﬂAaBetlu‘| DBIulzDan+

Bor(xg) Bor

+cg fr;dx c,c3>0.

Bor

(1.5)

Therefore the function z = M(2R) - |u|?, M(t) = sup |ul?, is a non-
Bt(xo)

negative supersolution for an elliptic operator with right-hand side

2 C 00
anBet|u| DBZDaTIdX Z -C—Ei f n VT]€C0(BZR) 7’20 »

Bor Bor

and from the weak Harnack inequality [235][129] we have

1.6) R f zdx < c4[inf z+R2].
Bp
Byr(xg)

Now let w ¢ H(I)(BZR(XO)) be the solution of the equation

fABtMDng{)

Bor

fc,zde Ve e HyB, ) -

Taking ¢ =wz we get

217

L thu|?p 2 tlul? _1
> anBe Daw DBZ + ZAaBe DawDBw = wZ .

B B

2R Brr 2R
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The second integral on the left-hand side is nonnegative; moreover we
have w<a in B2R and, from (1.6), w>a, > 0 in Bg, since w isa

positive supersolution (@; and a, do not depend on R ). In conclusion
2

taking n=w*“, we get
A etlul’D 2D pay < ¢ R d
aB B a19% = €5 zdy
Bor(x) Bor

which together with (1.5) and (1;6) gives

a.7n f[Vu[zdx < c R" 2[inf z +R?] = cRM2(M(2R)-M(R)) +R?] .

5 BR .«
R

On the other hand, we have

(1.8) S M@ ER) - M2 kR)] < MQR) < sup [ul?
k=0 Q

and inequality (1.7) implies immediately (1.4) with p = 27KR for some k

and therefore the regularity of u. q.e.d.

REMARK 1.1. We note that from (1.8) it follows that the radius p for

which (1.4) holds can be estimated only 'in terms of sup |u| and hence

the Holder norm of u in any relatively compact set K C Q is bounded in

terms of dist (K, dQ) and sup |u].

Assume now that aa(x,u,p) are Holder-continuous functions with
exponent 6 in (x,u) uniformly with respect to p and differentiable in
p; b(x,u,p) is measurable in x and continuous in (u,p) and finally (1.2)
and (1.3) still hold.

’
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Thén we have
THEOREM 1.2. The bounded weak solutions to (1.1) belong to C1+9.

Proof. The proof we give is a readjustment of the proof of Theorem 1.5
in Chaptér VI; for a different one see [191]. First let us make two simple
rematks. Assume that a, = aa(p) with a, differentiable in p (growth
and ellipticity conditions remaining unchanged), and consider a weak

solution v to

f a, (V) D, ¢ dx = 0 V¢ cHLQ).

Q

Differentiating we get D v ¢ Hlloc(Q) for s =1,2,---,n and

(1.9) f aapBDB(DSv) D,pdx =0 Ve e Hy(Q)

and from De Giorgi-Nash’s theorem we get

n-2+2y
f|V2VI2dX < c(%) f|V2V|2dX
Bp Br .

for p <R and for some positive y; in particular we have that Vv is
Holder-continuous. '

Now we can rewrite (1.9) as

f “ap (VRGP0 + f [aapﬁ(w)'—aapB«vV>R>]DB<IDSv)r>a<zS =0

therefore, as we have done many times, aplitting v and using the

LP-estimate for |D2v|, we get
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Py |
(1.10) IV2y|2dx < c[ ﬁ) +o] IV2y|2dx
BP (x 0) B R (x 0)

and, since ap and Vv are continuous, ¢ is small for small R,

uniformly with respect to Xg. Using Lemma 2.1, Chapter IlI, we deduce
from (1.10) the following estimate

n—¢
f‘vzu‘z < C(%) f|V2u|2dx e>0
B BR

which implies through a simple use of Caccioppoli’s and Poincaré’s

estimates

. ,
1.11) fle-(Vv)p\zdx <c %)m ) f‘VV—-(VV)Rlde'

The second remark is the following. Without loss in generality we may

assume aa(()) = 0; then we have

f f aapﬁ(th) dtDevD,pdx = 0 Ve e HY(Q)
0

which can be rewritten as

\];faapﬁ(t(VV)R)D vD,¢ +f [aap (tVv) - aapﬁ(t(Vv)R)]dt 3 vD ¢ = 0
Ve H%) .

Hence we deduce, as before,
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f|Vv|2dx <e +o f\VV[de

. and therefore

k ' n—e
(1.12) f\Vledx < c(%) flvv|2dx e>0,
Br

B
P
Now we are ready for the proof. First assume that a, = a,(x,p) with

aa(x,p) continuous in x. Let u be a bounded weak solution to

f[aa(x,Vu)DaqS+b(x,u,Vu) $ldx =0 Vo e H‘l) nr>

Split u as u =v+(u—v) where v is the weak solution to

f a,(x,Vv)D,¢dx = 0 Ve e H\(Bg(xy))

BR(XO)
u-ve H(l)(BR(XO))

then from (1.12) we get

n—e ,
fIVv|2dx < c(%) fIVvlzdx .
B BR

On the other hand
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f[aa(x o V) — a,(x O,Vv)]Da¢ +
B

R

f lag(x,Vu)—a (x o, VW)ID,é +

Br

+ fb(xyurvu)¢:0 V¢ fHéﬂLoo .

Br

Therefore, since for x ¢ BR(XO)
2%, V) -2, G5, V0)| < w(R) [Vl

and a, is a monotone vector field with respect to p .5 we get

fIVu|2dx < c{(%)n_2+[w(R)+g(R2““ f]wﬁ)}} flwzdx
B BR BR

p

which implies that u ¢ C%Y for all y <1-¢/2, through Lemma 2.1,
Chapter III.

Therefore we can conclude that under the assumptions of Theorem 1.2
one has u ¢C"%(Q) forall @ <1. Now split u in Bg(xy) CC D as

u=U+(@-U) where U is the weak solution to the Dirichlet problem
8oty @VUDG =0 Vo cHyBg(k)
1.13) Bp(xq)
U-u e H{(Bg(x )

then we have (estimate (1.11))

n+2-
(1.14) f|VU<VU)pi2dx§c(%) E flVU%VU)R\ZdX

Br(xg) Bp(xq)

5)[aa(X.p)— a, ()] (p,—a,) > vip-ql?.
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while for w =u—-U we have

f [aa(xo,uXD’R,Vu)—aa(xo,uXOIR,VU)]DaqS =
Brxg)

(1.15)

- f{ [aa(x O,UXO,R,Vu)—aa(x,u,Vu)]DaqS ~b(x,u,Vu) pidx
BR

Vo e H%) N L*. Now note that a,(x,u,p) is a monotone vector field in p
and that there exists a nonnegative bounded increasing concave function

o(t), «©(0) =0, such that

> lagxup)-a,6.v,p)I? < ollxy|?, Ju-v]?) [p|?
a
w(t) < const ltlS

and finally note that, using the LP-estimate and the boundedness of w,

we have

2 f|aa(x0,uX0’R,Vu)—aa(x,u,Vu)|2dx <
“ BO

< fw(tX—XOPJr]u-ux R|2) Wu]zdx < cR25aRn—2+2a
0)

2/q
f(l+|Vu|2)|u—U| < c( (1+1Vu|2)q/2dx> (f|u—U\2dx)
BR

1-2/q
<c f(1+lvu|2)dx (Rz—n flvu12) < const RO—2+2a+2a(1-2/q)
Bor Bgr

1-2/q

IA
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Therefore from (1.15), inserting ¢ =u-U, we conclude

(1.16) f|V(u—U)|2dx < const R12+2a(1+0A(1-2/q))

Br

for some q >2 nearto 2. If « is chosen so close to 1 that
2a(1+6 A (1-2/9))>2 we conclude from (1.14), (1.16) that Vu is Hslder-

continuous, and in particular that Vu is locally bounded. But then we

flV(u—U)de < cEa“+23+ f|u—U|dx]

B ,
R Bg

have

The last integral is easily estimated

n+2 1/2
lu-Uldx < R 2 [flV(u—U)lele
BR BR
therefore
f|V(u—U)|2dx < const R1+20
BR
which again together with (1.14) finally implies u e CIIO’CE(Q). g.e.d.

2. Minima of variational integrals: N =1

Let us consider the functional

Jlu; Q] = fF(x,u,Vu)dx F(x,u,p): @ x RxR" 5 R
Q
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where .
i) F is a Caratheodory function, i.e. F is measurable in x for all
(u,p) and continuous in '(u,p) for almost all x

ii) there exist positive constants a and k such that
2.1) lpl?-k < F(x,u,p) < alp/®+ k.

In [191] the boundedness of a function is proved, which minimizes J[u; Q]
among all functions taking prescribed values z(x) on dQ, provided
z(x) is bounded. Therefore, requiring some smoothness of the function F,
suitable growth conditions for its partial derivatives F, and Fp and the
ellipticity condition (i.e. convexity of F with respect to p ) Theorems
1.1 and 1.2 of Section 1 are applicable and we get regularity of the mini-
mum points.

Of course, some smoothness of F is necessary if one wants to prove
the differentiability of the minima; on the other hand, if we look only for
the continuity of the solution, such assumptions seem superfluous, com-
pare with Morrey’s result Section 3, Chapter V, and it would be preferable
to derive it directly from the minimizing property of u.

In this section we shall investigate the Hélder-continuity of the
minima, working directly with the functional ] instead of working with
its Euler equation. The results we shall present here are due to
M. Giaquinta and E. Giusti [114].

Local boundedness. We shall assume slightly more general hypotheses
on F than those previously described. More precisely

i) F is a Caratheodory function

ii) There exist positive constants a and b and a real number m > 1

such that
(2.2) IpI™-b(ju|*+1) < F(x,u,p) < alp|™ + b(ju|*+1)

x _ mn_ 6)
where m<a<m = im -

6)We shall restrict ourselves to the case 1 <m<n. When m>n every
function in HW'™ ig trivially Holder-continuous; and we have considered the
case m=n in Section 3, Chapter V.
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We shall consider local minimum points for the functional Jlu; 21, i.e.
functions u ¢ Hfllc’)::n(Q) such that for every ¢ ¢ HV™Q) with
spt ¢ CC ) we have

Jlu; spt ] < [u+¢; spt ¢].

In [191] the boundedness of a global minimum point taking prescribed
value z(x) at 9 is proved provided z(x) is bounded: here we shall
consider the problem of the local boundedness of minima independently

of the boundary data.

THEOREM 2.1. Let (2.2) hold, and let u ¢ Hll(;g'(ﬂ) be a local minimum
for the functional J. Then u is locally bounded in Q).

Proof. We may suppose  bounded and u ¢ HI'™(Q). Let xq €2, and

denote by B 'the ball B (xy). For k>0 set
2.3) Akz{er: u(x) > ki Apo =AkﬂBs .

Let w = max(u—-k,0) and let np(x) be a C* function with spt nCByg,
0<n<1 n=1 on By, |V77]§2(s-t)_1. If v=u-nw, we have,

using the minimality of u and (2.2):

f Vul™dx < yll f (@ =)™ Vu [P ds + f W V[P +
Ak,s

AkyS Ak,s

+ fwadx+(1+ka)lAkS[, .

Ak,s

Now we observe that if w e Hl’m(BS) and |spt w| < ~21— [le we have
(compare with footnote 13, Chapter V) the Sobolev inequality
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m/m*

(2.5) ('fafﬁ*dx) < ¢y(m,n) f]lemdx
BS . ] BS
and therefore, if m <a <m*:
m/m*
fWadX < \\W\\;*m\lel—a/m*(fwm*dX) <
B, B,

(2.6)

IN

e Il )™ f V| dx .
B

S

We can choose T so small that for s <T we get

1-a/m*

a- 1
2.7 ey %" B < -

On the other hand, we have

KA < ol
and therefore for k >k, we have

Al < %—\BT/Z[ .

For such values of k we then have |spt w| < é— IBT/z\ and therefore, if
T/2<s<T:

a 1 m g4
(2.8) fw dx < 77, f |[Vu|™dx
Ak,s

B

s

since [l > 1wl e
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In conclusion, if ZI <t<s <T, we have from (2.4), (>2.8):

f|Vu|de < 2}/1{ f |Vu|™dx +(s—1t)m fwmdx +
Ak,s

Ak,s\Ak,t A

+ (1 +k% lAk,sI} .

Suppose now

NS

<p<t<s<R<LT; we get

f\Vulmdx < 2y, f [Vu|™dx + 2y, {(s—t)m f wldx +
Ak,t

A Myt Ay R

+(1+k% .Ak,'R|} .

We now proceed as in the proof of Theorem 3.1, Chapter V. Adding to
both sides 2y, times the left-hand side we get

2

fqu\mdx < 2yy1+1 f}Vu\mdx+{(s—t)_m fwmdx+
1

Ak,t

ks ‘ AR

+ (1 +k% lAk,R1} .

Then we apply Lemma 3.1, Chapter V and conclude that

2.9 f [Vu|™dx < yz{(R—p)‘m fwmdx +(1 +ka)|Ak'Rl} .

A
k,p AR

Finally we estimate
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S a—m 1_@-m
* 3
A +kD]Ay gl <2k*[A ] 2™ AL D™ KTAL o] T <

;mkrn‘Ak Rll—% * (1¥H;L)

< 2lufi;

Introducing the last expression into (2.9) we get for <p<R<LT:

o3

-2, (-2
(2.10) f!VuImdx§y3 R-p)™™ f(u~k)mdx+km|Ak =l (m*)

Ap Ak, R

Since -u minimizes the functional

Jlv; Q1 = fﬁ(x,v,Vv)dx
Q

with F(x,v,p) = F(x,-v,-p) satisfying the same growth condition (2.3),
inequality (2.10) holds with u replaced by —u. We may then apply to
both u and -u Lemma 5.4 of Chapter II of (19117 and conclude that u
is bounded in BT/2 . q.e.d.

P

reater than some k and for arbitrary spheres B, (x and B
8 y Sp p( o o-—op
Po—%Pg <p-op<p< Po. the function u(x) satisfies the inequalities

m
1-—+¢

7)LEMMA. Suppose that B (xo) C). Let us suppose that, for arbitrary K
0

(xO) , where

[ Vu|Pax <yliopy™ [ @0™dx+p~ ™A
Ak,p—op Ak,p
where 00, Y,a and & are positive constants and where 7’0 <1, ¢ S ‘?, and
m<a<em+ m. Then, in the sphere B , the quantity essmax u(x) is
- Po7 Py
bounded above by a constant depending only on Oy k,n, m,y, ¢ a and the quantity

il

n

Py [ (u(x)-k)Pdx .
A~
k,pq
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The above result may easily be generalized; for instance one might
assume that the constant b appearing in (2.2) is actually a functiofi*
belonging to some suitable L"7 space. Moreover, one can assume that
the minimizing function u(x) belongs to HI'™ N LYQ), for somev

q > m*. In this case the conclusion of the theorem holds if 7> % and

n+
a < mTq - % . But we do not insist on this point.

Holder continuity. An argument similar to the one above will give now
the Holder-continuity of the local minima for the functional J[u;Q].

suppose that the function F(x,u,p) satisfies the growth condition
(2.11) [p|™ ~ b(M), < F(x,u,p) < a(M)|p|™ + b(M)

for every x €Q, |ul <M and pcR".
We would like to point out explicitly that we are not assummg differ-

entiability or convexity of F in p.

THEOREM 2.2. Let (2.11) hold and let u(x) be a function in
I-I1 m(Q) n L (Q) minimizing the functional Jlu; Q]. Then u is

Holder contmuous in §.

Proof. We take as before v =u-nw; from J[u] < Jlv] we easily deduce,

using (2.11) with M = sup |u], Yq = ¥4

fquImdx§y4{ f(l—n)m!Vu!mdx+ fwm|V17!mdx+|AkS!}.
Ak,s Ak,s

Ak,s

Observing that =1 on B, and that [Vg| < 2s-t)"! we get therefore
for R>s >t:

f]Vulmdx < ys{ f |Vu|Mdx +(s-t)™™ f(u—k)erIAk’R‘] .

Ay A AL | AR
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* Arguing again as in the above, we conclude using Lemma 3.1, Chapter V:

(2.12) f Vu|Mdx < yG{(R—p)_m f(u—k)mdx+lAk,Rl} . |

Ak,p Ak,R

The same inequality holds with u replaced by -u, and therefore the
function u belongs to the De Giorgi class %m(Q, M, Ve 1,0) 8) of [191].
Applying Theorem 6.1 of Chapter Il of [191]%) we conclude that u is

locally Holder-continuous in €. q.e.d.

Using the same argument it is not difficult to prove regularity up to
the boundary for solutions of the Dirichlet problem, provided the boundary
datum is itself Holder-continuous on d{} and 9 is sufficiently smooth.
In fact, inequality (2.12) still holds when the ball B intersects 9,
provided the constant k is greater than sup u, so that we can
apply the result of [191], Chapter IL7. 992N Bg

For the sake of completeness we mention that a result of the type of
Theorem 2.2 has been proved by J. Frehse [93], under very strong assump-

tions on F.

)De Giorgi’s classes. B (Q M, y,5 CT) denotes the class of functions u(x)
in H (Q) with maxlu| <M such that for u and —u the following inequalities

are valid in an arbitrary sphere B_C () for arbitrary o in (0,1):

P

f quImdx < y[gm max [u(x) k™ + 1:I |A II—E
Ap-op pm (1-5) A P

for k> max u—0.
BP \
9)THEOREM Let u(x) be an arbitrary function in 3 (Q M, y,B ) and
B (xo) cQ Po S <1. Then for an arbitrary Bp(xo) p< Po: the oscillation of

u(x) in B_ satisfies the inequality

a
oscu < c(—ﬁ—)
BP 0,

for some positive a.
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3. Systems of diagonal form

Let us consider systems of partial differential equations of the

following form
@1 -D,@PDud) - £u V) i1, ..

under the following assumptions:
i) aaﬁ(x) ¢ () and

9B < 4
aealy 2 NER vECRT A5 g

i) f= (g, -, fy) is a Caratheodory function satisfying the growth
condition
fxwp)| < alp|? + b
with a,b constants.

In recent years, considerable attention has been directed towards
systems of type (3.1) because of their relevance in problems arising in
differential geometry such as harmonic mappings of manifolds or surfaces
of prescribed mean curvature,

The reader may refer to [160] (see also [158][159] [161]) for a survey
on results and proofs, including also an account of the history of the
problem and its connection with the problem of harmonic maps of
Riemannian manifolds.

The following regularity theorem due to S. Hildebrandt and
K. -O. Widman [165] and M. Wiegner [302][303] can be considered, in view

of examples 3.6, Chapter II and 2.1, Chapter V, as an optimal result (see
[118] for a simpler proof).

THEOREM 3.1. Every weak solution u of (3.1) with sup Ju(x)| <M is

locally Hblder-continuous in Q, provided aM < A, For every subdomain
('CCQ, the Holder norm of u restricted to ' can be estimated in
terms of u,A,p,a,b,M,dist K, 00).
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in connection with the study of diagonal systems we would like to

mention also [1641[3041[299], [1761[177] for uniqueness results, [298] for
the existence. Moreover we would like to mention [167]1209][1731[212]
e .

iouvi are proved.
where Liouville type theorems |
We refer to the papers quoted above for the proof of Theorem 3.1; here

we only point out that under the stronger assumption
3.2) 2aM < A .

Theotem 3.1 can be proved as Theorem 1.1. Let us sketch the proof.

(a) Because of (3.2) we know that the LP-estimate for the gradient of

a weak solution of (3.1) is true.

i is the weak
(b) Splitting u in By as u=v+(u-v) where v is

solution to

f aaIBDaviDngi dx=0 V¢ cHYBY)

Bgr

vV-u € H(l)(BR)

from De Giorgi-Nash theorem we get for p <R

n-2+2a
2
f|vv|2dx < C(Pﬁ) f\Vv| dx
B, B

for some positive a; so that estimating u-v in the usual way
(using step (a) compare with Section 1, Chapter VI) we obtain:

u is Helder-continuous in an open set € and

— 2
O\Q, C {xer: lim éif R%™ f |Vu|“dx > 50}
i R- BR(XO)

where ¢, is a positive constant.
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(c) Therefore in order to prove the regularity result it remains to .

show that for all Xg € Q there exists R such that

2—
R f [Vu|? < g -

Br(xgp)

This can be done exactly as in Section 1, step III of the proof of Theorem

1.1 choosi = nu? ion i
sing ¢ = nu? as test function in the weak formulation

aBp yip i i
f a*Du Dﬁsﬁldx = f £i(x,u,Vu) pldx V¢ e H N L2(Q,RY)
Q ' :

In fact we get

(7\-~611\’I)‘[‘|Vu2 dx <L [aaB 2 .
I“n x < 5 |a Da|u| DBndx+bf77dx VT]{H(]:')(Q)’TIEO'

The sa
me scheme of proof can be used in different situations. For
example assume that .

3. ; '
(3.3) f.(x,u,Vu) = 2 84(%,u,Vu)D, u!
a=1

where

lg,(x,u,Vu)| < L|Vu| + N

then we have

ProOP ’
OSITION 3.1. Assume (3.3). Then every weak solution to (3.1)

with sup [u| <M<+ js locally Hélder-continuous in Q and the

a priori estimate holds.

tlu-ug |2
R
R)€ 772 we deduce, com-

pare with Proposition 2.1, Chapter V, an LP

Proof. Inserting as test function (u-u

-estimate for the gradient.
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Therefore (a) and (b) above hold; (c) can be simply achieved inserting -

2
uetlul n as test function. . ' . q.e.d.

Let us remark that condition (3.2) is involved in the proof only in step

(a); on the other hand note that an LP-estimate is implied by Theorem 3.1.

One-sided condition on f. In [164] S. Hildebrandt and K. -O. Widman, in
connection with the study of harmonic maps of manifolds, conjectured
that every boundéd solution of (3.1) were Holder-continuous if the right-

hand side f satisfied the inequalities

|t(x,u,p)| < alp|? +b

3.4)
u'f;(x,u,p) < X[p|? +b* NN

On the basis of a counterexample to the Liouville theorem due to M. Meier
[209], P.A. Ivert [173] has shown that in general a priori estimates of the
Holder norm of solutions u of (3.1) cannot exist whenever (3.4) holds;
and M. Struwe [288] has shown an example of a singular solution in dimen-
sion n>3. Indimension n =2, instead, J. Frehse [95] has proved the
existence of a smooth solution and M. Wiegner [306] that all solutions are
smooth in the interior (compare also with [211]).

We shall prove now the Hélder-continuity of solutions u provided
(3.1) is the ‘Euler equation of a functional’ and .u a minimum point, com-
pare with [114], which is essentially the case of harmonic maps of mani-
fold considered in [163], see [761[771[75] for information on harmonic
mappings of manifolds.

Let us consider the functional

(3.5) f g i(u)Aaﬁ(x)DauiDBuj dx
Q

where A% and gjj are definite positive symmetric matrices; and let
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u € Hllcc(Q" RY) be a local minimum point,

From Section 3, Chapter VI,
we know that u ¢ C%2(Q

0) and

Xo € N\Q <> lim inf R2-D f [Vu|?dx > g -
R—)0+
Brixg)

Of course we are assuming 8; continuous (for the sake of simplicity

uniformly continuous) and AO‘/8

continuous (but it would be sufficient to
assume A28 [ ).

Let now u be a bounded minimum, then y satisfies 10

f AaBgijDaulDBqSde + f A‘J‘ﬁgij uIDaulDBuJ'¢1dx =0 V¢ ¢ HYNL=(Q,RN)

which, denoting by (g') the inverse matrix of g, can be rewritten as

ABD uiD igy o [ acB - D ulD_ukolinige _ g
f a 1977 (ghk,ul ghl,uk) a" :Bu &1

for all 5 ¢ H(lJ N L=Q; RN), I.e. as system (3.1) with

f;(x,u,Vu) = _aaB, . D up K, li
i ) (ghk,ul ghl,uk) ) u gue

Therefore we immediately see that assuming (3.4) we can carry on step (b),
i.e. the analogous of step III in the

proof of Theorem 1.1, and show that
Q\QO =0,

Let us remark that if 4 ig bounded on 90,
happens that [u|2

bounded in Q.

since it essentially
is a subsolution for an elliptic operator, then q is

-_—

1O)Now We are assuming that gij be differentiable.
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i Thereforé we can gonclude

. -
M 3.2. Let {A‘ZB(X)} and {gij(u)} be smooth symmetric definite
HEORE [V

ositive matrices with

AaB(x)fa-f > A%

B

Assume that

: hp Lk ligi « X|u}?
~a%B JWPat Pguigrus = A

—-g
hk,ul “hl
] Then u is
is a bounded minimum point for the functional (3.5). en
where u

locally Holder-continuous in €.

Higher regularity then follows in the usual way. o)
Besides the papers we have already quoted, we refer also to 1 't, f
i i rity o
[291] for the use of similar ideas still in connection with the regularity
o

harmonic mappings of manifolds.

4. Functionals depending on the modulus of the gradient

l461 us C()]lSl(le] ‘]le regular unctiona 1)1 “]e calculus ()i variations
g 1 f i 1 1 (]

| @.1) f F(Vu)dx

under the standard hypothesis

(Mpl? <F(p) < plpl®+v

(4.2) l£p] < Kip|  [Fppl < 2K

vé, v>0

igj v|&)2
przpj gafjﬁ 2 e

i : 4.1),(@4.2)
and let us restrict our consideration to functionals of the type (4.1), (

which depend only on the modulus of the gradient, i.e.
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4.3) F(Vu) = g(|Vu|?)..
Then (4.2) implies

r)\lQl <g@ < plQf+y

’

gl <k
[g(

AP <

(4.2) J

Vul%6;;5,5+2( Vulz)DauiDBuj.]tf; Eh-afre] £} > viE)?

Note moreover that

“0<al < g(|Vul?) < o, o1,05 €R.

Then from the Euler equation
. 2 i i 1 N
fg (IVu| )Du'D gl dx = 0 Vo € Ho(Q, RY)
Q
we get immediately, through De Giorgi-Nash’s theorem, that u is locally

Hélder-continuous. Moreover writing the equation in variation we obtain

that the derivatives of u are Holder-continuous in an open set Qo and

(4.4)

that there exists €5 > 0 such that

MNQ, c {XOGQ: R0 f IVZ2dx > yR <R0} :
Br(xg)
Then we have

THEOREM 4.1. The weak stationary points of tunctional (4.1), (4.3) are

C 1-Hb'lder-,contimmus in ),

Proof. 1In order to prove the theorem, it ig sufficient to show that for all

XO € Q there exists R such that
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R*" f V2u]?dx < 5 -

Now the equation in variation is

i i ; . =1,-,n.
P 1 ” 2D 1]=0 1:1)- ,N s s )
D,lg'D,Dgu’+g"Dg[Vul D u

i i ingon s and i we get
Multiplying by D u’ and summing

i e i i 21_¢'DD_ulD D_ul -
0 = D,fgD, D u'Dgu’ +¢"D u'Du'D[Vu[*] - gD, D u'D Dy

3 Zg"DaulDBuJDaDsu DBDSu

which can be rewritten as

af3 i j
D_[A*PD_|Vul|?] - 247 DD u'DD

where

2B — g(|Vu[2) 8,5 + 267([Vul D, Dl

A?J-B is defined in (4.2)" .

Now note that

Aa'gfafﬁ >vlfl? vE>0; >0

af3 i is Vzul2 .
A DD DDl > ]

Therefore we get
2
4.5) Da[AaBDSIVulz] > v|V2u|
: i ired con-
i.e qu|2 is a subsolution for an elliptic operator, and the required ¢
i f of
dition (4.4) follows exactly as in Section 1, step III of the proof o

bl ( ~5)
Iheoreln 1 1 inserting as tes fu t k f t
g t t nction in he wea Ollnula 1on Of 4

[Vul2g.
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A FEW REMARKS AND EXTENSIONS

Theorem 4.1 is a special case of a more general theorem due to

K. Uhlenbeck [296], which refers essentially to solutions of ‘Euler type
systems of functionals of the type

f(c+|Vu|2)k/de, fF(c+|Vu|2)dx k>2

where even ¢ =

In this chapter weﬁ want to mention some extensions of the methods
and results already described arid to hint at the problem of the regularity

‘ up to the boundary.

1. A few extensions

The obstacle problem. Let u be a solution of the variational problem

fqulzdx - min
Q

u=0 on dQ; u>¥ in Q

0 is allowed. We refer to [296] for the statement and the

proof; and to [1711[172] for some extensions (see also [83] for a different
proof).

(of course we assume that ¥<0 on d0N), or let u satisfy the varia-

tional inequality (compare Chapter I):

a.n fVuV(uv)dx <0 Vv eH%)(Q) v>% in Q.
Q

We now want to show that the method of Chapter III permits to prove the
continuity of u, see [108]1{109]; i.e., roughly speaking we want to show
that the regularity follows by comparing, locally on balls By, the weak
solution u to‘(l‘l) with the harmonic function U with boundary value (on
dBg ) equal to u.

Let us split u as u=U+ (@-U) on BgxyC Q, where
U« Hl(BR(xO)) is the harmonic function in B(x() with U=u on 8BR ,

241
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then we have for P <R (see Chapter‘III) |

1.2) f WU]?dxgel(l%)n f lvu'lzd};gcl(g)“ “ f V)2 dx

B (xy)
pt*o BR(Xo) BR(XO)

while u-U satisfies

(1.3
) f V(u-U) V(u-v) dx <0 vy EHé(BR(XO)) v>Y¥ in B, (x )
‘ s R\%0/ -

BR(XO)

t N
g ( . ) t u g
IJOW writing in 1 3 u U U vV o1ins ead Of V a“d ChOOSlll ; as it

can be done
v = max (U,¥) = ywW

we easily get

1.4 L
( )\ "[lfV(u—U)‘zdxfc2 fIV(U~Uv'I’)|2dx.

But U- 1l
ut U-UWW eHO(BR(xO)) satisfies

f V(U-—Uvqj)V(ﬁ:«‘ VUWWV Vgﬁ e H (B (x
¢
) 3 O( R( 0))

heﬂce CllOOSIIlg ¢ = U UVI ;» Slnce U I = I fOI € Spt [J_UVl we
v h X ( )

(1.5) flV(U-Uv‘I’)]zgcs f IVW|2 4y |

Br(xp) Brxp)

Therefore, assuming that
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N f\V‘I’lzdx < C4Rn_.2+2a

Br

i (1:3),1.5) we deduce

n
f IVu|?dx < Cs(Ip_{) f Vul?dx + °6Rn_2+2a

which, through Lemma 2.1, Chapter III implies

f Vuldx < e, p" 22

BP(Xo)

. 0,a .
i.e. ueClOC(Q). Concluding

THEOREM 1.1. Let u be a weak solution to the Variationai inequality
(1.1) and let the obstacle be such that V¥ ¢ L12£72+2a(9). Then
ue cloég(ﬂ).

By a simple use of the maximum principle, Theorem 1.1 can be proved
under the weaker assumption that ¥ be only Hodlder-continuous, see
[109]. Moreover the above proof can be carried on for more general
second order variational inequalities, and using the same ideas in
Chapter VI one can study the Holder- and c1»@ continuity for solutions
of general second order nonlinear variational inequalities, see [108]1091.

But we shall not insist and simply point out that although some result
can be obtained also in the vector valued case, [108], in general the
problem of the regularity for solutions of variational inequalities with full
system operators is greatly open. We must mention, anyway, that precise

results have been obtained in the vector valued case for diagonal varia-

tional inequalities, see e.g. [166]. Finally we would like to mention that
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very preci i
‘ Y precise regularity results for variational inequalities with irregular
obstacle have been obtained by J. Frehse and U. Mosco [97][98]

y YD b IanN ll'tk VStm
S Ste]’ns of lhet (5] Ott € stationa avie; 'S OKes s em. Ilete we

Oﬂl ant i w vV Iy
y nt t n nt at the m tbOdS and I‘eSultS e ha e pfesented fO
\"4 o mentio ]l e .

systems of the type

a .
fAi(x,u,Vu)DaqSl =\/vBi(x,u,Vu) Hldx Ve € C(Q, RY)

in the diff i i
erent Situations, can be carried on to nonlinear systems of the

ty e f i y i -y y y
p the Statlonar Na ier Stokes S Stem 1 e. to ) StemS Of th t
O] v y 1.€. e ype

¢ divu = g
(1.5) '
a .
"/‘Ai(x,u,Vu)Da(j)1 = fBi(x,u,Vu) ¢i
Q Q

for all solenoi i i '
e en01da.1 vector field ¢ with compact support, i.e. ¢ ¢ H(l)(Q R™)
ivéd =0 in Q, see (123]. There it is assumed that

A5G0 < L(lp|+ [u]t/2) 4 £,(0)

(1.6) B;(x,u,p)|

IN

L(lp| ™ + el + £,()

*
TS20, ry <2/2%, 1 < 2%/0%y

if n>2

*
2" - p':-p_
p-1

geR if n=2

while the functions f,  f i
17 Iy, g lie in suitable LP.g
ellipticity condition 4pac¢s, e e

holds.
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A‘}‘%j(x,u,p)fgfgg >ulE? Ve w0

-

" We note that minimum points or, more generally, stationary points of

integral functional

Jl = fF(x,u,Vu)dx
Q

in the class of admissible functions

K = {ueHl(Q,Rn):u=uo on 90, divu=g in O}

assumed nonempty, satisfy a system of the type (1.5) provided F(x,u,p)

fulfills suitable assumptions.
Moreover, due to the growth assumptions in (1.6), it is easily seen

that the classical Navier-Stokes system
divu =0
u-Vu=vVu-—gradp +f

in its weak formulation is included in (1.5) provided n <4.

We shall not present such results and we only refer the interested
readers to [123].

Parabolic systems. The partial and everywhere regularity of solutions of
nonlinear parabolic systems has been studied following the lines of the
elliptic case.

Under controllable growth conditions, using the indirect approach of
Chapter IV, partial regularity for solutions of second order quasilinear
parabolic systems was proved by M. Giaquinta, E. Giusti [112] and extended
to higher order systems by G.N. Daniljuk and 1. V. Skrypnik [68].

The direct approach of Chapter VI, which permits to handle both con-

trollable and natural growth conditions, has been carried on (the main
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point is the Lp—estimate) in M. Giaquinta-M. Struwe [128]; related e{/ery-
where regularity results for diagonal systems can be found in-[289] [290]
[1271.

For the existence and regularity of the parabolic flow associated with
harmonic mappings we refer to [78111481[1791[127].

We mention papers [54]1[551[56] where nonlinear parabolic systems
under general controllable growth conditions are studied.

Finally we would like to quote the result of L. Caffarelli, R. Kohn,
L. Nirenberg [41], which gives a televant partial regularity result for

solutions of the Navier-Stokes system

2. Boundary regularity

Roughly speaking, most of the regularity results we have stated in
the interior holdﬁ also up to the boundary at least for the Dirichlet
boundary value problem and provided §Q be smooth, and for those we
refer to the quoted papers.

Anyway we must say that the boundary regularity has not been
studied very much, especially in respect to general boundary value
problems.

Here we want to make only a few remarks on the possibility of extend-
ing the methods used for the interior regularity to proving regularity up to
the boundary.

(a) First let us consider linear systems. The results in Chapter III
can be straightforwardly extended up to the boundary, at least for
the Dirichlet problem, see [45], and for the Neumann type problems,
see for example [123].

We note anyway that this extension has not been carried on for ‘general’
boundary value problems for higher order systems.

(b) Step (a) allows us without strong difficulties to extend up to the
boundary the partial regularity results stated in the interior. As

an example of a theorem that can be obtained we state

VIII. A FEW REMARKS AND EXTENSIONS

T EOREM 2.1. Let u be a weak solution to the Dirichlet problem

D, [a%F 5.0  j-1,-,N in Q
—DB[AiJ, (x,w)D,u ]
a-¢

]J g
w t (ZS Hl()oth “d A cont ous il]”Ct y
1 h . ntinu wons SallS‘ 1n,

on d%}

W on afeddouar vE oo "

. Then u is Hélder-continuous up to the boundary except for a closed

ingular set 20 in Q and a closed singular set 21, on 9, whose
si

. Moreover
Hausdorff dimension does not exceed n—q, for some q>2 .

" there exists £g > 0:

— 5
im i dx > €
. — 1ol U e¢Q: lim inf f Wul ]
Sy U 3, C {x: sup 0 lu| = + oo} l:xo s
BrGoN BR(xo)ﬂQ '

We mention that Theorem 2.1 is included in a more general theorem
proved in [63] by using the indirect method of Chapter IV. |

Theorem 2.1 immediately poses the two following questions:

1. Can the singular set 21 be actually nonvoid?

2. If so, can the estimate of the Hausdorff measure of ;21 , be
improved? Note that the singular set 2, on the. (n-1)-manifold 9

? - - : 1
from Theorem 2.1 happens to be as ‘large’ as 20 on the n-dimensiona

open set (2. 7 |
In [105] an example is given which shows that 21 can be nonvoid
and that the Hausdorff estimate is ‘optimal.’ ’
(¢) Some of the results in Chapter VII have ~
boundary (Dirichlet problem), as we have mentioned, but there is

been extended up to the

no general treatment of the boundary regularity.

For the results in Section 3, Chapter VII, we refer to [1651[119]1(306]

{2121, and for the ones referring to harmonic mappings of manifolds to

{1631119] and especially to [262][1_81].
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PIRECT METHODS FOR THE REGULARITY

In this chapter we shall describe some Tecent results on the existence

and regularity of minima of nondifferentiable functionals

Jlu, Q] - fF(x,u,Du)dx .
Q

Except for the results in {114] (presented in Chapter III Section 3,
Chapter VI Section 3 and Chapter VII Section 2) all the previous regularity
results for minima of regular functionalg have as a starting point the
Euler equation of the functional in consideration.

As we have already remarked, this approach presents many
inconveniences:

a) It requires Some smoothness of F, moreover suitable growth con-
ditiops, hot only on F, but also on its partial derivatives F,
gnd Fp.

b) Under natural growth conditions we need to start with bounded
minimum points y , and also assume, in the vector valued case,
Some smallness condition on u. This often does not permit us to

apply the results to minimum points which we are able to find in
general only in H1,2,

and simple extremals.

Starting with [_114], M. Giaquinta and E. Giygti [116] (1177 have tried
to develop a theory of regularity for minimum points, working directly with

the functional J instead of working with its Euler equation,

248
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This, together with some improvements of the existence theory, is the
o s

bject of this chapter.

Quasi-minima

Let us consider the functional

(1 9] Jlu, Q1 = fF(x,u,Du)dx
Q

i i tisfyin
where F: QxRYxR™W LR isa Caratheodory function satisfying

1.2) lpI™ —blu¥ - g(x) < F(x,u,p) < plp!™ + blul¥ + g(x)
with

1<m<n

<y <m* = 00,

1,m Ny is a quasi-minimum
DEFINITION. We say that u ¢ Hloc (€, RY)

( Q-minimum) for ] in Q (with constant Q) if
(1.3) , Jlu; supp ¢] < Q Jlu +; supp &)

forall ¢ with supp ¢ CC Q).

Then, with small changes in the proof of Theorems 2.1, 2.2, Chapter
VII and Theorem 3.1, Chapter V, we have (see 117D

THEOREM 1.1. Let u be a Q-minimum for J in Q. Tht.an
i) if N=1 and g ¢ LS(Q) for some s > % , then u is locally
Holder-continuous, in particular locally bounded ,
ii)if N>1 and g eLS(Q) for some s >1, then there exists an

X 1,r N
exponent t >m such that u ¢ Hloc(Q’ RY).

: ' i yularit
Note that we are not assuming F(x,u,p) convex in p, nor reg y

of F and growth conditions on the‘derivatives of F.
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Quite a lot. of basic regularity results for solutions of (linear and non-

linear) elliptic systems can be now reread in terms of Q-minima,
1. Of course any minimum point u of J in(1.1)is a Q-minimum.

Moreover it is not difficult to see that u is alsoa Q-minimum for

f{[Du|m+b|uly+(b +g)ldx .
Q

In particular for m =2,b=0,g=0 itisa Q-minimum for the Dirichlet
integral.

BAny weak solution of the linear elliptic system with L™ coefficients
a
Aij x):

Dg@nuh 0 o1, n, APei el 162 vecro
is a Q-minimum for the Dirichlet integral. To see that, it is sufficient to
test with u-v, supp(u-v) CC Q. In particular for N=1 we get
De Giorgi’s result, Theorem 2.1, Chapter 1II.

More generally, weak solutions of nonlinear elliptic systems under
natural and usual hypotheses are Q-minima. Thus the Hélder-continuity
of weak solutions to g large class of nonlinear elliptic equations (compare
with [190]) and almost all the LP-estimates for the gradient of general

elliptic systems of Chapter V can be obtained as consequence of Theorem
1.1. In fact we have:

2, Let u bea weak solution of
1.4) f[Aﬁ(X,u,DU)DQQSi+Bi(¥,U,Du) qﬁi]dx =0 Vo € CS"(Q, RN) .
Q

(A) Suppose! that the controllable growth conditions and the ellipticity
hold in the following weak form:
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o . | | L
A(x,u,p)pg > [pI™ - Lluf” - f(x) y<m
' : y m-1
4 IA(X;UJP)I S Llp‘mQI + L|U|o+ g(X) g = }/_m
|
2 | Yl beyot.
BGx,u,p)| < Lipl" + Liul” + h(x) r=tym 0=y

Then choosing ¢ = u-v, with supp(u-v) CCQ, we get that u isa
Q-minimum for
Yy,
| f[lDuP“ +lul” + E+g™ e 1)) dx
Q

(B) Suppose that the natural growth conditions hold

A{xup)pl > [p|™ - L - Lf(x)

|AGx,u,p)| < Lip|™! + L + Lg®)
- |B(x,u,p)|]  alp|™ +L +Lh(x)
L=LM), a=aM), [ul<M.

t a (bounded) weak
(By) Suppose moreover that N=1. Then we get that a (bo

solution u is a Q-minimum for

m
1.6) f[]Du]m + (E+g™ lih+1)]dx .
Q

. A(u-w)
This can be shown by choosing sup(u-w,0)e and

sup (w—u, 0) e)\(W—u) as test function ¢, where w=v for |[v|<M,

w=-M for v<-M, w=M for v>M, forany v with supp(u-v) CC{Q.

(B,) As we have seen, the LP-estimate of |[Du| is not true under (1.5)

2 : ‘
if a(M)M > 1. But if we assume 2a(M)M <1, then any weafl: solfxtzofx u,
lul <M, of 1.4) is a Q-minimum for (1.6). Thetefore the LP-estimate

holds.
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Let us mention two more examples:

3. Weak solution of the obstacle problem. Let u be a weak solutlon

of the varlatlonal inequality
u>y in Q:fDuD(u—v)dx <0 Vv, v>¢, supp(uv)CCQ

then u isa Q-minimum for
f[|Dul2+lDt/1[2]dx .

4 Let u: QCR®*S RE pe g quasi-regular mapping, i.e.
1,
u e H n(Q R™) and for almost every x ¢{)

Dux)|" < k det Du(x) .

Noting that for ¢ Hé’n(Q, R

fdet Dédx = 0

Q

we get that u is a Q-minimum for

leu[ndx .
Q

, 1, . .
Therefore we have u ¢ H102+E(Q, RM, in particular u is locally Hélder-

continuous (compare e.g. with [1 03)).

For more details on the proofs of the statements above, as well as for

more information on the properties of Q-minima, we refer to [117]. Here
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“we want to underline the unifying character of this notion: the first basic

regularity results (Hélder-continuity in the scalar case N=1, LP-estimates
for the gradient in the general tase N'z 1) are a consequence of the
minimality condition (1.3) and not of the convexity (or ellipticity) of the
functional. For systems, (1.3) is essentially a consequence of the
ellipticity and of the growth conditions.

It is worth noting that, in the vector valued case, there is no hope to
develop a Holder regularity theory (even partial) for quasi-minima.
Example 1.1 below, in fact, shows that there exists a quasi-minimum for
the Dirichlet integral which is singular in a dense set.

Let u= (ul, .., un) be a Q-minimum in £} for the Dirichlet integral
and suppose that Q =1+¢. Of course if ¢ is sufficiently small, then u

is locally Holder-continuous in Q. In analogy with the definition in [5],

[32], G. Anzellotti [7] has considered quasi-minima in the following sense:

leu|2dx <1 +w(R)] fm(u+¢)12dx Ve e H!(Bg, R, B, CC Q.

BR BR

He proves that the first derivatives of quasi-minima are locally Holder-

continuous, with exponent y, in €} provided 0 < w(R) < cR%Y.
EXAMPLE 1.1 ([274]). Let us start with a few remarks. Set

aB
a(izjﬁ<x): 80P+l — @ Bi-1,

S

s,y=1 7

df =bf —w b LAD), fb?Daséidx =0 Vg <CF@RY.

Q
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Then

(1.6) f aiajﬁ(x) u)i(aqﬁiﬁ dx = 0.
Q

The ellipticity and boundedness of the coefficients a?_ﬁ cérresponds
respectively to !
ux-d >0

b-d

ux~d

<M.

It is on the basis of this simple remark that the examples 3.1, 3.2 of

Chapter II can he regarded. Actually, the following choice for n > 3
ux) = [x|x

b2y _ 1|1 _n Ti%g
1(X) ] (n 5ioc * =2 IX‘Z

permits to construct a discontinuous weak solution of the elliptic system
(1.6).

1.7

Let ¥y be a sequence of points in £ and let us set

Uit = 3 ulxypg,
h

B?(x) = 2 b?(x~yh) &,
h .

and
a8
aB iDj
_Aij (x) = 5ij5a6 + g .JD
X
where
a a
D1 = B; - U)l(
a

and u,b are defined by (1.7).
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“a .
fBi ¢;{ad}{:0

it is a simple matter of calculation to show that after a suitable choice of

the &, the vector U belongs to Hllc;g(ﬂ’ R™) and is a solution of the

Since

Vo e C‘Z;(Q, R

elliptic system

—DB(AC;?DaUl) -0 i=1,-,n.

- Choosing the sequence y;, we may have, of course, U singular in a

dense set.

2. Quasi-minima and quasi-convexity

At the end of Section 2, Chapter I, we remarked that in the semi-
continuity theorem 2.3 the convexity assumption is natural in the scalar
case N =1; actually it is necessary; but it is very far from being neces-
sary in the vector valued case N >1. It should be substituted with the
quasi-convexity condition of C. B. Morrey [231, Sec. 4.4].

The Carathéodory function F: QOxRNxR™W L R is called quasi-

convex if for a.e. xg¢ Q and for all ug ¢ RN, fo ¢ RN we have

1%1 f Flxgug £ +D)dx > Flxgug &) V¢ e CHQRY

Q
i.e. if the frozen functional
1% Q1 = f F(xgugDux))dx -
Q

has the linear functions as minimum points.
Quasi-convexity is weaker than convexity and it reduces to it for

n>2 N=1 or n=1 N>1. Examples of quasi-convex functions are
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given by convex functions of the invariants of the Jacobian matrix of u,
see [231]; compare also with [19],

Semicontinuity theorems under the quasi-convexity condition plus
quite strong assumptions have been proved in [224] [215] [231] and in [1 9]
[23]. Recently N. Fusco and E. Acerbi-N, Fusco have given almost
optimal semicontinuity theorems in (1011[1].

Let us state the main theorem of (17 without proof.

THEOREM 2 1. Let F(x,u,p) be measurable in x ¢ Q for aj] (u,p) and

continuous in (u,p) for a.e. x € Q. Assume that
(2.1) 0 < F(x,u,p) < 1 + Mla ™+ p|™) m>1.

Then the functional

2.2) fF(X,u,Du) dx
Q

1s weakly s.l.s.c. in HLm RYN) if and only if F is quasi-convex.

The proof is not very simple; instead, it is easier to prove weak semi-
continuity of (2.2) in any space Hl’q(Q, RNy with q >m, see [101] [207],
even under the weaker assumption )

(2.3) IF(x,u,p)| <1 + A(Ju|™ 1 |p|m) m>1,
More precisely we have (see [101] [207] for the proof ):

THEOREM 2.2, Let F(x,u,p) be measurable in x and contihuous in
(u,p). Assume that (2.3) holds and that F pe quasi-convex. Then the
functional (2.2) is weakly s.l.s.c. in Hl’q(Q, RY) for any q >m.

We note that Theorem 2.2 fails if 9=m, as an example of F, Murat
and J. L. Tartar [236] shows. '
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'Now let us consider for the sake of simplicity the functional

2.4) Jlu; Q) = fF(X,u,Du)dx

Q
under the growth condition
(5-5) lp|™ < F(x,u,p) < plp|™ m>1
and let us recall the following variational principle in Ekeland [81]:

THEOREM 2.3. Let (V,d) be a complete metric space, J:V [0, + o]

1 \
a lower semicontinuous functional, J #+e. Let >0 and w e
satisfy Jw) < infJ 7.
v

Then there exists v € V such that J(v) <JW), dv,w)<1 and v is

the only minimum point for the functional
G(u) = J(u) + nd(u,v) .

The functional (2.4), under (2.5), is obviously semk;)ntinuous o
1,1 =T J
(actually continuous) in the metric space {fueH" ' (Q,RM: u=d on
for a given @ (for example in Hl’m(Q, RY)). Hence we may apply

Theorem 2.3, and the function v we obtain is clearly a Q-minimum for

f(1+|Dz|m)dx '
Q

with constant Q independent of n for n small. In particular we may

the functional

conclude: . o .
There exists a minimizing sequence {uh} for Jlu; Q1 in fueH™ 1(Q, RY):

u=d on dQ} made of Q-minima with constant Q uniform.
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Theorem 1.1 then implies that we can bound the H!'' norm (for-some

r>m)of the up’s on QCCQ witha constant depending on Q but not
on h.

If we now assume that F in 2.4) is quasi-convex, by means of

Theorem 2.2, we conclude:

~ 1
T.HEOREM 2.4. Let a e HV™Q, RY) and ler F be a quasi-convex func-
tion satisfying (2.5). Then there exists a minimum point for the functional

. 1,m . ~
(2.4) in H Niu:u=t on 99}. Moreover u ¢ Hl’r(Q RY) for some
r>m, foe

~ The proof of Thgorem 2.4 we have given above is a rereading of the
proof in [207].

We notice that there is no known regularity result (in the sense of

Hélder or partial Holder continuity) for the minimum points in Theorem 2.4
(except obviously for the case m>n).

3.

The singular set of minima of a class of quadratic functionals

Let us consider the quadratic functional

3.1) Jhu; Q] = fAC;;_B(x,u)DauiD‘Buj dx
Q

@B _ aBe
ij ji

where the coefficients Aof’_B are
1]

(i)  bounded: |A(x,2z)| <M
(i) elliptic: A& & = A?E(X,Z)féfé > 612 Ve

(iii) (uniformly) continuous: IA(x,z) - A(x,z")| < wo(|x-x"

%)

24 |z—2’

o(t) being a bounded continuous concave function with o(0) =0
In Section 3 of Chapter VI we have seen that minimum points of
JIu; Q) are Hblder-continuous in an open set {1, and that the Hausdorff

dimension of the singular set is strictly less than n—2. Moreover we
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havé seen that the minimum points are as regular in Qo as the regularity
of the A’s permits.

In this section we want to show that for a special class of quadratic
multiple integrals and bounded minimum points we can improve the esti-
mate of the Hausdorff dimension of the singular set.

More precisely we shall restrict ourselves to the special form of the

coefficients given by

(iv) AP0 50 6%

moreover we shall assume that the function « in (iii) satisfies:
1
) © t2
) —ﬁ—-?t dt < +o0 .
4]

Then we have, see [115]

THEOREM 3.1. Let (i) (ii) (iii) (iv) (v) hold and let u be a bounded mini-
mum of the functional J. Then

a. if n=3, u may have at most isolated singular points

b. if n>4, the.dimension of the singular set of u cannot exceed

n-3.

The proof uses some ideas taken from the regularity theory for para-
metric minimal surfaces plus the result and some estimates of Section 3,
Chapter VI,

Let us state the main points of the proof.

The first lemma is a result concerning the convergence of functionals

and minima. It could be stated for general functionals of the type (1.1).

LEMMA 3.1. Let A(V)(x,z) = A‘;,B(V)(x,z) be a sequence of continuous

converging uniformly to A(x,z) and satisfying

functions in B(0) x RN
)

(i) (ii) (iii) (uniformly with respect to v ). For each v=1,2,--- let u

be a minimum ﬁoint in B,(0) for
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M. g1 = w) ‘ ~ This together with the weak L“-convergence implies, passing possibly
I B] = fA (x,0)Du Dy dx B = B,(0)

B

to a subsequence, that

. PR Wi, (V).
3.5) Jlv; BL]1 < lim inf J%W*; BT .
suppose that u®) converges weakly in LZ(B,RN) to v. Then v is a ( R v oo R

minimum for . . L. . .
Let now w be an arbitrary function coinciding with v outside B, and

let n(x)eCl(B), 0<5p<1, =0 in BP(O), p<1l, and =1 outside

Bg. Then v® =w+n(u¥~v) coincide with u® outside Bg,

Ju,B] = fA(x,u)Du Dudx .

B
therefore
Moreover, if x,, is a singular point for u"), and X, > Xy, then x is (3.6) J(V)[u(v);BR] < J(V>[V(V);BR].

a singular point for v .
Taking (i) and (3.3) into account we get

Proof. We know,vsee Section 3, Chapter V, that for each ball
Br =Br(x0) CB we have

(3.2) f|DU(V)|2dX <Y r? flﬂ(v)—ur(y>|2dx
B./2 B.

where

IV, B] < f A v DwDw +y R 1l ¢ +
B E’BR
R

+Ya R u® vl g (1 [u® vl )

and letting v - o, we deduce from (3.5)(3.6)

Jv; Bgl < Jlw; Bl + y5lnll 4

TR

“Sv) = :Fu(y)dx

B

T
Taking p close to R, the last term can be made arbitrarily small, and
that proves the first assertion of the lemma.

and that there exists a q > 2, independent of v, such that
1/2 E In order to prove the second part of the lemma, let us recall that,
b's because of Caccioppoli’s inequality (3.2), a point X is singular if and

1/q
3.3) ( leu(V)quX) < yz(jchu“/))zd) : . ;,

B/, B, _ - only if v

. -n 2 2
It follows that Du® ¢ L?OC(B) and that for every R <1 , hr;;_)lgf p f lu*ui,P‘ 2 %

3. v .
3.4 f[Du( )|qu < c(R) . where eg depends only on @ and therefore is independent of v (com-

B pare with Theorem 3.1 and 1.1 of Chapter VI).

r
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Suppose now that Xy 1s a regular point for v. Then for p small enough

we have
p" f |V—vp|2dx <&
Bp(xo)
and hence
lim p™" M) _y )24y = p0 o 12 ¢ 2
pirgop f Iu up ‘ dx P IV VP’ €5
B, (x®) B

P p(x 0)

~ which implies that x*) is a regular point for u®?, provided v is large

enough. This concludes the proof of the lemma. g.e.d.

The second lemma is a monotonicity result like the well-known one
for minimal surfaces. The special structure of the coefficients (iv) (v) is
needed only to prove this lemma. Any extension of the lemma to a more
general class of coefficients will therefore permit an extension of
Theorem 3.1.

We may (and do) assume without loss in generality that
a -
G0 = 5uf -
Then the monotonicity lemma is:

LEMMA 3.2. Let (i)... (v) hold and let u be a minimum for Jlv; B (0)).
Then for every p, R, 0<p<R<1, we have

o7 f [uRx) - (o) 2 a9 < 5 10g(B) [0(R) - 2(p))

aal ’

where
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) t
) n
() =‘t2—“exp(y6 f “—’isg-? ds) f A(x,u) DuDu dx
0

t

P ol. I or the Sake Of Sl"lpllclty 1et us assume moreover that the COeffl-
(o] [ i
T

cients do not depend explicitly on x, i.e.

A‘:jﬁ(x,z) = SaB gij(z) .

In this case D(t) reduces to

() = t2 " fA(u)DuDudx )

By

We refer to [115] for the general case.
= . We have
For §< 1 let % = tf;{—‘ and ut(x) = u(xy)

Jlw; B < Jlup Byl

(3.8)
and
Jlug Bl =
By £ (5., - @Y (50, - XBXk) Dy (xp) Dyl (e dt
_ fAij (u(xy)) W <5ah lX\2>< Bk MK h
B

t

Observing that for every f we have |
N -1 n—1
- ot
f\x] 2i(x)dx = — ff(x)dH
JoB
Bt '

we get
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J[ut;»Bt] =

Ix

__t ‘ '
=i {fA(u)DuDudH“_l_ anB Xa*h XBXy o
ij 2 23,3k“ B Phulequ}("‘l

(?Bt aBt IX}2

k g
Ia ing 1into account the SpeCIal for[[l Of the Coefflcleﬂt and tlle elllpthlt)y
s

J[ut;Bt] <
3.
(3.9 < n%2 {fA(u)DuDud}(n—lk IM dHnr-1
oB |X|2
. : t OB

t

<x,Du> =
’ x,Du.

Now we have

2-n
t fA(u)DuDud}(““l = &) + (n-2) 2O
IB, ‘

therefore from (3.9), (3.8) we get

¢'(t) > ¢2n | [<x,Du>|?

and integrating

H(R) - ¢(p)>ft2~n f|<x ,Du>|? -1

On the other hand

¥
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R 2
[u(Rx) - u(px)|? g( f 1<x,Du(tx)>\dt) <
P R
1og(§-)ft\<x,Du(tx)>12dt
p

m which the conclusion follows at once integrating on dB. q.e.d.

Proof of Theorem 3.1. a). Suppose that u has a sequence of singular
points, X, converging to x,=0. We use a rescaling argument. Let

= 2lx | < 1 The function u® = uR x) is a local minimum point in

](V)[UV; Bl = fA(V)(x,u(V))Du<V)Du(V)dx

B
A(x,2z) = A(RVx,z) .
Moreovet, each ) has a singular point y, with lyVl = é— Since the

1@ are uniformly bounded, we can suppose that they converge weakly in

L%(B) to some funct1on v and vy, ~>y,. Now we may apply Lemma 3.1

. and conclude that v is a local minimum point for

J%v; B] = fA(O,v)Dv Dvdy .

B

Also from Lemma 3.1 it follows that v has a singular point at y,. Now
we claim that v is homogeneous of degree zero. This is a consequence
of the monotonicity lemma. In fact first of all, from (3.7) it follows that
$(t) is increasing and therefore tends to afinite limit when t - 0;

secondly for p =AR,,, R =R, 0<A<p<l we have



"MULTIPLE I LS A
E INTEGRALS AND NONLINEAR ELLIPTIC SYSTEMs

f w00) £ 0@y 2 g1 -
o T S5 log () 8GR ) - g01R )]

therefore, letting » 0, we conclude that

f‘v(/\x)—v(,ux)[de =0
oB

for almost every value A and U

Slnce v 1S hO[rlO &neous Of de ree Zelo; the W ho-le se ment joinin 0
g

j.t i A’ i i
w h yO 1S made Of‘ Slngula!‘ pOlIltS fOr . ThlS Contradicts The 3
v orem . 1

Cha te i i
p r bI, and 1n partlcular the COnCluSion that the Singular set has

Hausdorff dimension Strictly less than n-2=3-1=1

~ we refer to [115].

REMARK 3.1. i
pping U from a Riemannian manifold

X with metric t i
ric tensor Ga,B(X) Into the Riemannian manifold M with

metric tensor g..(u). Then it ¢ ’ i
ij ) §n its energy( Is given in local coordinates by:

) 1 ) G =
B det (Ga/g) .
. em 3.1 out the regularit
ASNErgy minimizing), i.e. minimum points of

= n 1 i
X =R wv1th metric G‘ZB and M = RN

y of harmonic mépping
the functional E(u; A) in case
with metric gij

; . . without -
tions involving the sectional curvature of M. We ti assump
. mentio

n that in this
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C.l '@ regularity of minima
In thibs section we investigate the Holder and partial Holder continuity

inimum points of nondifferentiable functionals '

1 Jly; Q] = fF(x,u,Du)dx
Q

llowing [116].
We shall assume, for the sake of simplicity, that F(x,u,p) satisfies

Mp|? € F(x,u,p) < Alp|? A>0

and moreover
i) for every (x,u) € QXRN,F(x,u,p) is twice differentiable in p,

and we have

4.3) IFptup)| < L

4 R, P s g2 vERY,
(11pJ 17]

P

ii) For every p ¢ RN the function (1+ Iplz)_lF(x,u,p) is continuous
in QxRN uniformly in p, i.e. there exists a bounded nonnega-

tive concave increasing function w(t), with »(0) =0, such that

.

(4.5) TF&,u,p)-F@y,v,p)| < A +pl® w(lx-y|?+]uv]?) .

Note that we do not assume the existence (or any growth condition) of the

derivatives F_, and therefore our functionals are in general nondifferentiable.
The results will take a different form in the scalar and in the vector

case. The technique, however, consists in both cases in comparing the

minimum point u in a ball Bp(x() with the function v minimizing the

functional

J%v; Bgl = fF(xO,uXO,R,Dv)dx

Br(xg)

among all functions in Hl'z(BR, RY) taking the value u on JdBg.
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The following lemma shall prove very useful.

LEMMA 4.1. Let v minimize J° in Bp and let u=v on JdBg. Then

f DwlZax < 21%;BL]-1%; B, )

4.6) Bp

Proof. Set

FOop) = Flxouy g
we have, taking into account 4.4),

1

FO(DU)_FO(DV) = FOI (DV)DaWI +f(l_t)F Oi . (tDu-{-(I*t)DV)DanD W‘]dt >
Pq pap/JB B =
0

>FO (Ov)D,w! + Liow)?.
pa

Integrating on Br we immediately get (4.6) since v satisfies the Euler
equation

4.7 sti(Dv)DaqSidx =0 V¢ eHyBL, RY) . q.e.d.
a

Br

The scalar case. Let us start with the scélar case N=1. From the
results of Section 2, Chapter VII, we kndw that every local minimum of
Jlu; @] is Hélder-continuous with some exponent y > 0.

Now we show, in a similar way as in Section 1, Chapter VII, that under
the above assumptions every local minimum of J{u; Q] is Hélder-continuous

with any exponent y <1. More precisely we have
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HEOREM 4.1. Let u be a minimum for the functional J. Then Du
belongs to le’n_E(Q) for every ¢> 0.

oc

In particular, compare with Section 1, Chapter III, u belongs to

coY(Q) for any y<1.
loc

 Proof. Let B CCQ and let v minimize J° with boundary datum u on

9€). We have

(4.8 oscv < oscu < c;R* forsome a>0.

Br Bgr

3 bn the other hand we have that v ¢ leo’g(BR) and differentiating (4.7):

f F[?apB(Dv)DB(DSv)DagZ) dx = 0 Ve e Hy(By) .

Br

" Choosing 1o - nDgv, ne CBO(BR) , and summing over s we conclude

that z = |Dv|? is a subsolution of an elliptic operator:

0 <0 V9 eC (By), n>0.
prapB(Dv)DBzDar]_ 7 € O( R 7

Br

’

From the standard elliptic estimate (see e.g. [129]) we then get

(4.9 sup |Dv|? < c,R" f]DvIzdx .

Br/2 a
R

From (4.9) we obtain for every p <R/2 the inequality

n
f|,Dv|2dx < 03(%) f]Dv|2dx
. BP BR

which we already had in Chapter VI.
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Changing possibly the constant c
p <R. Coming back to u we get

) .
(4.10) f[Dulzdx§c4{(}%) f|DuJ2dx+ f‘D(u—v)!zdx} )
B, Bg

Bp

In order to estimate the last integral we use (4.6). We have

Or,..
J [u,BR]~JO[v;BR]: f[F(xo,uXO,R,Du)—F(x,u,Du)]dx+

Br

f[F(x,v,Dv)-F(xo,uxo,R,Dv)]dx

Br

+ Jlu; Bl - Jlv; B.l.

) Since u minimizes J in By, taking into account (4.5), (4.8) and the
Holder continuity of u we get

le(u»v)[zdx <cg w0 (R) f[Du’zdx

B
R Bp

with @, (R) ¢ 0 as R0, In conclusion

n
leu}[zdx < 06[(1%) +m1(R)] leulzdx
B, B

which implies by means of Lemma 2.1, Chapter III

3» the above inequality holds for every
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1) fIDulzdx < c7 Rp f|Du|2dx P<Ry.

‘he conclusion then follows at once. A q.e.d.

The next theorem deals with the Holder-continuity of the first deriva-
es of minimum points u. For that, we have to make a further assump-
non F, namely that F is Holder-continuous in (x,u) with exponent

. More precisely we shall assume that the function « in (4.5) satisfies
4.12) o(t) < At?
or some o> 0.

'HEOREM 4.2. Let (4.2), (4.3), (4.5), (4.12) hold. Then the first deriva-

ives of u are Hoélder-continuous.

roof. Let BR(XO) CCQ and let v be as before. From De Giorgi’s
heorem (Theorem 2.1, Chapter II), we deduce (compare with Section 1,

hapter VII) the estimate

n+20 9
lev—(Dv)xo,dexgc ) lew(Dv)XO,RI dx
B

o(xo) Br(xq)

for some 86 > 0. Hence we have

n+206
f |Du—(Du)x0’p|2dx§cg|: )

f IDu - (Du)x Rl
B (x

, O) BR(XO)

+ f }D(u—v)lzdx:l .

BR(X‘O)
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The last integral can be estimated as above, Takmg into account that

ueCP? we get
le(“‘V)lzdx < c1oR? f!Du|2dx

BR BR

and using (4.11) )

fID(u—v)IZdX < C“Rn+2a0»£ .

Br

Taking ¢ =ao we get in conclusion

n+20

2 p
f |Du~(Du)XO,P| dx < Clz(ﬁ)

Bp(xo)

f }Du—(Du)XO’R |2dx +c 12R"+a0
Brxq)
for every p<R.
Using again Lemma 2.1, Chapter III we finally get

2 n+27
f‘Du—(Du)XO'P| dx < Ci3P

P

7 = min (QTU, g) and hence the result (compare with Section 1, Chapter 1II),

q.e.d.

The vector valued case: partial regularity. In the general case N >1 we

expect only regularity in an open set QO. Actually we have

THEOREM 4.3, Let u be a minimum point for the functional (1.1). Sup-
pose that (4.2), (4.3), (4.4) and (4.5) with w(t) < At? for some o> 0 hold.

Then there exists an open set Q,CQ such that u has Hélder-continuous
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rst derivatives in (. Moreover we have Q-0 = 21 U 22 , where

21 = ix o€t sup I(Du) rl = 4 oo}

™0

3, = {XOeQ: lim inf r™ f\Du—(Du)XO’rldx > 0}
r-0
B

-Theorem 4.3 has been proved in [116], and in a slight different way
ore in the spirit of Section 2, Chapter VI) in [174]. The proof which
follows is taken from [116].

roof. We want to estimate

(I)(xo,p) = f ]Du*(DU)XO’P‘ZdX .

B(xg.p0)

Let X € Q, R<dist (x g a) and let v be the minimum point for

J Ofy; BR] with boundary values u(x) on 0By .

Writing the equation in variation for Dv and using the regularity theory
in Chapter VI we have: for every L,> 0 there exists no(LO) >0
(depending only on L, n,N and on the modulus of continuity of Fpp )

such that if

2 2
(4.13) f IDul?dx < L%, % IDv—‘(Dv)XO,R\ dx <n?

BR(XQ) BR(XO)

then Dv is Hslder-continuous (with every exponent a <1 ) in a neighbor-

hood of X and moreover
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n+2a ' |
(4.14) f |Dv—(Dv)x0p dx < c14(R) f IDv—(Dv)XO gl dx

B, (xq) Bp(xq)

for every p <R.

Now we want to show that (4. 13) can be replaced by similar inequali-

ties involving the function u. In fact, from (4.2) we have

(4.15) JE [Dv|?dx < ey :’C |Du|?dx .

Brxqy Brxq)

On the other hand from (4.7) rewritten as

f[FP(iZ(DV) -chiz(f)]l)a(ﬁl dx =0 Ve H(l)(BR, RN)

Bg

) : . . .
taking @' =yl-yl = ¢! fl a_ 1_§ale1) (&)= (Duh), g) we get
- O,

2
(4.16) f'DV—(DV)XO,Rl dx < cyq f’D“‘(D“)XO,Rlde :

B
R Bp

From (4.15),(4.16) we conclude that- for every M >0 there exzsts
eg(My) such that the inequalities

(4.17) f Dul?dx <M2 D(x o, R) < ¢

BR(XO)
imply (4.13) and therefore (4.14).

Suppose now that (4.17) are satisfied for some R. Then we have as
in Theorem 4.2

IX. DIRECT METHODS FOR THE REGULARITY - = 975
. ) n+2a 2
f |D~u—(Du)x0)p| dx < ¢, ) f lDu—(Du)XO,Rl dx +
B,(xg) Brxgy
(4.18) A
+ f |D(u—v)|2dx} .
‘ Bp(xq)

The last integral can be estimated as in Theorem 4.1, getting

f]D(u—v)Izdx < clgfa)(Rerlu—uXO’R\erlu—vlz)IDuIde

Bgr

and the difference with respect to the scalar case is that we do not know
that u is Holder-continuous.

Now we use the LY-estimate for Du; more precisely from Section 3,
Chapter V, we know that, under our assumptions, there exists a number

q > 2 such that

1/9 1/2
<J£1Du|qu) < clg(f |Du|2dx>
BR ' BZR

and we can suppose that q is so close to 2 that qu >1. Then we
have 1-2
24, o 4\ d
f]D(u—v)|2dx < c20<fu)u|qu) (qu“zdx) <
By , Bg Bp

Qo

9\
< Cyy f]Dulzdx(qul_zdx)
'BZR

Br
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Since  is bounded we have

2
(4.19) f|D(u—v)| dx < c,, leu|2dx.
B
R Bor
" . a .1
oreover, recalling that 377 and w(t)SAtor we get
q

q-2 2
@ < c,a(R +|u_“x0,R12+iu—v[2)

and therefore using Poincaré’s inequality and (4.19)

q
q-2 2
JC(‘) S c4R :F IDul? .
B
R Bor

In conclusion we get

’ 2-2/q
2 -
f‘D(u—v)l dx < C, RO20 2/q)<j£|DUI2dx>

B
R BZR

and therefore from (4.18), writing R instead of 2R:

2 N T
(I)(xo,rR) < c26[72a®(xo:R)+R2(l—q)r"nM(XO,R)L‘(l_C}f)]

where 0<r <%_ and

M(x,,R) = 1 + \(Du)XO’R\ + Blx R/ .

The proof now proceeds exactly as in the proof of Theorem 2.1, Chapter VI.

q.e.d.
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In general Q—QO is nonempty. However in some particular cases

one can get regularity everywhere.

The vector valued case: everywhere regularity. Let us consider func-

tionals of the type

(4.20) Jlu; 21 = fAC;?(X)DauiDBuj dx + fg(x,u)dx
Q Q

where the coefficients Aof are Holder-continuous in {} with exponent o
and satisfy the Legendre-Hadamard condition

AOIR

UUE 2912 VEERT, VpeRY

and g is Holder-continuous with exponent 20.
Then, repeating the arguments above, one can easily prove the follow-

ing (see [116])

THEOREM 4.4. Let u be a minimum for the functional in (4.20). Then

u has first derivatives Holder-continuous with any exponent less than o

in Q.

We do not know whether this result is optimal; however the Holder

exponent of Du cannot reach 20, even if N=1 and the functional has

f(;_ IDul? +ul?) dx

Q

the special form

compare with [254].

Finally we want to mention that some of the results of this section
can be carried on in order to handle polynomial growth conditions. But
the extension of the (pé‘rtial) cl.Hslder continuity to general functionals

with polynomial growth seems not straightforward.
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