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Preface to the first edition

Initially thought as lecture notes of a course given by the first author
at the Scuola Normale Superiore in the academic year 2003-2004, this
volume grew into the present form thanks to the constant enthusiasm of
the second author.

Our aim here is to illustrate some of the relevant ideas in the theory of
regularity of linear and nonlinear elliptic systems, looking in particular at
the context and the specific situation in which they generate. Therefore
this is not a reference volume: we always refrain from generalizations and
extensions. For reasons of space we did not treat regularity questions in
the linear and nonlinear Hodge theory, in Stokes and Navier-Stokes theory
of fluids, in linear and nonlinear elasticity; other topics that should be
treated, we are sure, were not treated because of our limited knowledge.
Finally, we avoided to discuss more recent and technical contributions,
in particular, we never entered regularity questions related to variational
integrals or systems with general growth p.

In preparing this volume we particularly took advantage from the ref-
erences [6] [37] [39] [52], from a series of unpublished notes by Giuseppe
Modica, whom we want to thank particularly, from [98] and from the
papers [109] [110] [111].

We would like to thank also Valentino Tosatti and Davide Vittone,
who attended the course, made comments and remarks and read part of
the manuscript.

Part of the work was carried out while the second author was a gradu-
ate student at Stanford, supported by a Stanford Graduate Fellowship.



Preface to the second edition

This second edition is a deeply revised version of the first edition, in which
several typos were corrected, details to the proofs, exercises and examples
were added, and new material was covered. In particular we added the
recent results of T. Riviere [88] on the regularity of critical points of
conformally invariant functionals in dimension 2 (especially 2-dimensional
harmonic maps), and the partial regularity of stationary harmonic maps
following the new approach of T. Riviére and M. Struwe [90], which avoids
the use of the moving-frame technique of F. Hélein. This gave us the
motivation to briefly discuss the limiting case p = 1 of the LP-estimates
for the Laplacian, introducing the Hardy space H' and presenting the
celebrated results of Wente [112] and of Coifman-Lions-Meyer-Semmes
[22].

Part of the work was completed while the second author was visiting
the Centro di Ricerca Matematica Ennio De Giorgi in Pisa, whose warm
hospitality is gratefully acknowledged.



Chapter 1
Harmonic functions

We begin by illustrating some aspects of the classical model problem in
the theory of elliptic regularity: the Dirichlet problem for the Laplace
operator.

1.1 Introduction

From now on  will be a bounded, connected and open subset of R"™.

Definition 1.1 Given a function u € C%(Q) we say that u is
— harmonic if Au =0
— subharmonic if Au >0
— superharmonic if Au <0,

where

Au(z) = E D? D, :=—
is the Laplacian operator.

Exercise 1.2 Prove that if f € C%(R) is convex and u € C%(Q) is harmonic,
then f ow is subharmonic.

Throughout this chapter we shall study some important properties of
harmonic functions and we shall be concerned with the problem of the
existence of harmonic functions with prescribed boundary value, namely
with the solution of the following Dirichlet problem:

Au=0 in Q
{ u=g on 0N (1.1)

in C%(Q) N C°(Q), for a given function g € CO(9N).



1.2 The variational method

The problem of finding a harmonic function with prescribed boundary
value g € C°(09) is tied, though not equivalent (see section 1.2.2), to the
following one: find a minimizer u for the functional D

D(u) = 1/ | Dul2dz (1.2)
2 Ja
in the class
A={uecC*(Q)NnC’Q) : u=gondN}.

The functional D is called Dirichlet integral.

In fact, formally, if a minimizer u exists, then the first variation of the
Dirichlet integral vanishes:

(u+t<p)‘ =0

dt t=0

for all smooth compactly supported functions ¢ in €); an integration by

parts then yields

d
t
0= dt Dlu+ So)to

/ Vu - Vpdx
Q

= 7/ Aupdz, Yo e CF(Q),
Q

and by the arbitrariness of ¢ we conclude Au = 0, which is the Fuler-
Lagrange equation for the Dirichlet integral: minimizers of the Dirichlet
integral are harmonic.

This was stated as an equivalence by Dirichlet and used by Riemann
in his geometric theory of functions.

Dirichlet’s principle: A minimizer u of the Dirichlet integral in  with
prescribed boundary value g always exists, is unique and is a harmonic
function; it solves

{ Au=0 inQ

u=g¢g ondf. (1.3)

Conversely, any solution of (1.3) is a minimizer of the Dirichlet integral
in the class of functions with boundary value g.

Dirichlet saw no need to prove this principle; however, as we shall see,
in general Dirichlet’s principle does not hold and, in the circumstances in
which it holds, it is not trivial.
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Figure 1.1: The function u,, as defined in (1.4)

1.2.1 Non-existence of minimizers of variational
integrals

The following examples, the first being a classical example of Weierstrass,
show that minimizers to a variational integral need not exist.

1. Consider the functional
1
F(u) :/ (z)?dx
~1

defined on the class of Lipschitz functions
A ={ueLip([-1,1]) : u(-1) = -1, u(1) =1}.
The following sequence of functions in A

-1 forze[-1,—1]
up(r):={ 1  forze[L 1] (1.4)

n
nz forz € [-1 1]

shows that inf 4 F = 0, but evidently F cannot attain the value 0 on A.
2. Consider )
Flu) = / (14 @2)¥da,
0
defined on
A ={u € Lip([0,1]) : u(0) =1, u(1) =0}.

The sequence of functions

u(z) = 1—nx forze|0,1]
10 for z € [X,1

n



shows that inf 4 F = 1. On the other hand, if F(u) = 1, then w is constant,
thus cannot belong to A.

3. Consider the area functional defined on the unit ball B; C R?

Flu) = / 1+ [DufPda,
B
defined on
A={u € Lip(By) : u=0o0ndBy, u(0) =1}
As F(u) > 7 for every u € A, the sequence of functions

(z) = 1—nlz| for|z| € 0,21]
U= 00 for |z € [1,1]

shows that inf 4 F = 7. On the other hand if F(u) = for some u € A,
then u is constant, thus cannot belong to A.

1.2.2 Non-finiteness of the Dirichlet integral

We have seen that a minimizer of the Dirichlet integral is a harmonic
function. In some sense the converse is not true: we exhibit a harmonic
function with infinite Dirichlet integral.

The Laplacian in polar coordinates on R? is

9?2 190 1 6°

A=ortrar T

and it is easily seen that r™ cosnf and r" sinnf are harmonic functions.
Now define on the unit ball B; C R?

u(r,0) = % + Z r"(ay cosnd + by, sinnbh).
n=1

Provided

oo

> (lan] + [ba]) < oo,

n=1

the series converges uniformly, while its derivatives converge uniformly on
compact subsets of the ball, so that u belongs to C*°(B;) N C°(B;) and
is harmonic.

The Dirichlet integral of u is

1 2 1 1 o
D(u) = 5/0 d9/0 (|0pul* + T—2|89u|2)rdr = g Zn(ai +b2).

n=1



Thus, if we choose a,, = 0 for all n > 0, b, = 0 for all n > 1, with the

exception of b, = n~2, we obtain

o0

Z Zsin(nl9),

and we conclude that u € C*°(B;) N C°(By), it is harmonic, yet
T oo
P i

In fact, every function v € C*°(B;)NCY(B1) that agrees with the function
u defined above on 0B has infinite Dirichlet integral.

1.3 Some properties of harmonic functions

Proposition 1.3 (Weak maximum principle) If u € C?(2) N C°(Q)
is subharmonic, then
SUp ¥ = maxu;
O o0

If u is superharmonic, then

inf 4 = min u.
Q o0
Proof. We prove the proposition for u subharmonic, since for a superhar-
monic u it is enough to consider —u. Suppose first that Au > 0in 2. Were
xo €  such that u(zg) = maxqgu, we would have u,i,i(x¢) < 0 for every
1 <¢ < n. Summing over i we would obtain Au(zy) < 0, contradiction.
For the general case Au > 0 consider the function v(x) = u(x) +|z|?.
Then Av > 0 and, by what we have just proved, supg v = maxsq v. On the
other hand, as e — 0, we have supy v — supq © and maxpo v — maxaq u.
O

Exercise 1.4 Similarly, prove the following generalization of Proposition 1.3:
let v € C?(Q) N C°(Q) satisfy

n

> AYDagu+ En: b Dou > 0,

a,B=1 a=1

where A b* € C°(Q) and A7 is elliptic:
A > 0 and every £ € R". Then

o f=1 AYBe g5 > NE|?, for some

supu = maxu.
Q o0



Remark 1.5 The continuity of the coefficients in Exercise 1.4 is neces-
sary. Indeed Nadirashvili gave a counterexample to the maximum prin-
ciple with AP elliptic and bounded, but discontinuous, see [82].

Proposition 1.6 (Comparison principle) Let u,v € C%(Q2) N C°(Q2)
be such that u is subharmonic, v is superharmonic and u < v on Of).
Then v < v in .

Proof. Since u — v is subharmonic with u — v < 0 on 9%, from the weak

maximum principle, Proposition 1.3, we get ©u — v < 0 in €. O
Clearly
u < v+ max |u — v| on 09,
o0
consequently:

Corollary 1.7 (Maximum estimate) Let v and v be two harmonic
functions in Q. Then

sup |u — v| < max |u — v|.
Q o0

Corollary 1.8 (Uniqueness) Two harmonic functions on Q that agree
on 0N are equal.

Proposition 1.9 (Mean value inequalities) Suppose that u € C?(£2)
is subharmonic. Then for every ball B,(z) € Q

u(z) < f u(y)dH" (), ! (1.5)
9B, ()

u(z) < ]{3 vy (1.6)

If u is superharmonic, the reverse inequalities hold; consequently for u
harmonic equalities are true.

!By f, f(z)dz we denote the average of f on A ie., ﬁfA f(z)dz. Similarly
fafdH = m Ja fdH L



Proof. Let u be subharmonic. From the divergence theorem, for each
p € (0,7] we have

0< / Au(y)dy
BP(I)

-/ Ou arn=1(y)
15)

By(z) 61/

du -1 -1

= (@ +py)p"dH" (y

/ o 0 v)
n—li

= w(z + py)dH" (y
A Bt

4 d 1 / _
—_ N 12 u dHn 1 )
p dp<pn1 o5 o (y) (y)

d

n—1 n—1
= nwpp" — ][ u(y)dH" " (y),
i Jos, o (y) (y)

where w,, := |Bj|. This implies that the last integral is non-decreasing
and, since

lim u(y)dH"(y) = u(x),
p=0 0B, (x)

(1.5) follows. We leave the rest of the proof for the reader. O

Corollary 1.10 (Strong maximum principle) If u € C%(Q) N C%(Q2)
is subharmonic (resp. superharmonic), then it cannot attain its mazimum
(resp. minimum) in Q unless it is constant.

Proof. Assume u is subharmonic and let zo € Q be such that u(zg) =
supq u. Then the set

S:={ze€Q:u(x)=u(r)}

is closed because u is continuous and is open thanks to (1.6). Since  is
connected we have S = (). O

Remark 1.11 If u is harmonic, the mean value inequality is also a direct
consequence of the representation formula (1.11) below.

Exercise 1.12 Prove that if u € C?(Q) satisfies one of the mean value proper-
ties, then it is correspondigly harmonic, subharmonic or superharmonic.

Exercise 1.13 Prove that if u € C°(Q) satisfies the mean value equality
u@) = . ulydy, VB(@)c 0
Br(z)

then u € C*°(€2) and it is harmonic.



[Hint: Regularize u with a family p. = p.(|z|) of mollifiers with radial simmetry
and use the mean value property to prove that u * p. = u in any Qo € €2 for ¢
small enough.]

Proposition 1.14 Consider a sequence of harmonic functions u; that
converge locally uniformly in Q to a function u € C°(Q). Then u is
harmonic.

Proof. The mean value property is stable under uniform convergence, thus
holds true for u, which is therefore harmonic thanks to Exercise 1.13. O

Remark 1.15 Being harmonic is preserved under the weaker hypothesis
of weak LP convergence, 1 < p < oo, or even of the convergence is the sense
of distributions. This follows at once from the so-called Weyl’s lemma.

Lemma 1.16 (Weyl) A function u € L}, () is harmonic if and only if

/ uApdr =0, Yoe CX(Q).
Q

Proof. Consider a family of radial mollifiers p., i.e. p:(x) = #p(sflx),

where p € C*°(R") is radially symmetric, supp(p) C By and fBl plx)dr =
1. Define u. = u * p.. Then, from the standard properties of convolution
we find

/usAgodx:/u(Agp*pa)dx
Q Q

:/uA(go*pE)dm
Q

0, for every ¢ € C2°(£2,),

where
Q= {z € Q: dist(z,00) > e}.

In particular Au. = 0 on Q.. Now fix R > 0 and let 0 < & < 3R. We
have by Fubini’s theorem

/QE [ue(y)ldy < /Q gin/ﬂp (@) |u(x)|dady

< /Q fu(a)|da

Here we may assume that u € L!(Q), since being harmonic is a local
property. By the mean value property applied with balls of radius % and
(1.8), we obtain that the u. are uniformly bounded in Qg /5. They are also

(1.8)



1.3 Some properties of harmonic functions 9

locally equicontinuous in Qp because for zg € Qg and z1,z9 € B%(xo),
still by the mean-value property,
2™ /
wp R Br(z1)AB R (z2)
2 2

2’)1
5 . B AB
s g 1l s (P e ABg o)

IN

|ue (1) — ue(22)| |ue ()| dx

where
By (21)ABy (1) = (Bg (xl)\B%(mg)) U (Bg(xQ)\Bg(xl)).

By Ascoli-Arzela’s theorem (Theorem 2.3 below), we can extract a se-
quence u., which converges uniformly in {2 to a continuous function v
as k — oo and g, — 0, which is harmonic thanks to Exercise 1.13. But
u = v almost everywhere in {p by the properties of convolutions, hence
u is harmonic in Qr. Letting R — 0 we conclude. g

Proposition 1.17 Given u € C°(2), the following facts are equivalent:

(i) For every ball Br(x) € Q we have
w0 < f )
OBR(x)
(ii) for every ball Br(x) €  we have
< f )y
BR(JL’)

(iii) for every x € Q, Ry > 0, there exist R € (0, Ry) such that Br(x) €
Q and

@< f )y (19)
BR(I)
(iv) for each h € C°(Q) harmonic in Q' € Q withu < h on 99, we have
u<hinQ;
(v) fQ u(z)Ap(z)dz > 0, Vo € C(Q), ¢ > 0.
Proof. Clearly (i) implies (ii) and (ii) implies (iii).

(iii)=-(iv): Since h satisfies the mean value property the function w :=
u — h satisfies

w(z) < ][ w(y)dy for all balls Br(x) C ' s.t. (1.9) holds.
Br(z)



10

Then

supw = maxw < 0,
Iy o

the first identity following exactly as in the proof of Corollary 1.10.
(iv)=-(i): Let Br(z) € , and choose h harmonic in Br(z) and h = u in
Q\Bgr(z). This can be done by Proposition 1.24 below. Then

u(z) < h(z) = ][ hdH™ ! = ][ udH" L.
aBR(I) BBR(:::)

The equivalence of (v) to (ii) can be proved by mollifying u, compare
Exercise 1.13. O

Often a continuous function satisfying one of the conditions in Pro-
position 1.17 is called subharmonic.

Exercise 1.18 Use Proposition 1.17 to prove the following:
1. A finite linear combination of harmonic functions is harmonic.

2. A positive finite linear combination of subharmonic (resp. superharmonic)
functions is a subharmonic (resp. superharmonic) function.

3. The supremum (resp. infimum) of a finite number of subharmonic (resp.
superharmonic) functions is a subharmonic (resp. superharmonic) func-
tion.

Theorem 1.19 (Harnack inequality) Given a non-negative harmonic
function u € C*(Q), for every ball Bs,.(x¢) € Q we have

sup u < 3" inf wu.
B, (z0) Br(20)

Proof. By the mean value property, Proposition 1.9, and from u > 0 we
get that for y1,ys € B,.(x0)

1
u(yr) = / udx
wWnT™ JB, (y1)

1
< n/ udz
Wn'" BQr(fo)
Sn
= 771/ udx
wn(31)" J B, (20)

< 3 n/ udz
wr (3r)" Bs,(y2)

= 3"u(y2).




11

Theorem 1.20 (Liouville) A bounded harmonic function u : R — R
18 constant.

Proof. Define m = infgn u. Then u —m > 0 and by Harnack’s inequality,
Theorem 1.19,

sup(u —m) < 3%inf(u —m), VR > 0.

Br Br

Letting R — oo, the term on the right tends to 0 and we conclude that
SUDPRn U = M. U

Proposition 1.21 Let u be harmonic (hence smooth by Exercise 1.13)
and bounded in Bgr(xo). For r < R we may find constants c(k,n) such
that

c(k,n)
sup |VFu| < ——— sup |ul. (1.10)
By (z0) (R —r)k Br(z0)

Exercise 1.22 Prove Proposition 1.21.

[Hint: First prove (1.10) for £ = 1 using the mean-value identity (it might be
easier to start with the case r = R/2 and then use a covering or a scaling argu-
ment). Then notice that each derivative of w is harmonic and use an inductive
procedure.]

Proposition 1.23 Let (ux) be an equibounded sequence of harmonic func-
tions in ), i.e. assume that supg |ug| < ¢ for a constant ¢ independent
of k. Then up to extracting a subsequence up — u in C’foc(Q) for every £,
where u is a harmonic function on 2.

Proof. This follows easily from Proposition 1.21 and the Ascoli-Arzela
theorem (Theorem 2.3 below), with a simple covering argument. O

1.4 Existence in general bounded domains

Before dealing with the existence of harmonic functions is general domains
we state a classical representation formula providing us with the solution
of the Dirichlet problem (1.1) on a ball.
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1.4.1 Solvability of the Dirichlet problem on balls:
Poisson’s formula

Proposition 1.24 (H.A. Schwarz or S.D. Poisson) Leta € R™, r >
0 and g € C°(0B,(a)) be given and define the function u by

2 |2
role—af / 9 —dH""'(y) € By(a)
u(z) := nwnr 0B, (a) [T =Yl
g(x) x € OB, (a).
(1.11)
Then u € C*°(B,(a)) N C°(B,(a)) and solves the Dirichlet problem

Au=0 in B,(a)
u=g ondB,(a)

Proof. We only sketch it. By direct computation we see that u is harmonic.
For the continuity on the boundary assume, without loss of generality, that
a =0 and define

r? — |z|?

K(z,y) := x € B.(0), y € 90B,(0).

nwyr|z =y’

One can prove that
/ K(z,y)dH" (y) =1, for every z € B,(0).
9B..(0)

Let z¢ € 0B,(0) and for any ¢ > 0 choose ¢ such that |g(z) — g(zo)| < €
if z € 0B,-(0) N Bs(xo). Then, for z € B,(0) N Bs/2(x0),

() = g(xo)| <

/ K (. 9)lg(y) — g(zo)ldH" (y)
8B,(0)

< / K (2, 9)9(y) — g(wo)ldH" (y)
8B,(0)NBs (z0)
+ / K, y)lg(y) — glzo)ldH™(y)
0B, (0)\B;s(xo0)
2 2)n—2
< e+%2 sup |g|.
(%) 2B,.(0)

Hence |u(x) — g(xz0)| — 0 as © — xq. O



1.4.2 Perron’s method

We now present a method for solving the Dirichlet problem (1.1).
Given an open bounded domain Q C R™ and g € C°(992) define

S ={ueC*(QNC’Q): Au>0inQ, u < gondQ};
S, i={ueC*()NC’Q): Au<0in Q, u> gon IN}.

These sets are non-empty, since g is bounded and constant functions are
harmonic: u = supq g and v = infq g belong to St and S_ respectively.
We also observe that, by the comparison principle, v < u for each v € S_
and u € S;. We define

us(x) = sup u(x), u(x)= inf u(x).
weS_ u€Sy

and shall
1. prove that both u, and u* are harmonic;

2. find conditions on 2 in order to have u,,u* € C’O(ﬁ) and uy, = u* =
g on 0f).

This is referred to as Perron’s method.

Step 1. It is enough to prove that u, is harmonic in a generic ball B C (2.
Fix o € B. By the definition of u, we may find a sequence v; € S_ such
that v;(z¢) — us (o). Define
v} = max(v,...,v;) € S,
vy = Pguj,

where Ppv’ is obtained by (1.11) as the harmonic extention of v} on B
matching v; on 9B. Observe that by definition (v}) is an increasing se-
quence and, by the maximum principle, (v) is increasing as well. Since
the sequence (v;’ ) is equibounded and increasing it converges locally uni-
formly in B to a harmonic function h thanks to Proposition 1.23.

Observe that h < u, and h(xg) = u. (o). We claim that h = u, in B.
If h(z) < us(z) for some z € B, choose w € S_ such that w(z) > h(z)

and define w; = max{v},w}. Also define w} and w} as done before with

; and v7. Again we have that w] — h for some harmonic function h.

‘] ~
From the definition it is easy to prove that v?’ < w}’ , thus h < h and

v

h(xo) = h(xo). By the strong maximum principle, this implies A = h on
all of B. This is a contradiction because

h(z) =limw}(z) > w(z) > h(z) = h(2).

This proves that h = u, and then wu, is harmonic in B, hence in all of
Q) since B was arbitrary. Clearly the same proof applies to u*.

Step 2. The functions v* and wu, need not achieve the boundary data g,
and in general they don’t.
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Definition 1.25 A point xqg € 0 is called regular if for every g €
CY(00) and every e > 0 there exist v € S_ and w € ST such that
g(xo) — v(zo) < e and w(xzg) — g(xy) < e.

Exercise 1.26 The Dirichlet problem (1.1) has solution for every g € C°(9Q)
if and only if each point of 02 is regular. _
[Hint: Use Perron’s method and prove that u. € C°(Q) and u. = g on 98]

Definition 1.27 Given zg € 8(2,_(171 upper barrier at xg is a superhar-
monic function b € C*(Q) N C°(Q) such that b(xg) = 0 and b > 0 on
O\{xo}. We say that b is a lower barrier if —b is an upper barrier.

Proposition 1.28 Suppose that xg € Q admits upper and lower barriers.
Then xq is a reqular point.

Proof. Define M = maxggq |g| and, for each ¢ > 0, choose § > 0 such
that for x € Q with | — z¢| < 0 we have |g(x) — g(x0)| < €. Let b be an
upper barrier and choose k > 0 such that kb(z) > 2M if |x — x| > 6 (by
compactness infg, 5,y b > 0). Then define

w(z) = g(xo) + € + kb(z);

v(x) = g(zg) — € — kb(x)
and observe that w € S; and v € S_. Moreover w(zg) — g(z9) = € and
9(@o) — v(wo) =¢. O
In the following proposition we see that, under suitable hypotheses on

the geometry of €2, the existence of barriers, and therefore of a solution
to the Dirichlet problem, is guaranteed.

Proposition 1.29 Suppose that for each xo € O0Q there exists a ball
Br(y) in the complement of Q such that Br(y) N Q = {x¢} (see Fig-
ure 1.2). Then every point of O is regular, hence the Dirichlet problem
(1.1) is solvable on Q for arbitrary continuous boundary data.

Proof. For any zy € 02 and a ball Br(y) as in the statement of the

proposition, consider the upper barrier b(x) := R*™" — |z — y|>~" for
n > 2 and b(z) := log ‘w;%yl for n = 2, and the lower barrier —b(x). One
can easily verify that Ab =0 in R™\ {y}. O

Exercise 1.30 The hypotesis of Proposition 1.29 is called ezterior sphere con-
dition. Show that convex domains and C? domains satisfy the exterior sphere
condition.

Remark 1.31 The Perron method is non-constructive because it doesn’t
provide any way to find approximate solutions.



. Br(y)

Figure 1.2: The exterior sphere condition.

1.4.3 Poincaré’s method

We now present a different method of solving the Dirichlet problem (1.1).
Cover 2 with a sequence B; of balls, i.e. choose balls B; C 2, i =
1,2,3,... such that Q = [J;2, B;. Now define the sequence of integers

irn=1,2,1,2,3,1,2,3,4,...,1,...,n,...
Given g € C°(Q), define the sequence (u) by u; := g and for k > 1

 ug—1(x) for z € O\ B,
uk(z) = { P, up—1(x) for x € By,
where P;, up_1 is the harmonic extention on B;, of uk*’aB. , given by

Tk
(1.11).

Proposition 1.32 If each point of 02 is regular, then uy converges to
the solution w of the Dirichlet problem (1.1).

Proof. Suppose first g € C°(Q2) subharmonic, meaning that it satisfies
the properties of Proposition 1.17. We can inductively prove that uy is
subharmonic and

g=u; <uy<...up <...<supg.
Q

Suppose indeed that uy is subharmonic (this is true for k£ = 1 by assump-
tion). Then by the comparison principle ug11 > ug, and it is not difficult
to prove that w11 satisfies for instance (iii) or (iv) of Proposition 1.17,
hence is subharmonic.

Since, for each i, uy is harmonic in B; for infinitely many k, increasing
and uniformly bounded with respect to k, by Proposition 1.23 we see that
its limit » is a harmonic functions in each ball B;, hence in Q. Using
barriers it is not difficult to show that « = g on the boundary.



16

Now suppose that g, not necessarily subharmonic, belongs to C?(R"™)
and Ag > —A. Then go(z) = g(z) + 2|z|? is subharmonic and we may
solve the Dirichlet problem with boundary data go. We may also solve the
Dirichlet problem with data % |z|? (that is subharmonic) and by linearity
we may solve the Dirichlet problem with data g.

Finally, suppose g € C°(Q), which we can think of as continuosly
extended to R™, and regularize it by convolution. For each convoluted
function g. € C*°(Q) we find a harmonic map u. with u. = g. — g
uniformly on 92. Then by the maximum principle, for any sequence
e — 0 we have that (u,) is a Cauchy sequence in C°(€2), hence it
uniformly converges to a harmonic function w which equals g on 9Q2. O

Remark 1.33 The method of Poincaré decreases the Dirichlet integral:
D(g) > D(uz) > ... > D(ug) > ... > D(u).

Consequently if g has a W12 extension i.e., an extension with finite Di-
richlet integral, then the harmonic extension u lies in W12(Q) (for the
definition of W12(Q2) see Section 3.2 below).

On the other hand one can also have

D(g) = D(ug) = oo forevery k=1,2,...,
compare section 1.2.2.

Remark 1.34 By Riemann’s mapping theorem one can show that, if
Q) C R? is the interior of a closed Jordan curve I, then all boundary points
of Q) are regular. Lebesgue has instead exhibited a Jordan domain €2 in
R3 (i.e. the interior of a homeomorphic image of S?) where the problem
Au=01in Q, u = g on 9Q cannot be solved for every g € C°(99).



Chapter 2
Direct methods

In this chapter we shall study the existence of minimizers of variational
integrals F defined on some space of functions A, say

F(u) ::/QF(Du)da:, we A, (2.1)

using the so-called direct method. This consists in introducing a possibly
larger class A D A together with a topology that makes F lower semicon-
tinuous and every (or at least one) minimizing sequence {u;} compact in

A, i.e. such that, modulo passing to a subsequence, u; — w. Then 7 is a
minimizer in A, since

F(u) < liminf F(u;) = inf F(u).

J—o0 u€A

Observe that the two conditions are in competition, since with a stronger
topology it is easier to have semicontinuity, but more difficult to have
compactness.

Examples of integrals of the form (2.1) are the following,*

1. F(u) == [, |Dul*dx

= [o V14 |Dul?dz

o |Du)?
= [ye dx

2. Flu

3. Flu

Jo [Dul?log(1 + | Du|?)da

5. F(u) == [, (X0} [Doul® + | Dpul*)dz, k>1

)
)
4. F(u) :
)
)

6. F(u):= [,(1+|Dul*)*dz, k>1.

IThese integrals are well defined on the space of Lipschitz functions A = Lip(Q)
because, thanks to Rademacher’s theorem, every Lipschitz function is differentiable
almost everywhere and belongs to W1°°(£2). On the other hand, working with other
spaces, such as Sobolev spaces, is often more suitable.



18

It turns out that in all these cases F' is a convex function. This is a
key property in the study of lower semicontinuity, and we shall assume it
throughout this chapter.

2.1 Lower semicontinuity in classes
of Lipschitz functions

By convexity of F' we have for u,v € Lip(Q)
F(Dv(z)) > F(Du(x)) + F,, (Du(z))(Dav(z) — Dyu(x)), a.e. z € Q,

where F}, denotes the partial derivative of F(p) = F(pi,...,p,) with
respect to the variable p,, and here and in the following we use the con-
vention of summing over repeated indexes. Consider a sequence {u;}; for
each u; we have

/F(Du)dx < / F(Du;j)dx — / F,, (Du)(Dyuj — Dou)dz.  (2.2)
Q Q Q

If we assume that F, is continuous, then F, (Du(z)) € L>°(£2). There-
fore if Du; weakly converges to Du in L'((2), the last integral vanishes

and F(u) < liminf F(u;), thus we have

Proposition 2.1 A functional F : Lip(2) — R of the form

Flu) = /Q F(Du)dx

with F' convex and F}, continuous is lower semicontinuous with respect to
the weak-Wh! convergence.

Define the space
Lip,(Q) = {u € Lip(Q) : |u|; <k},

where |ul; is the Lipschitz seminorm:

IR 7Co R0
z,y€N |z —y|
TFy

Then we have

Proposition 2.2 If F' is convex and F}, continuous, then F is lower semi-
continuous with respect to the uniform convergence of sequences with equi-
bounded Lipschitz seminorm.
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Proof. 1f we approximate F,(Du) in L'(2,R™) by smooth functions Fy,
the last term in (2.2) can be written as

[ F) Dy~ Do+ [ P2 (D - Do
Q Q

Since F* — F,_ (Du) in L', and the sequence (u;) has equibounded
gradient, taking € small enough, the the first term can be made arbitrarily
small. Integrating by parts the second term yields

/ F¥(Dquj — Dyu)dx = —/ Do F2(uj — u)dz,
Q o)

which goes to zero as u; — w uniformly. Lower semicontinuity follows
from (2.2) letting € — 0. O

2.2 Existence of minimizers

2.2.1 Minimizers in Lip,(Q2)

The reason for working in the classes Lip, (€2) of equi-Lipschitz functions
essentially lies in the compactness theorem of Ascoli and Arzela.

Theorem 2.3 (Ascoli-Arzeld) Given any equibounded and equicontinu-
ous® sequence of functions uj : 0 — R, there exists a subsequence conver-
ging uniformly on compact subsets.

Proposition 2.4 Consider g € Lip,(2). Then any variational integral
fQ (Du)dx with F convex and F, continuous has a minimizer
n the class
= {u € Lip, () : u=gon 00Q}.

Proof. Take a minimizing sequence (u;) C Ag. It is equibounded and
equicontinuous hence, by Ascoli-Arzela’s theorem, we may extract a sub-
sequence, still denoted by wu;, such that u; — @ € Lip,(Q2) uniformly.
Then Proposition 2.2 yields

F(u) <liminf F(u;) = inf F(u).

Jj—00 u€ Ay

0

2 Equibounded means that there exists K > 0 such that supg luj] < K for every j;
equicontinuous means that for every zg € 2 and € > 0, there exists § > 0 such that

luj(xz) —uj(ro)| <e, forxze€ QN Bs(xo), and for every j.
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The above proposition does not solve the problem of finding a minim-
izer among Lipschitz functions since it produces a function @ minimizing
in A, but, in general, not in the class A of all Lipschitz functions with
boundary value g. However @ is a minimizer in A, if a suitable a priori
estimate for its gradient holds, as the following proposition shows.

Proposition 2.5 Suppose that the minimizer w in Ay given by Proposi-
tion 2.4 satisfies |u|l1 < k. Then u minimizes in

A= {u € Lip(Q) | u = g on 0}.

Proof. Take any w € A. Since [u]; < k, we may choose t € (0,1) such
that tw + (1 — t)u € Lip,(€2). Since ¥ minimizes in Ay and F is convex,
we have

F@) < Flw+ (1 —t)a) <tF(w)+ (1 —t)F(u),

ie., F(w) > F(u). O

2.2.2 A priori gradient estimates

We now establish the a priori estimate required in Proposition 2.5, un-
der suitable assumptions. This is achieved by comparison with suitable
functions, called barriers, whose discussion is the aim of the following few
paragraphs. We shall always assume F' convex and Fj, continuous.

Supersolutions and subsolutions

Definition 2.6 Given the variational integral F, we shall say that u €
Lip(Q) is a supersolution if

Fu+ @) > F(u), Ve cLip(Q), ¢ >0, sptp € Q. (2.3)
We shall say that v is a subsolution if
Flv—p)>F@), VeeLip(), ¢ >0, spte € Q. (2.4)

If u is a supersolution, then we easily infer

d
— t
dt]—'(qu )

= / F, . (Du)Daypdr >0, Ve >0, spty €,
t=0+ Q

or, in the sense of distributions, div(F,(Du)) < 0. Similarly, a subsolution
v satisfies div(F,(Dv)) > 0.



21

The comparison principle

Proposition 2.7 (Comparison principle) Suppose that F is strictly
convex. Then given a supersolution u and a subsolution v in Lip(Q), with
v < u on I, we have v < u in .

Proof. Were the assertion false, the open set
K={zeQ|v(x)>uxr)}
would be non-empty. Consider now the functions

v foux) if e Q\K
u(w) = { v(z) if z e K,
and

v Jou(x) if zeQ\K
o) _{ u(z) if z € K.

Then F(u) > F(u) and F(v) > F(v), hence

/Q F(Du)dz < /Q F(Dii)dz = /Q L Fous / F(Dv)dz,

K

whence

/KF(DU)dCUS/ F(Dv)dz.

K
Similarly

/Q F(Dv)dz < /Q F(D¥)dz = /Q L Fov /K F(Du)dz,

hence

/KF(Dv)dxg/ F(Du)dzx.

K

Then we infer

/KF(Du)dx:/ F(Dv)dzx.

K
Now the strict convexity of F' implies

/F(M)dac<1/ F(Du)dm—i—l/ F(Dv)dx
K 2 2 Jk 2 Jk

= / F(Dv)dz.
K
v+u

This is an absurd since replacing v in K with the smaller function *%*,
decreases F, contradicting the fact that v is a subsolution. 0
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Exercise 2.8 Every constant function is both a supersolution and a subsolu-
tion. Moreover, if u is a supersolution (resp. subsolution), then u + A is a
supersolution (resp. subsolution) for every constant A € R.

[Hint: use (2.2) and integration by parts.]

Proposition 2.9 (Maximum principle) Given a subsolution v and a
supersolution u of F in Lip(2), we have

sup(v — u) < sup(v — u).
Q o0

In particular if u is both a supersolution and a subsolution, then

sup [u] = suplu
Q o0

Proof. Since u + supgq (v — u) is a supersolution by Exercise 2.8, and is
not smaller than v on 9f2, Proposition 2.7 yields

v <wu-+sup(v—u), inf.
o0
O

Exercise 2.10 Show that the comparison principle holds true if we assume that
u and v are respectively a supersolution and a subsolution in Lip, (Q2), which
means that u,v € Lip,(£2), and in (2.3) and (2.4) we require ¢ € Lip, ().

Reduction to boundary estimates

It now comes the key estimate that allows us to infer global gradient
estimates from boundary estimates. In fact the method we are presenting
goes back to Haar and Rado, see [85]. In the Sixties of the last century the
method was revisited by M. Miranda, P. Hartman and G. Stampacchia.

Proposition 2.11 (Haar-Rado) Let u € Lip(Q) be a minimizer of F
in A={v € Lip(Q) :v=u on IN}. Then
o U@ = u) ) ()] .
z,yeN |1‘ - y‘ z€eQ, yeoN |SC - y|
Proof. For x1,x9 € Q, x1 # x3, let T = 29 — 1. Define
ur(z) i =u(x+7), Qr:={z:z+7€Q}
Both w and u, are super and subsolutions in 2N €2, which is non-empty.
By the comparison principle, Proposition 2.9, there exists z € d(Q N ;)
such that
lu(z1) — u(z2)| = |u(z1) — ur(z1)] < |ulz) —ur(2)] = |u(z) —u(z +7)|.

Now observe that (2N Q) C (0QU IN,) and this implies that at least
one of the point z, z+7 belongs to 9. Moreover, both z and z+7 belong
to Q. O
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Boundary gradient estimates through the bounded slope
condition

The bounded slope condition (BSC), essentially introduced by Haar, is
defined as follows:

A function g € Lip(9f) satisfies the bounded slope condition
if there exists a constant £ > 0 such that for every xo € 992
we may find two affine functions v and w with |Dv| < k and
|Dw| < k such that:

1. v(zg) = w(xg) = g(x0)
2. v(z) < g(z), w(z) > g(x) for every z € ON.

Theorem 2.12 Suppose that g € Lip(aﬂ) satisfies the BSC with constant
k. Then any variational integral F(u fQ (Du)dx with F convex and
I, continuous attains a minimum in the class

A:={u € Lip(Q) : u|aQ =g},
and such minimum belongs to Lip, (£2).

Proof. By Proposition 2.4, there exists a minimizer u of F in
A1 ={v € Lip;,(Q) : v =g on 00}.

Since the affine functions in the definition of the BSC are a supersolution
and a subsolution, the comparison principle implies that |Du| < k on 09
and, by Proposition 2.11, |u|; < k < k+ 1. We conclude with Proposition
2.5. O

Remark 2.13 The BSC is a pretty strong condition: for instance, it can
be true only if € is convex. On the other hand, notice that the above
result holds for a wide class of functionals.

2.2.3 Constructing barriers: the distance function

Since the BSC is very restrictive, we will discuss other conditions on a
domain  and a function g € Lip(9€2) which allow to construct barriers
and minimize a given variational integral F(u) = [, F(Du)dz, with F
convex and F}, continuous.

Definition 2.14 Given a boundary datum g € Lip(9?), an upper barrier
at zo € 0N is a supersolution by € Lip(Q) of F such that by (xo) = g(xo)
and by > g on 0. Lower barriers are defined analogously.
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Suppose that Q is of class C*, k > 1; then there exist an interior
tubular neighborhood N of 92,

N ={zeQ : dist(z,00) < &},

where the corresponging projection p : N — 9 is of class C¥~1. Let
d(z) = dist(z,08) be the distance function from 9Q; then for every
r €N,
Vd(z) = v(p(r)),

where v(z) is the interior unit normal to 9. Since v and p are of class
C*~1 we have that d € C¥(N) N CO(N).

For x € N, denote by H(x) the mean curvature (compare Section
11.1.3) at x of the hypersurface in R"

Loy =={y € Q : d(y) = d(z)}.
Then it can be proved that:
(n—1)H(z) = —Ad > (n— 1)H(p(x)).

Given a boundary datum g, that we assume of class C? in a neighbor-
hood of €2, one may try to construct Lipschitz barriers of the form

by(z) :=g(x) + hy(d(x),  b-(2):=g(x) +h_(d(z)), (2.6)

with hy : [0,e) — R increasing, differentiable at 0, independent of wu,
and h4(0) = 0, such that by(x) is a supersolution of F, and similarly
h_ : [0,e) — R decreasing, differentiable at 0, independent of wu, and
h_(0) = 0, such that b_(x) is a subsolution of F. Though in general
impossible, this can be done if we assume additional structural conditions
on  and F, compare e.g. [52], [96]. For instance, still assuming that

F = F(|p|), indicate with F,_,, := apLé;ﬁ the Hessian of F. Assume

that F' is strictly convex and C?, so that F),, = F}, ,, and

AD)IEP < Foops(D)Eaés < AD)[EP,

for positive functions 0 < A(p) < A(p). Define the Bernstein function

5(p) = Fpam (p)papﬁ~
Then in the following cases the construction of barriers of the form (2.6)
is possible.

- A
(i) l};l‘a_s)gop‘pg‘(—g) < 00

(ii)  a. limsup % < oo and

[p|—o0

b. the mean curvature of 02 is non-negative.
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For instance (i) is trivially verified if F}, is uniformly elliptic, i.e.
A(p) > vA(p) for every p € R™, and some v > 0. Uniform ellipticity,
however, is not necessary because F(p) = e‘p‘Q, which is not uniformly
elliptic, satisfies (i).

Exercise 2.15 The area functional, F(u) = [, \/1+ [Du|?dx, which is elliptic,
but not uniformly, satisfies (ii)a, but not (i).*

By the comparison principle the existence of such Lipschitz barriers
yields the a priori estimate for the gradient on the boundary (compare

also Proposition 11.41, where we shall also prove the existence of barriers
in the case of the area functional). In particular:

Theorem 2.16 Consider
Flu) = / F(Du)dx
Q

with F convex and of class C?. If F satisfies (i), or if F' and  satisfy
(i) above, then F has a minimizer in

A ={u € Lip(Q) : u=g on IQ}

for every g € Lip(0R2).

2.3 Non-existence of minimizers

Condition (ii)a in the last section does not guarantee the existence of bar-
riers without the assumption (ii)b. We shall now see an explicit example.

2.3.1 An example of Bernstein

We shall prove that the area functional
F(u) = / 1+ |Du|?dx,
Q

which satisfies (ii)a of the previous section, need not have a minimizer if
(ii)b is not met. This will be made more general in the next section.

3Given a function u € Lip(Q2), @ C R™, it can be shown using the area formula that
Fluw)i= [ /14 IDulds = 7" graph(u),
Q

where graph(u) := {(z,u(z)) : z € Q} C R*T1.
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For fixed 0 < p < R, consider the domain
Q={zeR” : p<|z| < R}.

Define the boundary value g by
_{m iffzl=p
“@’{0 if 2] = R

Exercise 2.17 Suppose that u is a minimizer for the area functional with the
above boundary condition. Then u is radial, i.e. u = u(r).
[Hint: the function

u(r) : L u(r,0)do

- 2r

satisfies A(w) < A(u) if u # @, by the strict convexity of F(p) = /1 + |p|? and
Jensen’s inequality.]

By Exercise 2.17, a minimizer with boundary value g must be radial.
Then the area can be computed as

R
F(u) = 271'/ 1+ uldr.
P

The corresponding Euler-Lagrange equation is the ordinary differential
equation
ru (1)

Tra(m? 27

where ¢ is a constant depending on m = u(p). The unique solution to
(2.7) with v = 0 on dBg(0) is

R+%§?g) (2.8)

= 1 _—
u(r) cog(rer

In particular ¢ < p and

. () = s log (R+\/R202>
up u = sup c¢ —_—
0<e<p ’ 0<e<p p+/p?—c?
R+/RZ—p?
plog (%)

: e(p, R),

that forces m to be less than ¢(p, R).
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Figure 2.1: A piece of catenoid which cannot be expressed as graph of a
function.

Remark 2.18 For

R+ /RZ_pQ)
P y

m:plog(

which is the highest value for which the Dirichlet problem is solvable, the
solution u is not smooth up to the boundary since

lim |u,(r)] = +oo.
r—pt

Remark 2.19 Observing that

cosh™ (1) = log(r 4+ /12 — 1),

we see that the graph of the solution given by (2.8) is the revolution
surface obtained by rotating a catenoid. For

R+ /R —p?
m>plog¥

a catenoid matching the boundary conditions is no longer expressible as
the graph of a function, see Figure2.1.

2.3.2 Sharpness of the mean curvature condition

‘We now show that, at least in the case of the area functional
Flu) = / 1+ |Dul?dz,
Q

condition (ii)b is sharp.
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Theorem 2.20 Let zg € 052 be such that H(zo) < 0, where it is assumed
that Q is a C? domain. Then for every e > 0 there exists g € Lip(99)
with maxagq |g| < € such that the Dirichlet problem for the area functional
cannot be solved with boundary data g, i.e. the area functional F has no
minimizer in A = {u € Lip(Q) : u =g on 00}.

This follows from Lemma 2.22 below by choosing £ > 0, consequently
fixing I' and finally imposing g = 0 on OQ\I" and g(zg) > 5. In the proof
of Lemma 2.22 we will need the following lemma.

Lemma 2.21 Let u € Lip(2) be a subsolution and a supersolution of F
and let v € C1(Q) N C°(Q) be a supersolution of F. Let A be open in §
and set 912 := 00 N A. Assume that

1. u < v on 3°Q := 90\0'Q,

9 _
2 Timinf inf 20> jufy = sup L@ W
t—0+ ANTy Ov eweq oty 1T — Yl

where
Iy i={x e Q:d(z,00) =t}

and v is the interior unit normal to T'y. Then u < v in Q.

Proof. 1t is enough to prove the claim for w = v + ¢ instead of v, and let
¢ — 0. By the comparison principle it suffices to show that

u<w ond'Q.
If not, there exists ¢ > 0 as small as we want such that

v := sup (u—w) >0
ANT,

and
u—w<0 onT;\A.

In Q; := {z € Q : dist(z,00) > t} we have u < w + v since u < w +
on 0, and by the maximum principle (Proposition 2.9) there exists
xo € 'y N A with u(zo) = w(xo) + v and thus

0 0

E(u —v)(z9) = g(u —w)(zg) > 0.

Since t > 0 can be chose arbitrarily small, we found a contradiction to
hypothesis 2. O
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Lemma 2.22 For every ¢ > 0 there exists a neighborhood T of xy in 00
such that if u minimizes F in the class A, then

9
suplul < sup [g] + .
Q OO\T

Proof. We may assume xo = 0 and choose R > 0 such that H(z) < 0
for x € Br(0) N Q. Remember that H(x) is the mean-curvature of the
hypersurface I'q(,) C €. Define

v(z) =b+Y(jz]) for x € Q\ Br(0),

where
/2 — R2
Y(r) := —Rcosh™* ) = —Rlog rEve - )
R R
and diam Q)
b:= sup |g|+ Rcosh™* dame
0Q\Br(0)

By the above, we know that

ov
o +o0o  on OBg(x) N

Also, u < v on JQ\Bg(0) and, by Lemma 2.21 applied to the domain
0\ Br(0), we infer u < v in Q\BRr(0).
We now work in QN Br(0), where we define

w(x) := a(\/}_%— \/d(—a:)) +b.

Using that H(z) > 0 for z € QN By, and —Ad(z) = (n—1)H(z), we can
compute for a > 0 large enough, more precisely

2n—1 A
o (o .
“= ( (n )m%lR(O) ) ’

we compute

D
div(F,(w)) =D L weakly,

@ =
V14 |Dw|?
i.e. w is a supersolution. Moreover we have

w>wu ondBr(0)NQ and Z—w:Jroo on 02N Bg(0),
v

hence by Lemma 2.21 applied to the domain Q N Br(0) we have

w(z) <w(z) <b+aVR, forxzeQn Br(0).
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In conclusion

diam Q
lu(z)] < sup |g| + Rcosh™* ( — ) +aVR. (2.9)
90\ B (0) R

For R = R(e) small enough and choosing I' := 92 N Br(0) we get the
conclusion. g

Remark 2.23 Any minimizer of F in A = {u € Lip(2) : v = 0 on 90}
actually belongs to C*°(2). Hence minimizing in A is equivalent to min-
imizing in A = {u € C>°(Q) N Lip(Q) : u = 0 on dQ}. One might wonder
whether under the assumption of Theorem 2.20 minimizers of F can be
found in the larger class A* = {u € C*(Q)NCY(Q) : u = 0 on ON}. This
is not the case. For the proof, which is slightly more technical but based
on the same ideas of Theorem 2.20, we refer to [6].

2.4 Finiteness of the area of graphs with zero
mean curvature

We would like to stress one more difference between the Dirichlet problem
for the Laplacian and the minimal surface equation. As we have seen
in Section 1.2.2, a C2(Q) N C°(Q) solution to the Dirichlet problem for
the Laplace equation need not have finite Dirichlet energy. In the area
problem things go differently. Let us first notice that the Euler-Lagrange
equation of the area functional

:/ v 1+|Dul?dz
Q

is
n

o2

V1+ |Du|2
One might wonder W}Lether it is possible to find a solution u to (2.10)
with u € C?(Q) N C°(Q) (as usual Q is bounded) and F(u) = co. As we

now see (at least if we assume Q of class C?! for simplicity), this is not the
case.

(2.10)

Proposition 2.24 Suppose that u € C%(Q) N C°(Q) is a solution to the
minimal surface equation (2.10)* Then the area of the graph of u is finite,

i.e.
u) = / V14 |Dul?dr < co.
Q

4Minimizers of the area functional (with prescribed boundary data) satisfy (2.10),
but by convexity of the area functional, every Lipschitz solution u of (2.10) with
F(u) < oo is in fact the only minimizer of the area relative to its boundary value.
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Proposition 2.24 will be a consequence of the following lemma.

Lemma 2.25 For every u € Lip(Q2) which minimizes the area in
{w € Lip(Q) : w = u on 00}
and every v € C1(€2) we have

F(u) < F(v) +/ |u — v|dH" " . (2.11)
o
Proof. Choose a sequence of smooth domains €2, C 2 with
Q.19Q, and H"1(002.) — H"109) ase—0,
and choose functions 7. € C°(2) with 0 < 7. <1, n. =1 on Q, roughly
1
Qe == {z € Q:dist(z,00) <e}, n.(z)~ R dist(z,09Q), x € Q\ Q..

The claim then follows easily from

Flu) < Fnev + (1 —ne)u) — F(v) +/ lu —v|dH"™" ase— 0.

a9
O
Proof of Proposition 2.24. We apply Lemma 2.25 in the domain
Qe == {z € Q: dist(z,00) < e}.
As already noticed, since
Flu,Qe) = / V1 +|Dul?dz < oo,
QE
we have that u is the only minimizer of F(-, ) in
{w € Lip(Q) : v = u on 90},
compare Theorem 11.29. Then, by Lemma 2.25 with v = 0 we infer
Flu, Q) < F(v, Q) + / uldH™ !
0.
< H™(Qe) + sup |ul K" H(99.).
Q
Letting € — 0 we conclude
F(u, Q) < H™(Q) + sup |[u| H* 1 (99) < 0.
Q
O

Exercise 2.26 Construct a function v € C?(B1(0)) N C°(B1(0)) with

/ V' 1+ |Dul?dz = oo.
B1(0)
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2.5 The relaxed area functional in BV

In this section we discuss (giving the main ideas and omitting many de-
tails) how to use variational methods to find minimizers of the area func-
tional with prescribed boundary value (in a suitable relaxed sense) even
on domains ) not satisfying condition (ii)b, i.e. when the mean curvature
of 0f2 is negative at some points.

Given a Lipschitz or smooth function in €, the area of its graph is

given by
Flu) = / v 1+ |Dul?dz.
Q

If w is merely continuous, we define its relaxed area, according to Lebesgue,
as

F(u) = inf {likm inf F(ug) ‘ uy, — w uniformly, uy € Cl(ﬁ)} .

Exercise 2.27 Prove that the relaxed area functional is lower semicontinuous
with respect to the uniform convergence.
[Hint: The area functional F for Lipschitz functions is lower semicontinuous.]

Exercise 2.28 The relaxed area functional agrees with the standard area func-
tional on Lipschitz functions.

In order to understand which functions have finite relaxed area, we
extend the above definition to L!, replacing the uniform convergence with
the L' convergence: for each u € L'(Q)

F(u) = inf {liminf}"(uk) Cup —uin LY uy € C’l(ﬁ)}.

k—oo

Functions of bounded variation

Definition 2.29 An L'(Q) function is said to be of bounded variation
when its partial derivatives in the sense of distributions are signed meas-
ures with finite total variation. The subspace of L*(§) consisting of such
functions is called BV ().

Equivalently, BV (2) is the space of L!(Q) functions such that
F(u) < +oo, (2.12)

where

F(u) := sup{/ (UZDigi+gn+1>dx D g€ CHOQ,R™) |g| < 1}.
Q

- (2.13)
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Exercise 2.30 Prove the latter claim: a function u € L*(Q2) belongs to BV (Q)
if and only if it satisfies (2.12).

[Hint: To show that (2.12) implies that u has bounded variation use Riesz’s
representation theorem]

It turns out that the relaxed area agrees with the quantity in (2.13),
often denoted by [, /1 + [Du|?,” which is the total variation of the vec-
tor measure (—Du, L™). BV-functions are exactly the functions having
graphs of finite area.

In particular, given any u € BV (Q2) or any u € C°(Q) with finite area,
there exists a sequence ux € C®(Q) (C(Q) provided, of course 99 is
smooth) such that

up — w in L' (or uniformly) and F(ug) — F(u).

We shall not prove this, see e.g. [6] [49] [51].

2.5.1 BV minimizers for the area functional

We now want to use direct methods to prove existence of minimal graphs
with prescribed boundary. The natural space to work with is BV ().
Since a function v € L'(Q) is defined up to a set of zero measure, we
cannot naively make sense of the boundary datum “’aﬂ' On the other
hand for u € BV (), its trace on 02 is well defined. This follows from
the theorem below, whose proof can be found in [51]:

Proposition 2.31 (Trace) LetQ C R™ be bounded domain with Lipschitz
boundary. Then there exists a unique continuous linear operator

Trace : BV (Q) — L'(09)

such that for u € C=(Q) we have Traceu = U|BQ' Moreover the map
Trace is surjective.

We can now define the class of BV functions with boundary value g €
LY (09):
A:={ue BV(Q): Traceu = g},

and look for a minimizer of the area functional in A.

This problem is not in general solvable and the reason lies essentially
in the boundary behaviour of minimizing sequences, as we shall see. Re-
member that direct methods are based on semicontinuity and compact-
ness. For BV functions and the area functional we have both:

Theorem 2.32 (Compactness) The immersion BV (Q) — LY(Q) is
compact.

5Notice the absence of “dz”, to emphasize that \/1 + |Du|? is in general not abso-
lutely continuous when u € BV (Q).
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Proof. We only remark that if 2 = @ is a cube, then the proof is exactly
the same as in Theorem 3.18 in the next chapter. O

Theorem 2.33 (Semicontinuity) Let u; — u in L'(Q), where u; €
BV (Q). Thenu € BV (Q2) and

/ v 1+|Dul? <liminf /1 + |Du;|2.
Q Jj—oo

Consequently, from any minimizing sequence u; € A, we can extract a
subsequence converging in L!(€) to a function u € BV (Q2), with

/ V14 |Dul? < / V14 |Dv|?, for every v € A.
Q Q

But it is false in general that Traceu = g.

This leads us to relax the problem further. We allow for functions u
which do not attain the value g at the boundary, and we modify the area
functional so that the area spanned to connect u to g on 02 is taken into
account. We obtain the functional on BV ()

T () ::/ 1+|Du|2+/ i — gldH . (2.14)
Q o0

Theorem 2.34 Assume that 0) is Lipschitz continuous. Then for any
boundary data g € LY(9Q), there exists a function u € BV (Q) which
minimizes the area functional J in (2.14) among all functions in BV (£2).

Proof. Instead of minimizing J we consider a ball Bg(0) such that Q C
Bg(0), and extend g to a function in W11(Bg(0)\Q2). This can be done

since the trace operator
Trace : Wh(Q\ Bg(0)) — L'(0Q U dBr(0))
is surjective. Now, for every v € BV (1), denote by v, the function

vg(z) 1= { v(z) if z€Q

g(z) if =z € Br(0)\Q.

Then vy € BV (Bg(0)), and in fact |Dvg|(8Q) = [, [v—g|dH" ™!, whence

/ ,/1+|Dvg|2:/ 1+|Dv|2+/ 1+ |DglPdz
Br(0) Q B Q

r(0)\Q
4 / v — gldHm !
oQ

zj(v,Q)—F/ v/ 1+ |Dg|?dx.
Br(0)\Q
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Therefore our original problem reduces to minimizing [ Br(0) V 1+ |Dv|?

among all the functions in v € BV (Bg(0)) such that v = g in Br(0)\Q.
Since this last condition is preserved under convergence in L!(Q), we
may consider a minimizing sequence, bounded in BV () by the Poincaré
inequality, see Proposition 2.35 below. and apply Theorems 2.32 and 2.33
to conclude. g

In the proof of Theorem 2.34 we used the following version of Poin-
caré’s inequality:

Proposition 2.35 For any f € BV (Q) with Trace f = 0, we have

/Q flde < C(2) / Df|. (2.15)

For f € C}(Q), (2.15) shall be proven in Proposition 3.10 in the next
chapter. The general case follows at once from the following approxima-
tion property:

Proposition 2.36 Given f € BV (Q) with Trace f = 0, there exists a
sequence of functions f, € CL(Q) with

n— f1 19, nldr — .
fo s fin L}Q) /QIDfIw /QIDfI

We shall see in Chapter 11 that a minimizer in Theorem 2.34 is smooth
in Q. Regularity up to the boundary is in general false: u may not even
attain the boundary data g, as Theorem 2.20 implies. On the other hand,
if the mean curvature of 91 is non-negative, we have the following result
of M. Miranda [75].

Theorem 2.37 Assume that O is of class C? and has non-negative
mean curvature at xo. Furthermore, assume that g is continuous at xg,
and let u be a minimizer of the relazed area functional J in (2.14). Then

lim wu(z) = g(xo).

T—XTQ

Finally we state the following uniqueness theorem, compare [6] [52]:

Theorem 2.38 Let Q C R"™ be bounded with Lipschitz continuous bound-
ary, and assume g € C°(0Q). Then the functional J in (2.14) has exactly
one minimizer in BV (§2).



Chapter 3
Hilbert space methods

Let us recall a few simple facts concerning the geometry of Hilbert spaces,
see e.g. [47]. We will use them to solve the Dirichlet problem for the
Laplace equation (1.1) or more general linear equations and systems.

3.1 The Dirichlet principle

The abstract Dirichlet’s principle

Given a Hilbert space H with inner product ( , ) and norm | ||, and
L € H*, its dual, define
1
F(u) := §||u||2 — L(u). (3.1)

Then we have

1. F achieves a unique minimum w in H and every minimizing sequence
converges to u;

2. @ is the unique solution of
(p,w) = L(p) Vo€ H.
Moreover ||@|| = || L|| g+, where
L\l g+ := sup |Lul.
ueH
flullm=1

The theorem of Riesz
As a consequence of the Dirichlet principle we have:

1. For each L € H* there exists a unique uy, such that L(-) = (-, ur);
indeed this is equivalent to the Dirichlet principle and the minimizer
wof (3.1) is ur.

2. L — wuy, is a continuous bijective application from H* to H, an
isometry which identifies H and H*.
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The projection theorem

Given a closed subspace V of the Hilbert space H, we have

1. for every f € H there exists a unique uy € V such that

_ — inf IIf — oll:
I =gl = inf 11 = ol

2. for such a projection uy of f we have that (f — uy|p) = 0 for all
peV.

The projection theorem is equivalent to the Dirichlet principle.

Exercise 3.1 Prove the previous statements.
[Hint: To prove the existence of a minimizer in the abstract Dirichlet principle,
first use |L(v)| < ||L||a=]|v|| to prove that

1
F) 2 =5 [ILla-, Vo€ H;

then use the parallelogram identity to prove that

T =l = Fu) + Fw) - 27 (50,

so that if (u,) is a minimizing sequence, i.e. if F(u,) — infyeg F(v) > —oc0 as

n — oo, then (uy) is a Cauchy sequence and converges to the unique minimizer
of F.|

Bilinear symmetric forms

Suppose B is a symmetric, continuous and coercive bilinear form on H,
where continuous and coercive respectively mean that there exist A, A > 0
such that

IB(u,v)| < Aljull|[v]l, Blu,u) > Mu||?, for all u,v € H.

Then B is a scalar product equivalent to the original (-, -) and the Dirichlet
principle applies, giving the following theorem.

Theorem 3.2 The functional

has a unique minimizer u. Moreover T satisfies B(u,v) = L(v) for each

v €EH.
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The Lax-Milgram theorem

In the Fifties of last century it was proved that the symmetry condition
on B used previously is not necessary; Theorem 3.2 without the symmetry
assumption is known as Lax-Milgram’s theorem. In fact, fix u € H and
L(v) := B(u,v). By Riesz theorem, L is uniquely represented by a vector
which we call T'u:

B(u,v) = (Tu,v).

Observe that T is linear and continuous and define the symmetric, con-
tinuous and coercive bilinear form

B(u,v) = (T"u, T*v).
Here T* is the adjoint of T', defined by
(Tu,v) = (u,T*v), for all u,v € H.

Minimize 1
§B(u7 u) - L(u)a

finding u;, € H such that for p € H

L(p) = B(ur,p) = (T"ur, T"p) = (TT"ur, p) = B(T"ur, ¢).
Thus L may be represented also by B, or v := T*uy, solves

B(v,p)=L(p) Vee€H.

3.2 Sobolev spaces

Sobolev spaces play an important role in the theory of elliptic equations.
For this reason we collect here a few basic definitions and facts.

3.2.1 Strong and weak derivatives

Let @ € R” and 1 < p < co. We say that a function v € LP(£2) has
strong derivatives vy, ...,v, in LP if there exists a sequence of functions
{ur} € CH(2) N LP(Q) such that

up — U, Diug, — v; in LP(Q), i=1,...,n.

It is easily seen that if the strong derivatives exist they are uniquely
determined by u. They are denoted by D,u, since they agree with the
classical derivatives if u is smooth.

Definition 3.3 The class of functions u € LP()) that possess strong de-
rivatives in LP is denoted by H*P(Q).



40

HY?(Q) is a linear space, actually, it is a Banach space with the natural

norm
[y = [ o+ [ |Dupds

The closure of C2°(2) in H(Q) is denoted by Hy™* ().
We say that u € LP(2) has weak derivatives vy, ...,v, in LP if for all

t=1,...,n

/ uD;pdx = —/ vipdx Vo € C°(R2).
Q Q

It is easily seen that again weak derivatives are uniquely determined by
u, if they exist, and that strong derivatives are also weak derivatives.

Definition 3.4 The class of functions u € LP(Q) that possess weak deri-
vatives in LP is denoted by WP (Q).

Exercise 3.5 Prove that H''?(Q) c Wh?(Q).

The following property is often used.

Definition 3.6 We say that an open set Q C R"™ has the extension prop-
erty if for 1 < p < oo and for any open set 1 3 Q and every function u €
WLP(Q) there exists u € WHP(Q) with Hﬂ”wlm@) < (2, Q) [Jullwrp(q)-

This is true for instance if Q is star-shaped or C' or even just Lipschitz.

Exercise 3.7 Show that the set 2 := ([—1,1] x [-1,1]) \ ({0} x [0, 1]) does not
have the extension property.

Assume that Q has the extension property and v € WHP(Q). Then,
by mollifying © we find a sequence of smooth functions

{ur} € C*>(Q) N LP(Q),

and actually in C°°(€2), converging in the H'P-norm to u. For a general
open set €2, stepping down the parameter of mollification when approach-
ing 0€, one can show the following theorem, of N. G. Meyers and J. Serrin
[72], known as the H = W theorem.

Theorem 3.8 Let Q be an open set. Then HYP(Q) = WHP(Q).

Remark 3.9 The definitions of H*?(2) and W1P(Q) also extend to the
case p = 0o, but we have H>°(Q2) # Wh>(Q).
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3.2.2 Poincaré inequalities

The well-known Poincaré inequalities show that in many cases the LP-
norm of the derivative of a Sobolev function u controls the LP-norm of u
itself.

Proposition 3.10 For every u € Wol’p(Q), 1 < p < +oo we have
/ lufPda < (diam Q)P / | DulPdz.
Q Q

Proof. Write = (x1,2,...,2,) = (z1,2) and suppose u € C1(Q); up to
a translation we can assume that
diam($2
QC[adxR, a= 0,
Set u = 0 outside 2. Then by Jensen’s inequality

T P

lu(z)|P = . Du(t,z)dt

—a

Du(t,T)dt

—a

< (2a)! / " Du(t, 7).

—a

< (2a) '

Integrating with respect to & and x; yields

/ |u|Pdx
Q

IN

(2a)7~! /Q do /_ Z|Du(t7§)pdt

= (2a)p_1/ dxl/ | Du|Pdx
—a Q

(2a)? / |Du|Pdzx.
Q

The claim in the general case follows by density of C1() in W, ?(Q). O

Exercise 3.11 On the Banach space WOI’I’(Q), Q bounded and 1 < p < oo, the
standard H>? norm is equivalent to

p —— p
T .7/Q|Du\ dz.

Proposition 3.12 There is a constant ¢ = ¢(n,p) such that, if @ C R”
is a convez set of diameter { and u € WP (Q), then

/ |u — ug|Pdr < cép/ |Du|Pdz, (3.2)
Q Q

where ug = ﬁ Jo u.



42

Proof. Since smooth functions are dense in W1(Q), it is enough to prove

(3.2) for u € C*°(Q2). By Jensen’s inequality

/Q|U*u9\pd$:/g‘u(x)f ]{lu(y)dy’pdx

< [ lute) =ty

Noticing that

n

i ou
ww) =) = Y [ S i &g v,
Y

i=1 v

i

integrating over {2 x £ and using Jensen’s inequality and Fubini’s theorem
we find

//|u(x)—u(y)|pdydw§c(n,p)|ﬂ|€p/ |Du|Pdzx. (3.3)
oJo )

O

Remark 3.13 The above Proposition still holds for non-convex sets with
the extension property if we replace the constant ¢(n,p)¢P in (3.2) by a
more general constant ¢(p,2), which can be very large even for domains
of diameter 1. A proof can be given by choosing a ball B containing €2
and extending any u € WHP() to a function u € WP(B) (the cost of
this extension can be large, depending on ), then applying (3.2) to u. A
different proof will be given using compactness, see Proposition 3.21.

Exercise 3.14 Prove the claims in Remark 3.13. For instance, consider for
> 0 the domain

Qu = Bi(6-) U ([-2,2] X [-p, 1)) U B1(§4) CR?, &4 = (£2,0).

Show that if (3.2) holds on €, with a constant ¢(€2,), then necessarily ¢(92,) —
oo as i — 0.
[Hint: Choose u = £1 on B1(£+).]

Proposition 3.15 There is a constant ¢ = ¢(n,p) such that, if Q C R™
is a convex set of diameter £ and u € WHP(Q), with u = 0 in g for some
measurable set Qo C Q with |Qo| > 0 then

/|updx<c€pi|/ | Du|Pdzx, (3.4)
0 €] Jo
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Proof. By Jensen’s inequality

/Q\u|pda::/ ‘u(:c)— QOu(y)dy‘pdsc
][/Qo x) — u(y)[Pdydx.

Then with (3.3) (which was proven for u smooth, but holds for every
u € WHP(Q) by density) we conclude

/Q|u|pdx< IQo//QO u(y)Pdydz
<t [ [ 1@ = ut g

Q
_c(n,p)€p||Q—O|/Q|Dupdx.

O

Exercise 3.16 Show that in dimension 2 and higher one cannot in general
replace cf? % by a constant independent of 2.

[Hint. Consider a function « € W' (B1(0)) with B1(0) C R", 1 < p < n and
w=0in B.(0), w=1inBi(0)\ Ba(0), |Vu|< §

and let € — 0.]

Remark 3.17 Using the same idea of Remark 3.13, also Proposition 3.15

can be extended to non-convex domains enjoying the extension property,

replacing the constant cﬁp% with a more general constant C‘(g—ﬁ).

3.2.3 Rellich’s theorem

Theorem 3.18 Suppose that Q2 is a bounded domain with the extension
property (for instance a star-shaped domain, or a domain with Lipschitz
boundary). Then, for 1 < p < +oo, the following immersion

WhP(Q) — LP(Q)
is compact.

Proof. We first show that the immersion W1?(Q) — LP(Q) is compact,
where Q is a cube of side £. Let {uy} € WHP(Q) with |jug||wi» < M.
Fix e > 0 and let @1, ..., Qs be a subdivision of ) in cubes with disjoint
interiors and side o, 0 < . Of course

C
(), = | ]{2 unw)da| < £
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Consider the finite family G of simple functions

g(x) = nmexo, (z) + ... + nsexo, (@),

where ny,...,ng are integers in (—N, N) with N > % and xgq, is the
characteristic function of ¢);. We now show that each u; has LP-distance
from one of the g in G not greater than cee for some co(¢,n,p): this
concludes the proof since then G is a finite coe-net.

Define

S

up (@) =) (un)g, xa, (@).

Jj=1

Poincaré inequality (3.2) yields

S
/ lug — uf|Pde < Z/ |up — uf|Pdx
Q j=17Qj

S
< c(n,p)UpZ/ | Duy,|P
j=17Qj

< cMPoP.
On the other hand, there is g € G such that for all x € @
lg(z) —ui(z)| <e,
hence
[ur = glle < llux — ugllze + lug — gllr < 1o+ €% < coe.

In order to complete the proof, use the extension property to extend (with
uniform bounds on the norms) every function in W1?(2) to a function
in WP(Q) for a cube Q DD Q and then apply the previous part of the
proof. O

Remark 3.19 If the extension property does not hold we still have the
compactness of the embedding

Wy () — LP(Q),

since for u € W"*(€2) the function @ defined by setting @ = 0 on Q \ Q
(again Q € Q for a fixed cube Q) and @ = u in §2 belongs to W1P(Q).

Remark 3.20 Some assumption on the regularity of €2 is necessary, as
the following counterexample shows. Define a domain 2 as in figure 3.1,
with the squares ),, of side length # and the connecting aisles A,, of

length # and width n—14
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QI‘

Q1 Ay Q2 - 3
_I— AQ

Figure 3.1: Counterexample to Rellich’s theorem. The domain is
bounded, but its boundary is not continuous.

Next consider the sequence of functions u,, defined by:

nt on Q,

Up = 0 Oanaj#n;
0 onAdj, j#nn—1
On A,_; and A, set u, to be the only affine function such that wu,, is
continuous on Q. Then ||uy|[z1(o) > 1, while [[u,||w1.1(o) is uniformly
bounded. Since u,, — 0 in L', had a subsequence limit in L', the limit
would be zero, in contrast with [u, ||z (o) > 1.

The following useful version of Poincaré’s inequality has essentially been
proven in Proposition 3.12 and Remark 3.13, but we shall give a simple
alternative proof based on Rellich’s theorem.

Proposition 3.21 For every bounded and connected domain € with the
extension property there is a constant ¢ = c¢(n,p,Q)) such that for each
u € WHP(Q) we have

/ |u — ug|Pdr < c/ | Du|Pdz,
Q Q

where as usual ug = fﬂ udx. When Q is a ball of radius v or a cube of
side length r, then we can take c¢(n,p,Q) = c(n)r?.

Proof. Were the assertion false, we could find a sequence u; with

/ |Duj|Pdx — 0, (uj)a =0, |u|Pdx = 1.
Q Q
By Rellich’s and Banach-Alaoglu’s theorems we may find a subsequence

(tp, ) such that
LP wlp

U, Up, — U

Up, .

k
In particular Du = 0, i.e. u is constant, ||ul|zrq) = 1 and uq = 0, which
is clearly impossible.

The last claim of the proposition follows by scaling. O
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3.2.4 The chain rule in Sobolev spaces

The following properties of Sobolev functions are often used. As usual we
will consider 2 bounded.

Proposition 3.22 Let f € C1(R) with f' € L>®(R) and u € WHP(Q) for
some p € [1,00]. Then fou e WP(Q) and

D(fou) = f'(u)Du.
Proof. Tt clearly suffices to prove the proposition for p = 1, since u €
WLP(Q) implies u € W1(Q), hence (by the case p = 1) the weak deriv-
ative of fou is f’(u)Du which clearly belongs to L”, hence fou € W1P(Q).
Hence let us assume p = 1. Since |f(¢)] < C(1 + |t|) for t € R, if easily

follows that fou € L*(£2). Choose a sequence (ux) C C°°(Q) with uy — u
in W,1(€). Then by the classical chain rule we have for every ¢ € C2°(1)

loc
/(fouk)Dcpdx = —/ D(f o ug)pdr = —/ [/ (ug)Dugpdz.  (3.5)
Q Q Q
Since

|f o uk(@) = fou(w)] < sup [ Ollur(x) —u(z)], 2 €,

we have fou, — fouin Ll _(Q), hence

k—o0

lim | (fowug)Dpdx = / (f ou)Dedz.
Q Q

Moreover, up to extracting a subsequence ur — w a.e. in €2, hence also
f'(ur) — f'(u) a.e. in Q, and by the dominated convergene theorem

/Q |/ (w) Dugg — f'(u) Dugpldz < /Q | (ur) D, — f(w) Dul [ plde
+ / |/ (w) D — f'(w) Dulplde
< supf' / |Duy, — Dullglda
R Q

+ /Q |/ (u) — f'(w)| Dullplde

Going back to (3.5) we see that f/(u)Du € L'(Q) is the weak derivative
of f owu and we conclude. g
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Proposition 3.23 Let u € W1P(Q), 1 < p < co. Then ut,u™,|u| €

WLP(Q), where

u = max{u,0}, wu~ :=min{u,0}.
Moreover
Dut(z) = { Du(x) ifu(z) >0
0 if u(z) <0,
_ _f0 if u(z) >0
Du™(x) = { Du(x) ifu(z) <0,
Du(x)  ifu(z) >0
Dlu|(z) =1 0 if u(z) =0
—Du(z) if u(z) <O0.

Finally given anyt € R, Du = 0 almost everywhere on {x € Q : u(x) = t}.

Proof. As in the proof of Proposition 3.22, it suffices to consider the case
p=1. We first deal with u*. For any £ > 0 set

£08) = Vi2+erz—e ift>0
S0 if t <0.

Notice that |f’| < 1. Then by Proposition 3.22 we have f. ou € WH1(Q)

and
uDu
(fe ou)Dpdr = —/ ———pdx,
~/Q ) {zeQ:u(z)>0} V u? + g2

Taking the limit as € — 0 and using the dominated convergence theorem
we infer

/ wt Dipdar = — / Dupdz, Vg € C2(Q),
Q {zeQ:u(z)>0}

Yo € C(Q).

hence
ut e Wl’l(Q) and Dut = DuX{er:u(w)>0}-

Since u~ = —(—u)" and |u| = u™ —u~, also the claims about v~ and |u]
easily follow.

In order to prove the last claim, assume without loss of generality that
t = 0, and simply observe that u = u* + u~, hence Du = Dut + Du~,
and both Du™ and Du~ vanish a.e. on {x € Q: u(x) = 0}. O

Proposition 3.24 Let f € C°(R) be piecewise C1, i.e. there are points
t1,...,te such that f € C1((—o0,t1]), f € C ([t1,t2]), etc... Assume also
that f' € L®(R). Then for every u € WhP(Q), 1 < p < oo, we have
foue WLP(Q) and

f fu(x))Du(x)  if u(x) & {t1,...,te}
D(fou)(x){ 0 ifu(x)e{tl,...,tj}.
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Proof. Working by induction we can assume ¢ = 1 and there is no loss
of generality in assuming that t; = 0. We can find f1, fo € C*(R) with
fi, f5 € L and fi(t) = f(t) for t > 0, f2(t) = f(¢) for ¢ < 0. Then

fou=fiou" + frou”,
and the claim follows from Propositions 3.22 and 3.23. O
Corollary 3.25 Given u € WHP(Q), 1 < p < oo and k € R we have
(u—Fk)t € WhP(Q) and

Dm_kﬁuw={§“” AT

Proof. Apply Proposition 3.24 with

t—k ift>k
f(t)_{o ift < k.

3.2.5 The Sobolev embedding theorem

For later use, we recall without proof (see for instance [2] and compare
Theorem 7.29)

Theorem 3.26 (Sobolev-Morrey) Assume that Q0 has the extension
property (Definition 3.6) and let p € [1,+00), k > 1. Then

1. if kp < n, we have a continuous immersion

EP(Q) < L0 9, ¢ = —2 .
WhP(Q) — L1(Q), Vg€ lp,q'], ¢ s (3.6)

which is also compact for q € [p,q*) if Q is bounded; moreover

lull e < c(p, b, Qllullwes,  for every u € WHP(Q);  (3.7)

2. if kp = n we have a continuous (actually compact if 2 is bounded)
1mmersion
WEP(Q) — LI(R), Vg € [p, +50), (3.8)

and

lullze < c(p,q.k, Dllulwrn,  for every u e WEP(Q);
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3. if kp > n + pr for some r € N, we have a continuous (actually
compact if Q0 is bounded) immersion

Wk’p(Q) — C”"(ﬁ), (3.9)
and

luller < e(p, Dlullwrs, for every u € WHP(Q).

Imbeddings (3.6) and (3.8) are essentially due to Sobolev [101], [102],
(Kondracov for the compactness) while imbedding (3.9) is due to Morrey
[76].

3.2.6 The Sobolev-Poincaré inequality

Mixing the Sobolev inequality (3.7) and the Poincaré inequality of Pro-
position 3.21 one obtains

Proposition 3.27 For every bounded and connected domain € with the
extension property there is a constant ¢ = ¢(p,Q) such that for every
u € WhP(Q), 1 < p < oo, we have

N 1
(/ |lu — uQ|p*dx> ’ <c (/ |Du|pdz> ,
Q Q

where ug =, udz.

Proof. Applying (3.7) to u — uq, and then Proposition 3.21 we estimate

(/ IU—U,QFD*CLI');) Sc(/ Du|pdx)p—|—c</ |U,—UQ|pd$>p
Q Q o

<aca (/ |Du|pdx> ’
Q

Remark 3.28 Using Propositions 3.10 or 3.15 instead of Proposition
3.21, one can state similar versions of the Sobolev-Poincaré inequality
for functions in VVO1 P or for functions vanishing on subsets of positive
measure.

0

3.3 Elliptic equations: existence of weak
solutions

We discuss here the solvability of Dirichlet and Neumann boundary value
problems for linear elliptic equations in Sobolev spaces as consequence of
Lax-Milgram’s theorem and in fact of the abstract Dirichlet principle. In
the next section we shall deal with linear systems.
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3.3.1 Dirichlet boundary condition

As usual Q C R"™ is a bounded open domain. It is understood that we
sum over repeated indices.

Theorem 3.29 Let A®? € L*(Q) be elliptic and bounded, that is for
some A\, A >0

NEP < A% (x)€abs < AIEPP, Yz e Q. (3.10)

Then, for each g € W12(Q) and f, f* € L?(Q), a = 1,...,n there exists
one and only one weak solution u € W12(Q) to the Dirichlet problem

—Dp(A**Dou) = fo — Dof™ in Q
{ (3.11)

u=gqg on 0N

meaning that u — g € Wy *(Q) and
/ AaﬁDauDggodx :/ (f0<p+ fO‘Daga)dx
Q Q

for all p € Wol’Q(Q) or, equivalently, for all p € C*().
If in addition AP = AP then the solution u is the unique minimizer
of the functional

F(v) = %/ﬂAaﬂDangvdx—/Qfovdx—/QfO‘Davdx (3.12)

in the class
A={veWh(Q):v—geW;*Q)}.
Proof. Step 1. Define on the Hilbert space H := W01’2(Q) the bilinear

form

B(v,w) ::/AaﬁDangwdx,
Q

which is coercive thanks the Poincaré inequality and the ellipticity of A%?.
Set © = u — g, so that the initial problem is reduced to finding u© € H
such that for every v € W,*(Q)

AP D iDgvdr = / fovdz + / [A** D og + fP1Dgvdx =: L(v).
Q Q Q

Notice that L € H*, see also Remark 3.30. By Lax-Milgram’s theorem
there is exactly one @ such that

B(@,v) = L(v), Yve Wy?(Q),

thus u = w + g is the unique solution to (3.11).
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Step 2. If A*P is symmetric, the second derivative of F is
D*F,(v,w) = / A* D vDgwdz,
Q

so that F is convex on W12 and strictly convex on 4. Thus a critical
point of F in A is the only minimizer (if it exists) of F in 4. On the
other hand, the Euler-Lagrange equation of F is

/AaﬁDauDggodx—/fowdx—/fo‘Dagpdxzo,
Q Q Q

that is (3.11). This implies that a solution of (3.11) is the unique of F
in A. O

Remark 3.30 The right-hand-side of (3.11) represents a generic element
of the dual space WO1 ’Q(Q)*, since every continuous linear functional L :
Wy2(€2) — R is of the form

L(y) ::/Qfowdx—i—/ﬂfaDagadx7

for some fo, f* € L?(Q), a=1,...,n.

3.3.2 Neumann boundary condition

The Dirichlet boundary condition makes the functional F in (3.12) coer-
cive on the class A. Slightly modifying F, we make it coercive on all of
W12(Q); consequently a Neumann boundary condition naturally arises.

Theorem 3.31 Let A € L>°(Q) be elliptic and bounded as in (3.10).
Then for every v > 0, fo, f* € L?(Q), a = 1,...,n, there exists a unique
weak solution to

{ —Dp(A* Dou) +yu = fo — Do f® in Q 5.13)
3.13

A*PDouvg = fPugs on 01,

where v = (v1,...,vy) is the exterior unit normal to 09, if Q is smooth

enough, see Remark 3.32.
If A%P = AP then such a solution is the unique minimizer in W2(Q)

of

1
Fv) =5 /Q AO"BDangvdaer% /Q vidr — /Q fovdz — /Q feDyvda.

(3.14)
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Remark 3.32 Unless we provide some smoothness assumption, (3.13)
means, by definition,

/Ao‘ﬂDauDﬂgpdﬂv—&—’y/ wpdr = fmpdx—l—/ FEDypdx,
Q Q Q Q

for every p € WH2(Q).

(3.15)

Observe that the test function ¢ need not vanish on 0f2, compare the
proof of Theorem 3.31.

Proof of Theorem 3.31. The bilinear form
B(v,w) := / Ao‘ﬁDangwd;E—F'y/ vwdz
Q Q
is coercive, being B(u, u) > min{\, v} - [|ul31.2. Set

L(v) := / fovdx +/ f¥Dyvdz.
Q Q
By Lax-Milgram theorem applied to the Hilbert space H = W2(Q), a
solution to the equation
B(u,) = L(p), for every p € WH*(Q),

i.e. equation (3.15), exists and is unique. Such a solution is a minimizer
if A% is symmetric, as in Theorem 3.29. O

To obtain the Neumann boundary condition in (3.13) at least formally
we integrate by parts in (3.15) and get

/ { — D,@(AaﬁDau) +yu — fo+ Daf“} pdx
Q
+/ [AaﬁDauug - f"‘ya} <pd7—(”_1 =0,
a0

for every ¢ € WH2(Q2). When ¢ € Wol’z(Q)7 the second term on the left
hand side vanishes, giving

—Dg(A* Dou) +yu = fo — Do f*
in the sense of distributions (or pointwise if u, fo and f® are regular
enough), therefore when ¢ is generic we infer

/ 497 Doy = v |pdH" ™ =0, ¥ € WH(Q),
onN

that yields the boundary condition in (3.13).

Also notice that geometrically this boundary condition means that on
00 the vector field A“*D,u — f@ is tangent to dQ (when the objects
involved are regular enough).
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Exercise 3.33 Making the above argument precise, show that the boundary
condition in (3.13) holds pointwise if Q, A%?, fo, f® and u are regular enough.

Exercise 3.34 When A%® = §*”, that is when the higher order part of equa-

tion (3.13) is the Laplacian, the boundary condition becomes % = f*a.

Remark 3.35 More generally, consider a variational integral
F(u) := / F(z,u, Du)dz,
Q
with 0Q and F of class C'. The Euler-Lagrange equation of F,

d
—F(u+ty)

dt =0

t=0

is
/ {F (@, u, Du)Dyp + Fu(a:,u,Du)go}dx =0, VpecC™9).
Q
The natural boundary condition arising from minimizing F in W2(Q) in

this case is
voFy, (z,u, Du) = 0 on 0.

Something similar holds for systems, as the reader can verify.

3.4 Elliptic systems: existence of weak
solutions

Let us now discuss systems of linear equations.

3.4.1 The Legendre and Legendre-Hadamard
ellipticity conditions

1<a,B8<n

\<ij<m ' said to satisfy

Definition 3.36 A matriz of coefficients (Afjﬁ)

1. the very strong ellipticity condition, or the Legendre condition, if
there is a A > 0 such that

AT = NeP, e e ™ (3.16)

2. the strong ellipticity condition, or the Legendre-Hadamard condi-
tion, if there is a A > 0 such that

AP eaton'n’ 2 NP, V€ € R, ¥y € R™. (3.17)
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Remark 3.37 The Legendre condition implies the Legendre-Hadamard
condition: just insert ! := £,n in (3.16). The converse is trivially true
in case m = 1 or n = 1, but is false in general as the following example
shows.

Example 3.38 Let n = m = 2 and define for some A > 0
A=A =1, A=A =1,
Al = Ay = Al = A = ),

so that o
ASPELE] = det(€) + M.

Since det(£,n") = 0 for every choice of vectors &, € R?, we have
AP e Eaning = NEPIn?, V¢ € R, ¥y € R™,
and . ‘
AZPELED = det(€l) + Mg[?, Ve € R

This shows that for every A > 0 the Legendre-Hadamard condition is
satisfied, while for A < 1/2 the Legendre condition is not (choose e.g.

3.4.2 Boundary value problems for very strongly
elliptic systems

Theorems analogous to 3.29 and 3.31 hold true trivially for very strongly
elliptic systems.

Theorem 3.39 Let Afjﬁ € L>°(Q) be bounded and satisfy the Legendre
condition, that is for some A > 0 (3.16) holds. Then, for each g €
WLE2(Q,R™) and f;, f* € L*(Q), i =1,...,m, a = 1,...,n, there exists
one and only one weak solution u € W12(Q,R™) to the Dirichlet problem

—Dg(A$ Dou?) = f; — Do f? inQ
(3.18)
u=20 on 0f).

As before we have to interpret (3.18) in the weak sense as follows: the
first equation means

AA%BDaujDﬁ@idx = /Q (fig" + f2 Doy )dw,  for all o € Wy (Q,R™)

and the boundary condition simply corresponds to

u—ge Wy (Q,R™).
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IfASY = A

i » then the solution w is the unique minimizer of the func-
tional

1

Fv) = 5/QA‘iljﬁDoﬂ)ingjdac—/inv"'d:lc—/fo‘Doﬂ)ida: (3.19)

in the class
A={veWH2(QR™) :v—geW;?(Q,R")}

Theorem 3.40 Let A%ﬁ be very strongly elliptic and bounded, f;, f& €
L*(Q) and v > 0. Then there ezists a unique solution to

—Dg(A$ Dou?) + yu' = f; — Do f? in Q

‘ (3.20)
A?jﬁDlgu]I/a = [PVq on 0.
As in Theorem 3.31, without further regularity (3.15) means
/A%ﬁDaungwidx+'y/ uigpidz:/ficpidx—k/ [ADoy'da,
Q Q Q Q (3.21)

for every o € WH2(Q,R™).

IfAY = A%

i o this solution is the unique minimizer of

F(v) = —/A%ﬁDalegvjdx—i—z/ |v|2dx—/fivldm—/ fEDyv'dx
2 Ja 2 Jo Q Q
(3.22)
in WH2(Q,R™).

Proof of Theorems 3.39 and 3.40. The strong ellipticity condition gives
the coercivity on VVO1 2(Q,R™) of the bilinear form

B(v,w) = /QA%’GDaviDgwjdx,
and the coercivity on W12(Q,R™) of
B(v,w) := /QA‘%ﬁDaviDﬁwjdx—i—’y/Qviuidx.
Then we can repeat the proofs of Theorems 3.29 and 3.31. g

3.4.3 Strongly elliptic systems: Garding’s inequality

If the coefficients Af}’a satisfy only the Legendre-Hadamard condition
(3.17), in general the bilinear form

B(u,v) := /QA%’BDauingjda:
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is not coercive on VVO1 2 (Q,R™): we shall see that, under suitable hypo-
thesis, B is weakly coercive, according to the following definition.

Definition 3.41 A bilinear form B on W, (Q,R™) is said to be weakly
coercive if there exist Ag > 0 and A1 > 0 such that

B(u,u) > /\0/ | Du*dx — )\1/ lu|?da. (3.23)
Q Q

Theorem 3.42 (Garding’s inequality) Assume that A%ﬂ are unifor-
mly continuous on £ and that they satisfy the Legendre-Hadamard condi-
tion (3.17) for some A > 0 independent of x € Q. Then the bilinear form
on WOM(Q,R’”) defined by

B(u,v) := /QA?;-BDauingjdm

is weakly coercive. If A%—B are constant then B is in fact coercive.

Proof. The idea is to use the Fourier tranform to decouple the terms D, u’
and Dgu’ and then apply the Legendre-Hadamard condition. Recall that
for a given function f € L?(2) the Fourier transform of f is

fl@)= [ flye ™ "vdy.

R‘n
The Fourier transform satisfies

Dof(z) = 2miza f (3.24)
and the Parseval identities
(F@)ee = (foees 1l = If]e, (3.25)
where, since f and ¢ take values into C, we define
(Fe = | T©a)ds,

where g is the complex conjugate of g.

Step 1. Assume A%ﬂ are constant. For u € W, (9, R™), that we think
of as being extended to zero outside €2, we bound with (3.24), (3.25) and
the Legendre-Hadamard condition

B(U,’LL) = A?ﬁ/ D ulDﬁuidg 27T Aaﬁ/ f gﬁ/\ ajdf

Y%

rpx [ JePlaPd = (2Aoe?s, [ gagsnTae
R Rn
_ A&“ﬁ(sij/R Ea\mﬁfﬁdg:A/R | Dulde

= X[ |Duf’dz. (3.26)
]R'n.



3.4 Elliptic systems: existence of weak solutions 57

Step 2. Let us now drop the assumption that A is constant and take
u € Wy (Q,R™) supported in B,.(x) for some zo € Q and r small.
Then, by step 1 we get

B(u,u) = A (zo /D u'Dgul dx

ij

+/ (A3 (@) — A2 (w0)] Do’ Dgu’ dx
Br(zo)

2)\/ |Du\2d:rfw(r)/ | Du|?dz,
Q Q

w(r) = sup max \Aaﬁ( ) — Af;’g(y)|
z,yeQ, lz—y|<r a,fB,1,5

where

is the modulus of continuity of Af}ﬁ .

Step 8. Now choose r > 0 such that A§ := A — w(r) > 0 and cover
Q with finitely many balls B,.(xy), k = 1,..., N. Fix a partition of the
unity ¢? subordinated to the covering { B, (z)}, i.e. non-negative smooth
functions ¢y, with

N
support(¢r) C Br(zg), Zwi =
k=1

so that for u € Wy *(€2,R™) (again extended to 0 outside Q)
N
Z upy), support(up;) C By.(w).
k=1

Then

Bu,u) = /AaﬁZgokD u' Dgu! dz
Q@ k=1
—Z/ A3 Do (pru’) Ds (g’ )da
- Z/QA%ﬁuiujDacka5<pkd:r (3.27)

N
— Z/ AfjﬁcpkujDauiDgwkdx
Q

- Z/ A PRU DagokDgqum.
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By Step 2
N . N
> [ A Dalpra)slort)de = X5 Y [ 1Dl e
k=174 k=1
N . .
=N / |2IDul + [ul* D] + 20 Dagpr Dot | da.
k=17

Applying Young’s inequality 2ab < ea? + g to the last term (a = |Dul,
b = pr|ul|Dyk|) we get

N
Z/ A%ﬁDa(gpkui)Dg(gokuj)dx > (N — 5)/ | Du|?dx — 05/ lu|?dzx.
Pail) Q Q

The last three terms in (3.27) are estimated as follows:

‘ / AfjﬁuiujDagkagwkdm
Q

<csuplal [ Jufdz,
Q Q
and using Young’s inequality as before

) ) Al?
‘/A%ﬁgoku]Daunggokdx §5/ Du|2dx+c%/ lu|?dz.
Q Q Q

Going back to (3.27) and choosing € < %3 we conclude that B is weakly
coercive with A\g = A\§j — 3¢ and A\ = A1 (Q,w,€) in (3.23). O

Exercise 3.43 Show that, under the assumptions of Theorem 3.42, the bilinear
form

B(u,v) ::/ Af;.ﬁDauiDﬁvjd:r —l—/ bf‘jDauivjd:B +/ cijuivjda:
Q Q Q
is weakly coercive in W, '?(€2, R™) provided, for instance, b3, ciy € L™ ().

Corollary 3.44 Let AZ—B be as in Theorem 8.42. Then, for any g €
WL2(Q,R™) and fi, f* € L*(Q), a =1,...,n, i =1,...,m, there exists
a unique weak solution u € WH2(Q,R™) to the Dirichlet problem

—Dy(A5 Dov?) + qud = f; — Daf? in Q) 28)
u=g in 0N

for v sufficiently large.
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Proof. Write the equation in (3.28) for u := u — g. Since the bilinear form

B(u,v) ::/QA%ﬂDauingj +’y/ﬂu-v

is coercive for 7 large thanks to Theorem 3.42, the conclusion follows as
in Theorem 3.29. O

Fix v as in Corollary 3.44. The linear map that to (g, f;, ff‘)?:llg
associates the solution v € WH2(Q,R™) C L%(Q,R™) to (3.28) is com-
pact, therefore we may conclude from the theory of compact operators
that (3.28) is uniquely solvable for all g, f; and f¥ except for at most a
discrete countable set of values of v, the eigenvalues, which lie in (—oo, Ag),

for a suitable \g < oo.

For later use we state a simplified but useful version of Theorem 3.42,
corresponding to the estimate in (3.26).

Proposition 3.45 Let the coefficients A%ﬂ be constant and satisfy the
Legendre-Hadamard condition (3.17) for some A > 0. Then

B(u,u) := / A%ﬁDauiDﬁujdx > )\/ | Du|?dx
Q Q

for all u € Wy (Q,R™).

Corollary 3.46 Let A%ﬁ be constant and satisfy the Legendre-Hadamard
condition (3.17). Then, for every g € WH2(Q,R™) and f;, f& € L*(Q),
a=1,...,n, 1t =1,...,m, there exists one and only one weak solution
u € WH2(Q,R™) to the Dirichlet problem

~Ds(AS Do’ = f; — Daf in Q)

U=y on 0N.



Chapter 4
L2-reqgularity: the Caccioppoli inequality

In this chapter we discuss regularity in terms of square summability of
the derivatives of weak solutions to a linear elliptic system

—Do (A’ Dgul) = f; — Do f?

in dependence of the regularity of the coefficients and boundary data,
i.e., we deal with the energy estimates for the derivatives of solutions.
The basic tool we use is the Caccioppoli inequality, sometimes also called
reverse Poincaré inequality, which enables us to give a priori estimates of
the L?-norm of the derivatives of a solution v in terms of the L?-norm of
U.

4.1 The simplest case: harmonic functions

Theorem 4.1 (Caccioppoli inequality) Let u € W12(Q) be a weak
solution of Au =0, that is

/ DauDygpdr =0, VYo € W2 (Q). (4.1)
Q

Then for each xo € 2, 0 < p < R < dist(xg, 9Q) we have

c
| Dul*dx < 7/ lu — A?*dz, VYAER (4.2)
/B,,(mo) (B = 0)* JBp(20)\B, (o)

for some universal constant c.

Proof. Define a “cut-oft” function n € C°(€2) such that
1L.0<n<1
2. n=1on B,(zg) and n =0 on Bg(zo) \ B,(x0)

3. |Dn| < Riip.
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Choosing as test function ¢ := (u — A)n? in (4.1) we get
/ | Dul*n?dx + / Dou(u — N)2nDyndx = 0,
Q Q
hence using Hoélder’s inequality

/ | Dul*n?dx < / | Dullu — A|2n|Dn|dx
Br(wo) Br(wo)

3 3
<(/ |Du|2n2dac> (/ 4|lu — )\QDn|2da:) .
Br(zo) Br(zo)

1

2
(/ |Du|2772d33> ,
Br(zo)

squaring and taking into account the properties of 7 yield:

/ | Dul|?dx S/ | Dul*n*dx
B, (z0) Br(zo0)

16
<5 / lu — A|*da.
(R = 0)? JBr(zo)\B,(x0)

Dividing by

Exercise 4.2 (Higher order estimates) For & > 0 and any Bgr(zo) C
there is a constant c(k, R) such that, whenever u is a smooth harmonic function,
then

Br(zo)

/ \DFul?ds < c(k, R)/ luf2dz. (4.3)
Bg(ﬂco)

[Hint: Prove that all partial derivatives of v are harmonic functions and
apply repeatedly Theorem 4.1 on suitable annuli.]

Exercise 4.3 (Smoothness of harmonic functions) Using inequality (4.3)
prove that a harmonic function u € W?(Q) belongs to W,52(Q) for all k,
consequently it is smooth.

[Hint: Consider the convoluted functions u. := u % p. for some mollifying sym-
metric kernel p. Show that u. is harmonic and use the derivative estimates
together with Rellich’s and Sobolev’s embedding theorems to conclude that, up
to subsequences, ue — u in C* for each k > 0.]
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4.2 Caccioppoli’s inequality for elliptic
systems

Theorem 4.4 Let u € WH2(Q,R™) be a weak solution of
~Do (A}’ Dgul) = f; — Do FY (4.4)

with f;, F® € L*(Q), and assume that one of the following conditions
holds:

1. A?jﬁ € L (Q) and satisfy the Legendre ellipticity condition (3.16);
2. A%ﬁ = const and satisfy the Legendre-Hadamard condition (3.17);

3. A?jﬁ € C%(Q) satisfy the Legendre-Hadamard condition.

Then for any ball Br(xo) C 2 (with R < Ro small enough under condition
3) and 0 < p < R the following Caccioppoli inequality holds:

1
| Dul?dx < 0{7/ lu — &2 dx
/Bp(xo) (R =0)? JBr(zo)\B, (z0)

+R2/ |f|2dx+/ F?d:c}, (4.5)
BR(zo) BR(IO)

for every vector £ € R™, where under conditions 1 or 2

c=c(\A), A:=suplA|.
Under condition 3 the constant c also depends on the modulus of continuity
of Af‘jﬂ and Ry.

Proof. We give the simple proof when hypothesis 1 is satisfied. The
other cases can be treated in a similar way using Garding’s inequality;
the details are left for the reader.

First assume f; = 0. Define a cut-off function n as in the proof of
Theorem 4.1 and choose as test function (u — &)n? into (4.4). From the
Legendre condition we obtain

A n?| Du|*dx S/ UQA?jBDaunguidx
Br(zo) Br(zo0)

=_ / 2n(u’ — fi)A%ﬁDaujDﬁnda:
Br(xo)

—|—/ n?FXDou'de —l—/ 2F? (u' — £ Donda
Br(zo) Br(zo)

= (I) + (II) + (II1).
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Now we can bound with Young’s inequality 2ab < ea® + % and the prop-
erties of n

4A
(I) <eA n?|Dul?dx + 7/ lu — &|*dx,
Br(xo) (R = p)? JBr(zo)\B, (20)

1
(IT) <eA n?| Dul*dx + — |F|?dx
Br(zo) el Br(zo)
4

(IIT) < 7/ lu — €&|?dx +/ |F|2dz.
(R - P)2 Br(x0)\B,(zo0) Br(xo)

Choosing € = ﬁ, using that

/ | Dul*dz < / n?| Du|*dx
Bp(xo) BR(IO)

and simplifying yield the result.
When f; # 0 define

~ T1
le(x) = / fz(ta T2,... 7xn)XBR(xg)(ta T2,... 7xn)dt7

and prove using Jensens inequality that

/ (F12dax < cR? / fAdz.
Br(xo) Br(zo)

Then the term f; = D1 F} can be added to term F}. 0

Exercise 4.5 Prove that in Theorem 4.4 we can replace the assumption f; €
L?(£2) with the weaker assumption f; € L** (), 2. := ;2%, and in (4.5) we can
replace the term

2

2.

32/ |f|°dz  with (/ |f|2*dx) .
Bpr(zo) Br(zo)

4.3 The difference quotient method

In order to prove L2-estimates for the derivatives of a solution u we show
that the difference quotients of u (a sort of discrete derivative) satisfy
an elliptic system; by Caccioppoli’s inequality we get L2-estimates on the
derivatives of the difference quotients D7y, su and apply Proposition 4.8 to
conlude the existence of the s-derivative D,Du with a suitable estimate
in L2. The procedure can be used inductively to obtain higher order
differentiability.
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Definition 4.6 (Difference quotient) Given a function u : Q@ — R™,
an integer s € {1,...,n} and h > 0 we define the difference quotient
u(x + hes) — u(x)

h )
where e; € R™ is the unit vector (0,...,0,1,0,...,0) with 1 in the s-th
position.

Thsu(z) == Ve e Qep:={x€Q:x+ hes € Q},

Exercise 4.7 If u € W'?(Q), then 75 pnu € WHP(Qq 1) and 7o Du = D74 pu.
Moreover for u or v compactly supported in 2 and h small enough we have

/umysvdm:—/ T_p,sU VA, (4.6)
Q Q

and Leibniz’s rule holds

Th,s(uv) () = u(x + hes)Th,sv(x) + Th,su(x)v(x). (4.7)

Proposition 4.8 Let 1 < p < 400 and Qg € Q. Then

(i) There is a constant ¢ = c(n) such that, for every u € WYP(Q) and
s=1,...,n, we have

dist(, 09)

T (4.8)

17h,sullr(90) < cllDull o), |hl <

(ii) If w € LP(Q) and there exists L > 0 such that, for every h <
dist(Q0,09), s =1,...,n, we have

I7n,sullLe(00) < Ly (4.9)

then u € WHP(Qo), ||Dull e, < L and 7 su — Dgu in LP(Q) as
h — 0.

Proof. (i) Assume first that u € C°°(§2). By the fundamental theorem of
calculus

0
5+ e,

u(z + hey) — ulz) = /Oh

Th,su(z) = ]gh

Therefore, by Jensen’s inequality and Fubini’s theorem we get
"o
Il = [ | £ gaute-+ e

h
§/QO (]g |Du(x—|—§es)|1’d§>daz
h
< ([ ipuorras )ac = 10ul, o

whence

0
g u(x + Eeg)dE.

p
dzx
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For a general u € W1P(Q) we approximate it W1P(Q) with a sequence

of smooth functions and notice that (4.8) is stable under convergence in
WLr(Q).

(ii) We have that LP(Q2) is reflexive and 75, su is bounded in L?(€)) uni-
formly with respect to h. According to Banach-Alaoglu’s theorem, the
unit ball of a reflexive Banach space is sequentially weakly compact.
Therefore we may extract a weakly converging subsequence:

The,s — ¢ in LP(€)

and g = Dyu in the sense of distributions because Vo € C°(£y) we have

/ gpdr = lim Thy,sUWpdx

k> Qo

= — lim UT_ s AT
hr—0 Qo

= —/ uDgpdzx.
Qo

Thus Dyu € LP(§). To prove that the convergence 7, su — Du is strong
in LP(Qp), take any w € C*°(); then

Th,stt — D = T, s(u — w) + Th sw — Dsw + Ds(w — u),
and by part 1
[7h,su — DsullLe(9q) < [|7h,sw — Dsw||Lo(qq) + ¢l|Ds(w — u)|| Lo (0),

where ¢ = ¢(n,p). Since C*(Q) is dense in WP(Q), the second term
on the right-hand side can be made arbitrarily small, while the first term
goes to 0 as h — 0 since 75, sw — Dsw uniformly on compact sets. O

4.3.1 Interior L*-estimates

The following theorem is a direct consequence of the Caccioppoli inequal-
ity and Proposition 4.8.

Theorem 4.9 Let u € WH2(Q,R™) be a weak solution of
~Do(A7 Dsu’) = f; = DoFY (4.10)

with f; € L2(Q), F* € WH2(Q). Assume that A%’H € Lip(Q?) satisfy
the Legendre-Hadamard condition. Then u € Wi’f(Q,Rm), and for any
relatively compact subset Qo of Q we have

1D?ul|r2(00) < c(llullzz) + | fllz2) + IDF || 22(@)) (4.11)

¢ being a constant depending on Qq,  and the ellipticity and Lipschitz
constants of A.
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Proof. Remember that (4.10) means

/A%ﬁDgungcpidx:/fiwidx—F/ F*Dyp'dr, Yo € CZ(Q,R™).
Q Q Q
(4.12)

Assume that f; = 0 (for the general case see the following exercise), choose
a test function ¢ and, for h small, insert p(xz — heg) in (4.12) to obtain

/QA%B(J: + hes)Dpu? (z + hes) Dy’ (z)dx = /ﬂFf(:c + hes) Do’ (z)dx.

(4.13)
Subtract (4.12) form (4.13) to obtain

/QA%-B(a: + hes)Th.s(Dpu? ) Dy dx + /{;Th’sA%BDgujDagDidSC
(4.14)
:/Th’SFiaDagoida:.
Q

Remember that 73, s(Du) = D(m, ,u) and apply Caccioppoli inequality

(4.5) to T su in (4.14): for any Byg(xo) C Q2

c
|7h.s Dul*dz <— |7, sul*dz

/BR(JKO) R?

Bar(zo0)

+ c/ |Th.s A]?| Du|?dx
Bar(zo)

+ c/ |Th,SF|2dx.
Bar(zo)

As h — 0 all the terms on the right-hand side remain bounded thanks to
the first part of Proposition 4.8 and A being Lipschitz; thus the second
part of the same proposition implies that Du € W2(Bgr(xg)); taking the
limit as h — 0 and applying Caccioppoli’s inequality again we bound

/ |D%uf?de < — |Duldx + cL2/ | Du|?dw
Br(zo) R Bar(xo) Bar(xo)
+ec / |DF|*dx
Bar(z0)

<R, L)/ |u|2dx+/ \DF2da,
Byr(z0) Bar (o)

where L is the Lipschitz constant of A. By a covering argument we get
(4.11). O

Exercise 4.10 Complete the proof of Theorem 4.9 by dropping the assump-
tion that f = 0.
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[Hint. Choose as test function ¢ := T s (7?7h su) with the usual cut-off func-
tion 7. We obtain

/ A?jﬁDgujDagoida: > c/ \D(nThysu)2|dﬂc - / (772\Du|2 + | Dnl?|mh,sul?)d.
Q Q Q
Rearranging one gets

¢ / Do) 2 < e / (0| Dul® + [ Dl | sul?)da
Be ¢ (4.15)
+ / Fliglda + / |F|| Dl
Q Q

The last term is quite easy to estimate and for the term involving f

| o
[ 11rnPmwlde <& [ D670 Pde+ 2 [ (1P
Q w Q

Ss/ |D(mh,su)|2dx+s/ Do mhulde (4.16)
Q Q

1
1 [ 11,
€ Ja

Insert (4.16) into (4.15) to obtain an L*-estimate of 75, s Du and use Proposition
4.8 to get the result.]

By induction Theorem 4.9 generalizes to the following regularity result.

Theorem 4.11 Assume that u € WH2(Q,R™) is a weak solution of the
system ,
—Do (A}’ Dgul) = f; — Do FY,

where A?jﬁ satisfies the Legendre-Hadamard condition and for some in-
teger k >0

af k1 . k paB ;
1. A7 € C%H(Q), d.e. DRATY € Lip(9),
2. fi S Wk’2(Q)7
3. Fr e WhH12(Q).

Then u € I/Vf):&g(Q,Rm) and for every Qo € §) there is a constant c
depending on k, Q, Qo and ||A||cr.1 such that

ID*2ul| 2(y) < elllullze@ + I Fllw) + IDFllwea@)-

Proof. For k = 0 this reduces to Theorem 4.9. Now we assume the
theorem true for some k — 1 > 0 and prove it for k.

For a given 1) € C2°(2) consider the test function ¢ := Dgtp, 1 < s <
n. Integration by parts yields

/ D (AP Dg? ) Do dac = / D, fip'dx + / Dy Fy Dyt de,
Q Q Q
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that becomes
/Q AP Dg(Dw? ) Dop'd = /Q D, fi)'dx

+ / [— DAY Dgu? + D F] Dot da.
Q

Now given €y € 2 choose Q with Qy € Q € Q. We have ﬁ = Dyf; €

WE12(Q) and F* := —DsAf‘jﬁDguj + D,F* € WFk2(Q) so that by
inductive hypothesis we have Dyu € W*t12(Qq) for every s, i.e. u €
Wk+2.2(Qy) with the claimed estimate easily following. O

Corollary 4.12 Let u be a weak solution of the elliptic system
~Do (A5 Dgu?) = f; — Do FY
with A, fi, F € C*(Q). Then u € C®(Q,R™).

Proof. By Theorem 4.11 u € VVIIZ’C2 (©2,R™) for every k > 0 and the result
follows at once from the Sobolev embedding theorem. d

4.3.2 Boundary regularity

The solution to an elliptic system with prescribed boundary data g is
regular up to the boundary according to the regularity of 02 and g.
Definition 4.13 A domain (2 is said to be of class CF* if for every point
xo € 0N there exist a neighborhood U of o in Q and C*-diffeomorphism

~ BT,

where BT is the half-ball {x € R™ : |z| < 1,2" > 0} and B is its closure.

Theorem 4.14 Let the hypothesis of Theorem 4.11 be in force. Assume
in addition that O is of class C**2 and u — g € Wol’Q(Q) for a given
g € WK+22(Q). Then u € WkT22(Q) and there is a constant ¢ depending
on k, Q and || A||gra such that

1D 2] 120y < el ey + IDFlwea + lglhwesa)-

Proof. Up to redefining u by u — ¢ and changing the data of the system
accordingly, we may assume that u € VVO1 -2 Q).
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Step 1: Reduction to a flat boundary. For a neighborhood U of a point
zo € 0 and a C*t2-diffeomorphism v : U — B* as in Definition 4.13,

define in BT. We can assume that .J, := det Dy > 0 on B". Setting

(v)

AP (y) = AV (v () T2 (1) (Duy® () T Dy (v 1) (),
(v)
(v)

we have with the change of variable formula we have for ¢ € C°(B™)
| A D5 D () = / A;;%)Dauj(x)Dagoiw—l<x>>dw

:/ @)t (v dm+/ F(2) Do (v~ (@) da

= fz dy+/ F2(y) Do’ (y)dy,

i.e.

~Do (A} Dsii’) = f; — Ff* in BT. (4.17)

Thanks to the assumption on v, © € W*+22(BT) if and only if u €
WkE+2.2(1). Tt is then clear that we can first assume Q = BT and

u=0on {JJEF+ sz =0}, (4.18)
and prove that u € Wk+2’2(Bl+/2) where
B, = {zr eR": 2| < 1/2, x,, > 0}.

Then using a covering argument on 02 we conclude for a general set 2
with C**2 boundary.

Step 2: Euxistence of second derivatives DsDu, s # n. By (4.18), for
any 1 € C°(By) we have nu € Wy *(B*,R™) and similarly, if s # n,
¢ = T_ps(nPm.eu) € Wy *(Bt), so that ¢ is an admissible test func-
tion. Inserting ¢ in (4. 17) and carrying out the same computations as in
Exercise 4.10 yields

||Th,sDU||L2(Bl+/2) < {1 Dullp2(p+y + 1 fl28+) + | DF || 2(5+) }»

thus proving, by Proposition 4.8, that all the second derivatives of u except
for D, Dgu are in LQ(BT/Q) and bounded, for 3 = 1,...,n. Since weak
derivatives commute, the same reasoning applies with s = G if § # n, so

that it only remains to prove that D,,u is bounded in L2(Bl/2)
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Step 3: Ewistence of Dyppu bounded in L2(Bl+/2) System (4.17) may be
rewritten (ignoring the ~ symbols) as

[, apwnga—— S35 [ g
B1/2 a,f=1 i,7=1
(a,8)#(n,n)

/ i der/ Ff‘ wptda.

After integration by parts, we get

(4.19)

_ A?jn(Dnnuj , )L2(B1/2)
= / [ > D, (A?jﬁDguj> + Dn A" Dyu? + f; — DaFf“} plda.
Bt

1/2 a,B=1
(a,8)#(n,n)

bounded in L2 (31/2)

(4.20)

Observing that (AZ—”) is positive definite by ellipticity, hence invertible,
(4.20) implies _
sup (Dnnuja ' )L2 gty <c
I\WI\L2(B+/ = (Bi2)

hence by duality D,,,u’ belongs to L2(Bfr/2) and is bounded as usual.
Step 4. With a covering argument we obtain D?u € L?(2) and

|1D?(u — 2@ < C{HD(U =z + 1 fllz2) + ||DFHL2(Q)}a
i.e.

| D?ullz2@) < e{IDullz2(a) + [ Dgllwzc) + 1fllz2@) + IDF 2y},

but we can get rid of the term || Du||12(q) on the right-hand side by testing
the system with ¢ = (u — g), using ellipticity, Holder’s and Poincaré’s
inequalities:

)\HDUHLz(Q / AaﬁDgujDa(uj — ¢))dx —&—/QA%ﬁDgujDagidx
< c(Iflz@llu = gllzz) + I Fllzao) 1D = 9) 2y
+ ||Du||L2(Q)HD9||L2(Q)>

<

| >

C
1DullFa@) + 5 (1F 2@ + 11320 + 1Dgl22c)-
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With Poincaré’s inequality we easily bound also ||u|\%2(ﬂ). For the higher
derivatives we may proceed by induction as in Theorem 4.11. (|

4.4 The hole-filling technique

Caccioppoli’s inequality may be used to obtain a decay estimate for the
Dirichlet integral of weak solutions of linear elliptic systems. Here we
show how to do this by the hole-filling technique of Widman [115]. As
a consequence we obtain Holder continuity for the solutions of elliptic
systems with bounded coefficients in dimension 2.

Let u € VVI})’CQ(Q,]RT”), Q C R" be a solution to the following elliptic
system:

~Do (A} (2)Dpu?) =0 in Q, (4.21)
Agl® < A7, < Al
Take 29 € Q, 0 < R < dist(xg,02). Insert in (4.21) the test function

(u — €)n?, where & € R™ and 7 is a non-negative cut-off function with
n=1on Bg(nco)7 n =0 on Q\Bg(zo), |Dn| < 4. We obtain

/ | Dul*n?dx < c/ |Dul||Dnl|lu — &|ndx, ¢ =c(\A)
Q Q

and taking into account the properties of 1, Poincaré’s inequality and
2
2ab < ea® + % the right-hand side above can be bounded by

1
= / | Dul*n?dz + ¢, / lu — €| da. (4.22)
2 Ja BR(wo)\Bg(IO)

Choosing

&= ][ udx
BR(IO)\Bg (zo0)

we can use the Poincaré-type inequality

/ u—&Pda < C2R2/ | Du|*dz
Br(@0)\B & (z0) Br(@0)\B & (z0)

(prove it as exercise: first assume R = 1 and apply Proposition 3.21, then

rescale) and summing up we find

/ | Dul*dx < c/ | Du|*dx (4.23)
B g (xo) Br(z0)\B g (z0)
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for a dimensional constant ¢. Adding ¢ times the left-hand side to both
sides we get

c

/ | Dul?dx < / | Du|?dz, (4.24)
B (o) ¢+ 1 JBp(wo)

and

k
/ | Du|?dx < (L) / | Du|?dx
BQ_kR(CE()) C+ 1 BR(IU)

for all k£ > 1. This yields the existence of some o = (A, A) > 0 such that
/ |Dul?dx < ¢ p**da.
Bp(zo)

As we shall see in the next chapter, when n = 2, i.e.  C R?, Morrey’s
Theorem 5.7 implies that u € Cloo’g (Q,R™).

Remark 4.15 By Garding’s inequality, we get (4.23) also in the case
that A?jﬁ only satisfy the Legendre-Hadamard condition and are constant,
or satisfy the Legendre-Hadamard condition, are continuous and R is
small enough. Hence also in these cases we have Holder continuity in
dimension 2.

Another easy consequence of (4.24) is that entire solutions of (4.21),
i.e. solutions of (4.21) in all of R™, with finite energy,

/ | Du|?dz < oo,

are constant. Consider now an entire solution u of (4.21) in dimension
n = 2. Suppose it is globally bounded; then from (4.22) (with £ = 0) we

get
/ |Dul?dx < % lu|?dx < ¢; sup |ul?
Br(0) B3r(0 R2

hence u has finite energy. Therefore we conclude

Theorem 4.16 (Liouville) Let u € W,"?(R?) be a bounded solution of
the elliptic system (4.21) with Q = R%. Then u is constant.



Chapter 5
Schauder estimates

In this chapter we prove Schauder estimates according to the work of S.
Campanato, without using potential theory.

5.1 The spaces of Morrey and Campanato

The domains 2 C R”™ in this chapter are supposed to satisfy the following
property: there exists a constant A > 0 such that for all xg € Q, p <
diam €2 we have

|B,(x0) N Q| > Ap". (5.1)
Note that every domain of class C' or Lipschitz has the above property.

Definition 5.1 Set Q(zo, p) := QN B,(zo) and for every 1 < p < 400,
A > 0 define the Morrey space LPA(Q)

LPAQ) = {u € LP(Q) : sup pf)‘/ |ulPdx < —&—oo}7
“"p0>€(§2 Q(zo0,p)

endowed with the norm defined by

-
[ullry = s p [ s
Ipf)fé? Q(z0,p)

and the Campanato space L£P*(€2)

LPAQ) = {u € LP(Q) : sup p_’\/ [u — Uz pPdr < +oo},
1'0>682 Q(z0,p)
P
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where Uy, 1= fﬂ(wo,p) udx. We give the Campanato space LP(Q)
the seminorm

[U]Z’)\ = sup pf)‘/ |4 — gy, p|Pdz
NS Q(zo,p)
p>0

and the norm

[ullzoa () = [ulp.n + llull e (o)

Remark 5.2 In the above definition only small radii are relevant, i.e. we
can fix py > 0 and replace the definition of ||u\|’£pyk(9) with

sup p_k/ |u|Pdz,
zo €S2 Q(zo,p)
0<p<po

and similarly we modify [u], x. These norms, which are more convenient
when proving local estimates, are equivalent to the previous ones, as can
be seen with a simple covering argument.

Remark 5.3 The spaces of Morrey and Campanato are Banach spaces;
however one can show that smooth functions are not dense in these spaces.
In any case we shall not use the Banach structure of these spaces.

Proposition 5.4 For 0 < \ < n we have LP*(Q) = LPA(Q).
Proof. We have!

/ |u—umo,p|pdx§2p-1{ / |u|pdx+|Q<xo,p>||um,p|p} (5.2)
Q(zo,p) Q(z0,p)

and by Jensen’s inequality

1

[tugy pl? < 7o |u|Pdz. (5.3)
oF |Q(x0a p)‘ Q(z0,p)
Insert (5.3) in (5.2), divide by p* to obtain
Wty < 2l
thus concluding LPA(Q) C LPA(€).
For the converse write
LS ulPdz < zp—l{i/ i — P+ o™ |p}.
P Q(x0,p) B P Q(z0,p) " o
(5.4)

IWe shall freely use the inequality (a + b)P < 2P~1(aP + bP) valid for every p > 1.
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We need to estimate the term p™~*uy, ,|P uniformly with respect to xg
and p. For 0 < r < R and z,z¢ € ) we have

[0, R = Uag,r [P < 2P H{[u(@) = tgg, mI” + [u(@) = g ,r [P}

integrating with respect to  on Q(zg,r) and using (5.1) we obtain

or—1
|Usg, R — Uszg,r [P < n {/ ‘U_Uxo,R|pdx+/ |u—ux0,r|pdx},
Ar Q(z0,R) Q(xo,7)

thus

ci(p, A 2¢1(p, A
gt < LA (g iy < 2P A e
r r
and taking the p-th root
A _n
|tag, R = Uzo,r| < Colulp ARPT77. (5.5)
Set Ry, = 4&; (5.5) implies
A—n n=XA, n
‘uImRk - uwoyRk+1| <cRP [u]p,/\Qk P +p7 (5'6)
and taking the sum from 0 to h we infer
A—n
|quyR - u-”ﬂmRh+1| < CS(napa /\7 A) [U]PJ\Rh-&p-l . (5'7)

Choose h and R with diamQ < R < 2diam ) and Rj 1 = p. Then we
have

|UI0,P‘p < 2p_1{|u1’07R|p + |UI0,R - ’U‘Io,ﬂ|p}

< 2P HJua rl” + o™ [ul} 1},
which inserted in (5.4), and taking into account the condition on R, yields
1 P P P P
-~ lulPdz < ‘34{[“];),,\ + |tz,R| } < C5||U’||LP,>\(Q)’
p Q(wo,p)
where we also used

PniA‘uxo,Rw < CS‘UIU,RV) < CG”“”gp(Q)-
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5.1.1 A characterization of Holder continuous
functions

n

Theorem 5.5 (Campanato) Forn <A <n+p and a = %
LPA(Q) =2 C%*(Q). Moreover the seminorm

we have

[’u]co o = sup |U(.’17) _ u(y)|
s yeQ oty T — Yl

is equivalent to [u], x. If \ > n+p and u € LP(KY), then u is constant.

Proof. Assume u € C%%(Q). For z € Q(xg, p) we have

u(e) = u(zo)| < [ulco.p®,

hence
|U(J:) - U’$07p| S [u]co,apa.
Consequently
1 —
X |u(z) — ug;o)p|10dx < w”[u]go,ap" Aap _ wn[u]gg.’a.
P™ JQ(x0,p)

Conversely, take u € LPA(Q2). For mg € Q, R > 0, Ry, := zﬁk, we get from
(5.7)

A=n
‘uﬂio,Rk - uwo,Rh| < C[u]p’/\Rk ", k<h, (58)

consequently {uz, g, } is a Cauchy sequence. Set

u(xo) = hEIJPoo Uy Ry, -

This limit doesn’t depend on the choice of R, as can be easily verified
using (5.5).

From the differentiation theorem of Lebesgue we know that u,, —
u(x) in LY(Q) as p — 0, so that u = & almost everywhere. Taking the
limit as h — 400 in (5.8) we conclude

A—n
|uz, R —u(z)| < clulp AR 7, (5.9)

from which we see that the convergence of u, g to u(x) is uniform. By
the absolute continuity of the Lebesgue integral we have that u, g is
continuous with respect to x, so that the uniform limit u is also continuous.

To show Holder continuity we take x,y € Q, R := |x — y| and estimate

(@) = u(y)] < [uzor — u(@)] + |ue2r = uy 28| + [uy,2r = u(y)]. (5.10)
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The first and the third terms are estimated by (5.9). For the second term
we have

[uz2r — Uy 2r| < Uz 2r —u(2)| + |u(2) — uy 28]

which, integrated with respect to z over Q(x,2R) N Q(y, 2R), gives

Joteary 1U(2) = us2rldz + [o, o) [U(2) — uy2r|dz

_ <
|us2r — Uy 2r| < Q(x,2R) N Q(y,2R)|

By Hélder’s inequality (applied to the functions 1 - |u(z) — uy2r| and
1-|u(z) — ugy 2r|) we obtain

1
_ <
|Uz,2rR — Uy2R| < C|Q(x, 2R) N Q(y, 2R)|

On the other hand Q(z, R) C Q(z,2R) N Q(y, 2R), thus by (5.1) we get

[, AR 7", (5.11)

Q(x,2R) N Q(y,2R)| = AR",

therefore (5.11) becomes

|Ux,2R - Uy72R| <a [U]zm

which together with the preceding estimate in (5.10) yields

A—n A=—n
lu(z) —u(y)] < colulp \R™7 = eolulpalz —y[7

Hence u € C%*(Q) and [u]co.« < cafulpr. Since any u € C%*(Q) is

constant if o > 1, also the last claim of the theorem follows. O

Corollary 5.6 Assume that Q) has the extention property, for instance

it is Lipschitz, and let u € WYP(Q), p > n. Then u € C*'7%(Q), and
Il cor—nsp < c||lullwie, where ¢ = (2, p).

Proof. Extend u to a function @ € W1P(R™), with
lallwrr@ny < crllullwrre

for a constant c¢;(€2,p). By Poincaré’s inequality, Proposition 3.21, and
Holder’s inequality we have

/ U — Uz, pldx < czp/ | Dai|da
Q(z0,p) R™

ca( [ ipura) o
Bp(wO)

that is, u € £ » T1(Q) = 175 (Q). O

As a corollary, we obtain the celebrated theorem of Morrey on the
growth of the Dirichlet integral
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Theorem 5.7 (Morrey) Letu € W,oP(Q), Du € LI PT5(Q), for some
€>0. Thenu € CO’E(Q).

loc

Proof. By Poincaré’s inequality, Proposition 3.21, we have for any ball
By(z0) € 0

/B [ = g P < cp? |DufPdz < cp™ || Dull L, 5, (ny))
»(z0) By (o)

so that by standard covering arguments u € L1"7(Q) (we are also using

that in the definition of Morrey and Campanato spaces only small radii
are relevant) and the result follows from Campanato’s theorem. O

5.2 Elliptic systems with constant
coefficients: two basic estimates
The following proposition is a simple consequence of the L2-regularity

and, in particular, of the Caccioppoli inequality, and will be the basic
tool in proving Schauder estimates.

Proposition 5.8 Let A%—B be constant and satisfy the Legendre-Hadamard
condition (3.17). Then there exists a constant ¢ = c(n,m, A\, A) such that
any solution u € VV&DC2 (Q) of

Da(A Dgu) =0 (5.12)

AN 2
lu|?dz < ¢ = / |u|“dx, (5.13)
/Bmo) <R) Br (o)

satisfies

and

2 p\"+? 2
[t — Uz, | dxgc(ﬁ) |u — g, | dx, (5.14)
By (z0) Br(zo)

for arbitrary balls B,(xo) € Br(xo) € L.

g, so that we may assume

Proof. Both inequalities are trivial for r >
r< i

Let us first prove (5.13). By Theorem 4.11 we have for k > 1 u €
WE2(Q,R™) and

loc

||u||ka2(BR/2) < C(k7 Ra n,m, /\a A) Hu”Lz(BR)
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Thus, for k large enough (depending on n), on account of Sobolev Theorem
3.26

/ lu?dz < w,p™ sup |u|?dx
By (z0) o (zo

<wpp™ sup  |ullde
Brya(zo0)

<aln, R)Pn||u||%/vk,2(3m2(zo))
< ea(Rynym, A M) p™ [ull72 5y (o)) -
A simple scaling argument (see the exercise below) finally yields
co(R,n,m, A\, A) = %c(n, m, A\, A).
Inequality (5.14) follows from (5.13) applied to the partial derivatives

Dgu (which are also solutions of (5.12)) together with the inequalities of
Caccioppoli (4.5) and Poincaré:

/ U — Uy, p|Pdz < clp2/ | Du|?dx
Bp(.’rg) B/)(-TO)

§02p2<£) / | Dul?dz
R Brya(zo0)

2 P\" 1 2
< c3p (ﬁ) ﬁ/Bn(zo) [ — tigq,p| da.

0

Exercise 5.9 Make precise the scaling argument in the proof of the above
proposition.

[Hint. We can assume xo = 0. For a given solution u of (5.12) in Bg(0), the
rescaled function u(z) = u(Rx) is a solution of (5.12) in B;(0), so that (5.13)
applies to & with % instead of p.]

Exercise 5.10 Prove that for every f € W22 (Q,R™), B,(z0) € Q

s
oc

/ |f(x) = foo,p|’dx = inf / |f(z) — A]d. (5.15)
Bp(“’/’()) Bp(wo)

AER™

[Hint: Differentiate the right-hand side with respect to A.]

Remark 5.11 Since x +— |x|? is a convex function, whenever u is har-
monic, v = |u|? is subharmonic, see Exercise 1.2. Therefore the energy
inequality (5.13) in this case follows from the monotonicity formula (1.7)
for subharmonic functions:

][ luf2dz < ][ u’de, B, (xo) € Br(zo) € 9.
B, (x0) Br(xo)

In particular we can choose ¢ = 1 in this special case.
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5.2.1 A generalization of Liouville’s theorem

Propositon 5.8 extends to all partial derivatives of u since they also solve
(5.12). A consequence of this is that the only entire solutions of an el-
liptic system with constant coefficients that grow at most polynomially at
infinity are polynomials.

Theorem 5.12 Let u : R™ — R™ be an entire solution to the elliptic
system (5.12), and assume that there exists a constant M > 0 and an
integer k > 0 such that

lu(x)] < M(1+ |z|*), VzeR™
Then u is a polynomial of degree at most k.

Proof. Fix p > 0 and let P be a polynomial of degree at most k& such that
for any multi-index ~ with |y| < k we have on B, = B,(0)

/ D, (u— P)dz = 0. (5.16)
BP

Such a polynomial can be easily determined, starting with the condition
(5.16) for |y| = k, which determines the coefficients of the monomials in P
of highest degree, and then inductively lowering |y|. Repeatedly applying
Poincaré’s inequality (3.2) to v = Dyu— D, P, |y| =0,...,k, using (5.13)
for some R > 2p, (k4 1)-times Caccioppoli’s inequality (4.5), and the
bound on u yields

/ |u — P|*dx < clp2k+2/ | DF |2 de
Bf’

P

§02(£>np2k+2/ | DM uda
R Bp

n+2k+2 n+2k+2
< 03(£) / |u|2dx < eaM? (ﬁ) R"2k,
R Bkt R

Letting R — 400 we conclude that u = P in B,, and in particular
D*ly =0 in B,. Since p was arbitrary D¥*ly = 0 in R™, hence it is a
polynomial of degree at most k. g

5.3 A lemma

The following lemma turns out to be very useful.

Lemma 5.13 Let ¢ : Rt — RT be a non-negative and non-decreasing
function satisfying

o) < A[(£)" +e]e(r) + BR?,
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for some A, a, B > 0, with a > [ and for all 0 < p < R < Ry, where Ry >
0 is given. Then there exist constants g = £9(A, a, 3) and ¢ = c(A, a, )
such that if € < ey, we have

o(R)
R

6(p) < c[“p5” + B| . (5.17)

for all0 < p < R < Rp.

Proof. Set p:=7TR, 0 <7 < 1; then
d(TR) < TaA{l + —ea}(ﬁ(R) + BRP. (5.18)
T

Set v := QQﬂ We may assume, without loss of generality, that 24 > 1,
so that we may choose 7 € (0,1) satisfying 2A7* = 77. Choose ¢¢ =
g0(A,a, ) > 0 such that & < 1. Then (5.18) gives for ¢ < &g

¢(TR) < T7¢(R) + BR".
Iterating we find for £k > 0

o(TFR) <rV¢(r* 1 R) + Brk-DERA
k—1

<" ¢(R) + BrF~VBRS Z Fi(v=5)
j=0

(o)

< [Tﬁ 47728 Z Tj(wﬁ)] T(k+1)ﬁ(¢(R) + BRﬁ)
j=0

=cr*TUB(¢(R) + BR?),

with a constant ¢(A, a, 3). Choose k € N such that 7**'R < p < 7FR.
Then

9(p) < ¢(r"R) < er TV (G(R) + BR),
which gives (5.17), since 7¢*! < p/R. O

5.4 Schauder estimates for elliptic systems
in divergence form

5.4.1 Constant coefficients

Theorem 5.14 Let u € W22 (Q,R™) be a solution to

loc

Do(AY Dgu’) = —Do F?, (5.19)
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with Af‘jﬁ constant and satisfying the Legendre-Hadamard condition (3.17).
IfFe e L2M(0), 0 < p < n+2, then Du € L2*(Q), and

loc loc
|Dull ez iy < e IDullizoy + [Floan) ) (5.20)
for every compact K & Qe Q, with ¢ = ¢(n,m, K, S~2, A ).

Corollary 5.15 In the hypothesis of the theorem, if F® € Ck7(Q), k >
1, then u € CFTY7(Q) and

loc
lullorrio ey < e(I1Dullz2(e) + IFlloro @)
with ¢ = ¢(n,m, K, Q,\, A, o)

Proof. Thanks to Theorem 4.11, v € W}T"?(Q,R™) so that we may

loc

differentiate the system k times. If 7 is a multi-index with |y| < k, then
we obtain ,
Da(45f Dg(Dyu?)) = ~Da(D5 FY).

Theorems 5.5 and 5.14 then yield the result. The details of the estimate
are left for the reader. |

Proof of Theorem 5.14. For a given ball Br(xg) C Q we write u = v + w
v is the solution (which exists and is unique by Corollary 3.46) to

{ Do(ADgv?) =0 in Br(zo) (5.21)

v=1u on 0Bg(zo).

By Proposition 5.12 we get
n+2
[ b= Do e <e()" [ Do Doy s,
B, (zo) Br(zo)

consequently, using (5.15)

/ |Du — (Du)mo,p|2dw
By (o)

_ / |Dv — (Dv)sy p + D — (D), p|*dz
By (zo0)

IN

o

[ah
N

T W o

n+2
/ |Dv — (Dv)zoyR|2dx + 2/ |Dw — (Dw)$0,p\2dm
Br(zo) By (z0)

n+2
/ |Du — (Du)mO7R|2d:c+63/ |Dw — (Dw)r07R|2d:r
Br(xo) Br(zo)

n+2
/ |Du — (Du)x07R|2dx—|—63/ | Dw|?dz.
Br(zo) Br(wo)

IN

o

N

/
N N

IA

Q

]
/

(5.22)
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In order to estimate fBR(xo) | Dw|?*dx we observe that by (5.19) and (5.21)
we have

/ AP Dgwi Doy’ dr = / F®Dypida
Br(xo) Br(zo)

- / (Fio‘ — (Fia)mO,R)DagpidI,
Br(zo)

for every ¢ € Wy ?(Br(x),R™). Choose ¢ = w as test function; on
account of Proposition 3.45

)\/ | Dw|?dx g/ AP Dow' Dgw’ da
Br(wo) Br(zo)

= Ff — (F{) g, Dow'dz
/Bmo)( (F.2) (5.23)
1 1
2 2
([, i) ([, o)’
BR(:E()) ’L,Ot BR(IQ)

thus, simplifying,

[ pePdr e [ SRS (B alde < [FR AR (52)
Br(zo)

Br(zo) a,i

Inserting (5.24) into (5.22) we obtain
2 AN
o) = [ |Du= (Du iz < A(F)" o(m) + BR-
Bp(wo)
Lemma 5.13 with a« = n + 2 and 8 = pu yields
pAH . pAH .
o) <[ () o) + B0 | < a|(5) IDullro) + 1FBar").

i.e. the first part of the claim. Estimate (5.20) follows at once by covering
K with balls. O

Exercise 5.16 State and prove a similar result when (5.19) is replaced by
Da (45 Do) = fi = DaFY,

with f; € L**(Q), Ff* € £L**2(Q) for some 0 < p < n.
[Hint: Use Holder’s and Caccioppoli’s inequalities to bound the term

/ fiw'dzx
Br(zo)

arising in (5.23).]
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5.4.2 Continuous coefficients

Theorem 5.17 Let u € W,22(Q,R™) be a solution to

loc

Do(A Dgu’) = —Do Y, (5.25)

with Aaﬁ € CP.(Q) satisfying the Legendre-Hadamard condition (3.17).

Then, zf JAAS LlOC( ) for some 0 < X\ < n, we have Du € LIOC(Q) and
the followmg estimate

|Dull ey < (DUl gy + I (5.26)

L2 A(Q))

holds for every compact K & Qe Q, where ¢ = c¢(n,m, \, A, K, fNZ,w) and
w is the modulus of continuity of (A, ) in

w(R) = sup [A(z) — A(y)l,
z,yeN)
lz—y|<R

Proof. Fix xg € K and Br(zg) C Q and write,

Do (AP (20) Dgu?) = —Do{ (A (2) — A (20)) Dgu? + F*}

5.27
= —D,G2. (5.27)

This is often referred to as Korn’s trick. With the same computation of
the proof of Theorem 5.14 (using (5.13) instead of (5.14)) we obtain

/ | Du|?dx < c(ﬁ) / |Du|2dx—|—c/ |Du — Dv|?*dz,
By (o) R/ Jpr@o) Br (o)
(5.28)

v being the solution of (5.21) with A?jﬂ = A%ﬂ(xo). As for (5.24) we have

/ |D(u — v)|?dx < c/ |G |2dx
Br(zo0) Br(zo)
< c/ |F|2dx + cw(R)Q/ | Du|*dz.
BR(I‘Q) BR(IO)

Together with inequality (5.28), this gives

/ | Dul?dz < A{ (ﬁ)" + w(R)Q} / |Dul?dz + || F|| 20 R*.
B, (z0) R Br(wo)

Lemma 5.13 applied with ¢(p) = [5 (o) |Du|?dz?, o = n, B = X and
choose R < Ry so that w(Ry) is small enough yields the result. ]
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Corollary 5.18 In the same hypothesis of the theorem, if A > n—2, then
= CO’U(Q,RW), o= A—;L+2.

loc

Proof. Du € L**() by the theorem and the conclusion follows from

loc

Morrey’s Theorem 5.7. g

In particular if F' and A are continuous, then w is Hélder continuous.

5.4.3 Holder continuous coefficients

Theorem 5.19 Let u € Wl’Q(Q,Rm) be a solution to

loc

Do(A Dgu’) = —DoF?, (5.29)

with A%’B e CY7(Q) satisfying the Legendre-Hadamard condition (3.17)

loc

for some o € (0,1). If F* € C27(Q), then we have Du € C27(1).

‘loc loc

Moreover for every compact K € Q € Q
|Dullcosxe) < e(I1Dul @y + 1F oo e (5.30)

¢ depending on K, ﬁ, the ellipticity and the Holder norm of the coefficients
AP
J

Proof. First observe that the hypothesis implies that w(R) < cR?, if w
is the modulus of continuity of the coefficients Af‘jﬁ (x). Moreover F* €
L£27+29(Q) by Campanato’s theorem. We define G¢ as in (5.27) and with

the same argument used to obtain (5.22) and (5.24) we get for any ball
Bgr(zo) € Q

2 P\t 2
| pu D pPde<e(F) [ Du (D) el
B, (zo) Br(zo0)

+ c/ | Dw|*dz,
Br(zo)
(5.31)

where w := u — v and v is the solution to (5.21) with A%ﬂ = A%ﬂ(xo).
By Proposition 3.45 and w being an admissible test function we get, as in
(5.23),

/ | Dw|*dx < cl/ |F — Fy, g|*dz + clw(R)Q/ | Du|?dz.
Br(zo) Br(zo) Br(zo)
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Together with (5.31) and remembering that Du € LIQC;Z%(Q) for every
€ > 0 by Theorem 5.17, we obtain

¢@>:/‘()|Du<DunmA%m

p 7L+2/ 9
<cl= |Du — (Du) gy, r|“dz
(5 Je "

+o / F — Fy, g2de+ w(R)? / \Dupdz (%32
Br(zo) N—— Br(zo)
<cg R?27 N —/
<[F]3 n+20R"+2” <c(e)Rm—¢
n+2
<c(L)6(R) + BRM,

I

which, by Lemma 5.13 implies Du € L2727 7¢(Q) CO’U_%(Q). In par-

loc loc
ticular Du is locally bounded and we have

/ |Duf?dz < w, sup |Dul*R™.
Br(z0) Br(zo)

Consequently (5.32) improves to

n+2

o) <c(f)  O(R)+ BR

and, again by Lemma 5.13,

o(p) < ( }f,gi)g + B) R (5.33)

We therefore conclude that Du € £2"27(Q) = C%7() and the estimate

loc loc
easily follows. O

5.4.4 Summary and generalizations

Theorem 5.20 Assume that u € W,-2(Q,R™) is a solution to

loc
Da(A% Dyud) = fi — Do FY,
where k> 1 and
(i) A?jﬁ € CE _(Q) (resp. C’llf):(ﬂ) for some 0 <o < 1),
(ii) DFF® € le(; (Q), for some A < n (resp. EIOC( ), n<A<n+20),

(iii) DF1f; € L2N(K), for some A < n (resp. EIOC( ), n<A<n+20).

loc
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Then D¥+ly € leo’ (Q2) (resp. Eloc( ))-

In partieular if A% € CEZ(9), B¢ € OE2(9) and f, € €l (9)
then u € CF+L 7(Q).

loc

Proof. The proof is just sketched. With the same techniques used so
far (freezing the coefficients A%ﬁ and solving the homogeneous system

DQ(A?jﬁngj) =0 in Br(zg) € Q) we obtain, for the case A < n,

/ | Dul?dx < c[(ﬁ)n + w(R)Q} / | Du|?dx
B, (x0) R Br(xo)
+c/ [|FI? + 2|2 da,
Br(zo)

and for n < A < n + 20,

P2 2
[ pu D Pae<e(5) [ Du (Dus, sl
B, (x0) R Br(zo)

+ cw(R)Q/ | Dul?dx

Br(zo)

+ c/ [IF = Fuy sl + B2
Br(zo)

If we differentiate the system and use induction as in Corollary 5.15, the
result follows from from Lemma 5.13 as usual. O

5.4.5 Boundary regularity

Here we sketch how to get Schauder estimates at the boundary.

Theorem 5.21 Let u € WH2(Q) be a solution to

—Do (A}’ Dgu?) = =D, FY*  in Q
(5.34)
u—g€Wy?(Q)

with A?jﬁ € Ck7(Q) satisfying the Legendre-Hadamard condition (3.17),
F e Cho(Q), g € C*19(Q), 0 € (0,1). Then we have u € C*17(Q)
and

||U|\ck+1o( a) = c(Q,0,A, |4l o, “(Q)){HF”C’M* Q)+||9Hck+1 ’ Q)} (5.35)

where X is the ellipticity constant in (3.17).



90

Proof. We give the proof in the case A%’B are constant.

Step 1. Reduction to zero boundary value. It is enough to study the
regularity of v := u — g which solves

—Do (A}’ Dgv?) = =D (F + A3 Dpg’) := —DG?  in Q 530
ve Wy ?(Q)

Observe that G € C%7(Q).

Step 2. Reduction to a flat boundary. Asin step 1, Theorem 4.14, we may
consider the boundary to be flat working locally.? We may thus assume
that Q =R} = {x ¢ R" : 2, > 0}.

Step 3. Generalization of (5.32) to the boundary. Inequality (5.32) con-
tinues to hold true if g € I' = {x € R} : x,, = 0} and instead of B,(zo)
and Bp(zo) we write B} (z9) and B (wo). This is because inequalities
(5.13) and (5.14) generalize to the boundary as

ol2de < o 2 "/ o|2dz, 5.37
/Bp*(xo)l | B (R) B;m)‘ | (557

[ omumPie < (B[ o, 539)
UV — Vg R Xz S C\| = V — Vg , X, .
B (o) o R B (o) o

because v = 0 on I, being this time v, , the average of v on B} (o).

A

Step 4. Global estimates. To see that Du € C17(Q) we need to show
that

6(pyz0) = / |Du — (D), ,2dz < e+,
Q(IO,P)

with ¢ independent of zy and p. Assume first that G = 0 (this is the case if
g =0and F = 0). Then we fix R > 0 satisfying the following property: for
every yo € 9 the neighborhood Bag(yo) N is diffeomorphic to Byp(0).
Choose xg € 2,0 < p < R.

Case 1: xg € Qg = {a: € Q : dist(z,0Q) > R}. Then

p n+2
| ipu-u P <e(f) [ Du (Dl
By (o) Br(zo)

n+2 L ()
scp Rn+2

In particular
[ Dul|7 Q)

[DulZs.ni20,) < Rnte

2This is why the constant in (5.35) depends on Q.
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Case 2: r := dist(z0,00) < R, and p < r. Call yo the projection of z
onto I'. Then

n+2
/ |Du — (Du)107p|2dx < c(ﬁ) / |Du — (Du)x07r|2dx
By (z0) r By(z0)

p\"+2 2
< c<7) / |Du — (Du)y, 20| “de
r B3, (vo)

n+2 ; 9 \ n+2
<c (8) (ﬁ%) / |Du — (Du)y0723|2dx
r B;—R(yO)

P n+2
§02(§> 1 Dul|Z2 0 -

Case 3: r:= dist(zg,0Q) < R, and p > r. Set yo to be the projection of
zo on I'. We have

/ Du— (D), ,dx < / Dt — (Du)y | 2de
Q(z0,p) B2,(yo)

2 n+2
<c(32) / \Du — (Du) g 2p|*dz
2R B (v0)
p n+2
< Cg(}—%) 1 DulZ2 (0 -

Therefore u € £>"T2(Q), hence it is Hélder continuous by Campanato’s
theorem.

Step 5. Drop the assumption G = 0. Divide the estimates in the three
cases as above. For the first case we have the same estimates as in The-
orem 5.19. For the second case set v equal to the solution to the homo-
genous system in B,.(zg) with boundary data u and estimate

/ |Du — (Du)x07p|2da:
BP(IO)

n+2
<e(?) / \Du — (Du)xo,r\Qda:—k/ D(u — v)|2dz.
r B,(z0) B, (z0)

Next define w to be the solution to the homogeneous system in B; =(1o)
with boundary data u and find

/ |Du — (D) 4y |*dx < / |Du — (D) y, 2 |*dx
By (x0) B, (yo)

r n+2 9
C(E) / |Du — (Du)y, 2r| dz
Bar(yo)

+ / |D(u —w)|*dz.
Bzr(yo)

IN
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Next estimate fBzR(Z/O) |D(u—w)|? and fBT(a:o) |D(u—wv)|? as in (5.32) and
apply Lemma 5.13. The third case is similar and is left for the reader. [J

5.5 Schauder estimates for elliptic systems
in non-divergence form

Schauder theory for elliptic systems in non-divergence form
A%‘ﬂDaﬁuj =i
develops similarly to the case of systems in divergence form, see [20] [39].
First of all we observe that if A%ﬁ are constant, then
af i af3 7
Az’j Daﬁu = Da(Aij Dﬁu )
Consequently inequalities (5.13) and (5.14) hold true for u and its deriv-

atives.

Theorem 5.22 Assume that u € W22(Q) is a solution to

loc
A%ﬁDaﬁuj = fia

where Afjﬁ satisfies the Legendre-Hadamard condition and for some given
k>0

(i) Aiajﬁ € Ck () (resp. CEI(Q) for some o € (0,1)),

loc

(ii) D¥f; € LENQ), for some X < n (resp. LiX(Q), for some given

loc loc

A € [n,n+ 20]).
Then D2y € L2N(Q) (resp. L22(52)).

loc

In particular if A?jﬂ, fe Cff): (Q), then u € CﬁzQ’”(Q).
Proof. Repeating the arguments above, we freeze the coefficients:
AP (20) D! = —[A% () — AP (20)] Dapd? + fi.

By solving the homogeneous equation we get

/ |D2u2dx§c{<£>n+cw(R)2] / |D2u|2dx—|—c/ |f|?d,
B, (z0) R Br(zo) Br(zo)

where w is the modulus of continuity of (A%ﬁ ). Then

/ ID%ka%mmA%xécegn/m |D*u — (D*w) gy, r[*dx
B (z0) R Br(wo)

+MRP/ |D%mn+/‘ 1 foor
Br(zo) Br(zo)

2dz.
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The conclusion follows then from Lemma 5.13 for £ = 0 and by differen-
tiating the system for k > 0. O

As for systems in divergence form, one also proves boundary estimates,
concluding;:

Theorem 5.23 Let u be a solution of

A%ﬁDaﬂuj = fz mn Q,
u=g on 0N.

(5.39)

of class W22(Q,R™) or C%(Q,R™), where the coefficients Af}ﬁ € 0% (Q)
satisfy the Legendre-Hadamard condition , f; € C_'O"’(ﬁ), g € C%7(Q,R™),
and finally O$) is of class C*1. Then u € C%7(Q,R™) and

llloeo @ < 1f oo @ + gl + 1D%ull2@ }. (5.40)

where ¢ is a constant depending on n, o, ), the ellipticity constants and
the C%° norm of the coefficients Afjﬁ(a:)

It is worth noticing the (5.40) is just an a priori estimate; in fact
presently we do not know how to show existence of a W22 or C? solution
of (5.39).

5.5.1 Solving the Dirichlet problem

Consider the linear elliptic operator
Lu = A%ﬁDaguj,

where the Af‘jﬁ are Holder continuous and satisfy the Legendre-Hadamard
condition. The a priori estimate (5.40) is one of the key points in proving
existence of a classical solution u € C%7(Q,R™) of the boundary value

problem
Lu=f in Q
(5.41)
u=g¢g on 0,
where f € C%7(Q,R™), g € C%7(2,R™), and 99 is of class C*!. This is
done via the so-called continuity method.
We consider the boundary value problem

Liu=f in Q
(5.42)
u=g on 01,

where
Li = (1 —t)Au+ tLu, te0,1].
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As we saw in Chapter 1, Problem (5.42) is uniquely solvable if ¢ = 0.
Therefore (5.41) is uniquely solvable if the set

Y= {t €[0,1] : (5.42) is uniquely solvable for any
f c C«O,cr(ﬁ7 Rm)7g c 0275(57 Rm)}

is both open and closed, as in this case ¥ = [0, 1].
To prove this we shall use the a priori estimate (5.40), in fact an
improvement of (5.40), i.e. the a priori estimate

lllge.r gy < ellf o - (5.43)

where without loss of generality we can also assume g = 0 (it is enough
to consider the equation solved by u — g).

The estimate (5.43) is for instance a consequence of uniqueness, as
stated in the following

Theorem 5.24 Suppose that the boundary value problem
Liu =0 in Q, u=0 on 00 (5.44)
has only the zero solution. Then for a solution u € W22(Q,R™) of
Liu=f in Q, u=0 on 0N (5.45)

we have
1D%ull 20y < ell fll o @ (5.46)

Proof. We argue by contradiction. Assume that (5.46) does not hold.
Then we can find a sequence (uy) C W22(Q,R™) of functions solving
(5.45) with f = fi — 0 in C%7(Q) and satisfying ||D?ug|/zz = 1. Then
by (5.40), (uz) is uniformly bounded in C%7 (€, R™), hence up to a sub-
sequence we have uy — v in C?(€2, R™), where u solves

Lau=0inQ, uw=00ndQ, |[Du =1,

contradicting uniqueness. |

Notice that (5.46) implies that (5.40) can be improved to
||U||c2,a(§) < C(||f”cowv(ﬁ) + ||9||c2,a(§))- (5.47)

Of course, by Hopf maximum principle, see Exercise 1.4, (5.44) has
zero as unique solution if Lu = 0 is a second order elliptic scalar equation.
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Assuming (5.47), we now prove that ¥ is both open and closed, thus

Theorem 5.25 Assume that for every t € [0,1] Problem (5.44) has at
most one solution. For instance suppose that

Lu:= AaﬂDagu, u scalar,

where the coefficients of L are Holder continuous, f € CY7(Q,R™), g €
C?7(Q,R™) and 99 is of class C**. _Then the boundary value problem
(5.41) has a unique solution u € C*°(Q,R™). Moreover

||u||cz=fr(§) < C(Hf”coqd(ﬁ) + ||9||02:v(§))'

Proof. We have to prove that ¥ is open and closed, since as already
observed 0 € X.
¥ is closed: Let t, € ¥ and tp — t. For

f e (Q,R™), ge O (Q,R™)
we can find uy, € C%%(Q,R™) solving
Ltku(k) =finQ u®) =g on 99.
From (5.47) we infer, up to a subsequence, u*) — v in C?(Q) and
Liu=f in Q u =g on 0,

hence t € X.

Y is open: Let tg € X. For w € C%7(Q) let Tyw = u, be the unique
solution of

Lijuy = (Lyy — Ly)w+ f in Q, Uy =g on ON.
From (5.47), and noticing that
Ly, — Lt = (t — to) A+ (to — t)L
we then infer
[Thwr = Tyws |l c2.0 @) < ¢t — tol lwr — w2l g2 @),

i.e.
T; : CQ’“(Q, R™) — CQ"’(Q, R™)

is a contraction for |t — tg| < §, 6 small, hence is has a fixed point, which
is a solution of (5.42). Consequently (to — d,to +d) C X. O



Chapter 6
Some real analysis

We collect in this chapter some facts of real analysis that will be relevant
for us in the sequel.

6.1 The distribution function
and an interpolation theorem

Two functions are particularly useful when studying the size of a measur-
able function f: the distribution function of f and the mazimal function

of f.

6.1.1 The distribution function

Let 2 be an open set and f : 2 — R a measurable function. Given ¢t > 0
set A(f,t), or Af(t) or A,

A(ft) = {z e Q: |f(z)] > ).

The distribution function of f, A(f,t) or A¢(t) or simply A(t), is defined

)

as the function A : [0, +00) — R given by
A(t) = A(f, 1)
Trivially:

1. A(t) is non increasing, continuous on the right and jumps at every
value t that is assumed by |f| on a set of positive measure:

Ar(t) = Ap(t7) = meas {z € Q| |f(z)| =t}.
2. A\f(t) = 0ast — ocoif f € LY(Q), and

[F (@ = int {t > 0] A1) = 0}.
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Proposition 6.1 For all p > 0 we have
oo
\f|Pda :p/ PV Aylds + 17| Ay). (6.1)
A, t

In particular
(o)
/ |f|pdx:p/ 1| A,|ds. (6.2)
Q 0

Proof. If xa, is the characteristic function of A;, by Fubini-Tonelli’s
theorem we have

If (@)]
/|f\pdx = /dm/ ptP~dt
Q 9 Jo
// ptP x4, dtdx
e
p / -t / XA, |dzdt,
0 Q

ie. (6.2). Applying (6.2) to max {|f[? —*,0} we find (6.1). O
Let f € LP(Q)), p > 1. Then

A < [ 1P < e
Ap(t)

i.e. f satisfies the so called p-weak estimate

1Al o) *
Ar(t) < (t) .

Definition 6.2 We say that a measurable function u: 0 — R is weakly
p-summable or belongs to the weak LP-space, denoted L (Q), if

1
£l 2z, () = supt Ap(t)» < oc.
>0
If p = 00, we set LY () = L™(Q).

Notice that ||f|[.z (o) is not a norm and that LP(2) C LL (), while
LP (Q2) C L1(Q) for every ¢ < p if  is bounded.

Exercise 6.3 Let f be measurable and g € LP(Q); suppose that
M(D) < A() VES0, or Ap(t) < 9/ gdz Vit > 0.
t Ag(t)
Show that f € LP().

Exercise 6.4 Let 1 < p < co. Show that f € L%, (Q) if and only if

1
sup{i‘E‘lil/p /E |f|dx

ECQ measurable} < 00.
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6.1.2 Riesz-Thorin’s theorem

Let T : A — B be a linear operator from some linear space A into a linear
space B. Suppose that T' maps continuously the Banach subspaces Ay and
A; of A into the Banach subspaces, respectively, By and By of 5. In this
setting it often happens that there exists two families of Banach spaces,
called spaces of linear interpolation, Ay C A and By C B, t € [0,1] such
that T maps continuously A; into By for every ¢t € [0,1]. Results of this
type are called interpolation theorems. The simplest one is that expressed
by the interpolation inequality

[ fllLa) < ||f||LP(Q)Hf|

LT(Q
where
1 6 1-96
66[0a1]7 1<p<g<r<o and - = -+
q p r

that is a simple consequence of Holder’s inequality.

The first interpolation theorem probably is Riesz’s convexity theorem
together with its complex extension, known as Riesz- Thorin interpolation
theorem. We shall not need it in the sequel, thus we state it without proof.

Let T : LPo(Q) + LP* (Q) — M be a linear map from LP°(Q) + LP1(Q),
the space of functions that can be written as f+g, f € LP°(Q2), g € LP1(Q),
into the space of measurable functions. We say that T is of type (p,q),
po < p < p; if it maps LP(Q2) continuously into L?(€2), i.e.

ITfllLaco) < M| fllzey V[ € LP(Q). (6.3)

The greatest lower bound of the constants M such that (6.3) holds is
called the (p, q)-norm of T.

Theorem 6.5 (M. Riesz convexity theorem) Let the operator T be

of type (po,qo) and (p1,q1), where po < qo, p1 < q1 and po < p1. For all
0 € [0,1] define pg and qp by

pe  po p1 % Q@ @

1 1-60 0 1 1—-6 6
P— +7 [ +7

Then T is of type (pg,qe) for all 6 € [0,1]. Moreover if My is the (pg,qs)-
norm of T' we have
My < My~oM}.

The theorem states that T is of type (pg,qe) if it is of type (po, qo),
(p1,q1) and if (p ,qo) and (pl o L) lie in the triangle of vertices (0,0),

(0,1), (1,1) and if (— —) lies on the segment joining the points (=, 1)

Po’ qo
and (pL q—) If we work with complex LP-spaces and complex norms, the
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theorem extends to the case in which the points (pio, qio) and (p%, q%) may
belong to the whole square [0, 1] X [0, 1] and, in this case, it is called Riesz-
Thorin theorem. Two classical applications of the Riesz-Thorin theorem

are the following.

Convolution operators. Given f € LP(R™;C), the convolution oper-
ator

Argi=fxgi= | fle=ygly)dy
maps L'(R"; C) into LP(R";C) and
1+ gllie < 1 Fllzellglier,
and LP (R"; C) into L>°(R";C), and
1 * gl <[ fllzellgll Lo -

A consequence of Riesz-Thorin theorem is that Ay maps continuously any
L"(R™; C) into L4(R™;C) and

1+ gllze < fllzellgllor

provided

g p T

This is known as Young’s inequality.

Fourier transform. As a consequence of Young’s inequality the Fourier
transform of f € L*(R";C)

flo) = [ emmeesiayds

maps L!(R"; C) into L>°(R"; C) with norm not exceeding 1, and actually,
by Riemann-Lebesgue’s theorem!, L'(R";C) is mapped into C{(R";C).
If f € L'(R";C) N L2(R"™;C), then f € L*(R™ C) and ||f]|z2 = || f]|z= by
Plancherel theorem. Consequently, the Fourier transform extends as an
isometry from L?(R™;C) into itself.

1Prove as exercise the following

Theorem 6.6 (Riemann-Lebesgue) For any f € L'(R";C) we have

efQ“iz'gf(x)dx =0.

[€]l—o0 Jrr

[Hint: Start with f € CO(R™;C).]



101

Riesz-Thorin theorem then yields that the Fourier transform maps
every LP(R"™;C), 1 < p < 2 into its dual space LP (R";C) and

Il < e

This is known as Hausdorff- Young inequality. By duality this holds also
for 2 <p < .

6.1.3 Marcinkiewicz’s interpolation theorem

Let Q C R™ be a measurable set. Suppose that T maps measurable
functions on 2 into measurable functions on 2. We say that T is quasi-
linear if

IT(f+9)| < QITf+Tgl)

for all f and g, @ being a constant independent of f and g. We say that
T is of weak-(p, q) type, 1 < p < oo, if there is a constant A > 0 such that

Al fllzr o)
S

Ay (s) < ( )q, vf e IP(Q)

Theorem 6.7 Let T be a quasi-linear operator both of weak-(po,po) and
weak-(p1,p1) type, 1 < pg < p1 < 0o. Then T is of strong-(p,p) type for
all pg <p < p1.

Proof. Let u € LP(Q2) and s > 0 be fixed, and let

E, :

v

{z € Q:|Tu(z)| > s}

UX {ze:|u(z)|< 30aT

W = uX{wEQ|u(:r)|>ﬁ}

As u=v 4w, we have |Tu| < Q(|Tv| + |Tw|), hence

S S
2Q 2Q

Let Ag and Ay be the (po,po) and (p1,p1) norms of T respectively, i.e.

ESC{xGQ:|Tv(x)|> }U{er:|Tw|> }::FSUGS.(6.4)

Aill fllzr:

ATf<s>g( / ) Vf e LP(Q), i = 0,1.

We have

Po

-/ fu(a) Pda,
S § {lu]>s/(2QA1)}
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and so

/ p)\p_1|Gs|ds§clp/ sp_po_l/ |u(z)|Podxds
0 {lul>s/(2QA1)}

2Q A |u(z)|
—clp/ |u(x |p°/ sP7Po~dsdx

(6.5)
= c2p / ‘U |pd$
—C”Hn
P —Do
If p1 = o0, then [[Tv|| L < Ai[v]L= < 55, and so Fy = (; otherwise we
have
2A pP1
|IF,| < (M) = 0—3/ |u(z)|P* dz,
s S {lul<s/(2QA1)}
so that

/ psP Y F,|ds <03p/ sp_pl_l/ |u(z)|P* dzds
0 {lul<s/(2QA1)}

—Cgp/ |u(z / sPP1 1l dsdx
2041 [u(a) (6.6)

cap /|u )|Pdx

C4p
= ——[ull}
P1

By (6.2), (6.4), (6.5) and (6.6) we have

oo
Tally, = [ o Eds
0

s/pWM&HW$%
0

C2p C4p
< | —— flullF,,
(p—p P — ) L

for p; < oo, while for p = co.

e _ Cop
MW&s/sz&ms lul®,. (6.7)
0 P — Do
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A variant of the previous proof actually yields

Theorem 6.8 Let pg,p1,q0,q1 be such that 1 < p; < ¢q; < 00, 1 = 0,1,
po < p1 and qo # q1. Suppose T is quasi-linear and simultaneously of
weak-(po, qo) and weak-(p1,q1) type. For 6 € (0,1) define pg and qo by

1 1-6 6 1 1-6 6

po P P @ q @
Then T is of strong-(pg, qo) type.

6.2 The maximal function and the Calderon-
Zygmund argument

We discuss here two more tools that are very useful to deal with the
measure of the size of a function.

6.2.1 The maximal function

The Hardy-Littlewood maximal function of a locally summable function
fin R ie. a function f € LL (R"), is defined for all z € R" by

loc
Mf(z) = sup ]{B Wy

We clearly have
1. M f is lower semicontinuous, A(M f,t) is open for all ¢, hence meas-
urable, homogeneous of degree one and quasi-linear,

M(f+g) < M(f)+ M(g).

2. M maps L>°(R™) into L>°(R™) continuously
IMfllzee < || fllzee,

and, on account of Lebesgue differentiation theorem,
|f(z)| < Mf(x), forae. ze€R"

3. M f is not bounded in L', indeed M f is never in L' except for f =0
since M f decays at infinity no faster than |z|~™ (up to constant).

Remark 6.9 Sometimes it is convenient to define the maximal function
as

M (x) := sup ]{2 Wi,

r>0
where Q,-(z) is the cube centered at x with sides parallel to the coordinate
axis and side 27:

Qr(z) :={y eR" | lyi —xs| <r, i=1,...,n}.
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The maximal theorem of Hardy and Littlewood

The key result about the maximal function is the following

Theorem 6.10 (Hardy-Littlewood) Given a function f € L*(R™) we
have M f € L. (R™); more precisely

Arp(t) = |{z e R" | Mf(x) > t}]

<) dy.
< ey 01

In particular M f(x) < oo for a.e. x.

(6.8)

Proof. It x € A(M f,t), then for some r(z) >0

][ F@)ldy > 1,
By(a) ()

or equivalently

1
Bo@l<y [ 1@l
Bi(a)(x)

Using a simple covering argument? we can choose points x; € R", i =
1,2,...

AL <Y B (@)

1 o0
< d
< Z/BT(zi)(zi) | (y)ldy
<5 [ rwlay.

Next we set
f(z) if |f(z)
0 if |f(x)

2We use the following simple version of Besicovitch-Vitali covering theorem:

F(x) = fxagee = {

Lemma 6.11 Let E C R™ and r : E — R™ be a bounded function. There exists a
countable family {x; : i € N} in E such that

(i) EC Uzoio Br(:ci)(xi),
(i) every point of E belongs at most to £(n) balls By(g,)(z:), where £(n) is a di-
mensional constant;
or even the version in which (ii) is replaced by

(i)’ the balls Blr(z.)(%‘) are disjoint.
z7(z;
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Of course f € LY(R™) and M f(z) < M f(z) + %, therefore

A(Mf,t) C A(MF,1/2),

consequently
|A(MF,1)] < |A(Mf,t/2)]
2 ~
<2 [ 1wy
2£(n)
- dy.
¢ /{xeR":f(x)>t/2} Sl
O
Since {z € R™ : Mf?(x) >t} = {x € R" : Mf(z) > t7}, (6.8) also yields

c(n) /
P Jizern:|f(2)|>t/2}

{z eR™ | Mf(z)>t}| < |f()[Pdy

it fe LP(R"), p>1.

From Marcinkiewicz’s theorem (see (see (6.7)) with pg = 1 in partic-
ular) or simply multiplying (6.8) by t?~! and using Proposition 6.1, we
easily deduce

Proposition 6.12 Let f € LP(R™), p > 1. Then M f € LP(R™) and
IMflle < A(n,p)|IfllLe,
where A(n,p) ~ p%l asp— 1.
Also notice that
1. If fr — fin LP, then M (|fr — f|’) — 0 in measure; in fact

o | MO — )@ > e} < g = fllon:

&

2. tP|{z | Mf(z) >t}| > 0ast— oo

Finally, from |f(z)| < M f(z) a.e. we also infer ||f|lLr < |Mf||L»,
p> 1.

Lebesgue’s differentiation theorem

In several instances we used that for a.e. =
£ty 1) asr—o.
By (z)

This can be in fact inferred using the maximal theorem.
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Theorem 6.13 Let f € LP(R"), p > 1. For a.e. = we have |f(x)] <
Mf(z) and

i {10~ f@) Py = 0.
= B, (x)

Proof. Consider a sequence {fr} C C°(R™) that converges to f in
LP(R™). By Proposition 6.12 we may assume that

fr(x) = f(x) and M(|fx — f|")(x) — O for a.e. x € R"™. (6.9)

Set E := {x € R™ | (6.9) holds}. Then, as
fe(z) = lim fr(y)dy

P=0 JB, ()

implies | fx(z)| < M fr(z), we see that |f(z)| < M f(zx) for every x € E.
The second part of the claim follows observing that

]i W)~ @Pdy < f (W) — @) + @) - ful@)?

B ()

+ [fr(x) — fr(@)]? }dy
< clp)(gse fi)"+ c@2M(f = ful") ).

B (z)

Exercise 6.14 Let f € L'(R™). Deduce that for a.e.

f(z) = lim fy)dy

=0 /B, ()

and, indeed,

A theorem of F. Riesz

Here all cubes will have sides parallel to the axis. Let Q¢ be an n-
dimensional cube in R™ and let F denote the family of all countable
coverings of Qo by cubes with disjoint interiors. For f € L'(Qy) set

T A f(x)ldx>pr.

{QiYeF 5
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Theorem 6.15 (F. Riesz) Given any f € L*(Qo), then f € LP(Qo) if
and only if K,(f) < co. Moreover

11l Qo) = Kp(f)-

Proof. By Jensen’s inequality K,(f) < || f|lLr(q,)- Conversely, assume
K,(f) < oo and let {Q; 1} be the covering of Qo obtained dividing Qo
into 2™ cubes congruent to 27%Q. Define

= f Ul ifreQu

We have ¢y, € LP(Qo) and
o° P
/Q goidx:Z@iMl—p(/Q |fdx) < KP(f) < oo.
0 i=1 ik

By the differentiation theorem o (z) — |f(z)| as k — oo for a.e. ux;
Fatou’s lemma then yields

/ |f|Pdx < likminf/ lok|Pdz < KB(f).
0 > JQo

6.2.2 Calderon-Zygmund decomposition argument

Here we present the Calderon-Zygmund or stopping time argument and
its relations to the maximal and distribution functions. The conclusion of
the argument states

Theorem 6.16 (Calderon-Zygmund decomposition) Let Q be an
n-dimensional cube in R™ and let f be a non-negative function in L*(Q).
Fiz a parameter t > 0 in such a way that

]gf(x)dx <t.

Then there ezists a countable family {Q;}icr of cubes in the dyadic de-
composition of Q (as defined in the proof) such that

(i) t < :/:Qi fdx < 2"t for everyi € I;

(i) f(z) <t for a.e. x € Q\U;c; Qi-
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Proof. By bisection of the sides of @, we subdivide @ into 2" congruent
subcubes. Those cubes P which satisfy

]{) F@)da > ¢

will belong to the family {Q;}, while the others are similarly divided into
dyadic subcubes and the process is repeated indefinitely (or finitely if at
some step there is no such cube). Let Q := {Q;} denote the family of
subcubes so obtained for which

(x)dx >t
Qi

and for each @); denote by @Z the cube whose subdivision gave rise to Q);.
Since |Q;| = 2™|Q;| we get immediatly (i) as

-~ flx)dr < t.

Qi

If 2 € Q\U,c; Qi and is not on the boundary of some @;, then clearly
it belongs to infinitely many cubes P in the successive subdivision with
|P| — 0. As Lebesgue differentiation theorem implies

flz) = 1131;13 Pf(y)dy a.e. x,
|P|—0

(ii) follows at once. O
Remark 6.17 If f € L'(R") and ¢ is any positive constant, then the

conclusion of Theorem 6.16 holds true, since we can first subdivide R"
into cubes for which we have

]{gf(x)dx <t.

Remark 6.18 Let {Q!} and {Q3} be the families in the decompositions
of Calderon-Zygmund corresponding to the parameters ¢ and s, s > ¢ > 0.
Then each Q7 is contained in some Q.

We finally show that for any function f € L*(Q)
(a) the distibution function of the maximal function M f(x)

(b) the function %f{|f|>t} |f(y)|dy

(c) the sum of the measures of the cubes Q! of the Calderon-Zygmund
decomposition relative to |f| and ¢
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are equivalent for large values of ¢. In fact we have

Proposition 6.19 Let Q be a cube in R™, f € LY(Q) and let

][Q|f|dx§t.

Denote by {Ql}ier the Calderon-Zygmund cubes relative to | f| and t. We
have

2" 2
- flae<Yojll<; [ fldz,(6.10)
{z€Q:|f(z)|>t} iel {z€Q:|f(z)|>t/2}
and, for constants y(n), c1(n) and ca(n),
1
3 7l < e4(m) [ AV, (0)0)|
{zeQ:|f(z)|>t} (6.11)
< C2<”)/ || de.
b Jwequr@)> 25

Proof. From

[flde < Z/Qt fldz <257 Q|

/{IEQ:If(I)IN}

i€l el
and
HQ! < / \flde = / flde + / fldz
Q} {xeQl:|f(z)|>t/2} {zeQl:|f(x)|<t/2}
t
</ Flde + 1Q]
{zeQ?:|f(x)|>t/2}

(6.10) follows. The inequality on the right-hand side of (6.11) is the
maximal theorem. Finally, consider z € Q}; we have

f F@)ldy > t,
Qt

and taking the smallest ball B centered at x and containing Q¢, we find

Mf(z) > ]{3 F@)ldy = ~(n) ]2 F@)ldy > ~(n)t.

t
i

Hence A(M f,y(n)t) D U;c; @} and the inequality on the left-hand side
of (6.11) follows from (6.10).
0
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6.3 BMO

The notion of functions of bounded mean oscillation was introduced and
studied by F. John and L. Nirenberg in connection with the work of F.
John on quasi-isometric maps and of J. Moser on Harnack inequality. It
then proved to be extremely relevant in many different fields of real and
complex analysis.

Definition 6.20 Let Q¢ be an n-dimensional cube in R™. We say that a
function u € L*(Qq) belongs to the space of functions with bounded mean
oscillation BMO(Qy) if

|u|« ;= sup ][ lu — ug| dx < 400, (6.12)
Q

where the supremum is taken over all the n-cubes QQ C Qo whose sides are
parallel to those of Qo, and being ug := JCQ udx.

Commonly BMO is defined in the whole of R" by requiring u € Li. (R™)

loc
and the supremum in (6.12) to be taken over all cubes in R™ with sides

parallel to the coordinate axis (or even over all cubes in R™). But for
future use we prefer to work in a cube given cube @g. It is easily seen
that BMO(Qo) = £1™(Qo); we shall in fact see later that BMO(Qo) =2
LP(Qp) for all p, 1 < p < oo.

It is worth remarking that

(i) uw € BMO(Qy) if and only if for every @ C Qo there is a constant
¢cy,q such that

sup ][ lu — cu,qldx < oco.
Q Q
Indeed for x € @
u(z) = ugl < Ju(x) — cuql + leuq — ugl

< Ju(e) ~ cuol + f [u(0)  cualdy,
Q
and averaging over () we get

][ lu(x) — ugldr < 2 ][ lu(z) — cu,qldz.
Q Q

(ii) In the definition we can replace cubes with balls, and in fact only
balls with small radii are relevant.
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(iii) L*(Qo) € BMO(Qo), but, for instance log|x| € BMO([-1,1]),
and in fact to log |z| € BMO(R); this can be seen observing that
homotheties leave invariant BMO(R) and that

r+1 r+1
[ oglullay and [ Jlogly| - loglallay

—1 —1

are uniformly bounded with respect to z if |z|] < 1 and |z| > 1
respectively.

(iv) If ¢ is a Lipschitz function (uniformly continuous suffices), the u €
BMO implies (u) € BMO. Consequently max{u,0}, min{u,0},
|u| are BMO function if v is a BMO function. In particular, if Q
is a bilipschitz tranform of a cube @, then BMO(Q) 2 BMO(Q).

(v) WbHn(Qo) € BMO(Qp). Indeed by Jensen’s and Poincaré’s inequal-
ities, we see that

][\u—uQ|dx§ < ][ |u—uQ|"dx)n Sc(|Q/ |Du|"dx)n.
Q Q Q

(vi) Finally, BMO enjoys a rigidity that is typical of smooth functions.
For instance, if v € BMO(R™) and © C R" is a measurable set,
then uyq is not necessarily a BM O function. Indeed

o) = X(0,+00) l0g 2] ¢ BMO(R)

while log |z| € BMO(R).

6.3.1 John-Nirenberg lemma I

One of the important properties of BMO functions is the following weak
estimate:

Theorem 6.21 (John-Nirenberg lemma I [63]) There are constants
c1,co > 0, depending only n, such that

t
{reQlu@) —ugl >t} scrow (—er-) -0l (613
for all cubes Q C Qo with sides parallel to those of Qq, allu € BMO(Qo)
and allt > 0.

Proof. As w € BMO(Qo) = v € BMO(Q) and the sup in (6.12) can
only decrease if we consider @ instead of @, it is enough to prove (6.13)
for @ = Qo only. Moreover, there is no loss of generality in assuming
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|u|« = 1: if it is not so, we can consider @ := u/|ul., for which |@|, =1
and
- - t
{2 €Qo: lu@) —ug,| >t} = {z € Qo+ [alw) — g, | > W}
Take o > 1 = |uf. > fQo |lu—ugq,| dz; applying the Calderon-Zygmund ar-

gument with f = |u—ug,| and parameter a, we find a sequence {Q} }rex,
such that

a < ][ lu —ug,|dx < 2"«a, for every k € Ki, (6.14)
Qk
and
lu —ug,| <a ae. on@\ U Q- (6.15)
keKq

Then by (6.14) we get

lugr — ug,| = ’ ][ (v —wug,) dr| < 2"a, (6.16)
Qs
and
Lo 1 1
DI =D [ furugldr < ~ | lu—ug,lde < ~|Qol- (6.17)
kEK * yex, /O @ JQo @
1 1

Since |ul. = 1, for all k¥ € K; we have le lu —uqg:|de <1 < a, so
k

that we can apply again the Calderon-Zygmund argument with Q = Q%,

f=lu-— uQi' and parameter «, finding a sequence of cubes {Q,lc}j Yiear)

such that

i
a< ——— u(z) —upr | de < 2", 6.18
@k ;) Jay ,v| @) =gy (6.18)
for all j € J(k) and
|u(x) — uQ}C{ <a a.e. on Q1 \ U Q}” (6.19)
jeJ (k)

As k ranges over K1 we collect all cubes obtained and rename the denu-
merable family

{Qr.j}jcstm rer, = {Q7 ek
and claim that

|lu —ug,| <2-2"%, a.e. on Qo\ U Q3. (6.20)
keKso
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Indeed we have
o\ U at=(e\ Ua)u( Ua U a).
keKso keK; keK keK>

On Qo \ Upek, @i we have |[u —ug,| < a <2-2"x a.e. by (6.15), while
(6.14) and (6.16) imply that for a.e. € Uy, @k \ Uper, @7 we have

[u() = ugy| < Ju(x) — ugy| + [ugy —ug,| < a+2"a <22, (621)

where k = k(x) € K is the (unique) index such that = € Q}. Then (6.20)
is proven.
Moreover by (6.17) and the fact that |ul. = 1,

1 1 1
S s Y [ u-ugldr< s 310k < 1l
jEK, keK: Qi keK,

Repeating this procedure inductively, for every k € N we can find a se-
quence of cubes {Q}. }rek, such that

lu —ug,| <i2"a a.e. on Qo \ U Q. (6.22)
keK;
; 1
> 1@kl < Q. (6.23)
keK;

Indeed (6.23) follows simply as before. To get (6.22), write

@\ U Q:;—(Qo\ U Qt)u.-.u( U e\ U Q;;).

keEK; keEK, keEK;_1 keK;

Then for x € (UkeKi_l Qi \ Usrex, Q}v), we have

[u(z) — ug,| < |u(z) — ugi-t | + |UQ§;;1 —ugi-2 ot Jugr — uqo

1

< ! 2%a+...+ 2"
< + +o
z¢Urek, Qi by (6.16), (6.20), and analogs

< 2"

To prove (6.13) take any t > 0, and set ¢1 := «, ¢g 1= I;L,S. Ift < 2"a,
we have 0 < ¢p(2"a —t) = 1 < e2(2"@=) = ¢;e~ and so

{z € Qo Ju—ug,| >t} < |Qo| < c1e™*|Qul.
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If t > 2", choose i € N in such a way that 12"« <t < (i + 1)2"«; then
finally

{z € Qo:lu—ugl>1t} < |{zeQo:|u—ug,l>i2"}
. 1
< Y Iek < 1l
keK;
< e Qo
where the last inequality follows from —i <1 — 5. O

Corollary 6.22 Let u € BMO(Qy); then uw € LP(Qp) for all 1 < p <
+o0o and there is a C' = C(n,p) such that

1/p
sup ( ][ lu — ugl? dm) < Clu . (6.24)
QCQo Q
Proof. Using (6.2) together with (6.13), we get
—+o0
/ lu —uglPde = p/ P {z € Q : u(z) —ug| > t}|dt
Q 0

o0 o
< pean [ rten (- ) ol
0

|ul«
= pa (

p +oo
Y oy [ et
CQ 0
= Cn,p) luf|Ql,
and (6.24) follows. O

From Corollary 6.22 and Jensen’s inequality we immediately get

Corollary 6.23 For every 1 < p < +oo the Campanato space LP™(Qp)
is isomorphic to BMO(Qy).

Exercise 6.24 It is not true that if u € L?(Qo) for every p € [1,00), then
u € BMO(Qo). Let u(z) := (log|z|)?, = € [~1,1]. Show that u € LP([—1,1])
for every p € [1,00), but is does not satisfy (6.13), hence u ¢ BMO([-1,1]).

In the following theorem we give some characterizations of BMO func-
tions; in particular we show the converse of Theorem 6.21, so that (6.13)
is in fact equivalent to uw being a BM O function.

Theorem 6.25 The following facts are equivalent:
1. we BMO(Qo);
2. there are c1,co such that for all Q C Qo,t >0
{z € Q: |u(z) —ugl >t} < cre™*'|Ql;
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3. there are cs,cyq such that for all Q C Qo

][ <604\u—uQ| _ 1) dz < c3;
Q

4. there are cs, cg such that for all Q C Qq

Moreover, we can choose c1,cs,cs depending only on n, while ca,cq, ce =
¢y can be chosen of the form c(n)/|ul..

Proof.
(1 = 2) is John-Nirenberg lemma I with ¢y instead of o

(2= 3) Set ¢4 := 2. Then using (6.2) and the change of variable e®! = s
we compute

/ (664|U7UQ‘ _ 1>d:E :/ ‘{1. €qQ: ecalu(@)—uql 5 5}‘d$
Q 1

oo
:/ cqettt
0

o0
<¢1|Q| / cpettee2tdt
0

{z e Q| |u(z) —ugl > t}‘dt

—elQ] [ Ze = cifql.
0 2
(3= 1)t <e' —1, hence [u— ug| < Lelvual —1 5o that
][ u—ugldr < — ][ C“‘“ uel 1)dx <=3
(3 = 4) We have
f P ][ e~y — ][ eC4(U—UQ)dx f 6_64(u_uQ)dZ‘
2
< ( ][ €C4|u_uQ|d$> .
Q

(4= 1) Set w :=logw, v = e"; then

][ew—dex ][ e_(w_wQ)diL': ][ewdx ][ e_wdx§65. (625)
Q Q Q Q
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On the other hand, by Jensen’s inequality
][ eY"vdx > exp ][ (w—wq)dr =1
Q Q
][ e~y > exp ][ (—(w —wg))dz = 1.
Q Q

Hence we conclude that both integrals in (6.25) are smaller than or equal
to c¢5. Finally, since

][ exp |w — wo|dx < ][ exp(w — wq)dx + ][ exp(wg — w)dz < 2cs,
Q Q Q
using again Jensen’s inequality we conclude
exp ][ |lw — wgldr < ][ exp |w — wo|dz < 2cs.
Q Q

Taking the supremum over all cubes Q C Qo we get © € BMO(Qop). O

Sobolev embedding in the limit case

If u € Wh™(Qp), Qo C R™, then by Sobolev embedding theorem u €
LP(Qo) for all p, 1 < p < oo, but in general u is not bounded:

log(—log |z]) € W'2(By(0)) ifn=2.

However, by Poincaré and Hélder’s inequalities

][ i — ugde < ¢(n)| Q""" / | Duldz, (6.26)
Q Q

i.e. u € BMO(Qo). Since what matters here is (6.26), by John-Nirenberg
lemma (or Theorem 6.25, 3), we can state

Proposition 6.26 Let u € WhY(Qy) and suppose that for any cube
Qr C Q of side length R

/ |Du|dz < kR™ .
R
Then there are constants p1 and ps depending only on n such that

][ exp (%|u — qu\)da: < uo.

0
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6.3.2 John-Nirenberg lemma II
The next theorem may be regarded as a weak form of Riesz theorem 6.15.

Theorem 6.27 Let u € L'(Qqo) and suppose that for some p € [1,00] we

have
N
>> < o0, (6.27)

where {A} denotes the collection of all finite decompositions A of the cube
Qo into subcubes Q; with sides parallel to the axes. Then the function
u—uq, (hence also u) belongs to L (Qo) and for allt > 0

o Qo o) vl > 1) < e (B0

Kyt = s Y- Q(f ju — g,

Ae{A} Q.eA

Proof. Let ¢q := 1% be the conjugate exponent of p and

11 L _1-g¢77! o
— 1 1
T = 2n+j(n+1)qj)\j< .

Observe that qj)\j = qj)\j,l + 1. Fix 0 > 0 and

Ao) == [{z € Qo : [u(x) —ug,| > a}|.
We first show by induction on j that if

{ u € LY(Qo) is such that K,(u) < oo and )
70 2 Kp(u)|Qol 7 ’
then
W AONTAR! W
)‘(0) < AJ( : ;(U)) (K (u) /Q |u - qu|dw> ’
j ’ (B)]

where Ag:=1, A; = H(qi2n+i(n+1))ﬁ

i=1
Since obviously

1
Ao) < —/ = gy |da,
o 0

(B)o trivially holds, hence also the implication (A)y = (B)o. Let us now
assume that

(A)j-1= (B)j-1
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for all f € L'(Qo) with K,(f) < oo and that o satisfies (A);. Taking
A ={Qo} in (6.27) we get

K
T;0 > p(u1>2 ][ lu — ug,|dx
0]

|Qol?

and we can apply the Calderon-Zygmund argument to |u — ug,| with
parameter t = 7,0 to obtain a sequence of cubes {Q}, Qr C Qo such
that

Tjo < ][ lu —ug,|dx < 2"1j0 Vk
k

(6.28)
lu —ug,| < oty a.e. in Qo\ Uy Qk-
Let
v(a) = { U ST
Then
(i) vg, = 0

(i) Kp(v) < Kp(u)

(iii) because of (6.28)

/ |v|dx
Qo

rAleNE —ug,|d
10t Qult f, tu-varlda
(Zial( f w-vair) ) (Tla)’
k Qrk k

1
1 q
Ko00) (1 [ u= gyl )
0

IN

IN

Since
|u_qu| > |U_UQ0| - ‘qu _qu| > |u_uQ0| _/Q |u_qu|dxv
&

using (6.28) we have
{z € Qo:lu(z) —ug,| >0} C{zeQo:|v(x)] >o(l—-2"7)}

From
1 i1
1-2"r,>1— — =2 6.29
7_.7 q])\7 A] ( )
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we infer

i g-n-G-Dm+1) \ | §
2 +1Tj = qj_l/\j_l qj/\j <Tj,1(1—2 Tj).

Therefore v satisfies (A);_1 with ¢ := (1 — 2"7;)0.
From the induction argument, and using (6.29), we then get

Ao) < {z € Qo : [v(z)| > o(1—2"7))}] |

= <“if()>A <Kp1<u> / 0 vldﬂf)ql ,

and using (ii) and (iii) we conclude

(K N a
Ao) < Aj,l)\;’_ o < pa(u)> [K @ / lu — uQ0|da:}
P 0

To get (B);, we observe that Tj_l = @ N2 () whence

—J

G=1_ =077« \Nifign+i(n+1)]57
I AV (P AR T

This concludes the proof of the induction.
Let us assume that (A); holds for a given ¢ > 0. By the trivial
estimate

1
Qul? ]{2 fu — gy |dz < Kp(u)
0

and (B); we deduce the existence of a constant c¢(n,p) such that

Qo7 ¥

(S22 (385"

We assume now Kp(u)|Q0\_% < 27 "¢ and we choose the greatest integer
j for which (A); holds. Then we have

Kp<u>>”(1qf+l)
(6.30)

1
oTjr1 < |Qo| 7 Kp(u) < o7j. (6.31)

Inserting (6.31) into (6.30) we conclude

Ao) < cl(n,p)<Kp_(“)>p —pq i

pn Tit1 < 62(nap) <
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where we used that Tj_flqijil is bounded. Finally, since (o) < |Qo| we

see that (6.32) holds also for 0 < ¢ < 2”Kp(u)|Q0\_% with a different
constant.

To see that also u € LP (Qo), write |u] < |u — ug,| + |ug,| and notice
that

{z € Qo:u(x)| >t} <[{z € Qo: |u(z) —ug,| >t/2}]|
+{O - if Jug,| < %
Qol < ZH5E i § < fug, .

O

Proposition 6.28 A function u € L'(Qo) belongs to BMO(Qo) if and
only if

liprgiolgf Kp(u) < 0.
In this case we have

lul« = lim K,(u).

p—00

Proof. We may assume |u|, > 0. Then for any M € (0, |ul.) we can find
a cube @ C Qg such that

]Z lu —ugldx > M,

Q

hence )
Kp(u) > |Q[» M,

concluding

M <liminf K,(u) < limsup K, (u) < |ul..

p—o0 p—00

6.3.3 Interpolation between [ and BMO

Following G. Stampacchia and S. Campanato we now prove

Theorem 6.29 Let 1 < p < oo and let T be a linear operator of strong
type (p,p) and bounded from L into BMO, i.e.

[TullLe < erllulloe,  for every u € LP(Qo)

and
|Tull+« < callul|poe, for every u € BMO(Qo).

Then T maps continuously LY(Qq) into LI(Qo) for all ¢ € (p,00).
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Proof. Let A = {Q;} be a fixed subdivision of Q. Given u : Qy — R
define

(Tau)(x) == ][ |Tu — (Tu)g,|dx, for z € Q;.

y

Then Th is of strong-(p, p) type, since

sl = 3 0 f, mru=ug

Qi€A
< Z/ |Tu — (Tu)g,|Pdx
Qi€A
< o Z/ (Tul” + |(Tu)o, |P)de
Q€A
< 2° Z/ |Tu|Pdz
Qi€A

2P HTU”Lp Qo) = Cl”“’”iP(Q)'

Moreover Tx is also of strong-(co, 00) type: indeed for all u € L*°(Q) we
have
[TaullL=(@o) < |Tuls < callullL=(qo)-

Finally Ta is clearly quasi-linear.

Marcinkiewicz’s theorem then implies that TA is a bounded operator
between L"(Q) and L™ (Qq) for all r € (p, 00); moreover, the (r, r)-operator
norm of Ta can be estimated with a constant that depends only on p, r, ¢;
and cy. In particular, there is a constant ¢ > 0 not depending on A, such
that

ITaullLr(qo) < ellullLr@)-

On the other hand
K.(Tu) = sup ||Taull, < C|lull, < oo;
Ae{A}
therefore, thanks to John-Nirenberg’s theorem, we have that Tu € L7 (Qo)
and T is of weak (r,r)-type for each r € (p,00). Again by Marcinkiewicz’s

theorem, T is of strong (g, q)-type for every ¢ € (p,r), hence for every
q € (p,00). 0

6.3.4 Sharp function and interpolation L.? — BMO

The sharp function of u € L'(Qo) can be defined according to Fefferman
and Stein as follows:

u¥(z) == sup ][|u ) — ugldy.
TEQCQo
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The centered sharp function is defined as

= sup ][|u ) — ugldy.
QCQo

where the supremum is taken among all cubes centered at z. We have

u(r) < u¥(2) < 2"a(z),  |ul = ||z,

and, extending u to L'(R™) by setting u = 0 on R \ Qp, we can define

Mu(zx) and verify
u(z) < e(n)Mu(x),

hence if u € LP(Qo) for some p > 1, then u# € LP(Qo). Conversely we
have:

Theorem 6.30 (Fefferman-Stein) Consider u € L'(Qo), and suppose
that u* € LP(Qo) for some p > 1. Then u € LP(Qo) and

(f wrar) <con|(  wepae) + f ]

Set,
=>1Qk, (6.33)

JjeJ
where {Q; }jes is the Calderén-Zygmund family of cubes corresponding

to |u| and t. The proof of Theorem 6.30 uses the following weak estimate,
known as good-A-inequality (we use t as parameter for \).

Proposition 6.31 We have

p((2"+ 1)) < [{z € Qo | u# () > Bt}| + Bu(t) (6.34)

for any B8 € (0,1) and any t such that

t> ][ |u|dz.
0

Proof. Set s := (2" + 1)t. Let {Q%}es and {Q}}ics be the Calderén-
Zygmund family of cubes corresponding to the function |u| and the para-
meters t and s respectively. We can write

=3 >l

jeJ iel:chQj.

Fix j € J; then we have two possibilities:



6.3 BMO 123

1. Qf c {x € Qo : u¥(x) > Bt}. In this case

E Q¢ < {z € Q) | u¥(x) > Bt}|.
'LGI:Q?CQ}

2. There is y € Q} such that u#(y) < ft, thus

]Zt|u—uQ;|dx§6t
Q

j
and

][ |u — ug: |dr > ][ |u|dz — ][ |u|de > s — 2"t =t.
Qs ! Q3 QL

i i

Therefore, in this second case,

" Z Q3] < Z / |u—th|dx</Qt |U—UQ§|§&|Q§'|

i€:Q5 CQY 1€1:Q3 CQY
i.e.
> Qi <A1l
i€l:Q5CQt
In both cases summing on j we deduce (6.34). O

Proof of Theorem 6.30. We rewrite (6.34) as
<z eQo|uf(x)>pE"+ 1) "t} +Bu(2" +1)7't)

for t > (2” +1) f, luldz =: to, and consider

I(7) := p/T Pt (t)dt.

to

We have

I(7) §p/Ttp_1|{$€Q0:Mu(x) > t}|dt

to

< p/T t {z € Qo u™(z) > B(2" + 1) "t} |dt

to

+ Bp /T (2" + 1))t

to
on 1 p 00
§( ; > p/ Sp_l‘{$€Qotu#($)>S}|dS
B(27+1)"1tg
@"+1)"'r
+ 82" + 1)pp/ P~ u(r)dr
(2r+1)~ %o

< (%5 1) ¥ 2 0) + B + 1PI() + 62" + DPHEIQo)
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i.e., if we choose 8 = (2" +1)7?,
I(r) < 20712 + )P b o 4 tB1Qul

and the result follows at once for (6.2), since |A(u,t)| < u(?). O

In terms of the sharp function we can now give a more transparent
Proof of the interpolation LP — BMO. Consider the map

T (u) := (Tu)¥.

T is sublinear and

1. is of type (p,p) if p > 1 since

c(n)[|M(Tu)|| e (qq)
c(n, p)ITullLr ()
c(n, p)ApllullLe(q);

17l Lo Qo)

ININ TN

2. is of type weak-(1,1) if p = 1 since

|{x € Qo : M(Tu)(x) > t/c(n)}|
)Tl _ ¢ (n) A
t - t '

IN

{z € Qo : (Tu)# (x) > t}

IN

3. is of type (00, 00) since
1T (w)][Lee < 2"[Tuls < 2" Aco|[ul|Loe-
Marcinkiewicz interpolation theorem implies that 7 is of strong type (g, q)

for all ¢ € (p,o0), and Theorem 6.30 finally yields the result, since by
Jensen’s inequality we get

q
/ |Tu‘qu < Cl/ |Tu|qu+CQ|Q0|( ][ |T1.L|d(E>
0 Qo Qo

<eo [ izt ealol( rurac)’

Qo Qo

§03/ |u|qu+04|Qo|<][ u|pdx>p
Qo Qo

§05/ |u|?dx.
0
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6.4 The Hardy space H!

The Hardy space was introduced by E. Stein and G. Weiss [104] and can
be characterized as

HAR™) = {f € LNR") s suplgy + f| € L'(R™)
t>0

where 1
hi(x) := t—nh(g>,

for a given function h € C°(R™) with
supp(h) C B1(0), / hdzx # 0.
B1(0)

The definition is independent of the choice of h (see Fefferman and Stein
[34]).

Exercise 6.32 Prove that if f € H*(R") is non-negative, then f = 0.

As Exercise 6.32 suggest, the Hardy space is a strict subspace of L',
ie. HY(R™) C L'(R™). In fact it turns out that

fdx = lim fdx=0
R™ R=c0 JBR(0)

for every f € H(R™).

The Hardy space is a good replacement of L! in the theory of partial
differential equations. For instance, we shall see that L'-estimates for the
Laplace equation do not hold, in the sense that

Au= fin By, u=0ondB;, with f & Ll(Bl)

does not imply D?u € L'(B;) (see Example 7.5). On the other hand if we
replace the assumption f € L*(By) by f € HY(R"), then D?u € L(B)
and in fact

ID?ullrr < el fllpa

A classical example of a function belonging to H*(R™) is the Jacobian
Ju of a function u € WH™(R"). It is clear that Ju € L'(R™), but as we
shall seee the special Jacobian structure makes Ju slightly ”better” than
an arbitrary integrable function. This is part of the following theorem.

Theorem 6.33 (Coifman-Lions-Meyer-Semmes [22]) 1) Let u sat-
isfy
u € L

loc

(R™,R™) for all g € [1,00), Vu € L"(R"™). (6.35)
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Then Ju := det(Vu) € H*(R™) and
[ Jullyr < OVl Ln.

2) Let E, B satisfy

/ 1 1
E e P(R"R"), BeLl’(R"R"), withpe(l,00), —+— =1
p p
(6.36)
and
divE=0, curlB=0,3 (6.37)
in the sense of distributions. Then E - B € H*(R"), and
IE - Bllag < ||El[Lo || Bl Lo - (6.38)

The proof of Theorem 6.33 is based on the following lemma.

Lemma 6.34 Let E, B satisfy (6.36) and (6.37). Then for every a and
0 satisfying

11 1 )
a 0 n
there is a constant C = C(h,a, 3) such that

lhe # (B - B)(a)| < c( f . E(y)l“dy>i( f » |B<y>|ﬁdy)‘1*,

for every x € R™, t > 0, where hy is as in the definition of the Hardy
space.

Proof. Since curl B = 0, by the Poincaré lemma (see Corollary 10.71) we

can find a function 7 such that Vo = B, where 7 € Ll(f;)* (R™)ifp' <n
or a function m € L _(R™) for every g € [1,00) if p’ > n, where

is the Sobolev exponent. We have
E - B =div(En)

in the sense of distributions. This is obvious if £ and B are smooth,
since div(Ew) = div(E)m + E - Vr, and in the general case it follows by

) B; o
9 7'fa—J:Oforlgz,jgn.

3 — B
curl B = 0 means that weakly oz, D




127

mollifying ' and B. Then we can write

by« (B - B)(z) = / (T div(Bly)r(y)dy

R’!‘L tn

_ /R ﬁ%w(z - y) - E(y)n(y)dy

_ / tn1+1 Vh(m - y) - E(y)(r(y) — me.0)dy,

with
Mo = ][ r(€)de.
By (x)

Then with Holder’s inequality, and bounding

tith(x ; y) < tanBt(:r) (¥),

we deduce

hex (B-B)(@)| < 0( fw lE(y)"’dy)%( ]{W

By the Sobolev-Poincaré inequality, Proposition 3.27, we then infer

(Foas

(y) = 7|’
t

1
7

B’ 7 1
dy) SC(][ |V7T|“)
By (x)
:c(][ |B|°‘)a,
Bi(x)

ﬂ-(y) - ﬂx,t
t

since

1 1 1 1 I 1
af o n 8 B’
and the proof is complete. O

Proof of Theorem 6.33. We first prove part 2). Apply Lemma 6.34 with
some a, 3 as in the lemma satisfying o € (1,p) and 8 € (1,p’). Then,

since p/a, p'/8 > 1,

: :
sl (B:8)@) < Coup (f1pa) (o BwPay)
>0 >0 \ JB, () By (x)

gc(igg f y E<y>|ady);‘(§gg f t(x)|B<y>ﬁdy)5
= C(M(|B|*)(2))> C(M(|B|%)(x))7,
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and we conclude by noticing that, thanks to the maximal theorem (Pro-
position 6.12),

1
< CIIEI*F/0 = ClIE] Lo,

I(M(E[*)*[|» = IM(E)]Z,,.

and similarly
1
I(M(IBI?))? || o < CIIBll s
so that

IE - Bl :/R §1>110>|ht * (B - B)(2)|de < C||E| Lo || Bl Lo,

as claimed.

We now see how part 2) of Theorem 6.33 implies part 1). Indeed we
can write u = (u!,...,u") and

Ju = det(Vu) = Vu' - o,

where

n
divo = 0 as distribution, |o] < H V| ae.,
j=2

and apply part 2) with
E=0ec LY YR"R"), B=vVu'eL"(R",R")

to get

n
L

1Tullr < IVl llolzn -1y < [IVul

as claimed. O

6.4.1 The duality between H! and BMO

It was proven by Fefferman and Stein that BM O(R™) is dual to the Hardy
space H!(R™). In particular every continuous and linear functional L on
H(R™) can be written as

Lo = | fl@)glx)dz, (6.39)
for some f € BMO(R™), where the integral has to be intended in the
sense that we shall now explain. Indeed notice that for g € H!(R") and
f € BMO(R"™) the integral in (6.39) need not be absolutely convergent,
since f might be unbounded (for instance f(x) = xp, (o) log|z|) and |g]
might be only L'. However, if we consider the linear space

HL(R™) = {g € L*°(R™) : supp(g) compact, and g(x)de = O},

Rn
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which is a dense subspace of H!(R™) (the proof of this fact is not ele-
mentary), then the integral in (6.39) converges whenever g € HL(R").
Moreover, the fact that the average of g is zero ensures that (6.39) is
well-defined, although elements of BMO(R™) are defined up to additive
constants.

We can now state the duality theorem:

Theorem 6.35 (Fefferman-Stein [34]) Let f € BMO(R") and con-
sider the linear functional Ly : HL(R™) — R given by

Li(g) = . f(x)g(x) dz.

Then Ly is bounded and its unique bounded linear extension to H'(R™)
satisfies
[Lsll:=" sup  Ly(g) < C|fl.
geH,||gll 41 =1
Conwersely, for every continuous and linear functional L € (HY(R™))*,
there exists a unique* function f € BMO(R™) such that L = Ly, where
Ly is as in the first part of the theorem. Moreover, we have that

[fl < ¢l

6.5 Reverse Holder inequalities

The last tools we want to discuss here are the reverse Hélder inequalities.
These are inequalities such as

( ][ fpda:> ’ < b( ][ f‘%la:)a V(@ congruent to Qy, (6.40)
Q Q

where p > ¢ and b > 1. There are several occurences of inequalities of
this type, for instance: Harnack inequality for harmonic functions

supu < ¢(n)inf u
Q Q

can be seen as (6.40) with p = +00, ¢ = —o0. In Theorem 6.25 we saw
that e/ satisfies (6.40) with p =1, ¢ = —1 for some « if f € BMO(Qy).
Reverse Holder inequalities also appear in the theory of weights in har-
monic analysis, and in the theory of quasi-conformal mappings.
However, inequalities (6.40) are too stringent; for instance they imply
that f = 0 if f = 0 in some open subset of Qo (principle of unique

4Remember that functions in BMO are defined up to constants, hence also unique-
ness is intended up to constants.



130

continuation), and this is too strong for solutions of elliptic systems. More
suited for the last case are reverse Holder inequalities with increasing
support:

< ][ f’%ix)p < b( ][ f%)q VeeQ, r<r, (6.41)
BT(IO) B2r(10)

which were introduced and studied by M. Giaquinta and G. Modica [46].
The key property is that, whenever (6.40) or (6.41) hold with exponents
(p, q), they also hold with exponent (p+e¢, p) for some positive ¢, providing,
this way, higher integrability of f.

6.5.1 Gehring’s lemma
The following result is due to F. W. Gehring [35].

Theorem 6.36 Let f € LI(Qq) for some q¢ > 1. Suppose that there exists
b > 1 such that for all congruent® subcubes Q of Qo we have

(]{Quwx)% <b ]gfldw-

Then there exists p > q and a constant c¢(n,p,q,b) such that f € LP(Qo)
and

(£ 1rrar) é

Proof. Clearly it is enough to prove (6.42) for Q@ = Qp. Given t >
fQo | f|dx, denote by {Q;}icr the Calderén-Zygmund cubes relative to ¢
and |f|. Also set A; = {x € Qo : |f(z)| > s}. According to Proposition
6.19

< c( ]{9 f|qu> E, Y@ C Qo. (6.42)

/A |f19da < 277 " |Qil- (6.43)

iel

Moreover for every i € I
1 < ][ ||da.
Qi
The last inequality transforms, using the assumption, in

HQil < b / fldz < b / \fFldz + bH|Q
Qi QiNAgt

5As usual all cubes have sides parallel to the axes.
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for every 3 € (0,1/b). If we choose 8 = 5 we infer

10Q:| < cl/ \fldz,
QiNAg:

with ¢; depending only on b. From (6.43) and (6.44) we then deduce

If|9de < cth_l/ \f|da.

Ay Agt

Since

/ flide < 471 / \fld,
Agi\A¢ Agt

/ |[flfdx < (ca + Wq_l/ |f|da,
Apy

Agt

we also have

and, if we set

h(t) :== |f|dx
and observe that

lrde = = [ 1 an(s),
Ay t

we conclude

—/ 577 dh(s) < at97 h(t),
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(6.44)

for every 7 > (Gt = ﬁ, with ¢3 = ¢3(b,¢,n), and the result follows from

the lemma below.

O

Lemma 6.37 Let h : [ty,+00) — [0,400) be a non increasing function
with limy_, 4 oo h(t) = 0. Suppose that for every t > to and for some con-

stant a > 1 we have
+oo
—/ 5771 dh(s) < at? h(t).
t

Then, for every p € [q,q + Z%}), we have

+00 Foo
—/ sPldh(s) < —ctg_q/ 577 dh(s),

to t()

where ¢ = c(a, p,q).

(6.45)

(6.46)
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Proof. Up to rescaling, we may assume tg = 1 and, by an approximation
argument, we may assume that, for some k > 0, h(s) = 0 if s > k. For

any r > 0 set
“+o0 k
I(r) := —/ s"dh(s) = —/ s"dh(s).
1 1

Then integration by parts yields
k
Ip-1)= —/ sP~9597 L dh(s)
1

=I(g—1)+(p—q) /1k Sp_q—1( B /k tq_ldh(t))dS. (6.47)

S

=:J
By (6.45) we have, again integrating by parts,
g 2 a B g 1
Jga/sp_hsds = - h(l) — —— sP7 dh(s
[ -2h(s) Sh(1) = [ tange
1 a k
< ——Ig-1)— — sP=Ldh(s).
T — = [ o tan)
Inserting this into (6.47) we get
P—q g—1
1— )I < -,
(1o =)= < ST
that is (6.46), up to rescaling. O

6.5.2 Reverse Holder inequalities with increasing
support

The following result was proved by M. Giaquinta and G. Modica [46].

Theorem 6.38 Let f € Li (Q), ¢ > 1, be a non negative function.

loc

Suppose that for some constants b > 0, Ry > 0

( ][ fqda:)a <b fda (6.48)
Br(zo) Bar(zo)

for all xg € 2, 0 < R < min(Ry, w). Then f € LY () for some
p > q and there is a constant ¢ = ¢(n, q,p,b) such that

( ]{BR(%) fff'dgc)5 < c( ]{BQR@O)fqu)q'
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Py 1| Pop|Pa3| Py

P P o P 3

Cs Co

o)

Figure 6.1: Decomposition of @1 = Cy U (U, Ck) and C, = | P ;-

Proof. Since the theorem is scale and translation invariant, and it is local,
we may work in the cube

3
Q= {xeR”:|mi|<§,i:1,...7n}

and assume g = 0 in R"\@;. Define also

1
Cy = {xER":|xi|§§,i=1,...,n},
1 ) 1
Ck = {37 S Ql : Q_k < dlSt(I’,an) < F}, k > 17
so that Q1 = ::5 Ck. Decompose each C into a union of nonoverlapping

cubes {Py ;} of side length #, in the obvious way (see Figure 6.1) and
define the function

¢(z) == (dist(z,0Q1))", =z € Q1.

Let o = o(n) > 0 be a constant such that

1
;|Pk,j| < ¢(x) <o|Pyjl, Voe Cr_i UCLUCrqir. (6.49)
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Choose t > 0 satisfying
t >0l fllLe@u), (6.50)
for some vy > 1 to be determined. By (6.49) and | Py ;| < 1, we have

f ordr <Pl f - fde <ol g,
Pk',j Pk',j

therefore we may choose 9 > o, so that (6.50) implies

> ]{3 (o)t

Now we apply Calderén-Zygmund argument to each Py ;, with parameter
t? and function (f¢)?, obtaining non overlapping cubes ng- C Py j sat-
isfying:

1< ][ (fo)ldx < 27t1, for every j, k,1, (6.51)

and

f@o@ <t,  welJ(PAUek) =\ U Qs
k,j l

kg,

Le., setting Ay = Ayy(s) = {z € Q1 : f(x)p(x) > s} we have

A; C U Qf’c,j

LN

This, together with (6.51), implies

/<f¢qdw<Z|Q k|f (fo)7da

mil (6.52)

< 2"y |Ql

k.j,l

y (6.51) and (6.49) we have that, for any = € Qj ,

e<( £, (f(b)qu)%

k.J

< U|P;”|( ][l fqu> a
(6.53)
< 0’|P]€7]| ][z (2)
S C1 ][ f¢d$7
Q.

Ly(
k,j
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where Qk C @1 is the cube having the same center as Qk _j» but twice
the side length We deduce

naifisen f o soderapi@l v o
N

k.j

Fixing 0 = %, this becomes

t1QL%| < 201 ][ . fod. (6.54)

Qk;,(j )mAﬁt

1,(2 .
The Qk(.) form an open covering of Uj,k,lec > and we can choose count-

7()

ably many pairwise disjoint @;";’, which we rename as Qs,%) such that

UchUQm,

Jikl

where Qﬁi) is the cube having the same center as Qg), but 5 times the
side length. Returning to (6.52), we can conclude

/A (fo)1dz < cat®™ [ fodz, V> 7ol llecou-

Aﬁt

Observing that
/ (fo)tdz < 1ot [ fode,
A\ A, Apt
we obtain
[ (goyds <cart [ oda, vr =5t 22 fluaga
" A 2cq

and if we set

o) = [ Ifelds

/. 1gopar -~ " (),

—/ 577 dh(s) < a9 h(t),

for every 7 > [/ f| za(q,), and the result follows from Lemma 6.37. [

and observe that

we conclude



Chapter 7
LP-theory

In the first section of this chapter we establish LP-estimates for solutions
of elliptic systems both in divergence and non-divergence form as con-
sequence of Stampacchia’s interpolation theorem, see [103] [19] therefore
without using potential theory. The rest of the chapter is dedicated to a
short introduction to singular integrals.

7.1 [P-estimates

The LP-estimates of the gradient of weak solutions to elliptic systems may
be obtained by interpolating L? and BMO estimates.

7.1.1 Constant coefficients

Let Q be a domain that is bilipschitz equivalent to the unit cube. Consider
in the weak form the Dirichlet problem

{ Do (AP Dgu?) = Do F? in Q 1)

u=20 on 01,

where Af‘jﬁ are constant coefficients satisfying the Legendre-Hadamard
condition

APEa&om'n’ = NEPInf,  for some A > 0.

From Garding’s inequality we know that the linear operator
T:L*(Q) — L*(Q)

that to each F' € L?(Q) associates the gradient of the weak WO1 2_ solution
to problem (7.1) is continuous

| Dullr2(0) < cllFllr2(0)s
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since

)\/ |Du|2dx§/A%ﬁpﬁujpauidx:/FfDauidx
Q Q Q

< (/Q|F|2dx)%</Q|Du|2dx)%.

From the (interior plus boundary) regularity theory, we know that 7' maps
continuously L>°(Q2) into BMO()), compare Theorem 5.14 and Corollary
6.23:

|D’LL|* S Cl[DU]£2,7L § CQ(HDUHL2 + ||F||£2,n)
S 03||F||£2,n S C4||F||Loo.

Stampacchia’s interpolation theorem then yields at once

Theorem 7.1 Let u € WH2(Q,R™) be a weak solution of the Dirichlet
problem
{ Do (AP Dgut) = Do FY

u—ge W()172<Q)a

where the constant coefficients A?jﬁ satisfy the Legendre-Hadamard condi-
tion (3.17), and F* € LP(Q) and g € WLP(Q,R™) for some p > 2. Then
Du € LP(Q) and

|Dull o) < c(IDgllzr0) + 1Fllzr (), (7.2)
for some constant c(Q, p, A, |A|)

7.1.2 Variable coefficients: divergence and non-diver-
gence case

Consider a weak solution v € W2(Q,R™) of the system
Do (AP Dgw?) = g; + Do f? (7.3)

where the coefficients A?jﬂ (z) are uniformly continuous and satisfy the
Legendre-Hadamard condition (3.17).

Fix n € C°(Bg(xo)), where Br(zg) € Q. One easily computes that
un is a weak solution in Bgr(zg) of

Do (47 (20)Dp(w'n)) = Do ([A7] (x0) — A7 ()] Ds(u'n))
+ Gz + DaFiav
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where
Gi = gin— [ Dan+ A7/ (x)Dgu? Dan
FP = ffn+ A7l (x)w! Dgn.
Let now w € Wy*(Bgr(x), R™) be the weak solution of
Aw' = G,.
We conclude that un is a weak solution of

Do (A7 (20)D(uw'n)) = Da ([A5) (z0) — Aff ()] Dp(u'n) + EY),

g
where _ ‘
F> = F 4+ Dyw".

Suppose now that for some p € (2, 00)

fi e LP(Q)
np
i € LP~(Q) s . L=
9 () o=
Du € L™(), for some m € [2, p|.

Then G; € L™n(mr) and F* € L™n®™) Here m* = - is the

n—m

Sobolev exponent for m < n and m* := oo for m > n. On account of the
L? theory D?*w € L?*(2) and

A(Dyw') = DoGy;
Theorem 7.1 then yields
Dw € LT*(Q), r* = min(m”*, (p«)*) = min(m*, p),

and in conclusion B _
‘Fia e me(m ,p)(Q)

Now for s = min(m*,p) fix V € Wy *(Bg(zo)) and let v € W,*(Bg(zo))
be the weak solution of

Do (A3 (@0) Dav’) = Da{ [A7 (w0) = AZ (@) DV + F}. (7.4)
By Theorem 7.1 we have

1D0]| a0 < €| A@o) = A@)]| DV || pmincns ) + €| P prsincn=
and the map

T:V € Wy*(Br(xo)) — v € Wy*(Br(z0))
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satisfies

[D(TVL = TV3)|

pmin(m*.p) < cw(R) ||[(DV — DVz)HLm;n(m*,p) )

where w(R) is the modulus of continuity of (A,‘;}’B ), hence it is a contraction
for R sufficiently small. Then, provided Du € L™(Bg(zo)), T has a
unique fixed point in Whmn(m"p) (Bp(xy)) that agrees with un. Since
Du € L*(Bg(xo)) we infer that D(un) € L™"2"P) and choosing n = 1
in Bpa(zo) we infer Du € L™n(27P)(Bp 5(20)). Noticing that

g (k—times) > 4, for k large enough,

a bootstrap argument yields

Theorem 7.2 Let u € W12(,R™) be a weak solution of (7.3). Assume
the coefficients A%ﬁ uniformly continuous with modulus of continuity w
and satisfying the Legendre-Hadamard condition (3.17) with ellipticity .
Suppose moreover that f&* € LP(Q) and g; € L#75 () for some p € (2,00).
Then Du € LY () and for any open set Qy € Q we have

loc

1Dl o) < e|If Lo + gl 22, ) + 1 Dulz2(an .
with ¢ = c(p,n, A\, w, |A|, dist(Qg, 0Q)).

Similarly one can show

Theorem 7.3 Suppose that u € W22(Q,R™) is a solution of
AP Dogul = f;

with A%ﬂ as in Theorem 7.2 and f; € LP(Q2) for some p € (2,00). Then
D%*u € LY () and for any open set Qy € Q

loc
1 D?u| Lo (02) < c(psny A, w, | A, dist(Qo, O |1 f]| Lo () + 1D?ull L2(0 |-

Of course one can also prove global estimates, but we shall not deal
with that.

7.1.3 The cases p=1and p =0

The LP-estimates of the previous section actually extend to the case p €
(1,2), hence they hold for every p € (1, 00). For instance we state without
proof:
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Theorem 7.4 Let u € WH2(Q,R™) solve
Au=finQ, u—geW,*(QR™),

for some f € LP(Q,R™), g € W2P(Q,R™), where p € (1,00). Then we
have uw € W2P(Q,R™) and

1D?ul| ey < (| fllLr) + 1Dl Lo )-

One might wonder whether Theorem 7.4 extends to the cases p = 1
and p = oco. This is not the case, as we shall now show.

Example 7.5 (Failure of the L!'-estimates) Let
D? :={x e R?: |z| < 1},
and consider the function u € Wy?(D?) given by
u(z) = loglog(e|z| ™).

Then )
Au(z) = ———5———,
|| log(e||~1)

hence owing to

dr < oo,

[ et
o rlog®(er—1)
we immediately infer

Au € L' (D?).

On the other hand, u ¢ W21(D?). For instance, writing |z| = 7, one can
easily verify that

0*u  log(er)—1 1

D*u| > — = > for r sufficiently small
|D*u| > o2 2 1og2(er*1) Z 2 Togler ) or r sufficiently small,
and since
€ 1
; Wdr =00, foreverye € (0,1],
we have

/ | D?u|dz = oco.
D2

Example 7.6 (Failure of the L>°-estimates) Let u : D* — C be defined
in polar coordinates by

u(r,0) = r?log(r)e*”.
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We can easily compute

uy(r,0) = (2rlogr+r)e?®,
urp(r,0) = (2logr + 3)6%97
ugg(r,0) = —4r?log(r)e*?,

hence, since in polar coordinates

_ 0? n 10 n 1 02
o2 ror  r2062’
we easily see that '

Au = 4e*? € L>(Q),

while VZu ¢ L>(Q).

Exercise 7.7 Let u be as in Example 7.6. Show that D*u € BMO(D?) (com-
pare Theorem 5.20).

7.1.4 Wente’s result

Consider again Q = D? := {z € R? : || < 1}. Although Au € L'(D?)
does not imply D?u € L'(D?), nor Vu € L? or u € L* in general, these
facts are true if Au presents a special structure, like in Wente’s theorem
below (compare also Remark 7.9, and see also [15] and [113]).

Theorem 7.8 QWente [112]) Consider two functions a,b € W12(D?)
and let w € Wy (D?) solve

Au=Vta-Vb in D?
(7.5)
u=20 on 0D?,
where da 9  da b
1 a a
Vb= — — — — —.
Via-v 81‘1 8x2 81‘2 8.131
Then u € C°(D2) N W'2(D?) and
[ull e + IVull2 < C[IVal| L[| V]| L2, (7.6)

where C' is a fized constant, not depending on a or b.

Proof. First consider the case when a,b € C>(D?). Let us notice that if
we can bound
[ull= < ClVal|2([V0] L2, (7.7)

then integration by parts and Holder’s inequality yield

/ |Vul|?dr = —/ uAudr < 2||ul|p=||Val r2||Vb]|| L2,
D2 D2
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hence, using the inequality 2ts < t? + s2,

IVullZ: < llullie + [IValZ:[[VBlIZ: < (C +1)IValZ:][VbIIZ

and (7.6) follows. R

Let us now prove (7.7). Extend a and b to smooth functions @ and b
defined on R? and with compact support. This can be done in such a way
that

IVall2@2) < ClVall2p2),  [VBllL2@zy < CVbllL2p2),  (7.8)
with C' not depending on a or b. Next define
=1 * (V+ta- Vvb),

where
1 1

Y(z) = o log r

x|
is a fundamental solution of the Laplacian, i.e. Ay = §g. In particular
one can easily verify that

At = Au in D?.

Now notice that in polar coordinates (r,6)

Li g loadb 10boa 10 [ 0b) 10 (. ob
Via-vb= r398r+r898r_r8 “90 r “ '

It follows

2m ) 1 7
/ <&a—b> drdb.
ay := ][ adf
oD,

denote the average of a over the circle of radius r. Since

2 85(7‘, 0)
/0 50 do =0

Now let
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for every r > 0, we can also write (7.9) as

27 0o 1 81)
)< ——
i(0) / ( ") | drdd.

Then with the Cauchy-Schwarz and Poincaré inequalities we bound

1 ~ 12
1 [e%e] 1 2 2 27 ab
2(0) < — - a — a,|2do —| do| d
u<0)_277/0 7"(/0 la — a,| ) /0 50 r
1o 2 oa Lol
< e - -
=27 Jy ( /0 90 d9> /0 ao| Y
(7.10)
/ /2” oal®  dr\’ /°° /2” b
< - -~
- 27T T 0 0 60
1 B ~
< S IVal 2|7

< CollVal|2[| VO] 2,
where, taking into account (7.8) we chose Cy = g—j
By translation invariance (7.10) actually implies

@]l < Col[Val|2[[ Vbl 2.
Now observe that v := 4 —wu is harmonic, hence by the maximum principle

sup|@ — u| < sup |@] < ||@f|pe,
D2 D2

and by the triangle inequality

sup [u] < sup| — u| + sup ] < 2|~ < 2Co|[Val| 12| V] 1.
D2 D2 D2

The general case is obtained by approximation. Indeed, if

an € C*°(D?) N HY(D?), a, — ain H'(D?)

b, € C*(D2) N H'(D?), b, —bin H(D?)
and u,, is the solution of (7.5) with a,, and b, instead of a and b, then by
(7.6) (uy) is a Cauchy sequence in C°(D?) N H'(D?), hence u,, — v in
C°(D?)NH!(D?) for some function v. On the other hand, since a,b,, — ab
in L'(D?), by LP estimates (in fact a version we have not proven in
the previous sections), we also have that u,, — u in WH?(D?) for every

p € [1,2), where u solves (7.5). It follows that u = v hence u satisfies
(7.6). O
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Remark 7.9 In the same hypothesis of Theorem 7.8 Coifman, Lions,
Meyer and Semmes [22] later proved that D?u € L'(D?). It is well-known
that this also implies u € C°(D?) and Du € L?*(D?).

With a similar proof, one can also prove estimates for the Neumann
problem:

Theorem 7.10 Consider two functions a,b € W12(D?) and let u €
Wy (D?) solve
Au=V'ta-Vb in D?

ou
— = D?
» 0 on 0D=,

/ udz = 0.
D2
Then u € C°(D2) NWhH2(D?) and
ulle + [[Vullz2 < C|Val|22[[Vb]| 22, (7.11)

where C' is a fized constant, not depending on a orb.

7.2 Singular integrals

Given a function k € L*(R") the convolution product of k with a function
f e L'(r)

befla) = [ he =) f)dy (1.12)

defines a map from L'(R") into L'(R™), see Section 6.1.2. In this and
in the next section we shall be concerned with singular and fractional
integrals. This amounts to studying k= f for functions k(x) (called kernels)
which are positively homogeneous of degree —a for some o > 0

cor (Y _ @) y
ko) =l k(pr) = T e = k()
lwl/ lyl® [yl
where w is homogeneous of degree zero. Notice that k is not integrable in
R™, unless it is 0. Two situations, corresponding respectively to fractional
and singular integrals, are of particular interest:

(a) 0<a<n, (b) a=n.

Case (a) is of course the simplest. If, for example, we assume w bounded
and f € L'(R™), then

peso) = [ ol Pay

|yl

(7.13)
_ flz—y) flz—y)
B ~/Bl(0) ) |y dy+ /]R"\Bl(o) “() |y|> a-
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The first term, being the convolution of f with an integrable function, the
function k1 = kxp, (0), exists for almost every x € R™ and is integrable in
R™, while for the second integral we have

w(y)
f(xy)dy‘ < max ol [ syl
‘/"\BI(O) lyl|> R\ {0} R7\ B, (0)

therefore it represents a bounded function.
Case (b) is much more complicated and in fact it will be our main
concern. Assuming w bounded, say w = 1, we have

flz—y) flz—y)
k * = ——2d ——2d .
1) /31(0) Y - /R"\Bl(o) DI (7.14)

and the second integral again represents a bounded function. But it is
clear that the first integral needs not exist as a Lebesgue integral at any
point x. For example, if f is non-zero in a neighborhood of a point x, say
a non-zero constant, then the integral diverges for x in a neighborhood of
xo. Therefore, if we want to consider those integrals, we need to redefine
their meaning.

Example 7.11 (Newtonian potential) Consider the potential of a dens-
ity of mass f(x) in R3

1 O

Viz) :=—— .
(=) AT Jgs o =y

If, say, f is smooth and with compact support, differentiation under the
sign of integral formally leads to

0%V
QI =1 YAC Nl
Dziogs ¥) = lmy 5. () kij(x —y)f(y)dy (7.15)
where o
1 yzyﬂ
' = a3\ T . Nl
kij (y) 47T|y|3 (51] 3 |y‘2 ) (7.16)

A classical result by Hélder states that if f € C2*(R3) then V € C*(R3)
and AV = f, so that (7.15) amounts also to

0*V

drions — Kby, Kyf(z) = lim kij (@ — y) f (y)dy,

=0 Jrn\ B, ()

which expresses the monomial differential operator %;zj in terms of the
Laplacian and of a singular integral.

The integral in (7.15) is of course of the same nature of the integral
in (7.13), and both are singular integrals. Notice that k;; has mean value
zero on the unit sphere |z| = 1. This is actually, as we shall see, the
reason why the limit exists.
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In the following subsection we shall study boundedness of singular in-
tegrals on Holder spaces, extending Holder’s result on the continuity of
the second derivatives of the Newtonian potential of a Hélder continuous
distribution of mass, and on LP spaces, proving the nowadays classical
Calderén-Zygmund theorem. Finally, in the last subsection we shall dis-
cuss fractional integral operators proving, as a consequence, the classical
Sobolev inequalities.

7.2.1 The cancellation property and the Cauchy prin-
cipal value

Let k(y) = wy(l‘") be a continuous function from R™\{0} into R which is pos-

itively homogeneous of degree —n, so that w is continuous and positively
homogeneous of degree zero. For every € > 0 and for every f € LP(R"),
1 < p < oo, the integral

i@ = [ Kewd= [ k) ey

R”\ B (0)

is absolutely convergent, since

)| < yl™™ sup |w(y)|
0B1(0)

Notice that in order for T f(z) to be well defined we only need w to be
bounded (not necessarily continuous) and that 7. f(x) = f * k.(x), where

ke := kxrn\B.(0)-
Motived by the previous example we would like to define

Tf(z) = / Kz — ) f(y)dy

as Cauchy principal value, i.e. as

Tf(a) = [ bo — )W)y = i 7.f().

However, as the following example shows, this is not always possible
without further assumptions on w(y).

Example 7.12 Let n = 1, w =1 and f(t) = x[—1,1). For

T f(z) = /R 1Oy

\B.(x) |7 — 1|

we have
0 if x¢[-1,1]
+oo if e [-1,1].
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Definition 7.13 (Cauchy principal value) LetQ C R™ be an open set
containing 0 and g : Q\{0} — R be a measurable function. We say that g
is integrable in the Cauchy principal sense with respect to a neighborhood
U of 0 if g is integrable on each Q\eU and

lim gdx
e—0 Q\eU

exists (of course eU := {ex : x € U}). Such a limit, which in general
depends on U, is called Cauchy principal value of the integral with respect
to U.

Proposition 7.14 Let k(y) = |y| "w(y/|y|) be as above, with w measur-
able and homogeneous of degree 0. We have:

(i) The Cauchy principal value of the integral of k(y) with respect to
a neighborhood U of O exists if and only if it exists for any other
neighborhood V' of 0.

(ii) The principal value of the singular integral [ k(y)dy exists for all U
if and only if the following cancellation property holds:

| kg =o.
9B1(0)

Proof. Let U and V be two neighborhood of 0. For e small we have
eUNeV C 2 and

/ k;(x)da:—/ k(a:)d:cz/ k;(x)dx—/ k(x)dx
Q\eU Q\eV e(V\U) e(U\V)
:/ k(sx)a"dm—/ k(ex)e"dx
V\U U\V

:/V\U k(x)dx—/U\V k(z)da,

which implies (i). By (i) we can take U = B1(0) in (ii). For 0 <e <, n
small, we have

/Q\B"(O)k(x)dx - /Q\BE(O)k(w)dx = /n pnl (/631(0) (p@)d’H”l(H))dp
/n ” /831(0 A 6)
Rl

which proves (ii). O
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Motivated by the previous considerations we now set
Definition 7.15 We say that a function k : R*\{0} — R is a singular
kernel or a Calderén-Zygmund kernel if

(i) k is positively homogeneous of degree —n, i.e.

() = 28 vz € R™\{0},

il

where w(x) s a zero-homogeneous function;
(1) klyp, 0 =we L
(i) [op,0) RdH" ™" = [op, () wdH" "' = 0.

Examples of singular kernels are k(z) = - for n = 1 and k;;(z) as
defined in (7.16). More generally, if F' € C*(R™\{0}) is homogeneous of
degree 1 —n, then D,;F, j =1,...,n is a singular kernel. In fact (i) and
(ii) are easily verified, and as for (iii) we have by (i) and the divergence
theorem

1 . .
0 = —</ x—jF(:v)dH”‘l—/ ﬁF(:c)dH”‘l)
R—1\ Joaggn o) 7| aB,.(0) 17|
1
- / D;Fdx
R =7 JBn00\B.(0)

— / DdeH"_l, asr — R.
9Br(0)

From now on a singular integral will be an integral of the type

Tf(x) = / K(z — ) f(y)dy := lim Kz — ) (v)dy,

€0 Jrm\B. (x)

where k is a singular kernel.

7.2.2 Holder-Korn-Lichtenstein-Giraud theorem

In this section we discuss singular integrals as operators on the space
of Holder continuous functions with compact support. Let k(z) be a
Calderén-Zygmund kernel and let

T.f(z) = / K(z — ) f(y)dy.
R™\ Be ()

As a consequence of the cancellation property of k(x) we get

Proposition 7.16 Let f € C%%(R"), 0 < a < 1. Then T.f converges
uniformly to Tf in R™. In particular T f(x) is a continuous function of x.
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Proof. For x € R™ and 0 < § < ¢, the cancellation property of k yields

T (@) — T5f(a)] = / Kz — 4)f(y)dy

Be(x)\Bs ()

_ / k(x — ) [£(y) — F(x)]dy,
B.(z)\Bs(z)
hence

[1:4(0) = T/ )] < )] i lo | e

= A oo o (e — ).

This shows that T f(z) is a Cauchy sequence for the uniform convergence.
O

We now prove that actually Tf is Holder continuous if f € C2®(R")
and in fact T is a bounded operator from C%*(R") into C%*(R"). In
order to do that we need however some regularity on the kernel k. We
shall assume that its trace w on ¥; := 0B;(0) is Lipschitz continuous,
though less would suffice. We then have

Theorem 7.17 (Holder-Korn-Lichtenstein-Giraud) Assume that k
is a Calderdn-Zygmund kernel. Suppose that k’zl = w|21 is Lipschitz

continuous. Then for every f € CO*(R"), 0 < a < 1, we have Tf €
C%*(R") and
[T flo,a < c(n,a, [lwllcoi(s,))[floa;

where

w(z) —w(y)
lwllcot sy = l|w|l Lo (xy) + sup 7 TN
= R O ]

Proof. As we have seen in the proof of Proposition 7.16, for 0 < § < & we
have

Tef(2) = Ts f ()] < e(n, a)l[wl][ Lo [flo,a(e™ = 0%).

Letting § — 0 we infer
|Te f(z) = Tf(x)] < c[flo,ac®, Va € R™.
Now we fix z,z € R™. Since
Tf(2)=Tf(2)] < |Tf(2) =Tef ()| +|Tf (2) =T f () |+ |Te £ (2) =T £ (2)].
In order to prove the theorem it clearly suffices to show that
T f(2) — Tof ()] < clfloac®  for e =2z — 2| (7.17)

In the next two lemmas we state separately the two simple estimates which
lead to (7.17).
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Lemma 7.18 There is a constant ¢ = c¢(n, |w|coa(s,)) such that

|yl .
|k(z —y) — k(z)] < T if |z > 2yl.

Proof. We write

ko —y) — b(z) = w(z - y>[ (e — ) — (@)

=: (I) + (II).

1 1] 1
[z —yl*  lz[*] " fal?

First observe that, if |z| > 2|y, then % < |z —y| < 3|z|. Moreover, if ¢
is a point in the segment with end points x and z — y, we have

In fact, for t € (0,1), { =tz + (1 —t)(x — y) we have
3 3
€] < tlel+ (1= t)le -yl <tlz[+ (1~ D)a| < Slz]
1
€l = Je— 0=yl = |z = (1 =D)lyl = 5 lzl.

Using Lagrange’s mean value theorem with the function

t— 1
tz + (1 —t)(z —y)|’

t €10,1],

we estimate (I) for some ¢ in the segment with end points z and x — y by

. |yl
(D] < nllwllpel€]™" Hyl < n2”+1||w||L°°|x‘T+1~
On the other hand, by the regularity of w we have

Hw||0011(21)
|z |"

z—y x| _cwllcorsy lyl

B

(D] <

lz—yl |zl
where we applied the mean value theorem to the function

tr+ (1 —t)(xz —y)
tz+ (1= t)(z —y)|’

hence the proof is complete. O

t €10,1],

Lemma 7.19 There exists a constant ¢ = c(n, ||W||0011(21)) such that for
any € > 2|x — z| we have

3 3 |f ()l “n }
@)~ L) <e{ lo-a Ll [ s

R™\ B, (z) |z —
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Proof. We write

k(x — d
+/R"\B5(m) (z —y)f(y)dy

- / k(e — ) f(y)dy.
R7\ B (z)

Applying Lemma 7.18 with = replaced by z —y and y by z — x we infer

£ ()l
k(z —y) — k(z — d - Iy
‘/n\BE(Z)[ (x—y) = k(z —y)] f(y) y’<0|z | ey 2 — T Y,

with ¢ = ¢(n, |lw[ co1(s,)). On the other hand

/RH\BE@) (z—y)f(y)dy /RH\BE(Z) (@—y)fy) y‘ < /st(z)lf(y>| Y,

as (R™\Be(2))A(R™\B:(2)) C Bac(2), and the proof is completed. [

Completion of the proof of Theorem 7.17. On account of the cancellation
property of k we have

T.f(zx) =T:(f — N)(z), VA€ER.

We can therefore apply Lemma 7.19 to the function x — f(x) — f(z) to
get

T f () = T f ()] <Cl{|2—$| Mdy

R\B.(z) |2 —y["T!

v [ RO f<z>|dy}

sof [ el mElay i e
R™\B.(z) ly — 2|

< 03{ /00 ta_ldt+€a}[ﬂo,a < c4[flo.ae”,

€

which is (7.17). O

7.2.3 L2-theory

In this section we begin the study of the action of a singular integral on LP
spaces, and more precisely here we restrict ourselves to the study of the
behaviour of T.f and Tf when f € L?(R"). Since T.f is a convolution,
a natural tool in the L? setting is of course the Fourier transform.
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Theorem 7.20 Let k(z) be a Calderdn-Zygmund kernel and let f €
L?(R™). Then we have

(i) For everye >0, T.f belongs to L*(R"™) and

1T fllz2@ny < A2l fllz2@n)
with constant Ay independent of €.

(ii) The limit Tf of T.f as € — O ewists in the sense of L*(R™), and
1T fll2@ny < Azl fllz2@ny-

(iii) We have - R
Tf(§) =m(&) (&),

where m(§) is a homogeneous function of degree zero, and more
precisely

m@ = [ K| lon i s [, el =1

Proof. Set
{ k(x) if |z| >e¢
ko(x) :=

0 if |z <e.

Obviously k. € L?(R"?) and T.f = k. * f. Then by Parseval theorem

ITeflle@ny = ke * fllL2@ny
= |k fll2@my
< lEell oo @yl fll 2 @)

= kel zoe ey I £l L2(Rm),

provided EE is bounded. R
In order to prove boundedness of k. we introduce the polar coordinates

E=Re, €= aw-r, o=
€ ||
Then for £ # 0, i.e., R > 0, and using the cancellation property of k,
Eg(f) = lim e 2L L (x)dx
1720 J By (0)

n—00

: / K —2miRrz’ ¢’ dr /
= lim w(x") [e - cos(27rrR)} — |do(z).
0B, (0) £ T
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Consider the integral

K — d Bn " d
/ [6_27”1?” € cos(27rrR)} - / [6_27”” - cos(27rr)} iy
€ Re r

r
(7.18)
We claim that its imaginary part
Rn _: 2 rel
_/ sin(2mra’ - € )dr
Re r
is uniformly bounded and converges for 7 — oo and then € — 0 to
t
—/ ﬂdt sign(z’ - &) = —g sign(z’ - ). (7.19)
0

In fact, without loss of generality, we may assume 2’ - £ > 0. Then
B sin(2mra’ - € 2m R g
/ sin(2mra’ - £) 5)dr:/ Pl =1
Re r 2rRa/-&'e T
and we distinguish three cases:
(a) 2R’ - &'e <1 < 27Rz’ - ¢'n). Then since sinr < r for r > 0
1 . 2r Rz’ -¢'n 2rRa’-¢'n
sinr sinr sinr
I = / —dr—i—/ ST, <1+/ ST g
2nRx'-¢'e T 1 r 1 r

CcosTr
= 1—

2r Rz’ ¢’ 1!
TRz -§'n 2mRx 57]0087,_
— 1 3

r 1 r

2rRx’-¢'n 1
1 T

(b) 2mrRa’ - {'n < 1. In this case the interval (2 Ra’ - e, 2 Ra’ - {'n) is
contained in (0,1) and since *2* < 1 the claim is trivial.

(c) 2rRx’ - &’e > 1. In this case one proceeds as in (a).
Similarly one can show that the real part of (7.18)

/77 [cos(2mrRa’ - £') — cos(2mrR)| %

is equibounded. Finally let us show that

n
lim / [cos(2mrRa’ - £') — cos(2mrR)] dr =log ———

ns::cgjo € r | ! £/|

(7.20)

To prove this, we observe that if

F(\) = /n Mdr, then  F'(\) = M
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hence, being F(1) =0,
A _ An Ae
F(N) :/ Mdt:/ @dt—/ @dt.
. t .t .t
Now, if @ is integrable in (1, +00) and if h(t) = h(0)+ bounded function

of ¢ times ¢ near zero, letting n — +o0o0 and € — 0 we infer

n _

lim h(Ar) — h(r)
=00 r

e—0 Y€

dr = —h(0) log A. (7.21)

Applying (7.21) with h(r) := cos(2nRr), X := |2’ - {’|, we infer at once
(7.20). This completes the proof of (i).

For any o > 0 we now split f as f = g + b where g € C}(R") and
b:=f—ge L*(R") with ||b]|p2(rn) < 0. From (i) we then deduce

I T2b]| 2 < As||bl| 12 < Aso.

On the other hand T.g — Tg uniformly in R™ by Proposition 7.16 and
T.g9(x) = Tg(z) for x & supp(g) and ¢ < dist(z, supp(g)). Consequently
T.g — Tg in L2 If follows that T.f is a Cauchy sequence in L?(R"),
which proves (ii).

Finally, thanks to (7.19), (7.20) and the dominated convergence, we
have

k(&) = m(€), for every € # 0.

Then since T, f — T'f in L? as ¢ — 0, we have 7/}? = /;:;fﬂ f}” in L2,
and since k. f — mf pointwise a.e. as e — 0, (iii) follows at once. O

Example 7.21 Returning to the Newtonian potential of a distribution

feL*R)
V)= [ T s
where
1
G |z —y[>™™ if n>2
Nz —vy) = ) "
— log |z — ¥ if n=2
2m

for which we have AV = f, a consequence of Theorem 7.20 is that V has
second derivatives bounded in L? by c||f]|zz2-
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7.2.4 Calderon-Zygmund theorem

In this section we study the action of singular integrals on LP(R"), 1 < p <
oo. We shall show that Calderén-Zygmund operators are of weak-(1,1)
type; this, together with the L2-theory in section 7.2.3 and Marcinkiewicz
interpolation theorem, will allow us to prove the celebrated Calderén-
Zygmund inequality

ITfllr @y < ApllfllLe@n (7.22)
in the range 1 < p < 2, and finally, by duality, in the full range 1 < p < oc.
Classical examples show that (7.22) does not hold for p = 1 or p = oo,

even in the case of the second derivatives of a Newtonian potential.
More precisely we shall prove

Theorem 7.22 Let k(z) be a Calderdn-Zygmund kernel with Lipschitz
continuous restriction on %1 := 0B1(0). Then we have

(i) Suppose f € LY(R™). Then for all ¢ > 0, T. is of weak type (1,1)
uniformly in €, i.e.

c
{z eR™: |T.f(2)] > t}| < EHfHLl(]R”): vt >0, (7.23)
where ¢ is a constant independent of € and f.
(ii) Suppose f € LP(R™), 1 <p < oo. Then T.f € LP(R™) and

IT=fllLe ey < Apllflloe@ny- (7.24)

(iii) If f € LP(R™), 1 < p < oo, then the limit of T.f as € — 0 exists in
the sense of LP(R™), and

ITfllce@ny < Apll fllLe®n), (7.25)
where A, is independent of f.

In fact it is possible to prove pointwise convergence of T f(z) to T f (x)
for almost every z, suitably controlling the mazimal singular integral

T" f(x) := sup|T- f ()],
e>0

but we shall not do that. Under the same assumptions of Theorem 7.22
the following holds.
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Theorem 7.23 We have
(i) For f e LP(R™), 1 <p < o0
T.f(x) = Tf(x) as € — 0o
pointwise for a.e. x.
(ii) If f € LY(R™), then the mapping f — T* f is of weak type (1,1).

(iii) If1 < p < o0, then
IT* fllLemny < Apll fllLr@n)-

Proof of Theorem 7.22. The key point is the weak estimate (7.23) and the
key idea is to split f € L'(R") in a good part g and in a bad remainder
b, f = g+ b, where g is obtained as follows. Given ¢t > 0 cover R"
with congruent disjoint cubes Q?, i € N, such that JCQO |fldz < t for

every 4 (this is possible if the cubes Q? are chosen to be large enough).
Applying the Calderén-Zygmund argument to every such cube, we can
find a denumerable family of dyadic cubes {Q; : 7 € J} with interiors
mutually disjoint such that

R'=FUlJ@Q;, If@)|<t VzeF,
JjEJ

>R << /nlf(w)\dw, ][ |fldz < 2™, for j € J.

jeJ Qj
We then set
f(z) if xeF
9@) = ]{2 |fldz if 2 € Q; for some j € J
i

and b := f — ¢g. Trivially
b(x)=0 for x € F, and b(x)dz = 0.
Q;
Now since 1. f = T.g + T.b, it follows that
{z e R" : [T, f(z)| > t}| < |[{z € R" : [TLg(x)| > t/2}]
+ [{z € R™ : [TLb(z)| > t/2}],

and it suffices to establish separately for both terms of the right side
inequalities like (7.23).
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Estimate for T.g. Trivially g € L?(R™) and

/ Ig\gdw=/ |g|2dm+/ lg|*da
R~ F UjEJQj

IN

/ lgldz + Clt2 Z Q]

JjeJ
CQt/ |f|dx.
Rn

IN

The L?-theory then yields

IT2gllz2 < Asllgllze,
consequently
A?
o e s Tg@)| >} < 2 [ loPde < [ iflar. (720)

Estimate for T:b. For each cube Q; we consider the cube @} which has
the same center ), but which is expanded 2/n times. Set

F=rn\J@;, =]

JjeJ JjeJ
Of course F* C F, and
* n ¢
@< v S 1a) <2 [ s (7.27)
jeJ R7

notice also that
z—yP| > Vnside(Q)) > ly—yP|  if 2¢Q;, yeQ;. (7.28)

Thanks to (7.27), we only need to estimate |{z € F* : |T.b(z)| > t}| in
order to complete the proof of (7.23). As a first step in this direction we
claim that for all e > 0 and « € F* we have

| Tob( |<Z/ (z —y) — k(z — y9)||b(y)|dy + cMb(z), (7.29)
JjeJ

where Mb is the maximal function of b. In fact we have

Tow) = Y [ klo - )bl

Fix z € F* and € > 0; then the cubes @; fall into the following three
classes:

(a) @Q; C Be(x). In this case k.(x — y) = 0 for every y € @)}, hence

ke(z — y)b(y)dy = 0.
Qj
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(b) Q; C R"\B.(x). In this case
/ mm—yW@My:/ [k —y) — kla — y)]bly)dy,

J J

being y)dy = 0. This term is bounded by
Qj

[ ke =) = ke =y o)l

:
which is the expression appearing in (7.29).

(c) @ has a non-empty intersection with B.(x) and R™\B.(z). In this
case Qj C Ba-(x) and

’/J S )dy': ’/JO(R"\B (=) Ko >b(y>dy‘

< [b(y)|dy.
€7 JBo(2)NQ;

If we add over all cubes ();, we then get
Tl <Y [ ke =)~k sy +e £ by
= Bse(a)
which yields at once (7.29). Inequality (7.29) can be written as
|Teb(z)| < E(z) + cMb(z), x e F*,
hence
{z € F*: |T.b(x)| > t/2}] < [{z € F* : |S(2)| > t/4}

+ |{z € F*: cMb(z) > t/4}]. (7.30)

The maximal theorem then yields

o e FrieMb@) > t/4}] < T [ |b(y)ldy
Rn

C C
< T e+ T [ glds
Rn t Rn

< = f)de.
t Jrn

To estimate the first term on the right-hand side of (7.30) we integrate
¥(x) over F* to get

/ |dm<Z/ / k(z —y) — k(z — y9)||b(y)|dydz,

jeJ YeQ;



160

but on account of (7.28) and by Lemma 7.18, for y € Q; and writing
=x -y, y =y -y,

/ |I<;(a:fy) fk(xfy(j))|dx < / |k(m'fy') fk(x')|dx'
z¢Q} |z’ >2]y’|
A
< 09/ dzx’ < cio;
w221y 12"

therefore with Fubini’s theorem
[ s@lr<eny [ by < ol sl
e jer /@

which yields
{z € F*:|S(x)| > t/4}| < %/R |flda.

This concludes the proof of (i).

The LP-inequalities. Being T. of weak type (1,1) and (2,2) for all £ >
0 with bounds independent of &, Marcinkiewicz’s interpolation theorem
implies that T; is of strong type (p,p) for 1 < p < 2 and

1T fllr@ny < ApllfllLe@n

with A, independent of e. To conclude the proof of Theorem 7.22 (ii) it
remains to consider the case 2 < p < oo.

Let f € LP(R"), 2 < p < oo, and actually f € LP(R"™) N L'(R"), which
suffices by density. Consider for any smooth map ¢ with ||¢||;,» < 1 the
integral

/ (T ) oz = / ke(z — ) () (@) dyde
Rn n JRn

= /n f(y)(/Rn ke(z — y)s@(fv)d:v> dy.

The integral [, ke(z — y)¢(x)dz is the e-approximation of a singular

integral with kernel k(—z), and ¢ € L', 1 < p/ < 2, therefore it belongs
to LP, and its LP norm is bounded by A, ||¢|l,y < A, (notice that A,
is the same for k(z) and k(—x).) Holder’s inequality then gives

| [@peds| < a0
and, taking the supremum on all ¢ indicated above, we get
ITflle < Apllflle, 2 <p<oc.
This concludes the proof of Theorem 7.22 (ii).

The convergence in LP follows as in the case p = 2, compare Theorem
7.20 (ii). O
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7.3 Fractional integrals and Sobolev
inequalities

In this section we shortly discuss fractional integrals

/ &dy, 0<a<n.
Rn

x =yl

It is common to normalize such integrals as

Lo(f)(x) = - / o) g,

y(@) Jrn |z —y|m—

where

I being the Euler function (9.38), and call I,(f) the Riesz potential of
order a of f. Of course the Riesz potential is the convolution

Lo (f)(2) = Lo+ f(2)

where I, denotes the kernel

Proposition 7.24 Let 0 < a <n and let f € LP(R"), 1 <p < 2. Then
the Riesz potential Io,(f)(z) is a.e. well defined.

Proof. Write k(x) = |z|~""; it suffices to consider k x f. We decompose
k as k = k1 + ko where

ooy | @ el < AT K Y
' 0 if o] > > k(z) if |2 > p

where p is any positive constant. Trivially k % f = ki % f + koo * f.
The integral ki % f(x) is well defined for almost every z, since it is the
convolution of the function k; € L*(R™) with the function f € LP(R"),
while the integral k., * f is well defined for all x as it is the convolution
of the function f € LP(R™) with the function k. which is easily seen to
belong to L? (R™) on account of the condition p < z O

Next we ask for what good pairs (p,q) is the operator f — I,(f)
bounded from LP(R™) into L4(R"™), i.e. we have the inequality

Ha(Hlre < Al fllre for every f € LP(R™). (7.31)
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Set fs(z) := f(dx). Then we have

1fsllze =677 11f e,
Io(fs) = 07 (1a(f))s,
Ha(f5)llza = 65 | La(f)ll s,

hence it follows at once that (7.31) is possible only if

|

|

I
3IQ

We shall see below that this condition is also sufficient, except for p = 1.
In this case inequality (7.31), i.e

D, o < Alfl (7.32)
cannot hold. In fact applying (7.32) to fx, where

fo >0, / fodz =1, supp(fs) € Buyu(0), fi — 8o as measures,

and passing to the limit as k — oo, we would infer

< A,

n

L n—«a

/ |z| 7" dz < oo,

Theorem 7.25 (Hardy-Littlewood-Sobolev inequality) Consider
0<a<n, 1§p<§, and let q .= "B~

n—ap’

ol

ie.,

and this is a contradiction.

(i) If p> 1, then
||Ia(f)HL‘1 < Ap,q|

fllee-
(ii) If p =1, then the mapping f — I, (f) is of weak type (1,q), i.e

[z er s (@) > ] < (AP ws

Proof. With the same notations as in the proof of Proposition 7.24, we
show that the mapping f — k * f is of weak type (p,q), i.e

o e b )] > 1} < (45,112

)q7 Vf € LP(R"), t > 0.
(7.33)
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For that we may assume || f||, = 1 and estimate

Hz eR": k= f(x)] > 2t} < |{zeR": |k« f(z)] >t}
+{z € R™ : [koo * f(z)| > t}].

Since k; € L*(R™), f € LP(R"), we have ky x f € LP(R") by Section 6.1.2,
hence

{z e R™: |ky * f(z)| > t}| <

b

(L 1Y 4 P 1LY
tp = tp T

and
= [ el = e
B/L(O)

On the other hand [|koo * flloo < [[koollp |fllp = [[Foc |l and

1
7

ol = ( / <|x|-”+a>”'dm) ¥ _ o
R™\ B, (0)

Consequently

Q3

[koollyy =t if cou”i =t or = cst™w.
For this value of  we then have ||kso * f|loo < ¢ so that
(o € R : hoo 5 f(@)] > t}] =0,

and we conclude
o p q
o e R : ks f(@)| > 2t}] < (%) < et = 64(_”f|tw> |

since || f|lL» = 1. This of course gives (7.33). The special case for p = 1
now gives part (ii) of the theorem, and part (i) follows by Marcinkiewicz
interpolation, Theorem 6.8. g

It is worth noticing that Riesz’s kernels behave quite badly at infinity,
compared with their behaviour near zero. This fact is responsible for the
restrictions p < 2 in Propostion 7.24 and Theorem 7.25. For functions
with compact support we can however complement the results above with
the following

Proposition 7.26 Let 0 < a < n and let f € LP(R™) be a function with
compact support in Br(0). Then

(i) Forp> 2 we have

o ()l < ApRTF | fllo-
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n

(ii) For p= 2 we have for all ¢ < oo
1
Ha(F)llze < Ap.g| BRO)|7 |1 f]| -

Proof. By Holder’s inequality

L@ < @7 [ Iry"”f(y)dy‘
Br(0)
< v(a)1< / xy|<"a>P’dx) 1l
Br(0)
< ( y|<“>f”dx> 1l
BR(O

= c(n,a,p)R77 | fllzo
which gives (i).
For any q < oo set r := A1 < 2. Theorem 7.25 (i) and Hélder’s
inequality then yield
1 1
HHa(Hllze < Argllfllzr < Argllfllzelixsrol’ 2. = Arallfllze[BrO)]7.
O

Actually in the case p = % not only we have I,(f) € LI(Bg(0)) for
all ¢ < oo, but also

Proposition 7.27 There are constants c; and co depending only on n

and p such that
In X p’
][ exp (01 M)dw < 9
Br(0) 111z

for all f € LP(R™) with compact support in Br(0).
Proof. We may assume that || f||, = 1. We have for any 6 > 0

L(f)(@) /B Ty /B iy @iy

We estimate the first integral on the right as

[, 1l =i ”dy—z/w ey Nl =y
skg:jo(zﬁ) T Wl
3 (5) ()" L, T

< 6" M f(x),

IA
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and the second integral by Holder’s inequality and the fact that || f||, = 1:

1
I

/ FWllw = yl*"dy < |12 (/ o — y|<w>p’dy)
Br(0)\Bs(z) Br(0)\Bs ()

1
7

2R ) 2
< <E1|/ pla=np +"ldr)
s

2R
S <21|10g T) 9

e

where ;1 := 0B1(0). Thus

L (F)(@)] < c6°M f(z) + (|zl| log ?)

If we choose

§% := min {CMgf(x) (2R)a} ,

Q’N
—
~
S—
—
8
~

A

€+ [|Zl\ max (0, log <2R5_%C%(Mf(x))é))} ’
3 P
= e+ [Lnl‘ max (O, log ((QR)nfopCp(Mf(x))p))}
since ap = n. It follows, for any 8 > 1,

L ())(@)P < (B + ﬂ% max (0, log ((2R)"= e M [ (x)7)),

p/

i.e.
(1 L)@
ep(mzl 1/

with ¢ = ¢(8,n,p). Integrating over Br(0) the result then easily follows,
since

) < exp (cap/) max (1, (2R)"€*pcpr($)p),

IMfllp < el flly =c

by the maximal theorem. g

Lemma 7.28 For every function u € Wol’l(R”) (or equivalently u €
Wy () for an open set @ C R™) we have

u(x):i/ " - Vudy,

nwn Jee |2 —y"

i.e. u can be represented as a Riesz potential of order 1 of its derivatives.



166 LP-theory

Proof. By density of C>°(R") in W' (R") we can assume that u €
C°(R™). Write

1 - 1 -
/ u.wy:_/ 7Y Gudy
nwy, Jre | —y|? NWn JRn\ B, (z) |z —y|”

1 _
_/ LY Gy

nwn Jp_(z) [T =y
= (D)e + (LI)..

Since % is integrable, we have
lim (7). = 0.
e—0

Since

T —
div <7y) —0,
lz —y|"
integration by part gives

.= f e,
OB, (x)

hence lim._,o(I): = u(x). O
The above results then yield at once
Theorem 7.29 (Sobolev) Let u € W, "*(Bg(0)), where Br(0) C R™.

Then there are universal constants ¢, c1, co and c3, depending on n, such
that

lul| Lo < ¢l Dul|z» if l<p<mn, p':= n”_f;
[l O\ .
exp|cp—— dzx < cg if p=n
Br(0) | Dul|
Jul| L < csR' ™% || Dul|Ls if p>n.

Actually, the case p = n is due to N. Trudinger [107] and the inequality
is often referred to as Moser-Trudinger’s inequality, since the optimal
constant ¢; was found by Moser [81].



Chapter 8
The reqularity problem in the scalar case

In this chapter we address the problem of the regularity of minimizers of
variational integrals and quasilinear elliptic equations in the scalar case.
The key result is the celebrated theorem of De Giorgi [24], also known as
De Giorgi-Nash theorem or De Giorgi-Nash-Moser theorem.

8.1 Existence of minimizers by direct
methods

Consider the functional

F(u) ::/QF(:mu,Du)dx,

where ) €@ R" is bounded and F : 0 x R™ x R"*"™ is a smooth function
satisfying

(i) F(z,u,p) > 0;
(ii) F and Fpi = ngj are continuous,
(iii) F(x,u,p) is convex with respect to p.

Then we have

Theorem 8.1 (Semicontinuity) If

F(z,u,Du) < A(1+ |Du|?) for some q € [1,00) and A > 0,
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then the functional F is weakly lower semicontinuous in T/V1 1(Q,R™),
i.e. if up, — u in WH4(Qo,R™) for any compact subset Qo € ), then
F(u) < liminf F(ug).

k—oo

Proof. Since the convergence in Wli’cq implies the convergence in VVl(ly Cl ,
we can consider the case ¢ = 1. Up to extracting a subsequence, we may
assume that uy — w a.e. and uy — u in Ll (2, R™) (Rellich’s theorem).

Fix Qp € Q and € > 0. Then, by Egorov’s and Lusin’s theorems, and
by the absolute continuity of Lebesgue integral, there exists a compact

subset K C € such that meas(20\K) < € and
1. up — w uniformly in K,
2. u|, and Dul, are continuous,

3. [ F(w,u, Du)dz > [, F(x,u, Du)dw — e.

By convexity of F in p, setting F(uy, K fK x, ug, Dug)dx, we
find
F(ug, K) 2/ F(m,uk,Du)d:p—i—/ Fyi (@, ug, Du)(Dguj, — Dou’)dx
K K

:/ F(x,uk,Du)das—i—/ Fpi (z,u, Du)(Daul, — Dou®)dz
K K
—|—/ [Fp}-1 (z,ug, Du) — Fi (m,u,Du)] (Dol — Dou’)da.
K

Taking the limit as k — oo, the second and the third integrals on the
right-hand side vanish: the former because Fpe (z,u, Du) is bounded on
K and Dyuj, — Dou’ — 0 in L' (K), the latter because F; (x, ug, Duy) —
Fpi (z,u, Duy) — 0 uniformly on K and D,ul — Dyu’ is equibounded in
L'(K). Finally

liminf/ F(x,uk,Du)da:Z/ F(z,u, Du)dz,
K K

k—o0

by Fatou’s lemma. Therefore

liminf/ F(x,uk,Duk)da:Z/ F(z,u, Du)dx
Qo K

k—o0

> F(x,u, Du)dx — e.
Qo

Since this is true for every € > 0, we conclude

lim inf F(z,up, Dug)dx > F(z,u, Du)dx.

k—oo Jo, Qo
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On the other hand, since F(x,u(z), Du(x)) € L' (2) we have
/ F(x,u, Du)dx = o(1)
O\ Q0

with o(1) — 0 as |2\ Qo] — 0, and we conclude. O

By direct methods we have

Theorem 8.2 (Existence) In addition to the hypothesis of Theorem
8.1, assume that F is a smooth function of growth q > 1, i.e. there
ezists A, A > 0 such that

A(lpl7 = 1) < F(z,u,p) < A(plt +1). (5.1)
Then for every g € WH4(Q,R™), F has a minimizer in the set
A= {ue WH(QR™) |u—ge Wy Q,R™)}.
Proof. Take a minimizing sequence uy. By (8.1)

/ | Dug|?dx < % + meas(Q) < ¢. (8.2)
Q

By Poincaré’s inequality and (8.2)

/|uk|qd$ < 62/ \uk—g|qu+c2/|g|qu
Q Q Q

< 03/ \D(uk—g)|qdw—|—62/ lg|%dx
Q Q

< 64/ \Duk|qda:+/ |Dg|qda:+02/ lg|%dx
Q Q Q

< Cs,

hence the sequence uj is bounded in W14(£,R™), which is reflexive.
Therefore there exists subsequence ug weakly converging to some function
w in WhH4(Q,R™). By Theorem 8.1

F(u) < liminf F(ug ),

k’—oo
hence u is a minimizer. O

Let us make a few remarks concerning the convexity of F' with respect
to p that go back to Morrey.

We say that uy — u in the Lipschitz convergence if
(i) ux — w uniformly

(i) the ug’s have equibounded Lipschitz norms.
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Proposition 8.3 Suppose that
Flu) = / F(z,u, Du)dx
Q

(with F smooth) is lower semicontinuous with respect to the Lipschitz
convergence. Then for all D € Q, all (xg,ug,po) € X X R™ x R™ and all
¢ € CH(D,R™), we have

/F(xo,uo,po+D¢)dx2/ F(xq,u0,po)dx. (8.3)
D D

Proof. For the sake of simplicity we let F' depend only on p and D be the
unit cube @ centered at 0 in R™. Every ¢ € C}(Q) extends to a periodic
function in R™. Define ¢, (z) := v~t¢(vz), v € N,

u(x) :=ug + po - T, uy () 1= ug + po - T + ¢, ().

Then u, — w in the Lipschitz convergence, thus, by the assumption,
(QIF(po) < limint | F(po -+ Do, )
V—00 Q

Now D¢, (x) = D¢(vz) and, by the change of variable vz = y and using
the periodicity of ¢,

dy

v—00 vn

QIF(ps) < liminf / Pl -+ Do)

= liminf u"/ F(po + DQJ)(?/))@
V—00 Q Vn
= / F(pO + D¢)dy7
Q
ie. (8.3). -

If (8.3) holds for every D € Q, (zo,u0,p0) € Q x R™ x R" and
¢ € C°(D,R™), one says that F is quasi-conver. In presence of addi-
tional assumptions, it turns out that quasi-convexity of F' is equivalent
to semicontinuity of F, as appears from the following two theorems, due
respectively to Morrey and Meyers, and Acerbi-Fusco. We state them
without proof.

Theorem 8.4 Suppose that F > 0 and for some s > 1

|F(p) — F(q)| < k(L +[p|*~" + |gI* " Mlp —dl-

Then F is weakly lower semicontinuous in WY* if and only if F is quasi-
convez.
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Theorem 8.5 Suppose that F(xz,u,p) is measurable in x and continuous
in (u,p), and for some s > 1

0 < F(z,u,p) < A1+ |[ul® + |p|*).

Then F is weakly lower semicontinuous in W1* if and only if F is quasi-
convex.

Of course, by Jensen’s inequality, convexity of F' with respect to p
implies quasi-convexity, and in fact it is equivalent to quasi-convexity in
the scalar case. In turn, quasi-convexity implies rank-one convezity, i.e.

F(p+£¢®n) > F(p) + AFEn,,
where Ay = F,

pi if F'is of class C', the converse being false. Classical
examples of quasi-convex integrands are poly-conver integrands , i.e., con-
vex functions of the determinant minors of the matrix Du. We shall not
dwell any further with these topics; for a first reading we refer e.g. to [49]
and, for further information, to the wide recent literature.

8.2 Regularity of critical points
of variational integrals

Consider the variational integral defined on W12(Q, R™)
Flu) = / F(Du)dz, (8.4)
Q

where F is smooth, |F(p)| < L[p|* for some L > 0, and A{ := Dp; F
satisfy the growth and ellipticity conditions
{ | A% (p)] < clpl, 1Dy AZ(p)| = M

D, AS(p)ELE) > Nel?, e € R, (8:5)

for some A\, M > 0.
Any minimizer u of F with respect to its boundary datum satisfies the
Euler-Lagrange equation

/ AY(Du)Dopidr =0, Vo e Wy (Q,R™). (8.6)
Q

Indeed, using a Taylor expansion and (8.5), we have for ¢ € Wy*(2, R™)

0< / F(Du—i—tD;p) — F<Du)dw
Q

:/Q(A?(Du)Dagoi—|—O(t)M|D<p|2)dx.

Taking the limit as ¢ — 0, and also replacing ¢ with —p, we obtain (8.6).
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The associated quasilinear elliptic system

We may differentiate (8.6) using the difference quotient method, to get

Proposition 8.6 Let u € W12(Q,R™) be a weak solution to the the
ellzptzc system (8.6) where AY satisfy the growth condition (8.5). Then
u € VVIOC (Q,R™) and, for 1 < s <n, Dsu satisfies the elliptic system

/ D, A¥(Du)Dg(D? ) Dogpldr = 0, Yo € Wy 2 (Q,R™). (8.7
Q

Proof. Let {e1,...,e,} be the standard basis of R™, and fix an integer s,
1 < s < n. Given a test function ¢ € C°(Q,R™), for every h > 0 small
enough, also p(z — hes) is a test function, thus

/Q A7 (Du(e + he,)) = A7 (Du(a)) | Dage'(@)dz = 0.

For almost every = € €2 we have
A (Du(x + hes)) — A¥(Du(z))

_ /1 %A?(tDu(x + heg) + (1 — t) Du())dt
0

= /1 D, A7 (tDu(z + hes) + (1 — t)Du(x))Dg [u (z + he,) — ! (x)]dt.
0 Pr

Setting
il (@) / D, A¥(tDux + he,) + (1 — 1) Du(x))dt
we have
/QAZ[Zh)( )Dg Ll Chi he]i) — () Dyopidx =0, (8.8)

where /lejﬂ(h) (x) satisfy

A <M
a; i (h)( =< , (8.9)

Insert now the test function

olz) = u(z + he:b) — u(x) ?
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into (8.8), where nn € C°(Bgr(zo)), Bsr(xo) C 2,0<n<1,n=1on
B%(xo), and |Dn| < £. From (8.9), Holder’s inequality and Proposition
4.8 (i), we get

— 2 — 2
[ [Pt D)2, [ (sl he) Zu)
0 h 0 h

C2 2
< ﬁ/§2|Du| dz.

Du(x + hes) — D
h

Thus

u(x) ’de <es

/BR(xo)
2

where ¢ is independent of h. By Proposition 4.8 (ii) and a covering
argument, Du € W,22(€,R™). Passing to the limit as h — 0 in (8.8) we

obtain (8.7). O

The regularity of critical points of class C!

A bootstrap procedure based on Theorem 5.17 and Schauder estimates,
shows that if the first derivatives of u are continuous, then w« is of class
C°:

Theorem 8.7 If u € C'(Q,R™) is a solution of the elliptic system (8.6)
then u € C*°(2,R™).

Proof. If u € C*(Q,R™) then, by Proposition 8.6, Du solves
Do (A Dg(Du)) =0,

and the coefficients Afjﬁ(x) = D, Af(Du(z)) are continuous and el-
liptic. By Theorem 5.17 and its corollary, Du is Hélder continuous.
Thus the coefficients A%ﬁ are Holder continuous and, by Theorem 5.19,
Du € C19(Q) for some o, giving Afjﬁ € C19(Q). Finally Theorem 5.20
yields u € C*(Q,R™). O

The C'-regularity of critical points

By Theorem 8.7 a critical point of the variational integral (8.4) is smooth
as soon as its first derivatives are continuous. Thus we need, or better
it suffices to show that the solutions Dyu to the elliptic system (8.7) are
continuous. This is false in general (we shall see counterexamples) but it
is true in the scalar case as proved by Ennio De Giorgi in 1957 [24], and
independently by John F. Nash [83].
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Before stating this theorem we observe that system (8.7), in the scalar
case (m = 1), reduces to the elliptic equation in the unknown Dgu

/ vaps (Du)Dg(Dsu)Dopdr =0, Y € W2 (),

thus v := D,u solves an equation of the type
Do (A**Dgv) =0,

where A% € L™ and A*P¢,&5 > €)%, and in this case we would like to
show that v is Holder continuous. This is exactly the claim of De Giorgi’s
theorem, often referred to also as De Giorgi-Nash-Moser theorem.

8.3 De Giorgi’s theorem:
essentially the original proof

De Giorgi’s class

Definition 8.8 Define the De Giorgi class DG()) as the set of functions
u € WH2(Q) for which there is a constant ¢ such that for all zo € 2,
0 < p < R < dist(xg, 90Q)

Dul?dz < ;/ u—k2de, VEeER,  (8.10)
/A(kw) 1D (R—p)? A(k,R) | |

where A(k,r) :={x € By(xo) : u(xz) >k}, r > 0.

To simplify the notation we usually don’t indicate the point zy involved
in the definition of A(k, R).

This definition is motivated by the fact that, as we shall see, a solution
to an elliptic equation belongs to the De Giorgi class.

Exercise 8.9 Prove that if u, —u € DG(2), then u satisfies the following Cac-
cioppoli inequality:

|Dul?de < —— / lu — \|*de,
/zap<zo> (R—p)? P) Br(zo)

for every A € R and B,(zo) € Br(zo) € Q.
[Hint: Use Proposition 3.23.]

Exercise 8.10 Prove that if u € DG(2) and A € R, then also u+ X € DG(2).

A subsolution of the elliptic equation

Do (A’ Dgu) = 0,

MEP < AP 65 < AIEJ?, VEER™ (8.1
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is a function u € W12(Q) such that

/ AP DguDgpdr <0, Yo e W, (Q), ¢ > 0. (8.12)
Q

Lemma 8.11 Let u € WH2(Q) be a subsolution of (8.11).

1. If f € C*(R) is a non-negative, convex, monotone increasing func-
tion with f' € L>°(R), then also fou is a subsolution of (8.11).

2. For any k € R, (u— k)" is a subsolution of (8.11)

Proof. By density it is enough to prove that fow satisfies (8.12) for every
non-negative ¢ € C°(Q). For p € C°(Q), ¢ > 0 define the non-negative
test function

C(2) = f'(u(2))p(z) € Wo*(Q).
We have by (8.11)

A*PDguDo¢ = AP Dg(f o u) Do + f" (u) A%’ DguDyuep
> A’ D (f o u) Do

Integrating yields
02/AaﬁDguDag‘de/AaﬁDg(fou)Dagodx, (8.13)
Q Q

which proves the first claim.
To prove the second claim, notice first that (u — k)* € WH2(Q) by
Corollary 3.25. Up to a translation we can assume k = 0. Set

£() = ViZ4+e?2—e ift>0
ST 0 ift<0

and f(t) := max{t,0}. Then (8.13) holds with f. instead of f and by
Proposition 3.22 and dominated convergence

/AaﬁDgquDagodx:/AaﬁDg(fou)Dacpdz
Q Q
_ / A /() DguD o pda
{zeQ:u(z)>0}

= lim AP £ (u) DguD ypda
e~V J{zeQu(x)>0}

<0.
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Corollary 8.12 For any subsolution (resp. supersolution) u to (8.11),
we have v € DG(Q) (resp. —u € DG(Q)).

Proof. By Lemma 8.11, (u — k)™ is a subsolution, hence it satisfies Cac-
cioppoli’s inequality (Theorem 4.4 with f;, F* = 0; notice that the proof
works for subsolutions, not only for solutions):

C
|D(u — k)T |?de < s / ((u—k)*")%dz, (8.14)
/Bp(;co) (R = 0)% JBr@o)\B,(z0)

which implies (8.10) (and is actually a slightly stronger) thanks to Corol-
lary 3.25.

To conclude simply observe that if u is a supersolution, then —u is a
subsolution. g

The theorem and its proof

Theorem 8.13 (De Giorgi) If u,—u € DG(Q), then u € CL*(Q) for

loc
some o € (0,1). Moreover letting w(R) denotes the oscillation of u in a

Br(zo) € Q and 0 < p < R, then we have

w(p) < c(%)aw(}?), (8.15)

and
1

sup |u| < c( ][ |u|2dx) ‘) (8.16)
B g (wo) Br(xo)
for some constant ¢ > 0 independent of xg, p and R.

In particular if u € Wéf (Q) is a weak solution to the elliptic equation
with L coeflicients

Do (A*? Dgu) = 0,
NP < A%Peags < AJEP,

then, by Corollary 8.12, u and —u belong to DG(2) so that u is Holder
continuous. A consequence of (8.15) and (8.16) we have, when u, —u €
DG(Q)

/ U — g, ,|*dx < c(ﬁ)HHQ/ |u — Uz, r|*dx (8.17)
To,p = R zo,R .
BP(IO) BR(xO)

for B,(x0) € Br(xo) € 2. Indeed, assuming R > 2p (otherwise (8.17) is
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obvious)

/ ‘u — Uzg,p
BP(IO)

2da < c1p"(w(p))?

< e (B) " (w(ry2))

n 14 2a 2
<c3p (—) Sup  |u — g, R
R Bry2(o)

n+2a
< C4(£) / |u—ux07R|2dx,
R BR(IU)

where in the last inequality we applied (8.16) to u — uy, r (compare Ex-
ercise 8.10).

Together with the Caccioppoli and Poincaré inequalities (see Exercise
8.9 and Proposition 3.12), from (8.17) we also infer

/ | Dul?dx < / [u — Uz 2p|dz
B, (o) Bap (o)
1 R N dr (819)
< — U — Uz, R|AT 8.18
P*\R Br(zo) ’

n—24+2«
< c”(£> / | Dul?dz.
R B

r(zo)

|<~>\ EM|Q

In the following we will assume n > 3. The case n = 2 essentially
follows by the hole-filling technique of Widman (Section 4.4), by slightly
modifying the definition of DG(2) (the integral on the right-hand side of
(8.10) should be taken, for instance, over A(k, R) \ A(k,p), as in (8.14))
and noticing that it implies (4.23).

Lemma 8.14 Ifu € DG(R), 0 < p < R < dist(xo,0N), then

/ lu— k[2dz < LQ/ lu— k|?dz - |A(k, R)|*, Vk€ER,
A(k,p) (R=0)* Ja,r)

(8.19)
for some constant C > 0 independent of xq, p, R, k.

Proof. By (8.10) we have, for (u — k)t := max(0,u — k),

+12 4cy +12
|D(u — k)" ["dr < ———5 ((u—k)")*dz.
BR_;g(xO) (pr) BR(CE())

Choose a cut-off function n € C° (B% (x0)) such that

=1lon By(zg), 0<n<1 and |D77|§R
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Then expanding |D(n(u — k)7)|* we infer

/ ID((u — k)*)2de < / 1D ((u — k))|2de
B#(EO)

B g+, (z0)
2
Co 2
+ 7/ ((u—k)")*dx
(R=0)?JBrs,
2

B u—k)H)2dz.
: (R—p)? /BR(mo)(( R

Using Sobolev’s inequality with vanishing boundary value, Theorem 7.29,
we then bound

( [ dw-wre dm) <( / Inu — K)*P? dx)
By (z0) B#(GJ’O)

< / D(n(u — k)*)|2dz
Bage (o)

Cs5

< —— u— k)F|?dz,
=) /BR(M'( A

where ¢4 = ¢4(n) does not depend on p, as a simple scaling argument
implies. By Holder’s inequality

/ |(ufk)+\2d:r:/ lu — k|?dx
Bp(zo) A(k,p)

2
. 2%
<([ ) A
A(k,p)

which yields (8.19), since 1 — 2 = 2. O

Proposition 8.15 If u € DG(Q) there exists a constant ¢ > 0 such that,
for 0 < R < dist(zg, 002), we have

1 6—1
1 2 Ak oz
sup u<k+c(—n/ |u—k2d:1c> (@) , VkeR,
B (a0) R Ja(k,r) R

(8.20)
for some 6(n) > 1 to be defined.

Proof. Step 1. Since, for h > k and 0 < p < R we have A(h,p) C A(k,R)
and, for x € A(h,p), (h —k) < (u(z) — k), we see that

Il — k2| A(h, p)] = /

Ih— kPda g/ - kPdz. (8.21)
Alhop) A(k,R)
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Define
u(h, p) == / lu — h|*dx < / lu — k|?dx =: u(k, p),
A(h,p) A(k,p)

so that (8.19) and (8.21) become

i) < Gtk R)AG R
Alh,p)] - < (h_lk)2u<k,R>.
It follows that, for £ > 0 we have
Cc¢ 1

2¢
n

u(h, p)*|A(h, p)| < u(k, R)*T1|A(k, R)|

(B — )% (h— kP (8:22)

Set
E=—-0 here 6= -+ 1+2>1
2V —27V1
is the positive solution of §2 —# — 2 = 0. Then
E4+1=0¢ and — =90

If we define
®(h, p) := u(h, p)*|A(h, p)],
then (8.22) becomes

Cc¢ 1
(B~ p)% (h— k)2

®(h,p) < ®(k,R)?, for0<p<R, h>k (823)

Step 2. We claim that, for any k € R, we have
®(k+d,R/2) =0, (8.24)

for

1
d:= (R o, R) ).
To see this, we set for £ € N

d

_R R
pe="9 "ot
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Then (8.23) gives

< Bk )"
(per1 — po) % (kesr — k)2 0"

B 9(€+1)(26+2)
= ®(ky, pe) (@(ke,m)g ' éw) '

O(kor1, pesr) <

which setting

26 +2
w[ = 2H€q)(ké7pl)7 Hi= %

becomes
Yot < e (77/13_12(2&2)9%1051%72%’2) :

But with our choice of d we have
¢8*12(2§+2)%C€R—25d—2 =1,
hence by induction we verify 1, < 1)y for every £ € N, i.e.

(P(k(%R)

C(ke, pe) < —

Letting ¢ — oo we get (8.24).

Step 3. Now (8.24) implies that either u(k + d, R/2) = 0, or |A(k +
d, R/2)| = 0. In both cases

sup u <k+d.
B%(Io)

Since d is (up to choosing the proper constant ¢) the second addend on
the right side of (8.20), the proof is complete. |

Corollary 8.16 If u,—u € DG(QQ), then there is a constant ¢ > 0 such

that )
sup |ul < c( ][ |u|2daz> ’ (8.25)
B g (xo) Br(xo)
for every xog € 2, 0 < R < dist(xzq, 0N).
Proof. Being u € DG(?) (8.20) holds; choosing k& = 0 and observing that

A X
|(R]f—;tR)| < ¢, we obtain

sup ut < c( ]Z |u+|2d:c)§. (8.26)
B g (w0) Br(zo)
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Similarly from —u € DG(2) we have

sup u < c( ][ |u*|2dz) ’) (8.27)
B% (Io) BR(IO)
Now sup |u| = max{supu™,supu~} and we conclude. O

Proposition 8.17 Let u € DG(Q) and, for 0 < p < R < dist(zg,99),
set

M(p):= sup u, m(p):= inf u, ko:= M(2R)—m(2R).

8.28
B, (w0) B, (z0) 2 (8.28)

Assume that )
[ Ako, B)| < 5|Br(o)l-

Then there is a monotone increasing function ¢ : R, — R (independent
of ko) with lim;_,o+ ¢(t) = 0, such that

A(h, R)| < ((M(2R) — ), h < M(2R).

In particular

lim |A(h,R)| =
h—M(2R)

Proof. For h > k > ko define v(z) := min{u, h} — min{u, k}. Then

[{z € Br(zo) : v(z) =0}| = |Br(zo)\A(k,R)|

|Br(70)\A(ko, R)|
|Br(zo)|
2

v

Y

This and the Poincaré inequality (3.4) imply

< loldz < / | Doldz (8.29)
R Br(zo) Br(zo)

thus
vl Wi (Br(zo)) < Cl/ |Dv|dx

Br(o)

and the Sobolev embedding theorem gives

(/ |v|1*dac)17* SCQ/ |Dvldz, 1% = "
Br(zo) Br(wo) n—1
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which implies

(h— k) A, B)| < /A i)~ W)Y do

7/ l|" dz
Br(=zo)
woT (8.30)
<cs / | Dv|dx
BR(:E(])

n

N

<cs / | Dul|dx .
A(k,R)\A(h,R)

Taking the %—th power in (8.30) and using Holder’s inequality we infer

(h — k)*|A(h, R)

2 < C4|A(k,R)\A(h,R)|/ |Du|?dz
A(k,R)\A(h,R)

< C4|A(k,R)\A(h,R)|/ | Dul?dz.
A(k,R)

(8.31)
Since v € DG(2) we have, by (8.10),
/ |Duf?de < <2 (u — k)2dw < cgR"2(M(2R) — k)2,
A(K,R) R? JA(k2R)

which, together with (8.31), yields

2n—2

(h —k)?|A(h,R)| "7 < czR"2(M(2R) — k)*|A(k, R)\A(h, R)|. (8.32)

Now set

ki == M(2R) — w i €N,
so that
ki — kg = W7 M(2R) — ki1 = W.

Set h = k;, k = k;—1 in (8.32) to obtain

2n

|A(ki, R)| % < 4esR"2(|A(ki_1, R)| — |A(ks, R))).

Summing for 1 <4 < N and using |A(k;—1, R)| > |A(ki, R)| we obtain

2n—2

N|A(kn, R)|"

desR"*(|A(ko, R)| — |A(kn, R)])

<
< 4degR™2| A(ko, R)). (8.33)
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As N — oo we have ky — M(2R) and |A(kn, R)| — 0. We see at once
from (8.33) that the rate of convergence doesn’t depend on xg, so that
the function ¢ exists. O

Proof of De Giorgi’s theorem. Fix xy € ). With the same notation as in
(8.28) we assume

|A(ko, R)| = {2 € Br(wo) : u(z) > ko}| <

N~

(otherwise we work with —u). By (8.20) with

M(2R) — m(2R)

k =k, = M(2R) — STEE R

we have

|mm¢m0%1

M(R) < ky 4 ¢(M(2R) — ky) ( Rn

Thanks to Proposition 8.17 we may choose v large enough and independ-
ent of xg, such that

Ak, 2R)\ 7 1
Then
m@) < men - YCOZICR) L 2o om) k)
_ M@R) - M(2R;V:2m(2R)

Subtract m(R) and obtain

M(2R) — m(2R)
21/+2
M(2R) — m(2R)
21/+2

= R - meR) (1- 5 ).

M(R) —m(R) < M(2R)—m(R) -

< M(2R) — m(2R) —

that is
w(R) < ow(2R), (8.34)

o < 1 independent of g, w(p) := M(p) — m(p) being the oscillation on
the ball B,(zo). Iterating it follows that
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with a = — llZi; € (0,1). To conclude that w is locally Holder continuous,
define
w(p,x) = sup u— inf u
( ) B,(x) B, (z)

and for z,y € Br(xo), 3R < dist(xq, dQ), we have

lu(z) —u(y)| < w(|z —y|,z)

|z —y[\*
<
_cl( 5R w(2R, x)

T — [0
<eo (%) w(3R, ).

A remark

In the right-hand side of (8.25) one can take the LP norm of u instead of
its L2 norm, for any p > 0. For p > 2 this follows of course from Jensen’s
inequality, while from p € (0,2) it can be proven using the following
lemma.

Lemma 8.18 Let ¢ : [0,7] — R be a non-negative bounded function.
Suppose that for 0 < p < R < T we have

¢(p) < A(R—p)”" +e9(R)

for some A,a > 0, 0 < e < 1. Then there exists a constant ¢ = c(a, )
such that for 0 < p < R <T we have

d(p) < cA(R—p)~ .

Proof. For some 0 < 7 < 1, define

t() =P )
ti+1 Z:ti+(1—T)TZ(R—p), 220
Notice that t; < R since

o0
>t
, 1—7’
=1

and prove inductively that

k—1

Bto) < e¥¢(te) + AL —7) " (R—p)~* > &'r

=0
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Choose 7 in such a way that = < 1 and letting & — oo we get

A

o(p) < C(%@m-

0

Proposition 8.19 For everyp > 0 and every u such that u, —u € DG(2),
there is a constant ¢ > 0 such that for

20 €Q, 0<p<R<dist(zg,00), p>0

one has .
sup |u| < %(/ ulrdz)”, (8.35)
B, (zo) (R—p)» Br(zo)
or, equivalently, there exists C > 0 such that
1
sup |ul < C( ][ |u|pdx) " (8.36)
B%(Io) Br(zo)

where the constants are independent of xg.

Proof. Step 1. First we prove that for any 0 < 7 < 1 we have

1
swp ol < e (f )
B r(x0) (1=7)2\ JBa(ao)

or, equivalently, for 0 < p < R

/ 1
sup [uf < 0—17(/ uf*dz) . (8.37)
B, (z0) (R—p)> Br(zo)
For any € > 0 there exists x; € Brr(zo) such that

u(z1)? > sup |ul? —e.

B r(z0)
Then
sup |u*> < e+ sup  |u’da
BTR(:D()) B<17T)%(w1)
< e4c ][ \u|2d:c
oy Bung (@)

2"¢ 1

= | uf2de

(1 —7)" |Bg|" By, g (@)
< a

€+ ][ |u|?dz.
(1 =7)" JBu(zo)
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By the arbitrariness of €, we conclude. This takes care of the case p = 2
and, by Jensen’s inequality, also of the case p > 2.

Step 2. Now assume p € (0,2). From (8.37) we get

sup |u| < ;(/ \u|2d:c)%
Bywo)  (R=p)% \Ba(ay

1

C 2 2—p
< — / |u|Pdx sup |u|z (8.38)
(R—p)2( Br(x0) ) Br (o)
1
<e sup |u|+c(€7’p)a(/ |u|pd=’r)p,
Br(wo) (R—p)7 Br(zo)

using
2 2
ab < ea? + c(e,p)bz-».
Applying Lemma 8.18 to (8.38) with

6(p)i= sup Jul, T=R
BP(IO)

we obtain (8.35). O

8.4 Moser’s technique and Harnack’s
inequality

We present here Moser’s proof [79] [80] of Harnack’s inequality that, as a
corollary, yields De Giorgi’s theorem.

The iteration technique
Proposition 8.20 Let u € W12(Q) be a subsolution of
Do (A*? Dgu) = 0,

8.39
e < A°Pe,65 < A€, VE € R™ (8.39)

Then for every p > 0 there exists a constant k1 = k1(p,n, A\, A) such that

1
sup u < k1< ][ |u|pdx> ", Vzo €Q, 0 < R < dist(zg, 09).
B% (z0) Br(zo)

(8.40)
If u is a positive supersolution, then for every g < 0 there exists a constant
ko = ko(q,n, A\, A) such that

inf u> kg( ][ |u|qu)5, Vo € Q, 0 < R < dist(wo, 99).
B g (wo) Br(zo)

(8.41)
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Proof. We divide the proof in several steps

Step 1. Let u be a subsolution. It is enough to consider the case u > 0,
since otherwise we can work with u™, which is again a subsolution thanks
to Lemma 8.11, and get

1 L
sup u< sup u" < kl( ][ |u+\pdm) ' < kl( ][ |u|pdx> "
B g (wo) B (wo) Br(wo) Br(zo)

For any 0 < p < R, take n € C°(Bg(z0)), with n = 1 on B,(z¢) and
|Dn| < Ri_p. Choose & > 1, and consider the test function uén? > 0:

0o > /AO"BDguDa(ug?f)dw
Q

¢ A“ﬁDguDaqu_andx + 2/ Ao‘ﬁDguDanugndx.
Br(zo) Br(zo)

By ellipticity and boundedness of A%? this becomes

A A -
/ | Du|?ut~1n?de < M/ |Du|u£21nuEerl |Dnldz,
Br(zo) € Br(zo)

and using 2ab < ea? + g with a = |Du|u%n, we get

/ | Du>ut~ n?dx < %/ ut T Dy dz.
Br(zo) § Br(zo)

2 2
Since ‘D(u%) ‘ = (5%1) us~|Dul?, we infer

2 1\ 2
/ ‘ D(u*) ‘ n*dr < ¢ (i> / ut T Dn|2de.
Br(zo) 3 Br(zo)

Now use
g1 |2 g1 2 o £+1 2
D (nu 2 <2 |D(u=)| n°+2u"""|Dny

to get
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where c¢3 is independent of £ > 1. By the Sobolev inequality (Theorem
7.29) we then have

2
. o o* Pxa
(/ u%2 dm) < (/ (u#n) dm)
B, (x0) Br(zo)
e41 |2
§C4/ D(nuT)‘ dx (8.42)
Br(z0)
% £+1
< — usTdx.
(R—p)? /BR(wo)

Finally, setting p := 27 = 5, p:=§+ 1, (8.42) becomes

1
m cs
uPdxr ) < 7/ uwPdr, Vp>2, (8.43)
(Lp(xo) ) (R - p)2 Br(zo)

Step 2. Thanks to Lemma 8.11, u* is still a subsolution of (8.39), so we
can iterate the bound (8.43). Define, for any p > 2,

-p

5o (B Rit1)? =

oi=pyu', Ri:=p+

By (8.43) we have

/ u? i dx
Br; , (w0)

a1
7

( uti dx) !
BR1+1 (wo)
222+2 ﬁ %
< < ) (/ u‘”dm) .
Br, (zo0)

< H ( 22k+2> % / oy
< uPdx.
Br(zo)

T =

Since
log(H( 22k+2) ) < Z_k ((2k + 2)log(2) + loges) < o0
k=0 o M
1(ats)” - ()
iy \(R = p)?  \(R-p)?
i 1 _on
Tk - o
o M 2
we have
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where c¢g depends only on p, A and A. Therefore

1

1 1
(/ u‘”dm) < (/ u"idw) 7
By (z0) Br, (%o)

S%(R—p)g(/B( )upda:)g.
RrR(Zo

For ¢ — 400 the left hand side converges to sup B, (z0) U and this completes
the proof of (8.40) in the case p > 2.

Step 3. We now prove (8.40) for 0 < p < 2. By step 2 we have

1

3
sup u§06(Rp)3(/ uzd:c) ,
B,(zo) Br(zo)

which implies

1

. 3

sup u < cr(R—p)~2( sup u)1_2</B ( )updx) .
RrR\(To

By (z0) Br(zo)
. . T
Next we use Young’s inequality ab < ca? + c(e, q)b? , with 7 =1- g,
q =2,
1-2 1
a:=| sup u , b:= (07(R — p)*"/ upda:> ,
Br(o) Br(zo)
inferring

1
1 n Z
sup u < = sup u+cS(R—p)v</ updx)
B,(z0) 2 Br(zo) Br(zo)

Setting ¢(p) = supp (5,)u the conclusion follows at once from Lemma
8.18.

Step 4. Suppose u is a positive supersolution. Proceding exactly as for
subsolutions, but taking first £ < —1 and then p = £ +1 < 0 one easily
deduces (8.41). O

The Harnack inequality

Proposition 8.20 in conjunction with John-Nirenberg’s theorem yields

Theorem 8.21 (Harnack’s inequality) Let u € W2(Q) be a positive
solution of the elliptic equation (8.39). Then there exists a constant

c=c(n,\,A) € (0,1)
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such that
inf w>c sup u, (8.44)
B% (z0) B R (z0)
2
for any z¢ € Q, 0 < R < dist(zg, 00).

Proof. Consider a cut-off function 7 compactly supported in B,(zo) with
n=1in Bs(zo) and |Dn| < ;—‘;. From

,,72
/ A*PDouDg () dz =0,
Q u

2
/ A**DyuDguLdx = 2 / APDuD gyl da
0 u Q u

we infer

D
< cA/ M|D77|77dglc.
Q u
Using ellipticity and boundedness of A% and 2ab < ea® + g, we obtain
D 2
/ %nzdm < cl/ |Dn|?dz < cop™ 2. (8.45)
Q u Q

2
Observe that |Dlogu|? = %; by the Poincaré inequality and the prop-
erties of n we then have

/ |logu — (log ), p|2da < 03p2/ |Dlogu|?dx < cap™,
By(z0) »(z0)

and since g is arbitrary we have logu € £L%"(0) = BMO(£) for Q €
Q. By Theorem 6.25 part 4, this implies the existence of v = v(n) > 0
and c5 = c5(n) such that the function v := e71°8% satisfies

1
][ vdx ][ —dx < cs.
Br(o) Br(zo) Y

We now choose p = v, ¢ = —v in Proposition 8.20 to conclude

=1

inf w> k’g( ][ u_"*dx) v
B%(ﬂﬁo) Br(zo)

= kQC;%( ]{BRW u'yda:>%

ko _1
> k—ch 7 sup wu.
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A first consequence of Harnack’s inequality is the theorem of De Giorgi.

Corollary 8.22 A solution u € WY2(Q) of equation (8.39) is locally
Holder continuous.

Proof. Define M(p) and m(p) as in (8.28), with Bagr(z9) C 2. We have
that M(2R) —u > 0 in Bag(xo) is a solution of (8.11), hence by virtue of
the Harnack’s inequality, we get

M(2R) = m(R) < %(M(2R) ~ M(R)).
Similarly, with u — m(2R) > 0 we obtain
M(R) — m(2R) < %(m(R) ~m(2R)).

Summing we obtain

1
w(2R) + w(R) < - (w(2R) — w(R))
for some ¢ € (0,1), hence
1-c
< 2R).
W(R) < T w(2R)
Since };E < 1 and ¢ doesn’t depend on xy and R we conclude as after
equation (8.34). O

A second consequence is

Theorem 8.23 (Strong maximum principle) Letu be a non-negative
solution of equation (8.39). Then either u >0 or u = 0.

Proof. Tt suffices to apply the Harnack inequality to u + ¢ for some € > 0
and let € — 0. g

8.5 Still another proof of De Giorgi’s
theorem

We report here about another proof of De Giorgi’s theorem due to P. Tilli
[106], at least assuming that u is bounded.

Theorem 8.24 (Oscillation lemma) Assume that u is a bounded solu-
tion to (8.11) in the ball B4(0). If

[{re Bi(0) [u<0}] > ZBO)], (8.46)

then

sup ut < COHx € By(0) ’ u > 0} e sup u",
B1(0) B4(0)

for a dimensional constant cy.
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Proof. As in the proof of Caccioppoli’s inequality, testing with the function
(u—k)*n and then letting 7 tend to the characteristic function of B,.(0),
we find

/ \D(u — k) 2dz < c/ D@ — k)| (u— k)rdH™L.  (8.47)
B,.(0) 9B,.(0)

Now set for p € [0, 1]
sp)i= [ |Du = keI~ ke)
BQ,,}(O)

The function g(p) is absolutely continuous and differentiation yields for
a.e. p€ (0,1)
—4'(p) = alp) + kb(p)

where
a(p) == / ID(u— kp)*|(u— kp)FdH?
8B27p(0)

and
W)= [ D ko) da.
B2*p(0)

Setting My := supp, ) ut and using (8.47), we also get

#0) < [ ke Pde [ (k) o
B35 (0) Ba_,(0)
< M7 [ Dkt [ (k)T
BQ*/J(O) Bz—p(o)

< MfTal) [ (- ko)),
B2fp(0)

having used (8.47) in the last inequality. Since (u — kp)* for £ > 0
vanishes on a large portion of By_,(0) because of (8.46), we also have by
the Sobolev embedding and the Poincaré inequality (Proposition (3.15))

n
n—1

/ |<u—kp>+|n“'1dx<c(/ |D<u—kp>+|dx),
B2fp(0) BZ*P(O)

concluding

Using
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we find for every € > 0

2 p
g(p; < (a(’;}) + Eqb(p)q" 1>
CM; T €
_ () g
= ("2 e
P
< (‘1) +s%b(p)>
€
_ (o), e kb(p) o
N € k P
Finally, if we choose € = k27-1, we find
k"ﬁ 2n—1
9P ——= < (=g'(p) "7  ae pe(0,1) (8.48)
oM

Now we claim that, if we choose

1
n—2 n—2 n
k= C()M4Tg(0)% =coM, " </ |Du+|u+dx) ,
B2(0)

where ¢ is large enough, then ¢g(1) = 0. Indeed, if g(1) > 0, then g(p) > 0
for a.e. p and (8.48) gives

k=T d 1
— = < 7 (Q(P) ZnT )a
CM42n71 14
i.e.

1 1 kznn—71 1 an%l
0<g(l)z-1 <g(0)2nT — ——= =g(0)zn-1 [ 1 - —=— |,
CMFT c

a contradiction if we choose ¢ large enough. Thus g(1) = 0, i.e.

sup ut <k = CoM:% (/ |Du+|u+dx) !
B3(0)

B1(0)
1
n—1 n
<coM, " (/ |Du+|d:v>
B3(0)

1
<coMy ™ y{xeB2 | u(x >0}|2n</ |Du+|2dx>2
B2(0)

1
{xEBz | u(x >O}‘2"(/ |u+2dac>2
B4(0)

< co|{x € B2(0) | u(z) > 0}

< CO n

o sup ut
B4(0)

and the proof is complete. O
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Theorem 8.25 A bounded solution of (8.11) is Hélder continuous.

Proof. Let u be a solution. By translation and scaling, we can assume

sup u =1, inf u=-1
B4(0) B4(0)

and, possibly considering —u, that (8.46) holds. The oscillation lemma,
applied to u — 1 + ¢, then yields

supugl—s—#scol{:ceBg(O)]u>1—5}|%. (8.49)
B1(0)

On the other hand,

1
|{z € B2(0) : u(z) > 1 —e}|log = §/ —log(1 — u)dx
€ {z€B2(0):u(z)>1—¢}

< / max{—log(1 — u),0}dx
B2(0)

and since max{—log(l — u),0} = 0 on a large subest of B3(0), by the
Sobolev, Poincaré and Jensen inequalities (see Proposition 3.15) we have

1

| Dul? ’

max{—log(1l —u),0 dx<</ —dzx | ,
/32(0) { ( )03 By(0) (1 —u)?

and the integral on the right-hand side can be bounded as in (8.45), since
(I—-wu)>0.
Together with (8.49), and choosing e sufficiently small, we conclude

sup u<1l-—20, 6 >0,
B1(0)
or, since infp, gy u = —1,
2—10
osc u<(l—0)—(-1)= 0SC U.
B1(0) 2 B4(0)
By scaling and iterating this inequality, we then easily conclude. O

8.6 The weak Harnack inequality

We have seen that solutions to an elliptic equation with bounded coef-
ficients satisfy the Harnack inequality (8.44). Actually a theorem of
Di Benedetto and Trudinger [28] shows that any function w such that
u, —u € DG(Q) satisfies the Harnack inequality. For simplicity we state
it on cubes.
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Theorem 8.26 If —u € DG(Q4) and u > 0, then there exist constants
p >0 and ¢ > 0 such that

1
infu > c( ][ u”dac) " (8.50)
o} )
Inequality (8.50) is called weak Harnack inequality. Before giving its
proof we observe that Harnack’s inequality (Theorem 8.21) is a straight-
forward consequence of (8.50) with (8.36). Then, with the same proof of
Corollary 8.22 we obtain another proof of De Giorgi’s theorem.

The proof of Theorem 8.26 uses several propositions. The first is
essentially De Giorgi’s oscillation lemma.

Theorem 8.27 (De Giorgi) Suppose that u > 0 in the cube Q4, T > 0,
§€(0,1) and —u € DG(Q4). If

{z € Q:u(z) <7} <6|Q,

then
infu > ¢(0)r,

Q1
where ¢(0) € (0,1) is non-increasing with respect to ¢.
Proof. Step 1. We first prove the Proposition when ¢ is sufficiently small.

With —7 and —u in place of k and u respectively, (8.20) and a covering
argument yield

sup(—u) < —T—i-c<L (—u+7)2dx)
Q1 |Q2| {zeQu(z)<r}
0-1
" ({x € Q2 :ulx) < T}|> 2
|Q2] 7
hence
infu >’T—C(— (T—U)2d$>2
Q1 |Q2| {z€Q2:u(z)<7}
0—1
" <|{m € Qs :u(x) < T}|> z
|Q2]
0
ZTCT(HZ € Qs : u(x) <T}|>
Q2|
> ’T(]. — 05%).
Then
infu> 1T
Q1 2
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for 0 = §y sufficiently small.

Step 2. Let now 0 € (0,1) be arbitrary. From (8.32) applied to —u and
(8.26) applied to —u — k for some k < 0 we obtain

2n—2

(h—k)*{z €Q2 : —u(x) > h}|™=

< c/ (—u—k)")dzl{z € Qa : h > —u(x) > k}| (8.51)

4

< clQal((=k)")*{z € Q2 - h > —u(z) > K},

where ¢ depends on 4. In fact § € (0,1/2] in Proposition 8.17, but (8.32)
holds for § € (1/2,1) as well with constant ¢ = (1—§)2¢, since it depends
on (8.29), which for ¢ close to 1 can be replaced by

c

1
— |v|dx < —— | Dvl|dz,
R Br(

zo) 1=9 Br(zo)
which follows from Proposition 3.15. We now apply (8.51) with

k=-27°r, h=-2"°"!'1 forsomes €N,

getting

Hx € Q2 :u(x) < #HZT < cl(‘{x € Qs :ulx) < l}‘

Summing for 0 < s < v — 1 we obtain

2n—2
T

V‘{.’L‘EQQIU(SL’) < 2_"}) " Scl‘{xEngu(x) <TH < 127,

with ¢; depending on §, hence, choosing v large enough (depending on §
and &) we obtain

-
Hl” € Q21 u(x) < 2—,,}‘ < 60|Q2],
so that by the previous step

infu> —
Bl g

hence the theorem is proven with ¢(§) = 271 O
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We need to slightly extend the previous result.

Proposition 8.28 Assume that v > 0 in Q4, 7 > 0, 6 € (0,1) and
—u € DG(Qq). If {z € Q1 :u(z) = 7} = 6|Q1], then

infu > ¢(d),
1651u_c()7

1
where c(d) € (0,1) is non-decreasing with respect to .

Proof. Indeed

o€ Qorul@) 2 7)|2 o € Quiula) 2 7} 2 Q1] > 2 1Qu],

hence 5
Hr € Qa:u(z) <1} < <1 — 2—n)|Q2|

and we can apply Theorem 8.27. g

Proposition 8.29 Suppose that u > 0 in the cube Q1, 7 > 0, and —u €
DG(Qq). If
Hz € Qu:ulz) > 7} > 27°|Qu|

for some positive integer s, then

infu > ¢°r,
Q1

c=c(06) € (0,1) being as in Proposition 8.28, with § := 27771,

Proof. For s =1 the claim is true by Proposition 8.28. Let us assume the
claim true for some s and prove it for s + 1. By hypothesis, if we set

Ey:={ze€Q:u>r1},
we have |Eg| > 27571 Q.
If |Ep| > 27%|Q1], then by the inductive hypothesis

infu>c’r>cHr

1

and we are done. Otherwise
27571 Q1| < |Eo| < 27°|Qu]-

Set f := xg,, and apply the Calderén-Zygmund argument to f in ¢); with
parameter % to find a sequence of dyadic cubes {Q;};c; such that

1

. L
() 5< f fdo<2ic, NGl > b))
Qj
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(i) f < % a.e. in Q\UJ Qj, ie. Ey C Uj Q; for j € J up to a set of
measure 0;

(iii) if @, is one of the 2" subcubes of P; arising during the Calderén-
Zygmund process, then

1 1
][ f§—7 ie. ‘E00P1|S—‘PZ‘
P, 2 2
From (ii) and (iii) we infer
1
|Eo| = [Bo N (UiP)| = |EgN P| < 3 ; |P;].

%

On the other hand, if P is one of the P/s and Q]- is one of its subcubes,
we have

1
[EoN P 2 [BoN Q] 2 51951 2 555 |Pl;

|2 2.2n
therefore we can apply Proposition 8.28 to conclude I%f u > cT, ie.

PCE ={zeQ|u>cr}.

Consequently
2*5*1|Q1|§|Eo\§1 |Pi|§l‘E1|a
2 < 2

ie.,
|E1| > 27°|Qul.

Then, by inductive hypothesis,
infu > c(c)r = "7
1
Proof of Theorem 8.26. Given any T such that

0<7<t:=supu
Q1

and choose an integer s such that

=Hz e Qu:u(x) =7} >27°Ch],

1 -1
S>1°g(|cz |)'<1"g5) |

ie.
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Then, according to Proposition 8.29, we have

infu > cr
Q1

Az ). 11
> Cl"g(\@ﬂ) (log )™~

T
IOg |g1|

Il
[©]
M
kel
VR
5}
o
o

ie.

Taking into account (6.1), we conclude for

t - i f < 1
:=infu, p
0 !

and using (6.1)

b A At
uwPdr = p/ P O gr 4 2o gp
][1 to |Q1] 1Q1]°

. FR Y . p
< cpinfu~ TP vdr + (Cg inf u)
Q1 Q1

to

_ ; p
= cginfu
Q1
as was to be shown. O

8.7 Differentiability of minimizers
of non-differentiable variational integrals

We conclude the chapter proving two results of Giaquinta-Giusti [41] [42],
[37]. Consider a variational integral

F(u, ) := / F(z,u, Du)dz, (8.52)
Q
that is not necessarily differentiable in W2,

Theorem 8.30 Let F be as in (8.52) and assume that

Ip|? < F(x,u,p) < Alp|?, (8.53)



200 The regularity problem in the scalar case

and let u € VV&DC2 (Q) be a quasi-minimum of F meaning that there exists
Q > 1 such that

F(u,spt(u —v)) < QF (v, spt(u —v))

for all v e WE2(Q) with spt(u — v) € Q. Then both u and —u belong to

loc

DG(Q), hence u is locally Hélder continuous by De Giorgi’s theorem.

Proof. Let g € Q and Br(zg) € Q. For k > 0, 0 < s < R set as before
A(k,s) :={x € Bs(xo) : u(z) > k}.

For any t with 0 < ¢t < s, let n € C°(§2), sptn C Bs(zo), n = 1 on By(xo),
|Dn| < -2, and define
w:= (u— k)" = max{u — k, 0}, v i=u— nw.

Observing that w« differs from v only on A(k, s), using the minimality of
u and (8.53), we find

/ |Duf?dz < / F(z,u, Du)dx
A(k,s) A(k,s)

< Q/ F(z,v, Dv)dx < QA/ | Dv|?dx
A(k,s) A(k,s)

< Cl{ / (1 —n)?|Dul*dx +/ w2|D77|2dx}.
A(k,s) A(k,s)

Observing that n = 1 on By(zo) and |Dn| < -2, we get

4
/ | Duldx < cl{/ |Du|2dx+72/ (u—k)gdac}.
Ak,t) Ak, s)\A(k,t) (5 =12 Jak,R)

Summing c; fAk . | Du|?dx to both sides, we obtain

C1 2 461 2
| Du|?dx < / Dul*dx + / (u — k)“dx,
/A(k,t) L+er Ja,s) | (s =% Jak,R)

and Lemma 8.18 yields at once

C2 2
|Dul?dx < 7/ (u — k)*dz, (8.54)
/A(k,p) (R=0)* Jaw,r)

for 0 < p < R < dist(xg, 012). Therefore u belongs to the De Giorgi class
DG(2). The same reasoning applied to —u implies that also —u € DG(Q)
hence, by virtue of De Giorgi’s theorem, we conclude that u is Holder
continuous. U
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Remark 8.31 The notion of quasi-minima was introduced in [43]. Its
interest consists in the fact that, under very soft assumptions, minimizers,
solutions of elliptic systems, solutions of problems with obstacles, etc. are
all quasi-minima. The interested reader is referred to [39] [52].

Theorem 8.32 Let u be a minimizer of the variational integral F. As-
sume that the growth condition (8.53) holds and moreover

(i) for every (x,u) € QxR™, F(x,u,p) is twice differentiable in p, and
for some A, M >0

|Fpp(x,u,p)| S M

Fpops(m,u,p)6aés > A& for all £ € R®.  (8.55)

(ii) The function (1 + |p|*)" F(x,u,p) is Hélder continuous in (x,u)
uniformly in p, i.e. there exist contants A >0, o € (0,1) such that

|F (2, u,p) = F(y,0,p)| < Al — y|? + |u —0[*)72|p|*.  (8.56)

Then Du € CL7(Q).

loc

Proof. Step 1. Take any xg € Q, Br(zg) € 2, and let v be a minimizer of

(v, B(xo)) = /

F(xo,ugy.r, Dv)dz, Ugy.r ::][ udzx,
Br(zo) Br(zo)

among the functions in W'2(Bgr(x¢)) taking the value u on dBg(xo).
Such a minimizer exists because, thanks to (8.53), a minimizing sequence
v; is bounded in W12(Bg(zo)), hence it has a weakly converging sub-
sequence. On the other hand (8.55) implies convexity in p, thus weak
semicontinuity. By Proposition 8.6, Dv satisfies an elliptic equation with
bounded coefficients hence, by De Giorgi’s theorem, Dv € C’ﬁ;f(BR(a:o))
for some ¢ € (0,1) and we have by (8.17) the estimate

n+248
/ |Dv — (Dv)mo,p|2dx < cl(%) / |Dv — (DU)IO,R|2d$c.
B, (z0) Br(zo)

Therefore as in (5.22)
n+26
[ 1pu= (D P g@{ (7)" [ 1Du= (Duhais
By (z0) Br(zo)

+/ |D(uv)|2dx}.
BR(IU)

Then, noticing that Dsv satisfies an elliptic equation with bounded coef-
ficients for every s, namely

—Da (Fpapﬁ‘ Dﬁ(DSU)) = 0,



202 The regularity problem in the scalar case

we can bound with De Giorgi’s Theorem, (8.16) in particular,

][ |Dvfdx < sup [v]> < sup |u|? §c][ |v|2dx
By (z0) ) Br(zo)

B, (o Bry2(wo
(for p < R/2, otherwise the inequality is elementary), hence as in (5.22)

/ | Dul?dz < cz{(p)n/ |Du\2dz+/ |D(uv)|2dx}.
B, (w0) R7 JBa(w) Bn(v0)

(8.57)
Step 2. We now claim that

/ |D(u —v)|2dx < §[f°(u, Br(z0)) — F°(v, Br(zo))].  (8.58)
Br(zo)

To see that, set FO(p) := F(x0, Uz, r,p), w := u—v. Taking into account
(8.55) we find

FY(Du) — F°(Dv) = Fz?a (Dv)D,w
1
+ / (1 =1t)Fp, p; (tDu+ (1 —t)Dv) DowDpgwdt
0
A
> F,) (Dv)Daw + §|Dw|2.

Integrating over Br(z() and observing that v satisfies that Euler-Lagrange
equation

/ FSG(DU)Dagodx =0 for all p € W, %(Q),
Br(zo)

(8.58) follows at once.
Step 8. We have

F(u, Br(x0)) — F°(v,Br(z0))

:/ [F(mg,ume,Du) —F(x,u,Du)]dx
Br(zo)

+/ [F(x,U,DU) _F(xo’ume,D’U)]dl‘
Br(zo)
+ F(u, Br(%o)) — F (v, Br(z0))

S/ Al = @of* + |u = gy & )72 Dul*dz
BR(Z())

+/ Al = 20l + [0 — ey 1)/ Do|2da.
Br(zo)
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Using (8.58), the minimizing property of u, and taking into account (8.56)
and the Holder continuity of w (Theorem 8.30) and v (De Giorgi’s the-
orem), we infer

/ |D(u — v)|?dx < 03RW/ |Du|?*dz, for some v € (0,1).
Br(zo) Br(zo)

(8.59)
Combining with (8.57) we get

2 AN 2
/Bp(xo) |Dul|*dx < 04{(5) +w1(R)} /B | Du|*dz,

r(z0)

where w(R) < ¢RY. This implies, by means of Lemma 5.13, that for
every € > 0 there is a constant c; such that

n—e
/ (Dufdr < e5(2) / \Duldz, 0<p<R. (860
B, (x0) R Br(o)

Notice that this implies u € C&?(Q) for every a € (0, 1), by Theorem 5.7.
Step 4. To conclude, first observe that (8.60) together with (8.59) implies

/ |D(u — v)|2dx < cgR" 227 7¢,
BR(I(])
Taking € = ao we get in conclusion

n+26
/ (D= (Du)y pf*de < er (%) / |Du — (Du) 4y 5|*da
B,(z0) Br(zo)
+ RO
By Lemma 5.13

ao 0

/ |D’U, - (Du)$07p|2dx < cSpn+2ra T = min <_7 _)7
Bp(ﬂﬂo) 2 2

for all 20 in an open set, hence Du € L2"T2"(Q) = CP7(Q). O

loc



Chapter 9
Partial regularity in the vector-valued case

No genaralizations nor counterexamples to the theorem of De Giorgi were
found during the years 1957-67 for the vector case m > 1. With the
exception of the special case n = 2, general regularity results for elliptic
systems were not available, and in fact, as shown from 1968 on, not valid.

9.1 Counterexamples to everywhere
regularity

Here we present only three classical counterexamples. For a more com-
prehensive discussion we refer to [37] and to the more recent works [105]
and [65].

9.1.1 De Giorgi’s counterexample

The following example is due to De Giorgi [27]. In B1(0) C R", n > 3
consider on W12(B;(0),R") the regular variational integral

Flu) = /B " F(z, Du)dx
FARCE): i)oe] }
= Dul* + n—2)0iq +n—-= |Dyu'| pdx.
2 Bl(O) ‘ | |:'L§—:1 (( ) |(E|2 ) :|
(9.1)

Its Euler-Lagrange equation is
/B . AP Dgu Dog'd =0, Vo € WO(Bi(0),RY),  (9.2)
1

with

af _ TiT
A} (@) = 6apdij + |(n —2)0ai + nW} {(n —2)dgj +n

zjTs
x> 17
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Though these coefficients are bounded and satisfy the Legendre condition,
the vector valued map

xT

 Jal”

=

u(z) : I

which belongs to W12(B;(0), R™) but is not bounded, is an extremal of
F, hence it satisfies the elliptic system with bounded coefficients (9.2).

yi= 21— ((en -2 +1)"

9.1.2 Giusti and Miranda’s counterexample

A slight modification of De Giorgi’s counterexample is the following (com-
pare [54]).

F(u) = /Bl(o) F(u, Du)dx

n

4 wtu? .
= |1)’Z,L|2 + (51 -+ 77)DZ’LL] s
/Bl(o) 2 (% n—21+[ul?

i,j=1

where B1(0) € R™, n > 3. For n large, the unique minimizer of F in
Wt2(B1(0),R") is
(@) = =
u(zr) = —
||
and it satisfies an elliptic system with bounded coefficients A;‘jﬁ (u), where
the dependence on w is real analytic.

9.1.3 The minimal cone of Lawson and Osserman

The area functional for the graph of a vector valued function u : Q C
R™ — R™ is

Alu) = /Q F(Du)dz = /Q \/det (I + Du* Du)dz.

Its critical points (whose graphs are called minimal) satisfy the elliptic
system -called minimal surface system-

Zn:Da<\/§gaﬁ>:O 6=1,....n
i=1
zn:Da<\/§ga5Dgui):0 t=1,...,m.

i,7=1

where go5 : =1+ Z;n:l DoéuiDgui7 (g"‘ﬁ) = (gag)_l.
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Let n: S ¢ R* — S? C R3 be the Hopf’s map defined by
(21, 22) = (|21]” = |22[*, 22172) e R x C= R,

where (21, 22) € C? 2 R%. Then, as proven by Lawson and Osserman [68],
the Lipschitz but not C'' map defined by

u:R* > R?

we) = Lhain (L) w0 94)

and u(0) = 0 satisfies the minimal surface system (9.3).

9.2 Partial regularity

The counterexamples given in last section show that everywhere regularity
results for critical points or minimizers of regular variational integrals
are in general not possible. Here we shall see some partial regularity
results, i.e. we prove that minimizers of variational integrals or solutions
to nonlinear elliptic systems are regular except in a closed set of small
Hausdorff dimension.

9.2.1 Partial regularity of minimizers

Consider the functional
F(u) = / F(Du)dr, ue Wh2(Q,R™),
Q
where F': R™*™ — R is smooth, satisfies the growth condition (8.5) and
L2 2
~Ipf* < F(p) < olp|

for some o > 0.
Given a minimizer u € W1H2(Q,R™) of F, define the singular set of u

Y(u) = {x € Q: liminf ][ |Du — (D), ,|*dz > 0}.
By(z)

p—0

Notice that if Du is continuous at x, then x & 3(u). In fact the converse
is true, as the next theorem shows.

Theorem 9.1 The set X(u) is closed, u € CH7(Q\X(u)) for any o €
(0,1), and
H"2(2(u)) =0,

where H"~2 is the (n — 2)-dimensional Hausdorff measure.
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Proof. Observe that for every p,p € R™*"™,
F(p) =F(p) + Fy; (P) (P, — D)

1 S (9.5)
+ [ =08, 0+ (1= 0p) 0k~ 7)) — 7).

Fix p := (Du)y,,r for some zg € Q, 0 < R < w and define

G(v) = / G(Dv)dz,
Br(zo)
where G is the approximation of F' given by

G(p) = F(2) + Fyy ()0l — Ph) + 3 e (D) — L))~ B)- (96)

Since G is the sum of a quadratic coercive form, a linear functional and
a constant, by Theorem 3.39, there exists a unique minimizer v for G in
the class

{c € WY2(Bp(w0),R™) : ¢ —u € WOI’Q(BR(xO),Rm)}
and it satisfies the elliptic system
~D, (Fp (D)D) — pg;)) —0, in Bg(wo),

thus the energy estimate (5.14). By Proposition 8.6, Du € W,22(Q), hence

loc

the Sobolev embedding theorem yields Du € L2 (). Now thanks to the

loc . .
LP-estimates, Theorem 7.1 (actually applied to the function v*(x) —p.,z%),

for every ¢ € [2,2*], there exists a constant ¢ = ¢(g, A\, A) such that

/ |Dv — p|¥dx < c/ |Du — plidx.
BR(I()) BR(:EO)

As in equation (5.22), we obtain

n+2
/ [Du = (D) pf*dz < o £) / |Du — (Du) 4y 5|*da
B,(z0) Br(zo)

+c/ |Du — Dv|*dz.
Br(zo)
(9.7)
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As usual we want to estimate fBR(xo) |Du — Dv|?. By a Taylor expansion

/BRm) [F(Dv) — F(Du)|dx = /BWO) {Fpg (Du)(Dgv® — Dout)

1
+ / (1 =) F p (tDu+ (1= t)Dv)(Dav' — Dou')(Dgvd — Dguj)dt} dx
O «

- /BR(M) {/01(1 — ), (tDu+ (1—t)Dv)

X (Dov" — Doyu')(Dgv? — Dﬁuj)dt] dx

A
> —/ |Du — Dv|?dz,
2 Br(zo)

(9.8)
where the second identity comes from the Euler-Lagrange equation of F
(u is a minimizer and v — v is a test function) and the last inequality is
due to the ellipticity of E, P i.e. (8.5). Observing that
Py
[F(p) = G(p)| < w(lp—P1*)lp - PI,
being w the modulus of continuity of Fpi » 1 we get

/ |Du — Dv|?dz < 2 / [F(Dv) — F(Du)]dz
Br(zo) A Br(zo)
2

5 /BR(W {[F(Dv) — G(Dv)] + [G(Dv) — G(Du)]

<0

+ [6(0) - PDu] o
2
SX/ {w(IDv =) Dv = 3 +w(|Du — p*)| Du — plda}
Br(zo)

3 2

<c / \vamz*dx 2 / w |D’Ufﬁ|2 da n

1( Br(z0) ) (BR(zo) ( ) )
* 2
+C1(/ |Du—]3|2*dx)2 (/ w(\Du—z_?Iz)dx) ’

Br(zo) Br(wo)

where we used the boundedness of w, so that w? = w-w? ' < cow. Using
the Poincaré-Sobolev inequality (Proposition 3.27) and the Caccioppoli

1w is concave, bounded and |Fpi . (p1) — F
B

i i (p2)| < w(lpr — p2|?) for every
pL P

p1,p2 € R?X™,
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inequality (Theorem 4.4) we obtain

2
3

2
(/ |Dv—;t_7|2*dx)2 < 02(/ |Du—ﬁ|2*d:c)2
Br(zo) Br(zo)

< 03/ | D?u|?dx (9.9)
BR(QZ[))
< 6—42 |Du — p|*dz.
R Bar(zo)

Putting together (9.8) and (9.9) gives

/ |Du—Dv|2dx<c—52</ |Du—ﬁ|2dm>
Br(wo) R2\ J B2 (x0)
X (/ [w(Du—ﬁF)—kw(Dv—ToF)]dm)
Bar(zo)

< CG(/ |Du—1‘72dx>
~ Bar(zo)

Jensen

n

xw( ][ |Du—p|2d3:>n
Bar(zo0)

Inserting this into (9.7) and recalling that p = (Du)4, g yield

/BP( |Du — (DU)wmpIQSc{(%)nﬁw(]{g |Du — (Du)Ingde)}

x0) 2Rr(Z0)

« / D — (Du)yy o da
Bar(z0)

By Lemma 5.13 we infer that, ifw( JCBZR(JJO) |Du— (Du)zo’23|2dx) is small
enough, then for any 5 < n + 2

/ |Du — (Du) g, p|*dx < cgp”. (9.10)
B, (z0)
As the function

Ty — / |Du — (Du)m07p|2dx
BP(QJO)

is continuous, (9.10) holds for p small in a neighorhood U of any point
zo € Q\X(u), thus Du € £2P(U) and is Hélder continuous by Cam-
panato’s lemma. The estimate on dim”™ (2 (u)) is a direct consequence of
Proposition 9.21 below. |
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9.2.2 Partial regularity of solutions to quasilinear
elliptic systems

The proof above is taken from [45]. It shows that a key point is the higher
integrability of the gradient of the solution. The same idea yields partial
regularity of solutions of systems in variation, Theorem 9.2 below, due to
Giusti-Miranda [53] and Morrey [78]. Recall that, thanks to Proposition
8.6, given a minimizer u of a variational integral of the form (8.4) satifying
the growth condition (8.5), the derivatives of u satisfy the elliptic system
(8.7). The proof below is taken from [40] [46].

Theorem 9.2 Let u € WH2(Q,R™) be a solution of
Do (AP (2, u(x)) Dgu’ (x)) =0, (9.11)

with coefficients A;-ljﬁ :Q x M™*™ — R uniformly continuous, bounded
and satisfying the Legendre condition: there is a A > 0 such that

A%ﬁ(x,u)ggﬁé > NEP? for every (z,u) € Q x R™.

Then, defined the singular set X (u) as

p—0

Y(u) = {IL‘ € Q: liminf ]Z lu — ug ,|2de > O},
BP(I)

we have that u € C%7 (Q\X(u)) for every o € (0,1) and

dim™ X (u) < n — 2.

Remark 9.3 The singular set may be characterized in terms of Du by

1
Y(u) = {x € Q: liminf — / |Du|*dz > 0}.
p—0 pn By(z)

Indeed, if
1
lim inf _2/ |Dul*dz = 0, (9.12)
p=0 P B, ()
then
lim inf ][ lu — g ,|*de =0 (9.13)
P=0 B, (a)

by Poincaré’s inequality. The converse is consequence of Caccioppoli’s
inequality.

The following lemma will be crucial in the proof of the theorem.
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Lemma 9.4 In the same hypothesis of Theorem 9.2 there exists p > 2
and ¢ = c(n,m, \,A) such that Du € LY (Q) and

loc

( ]{BR(EO) \Du|pdx>% < c( ]{Bm(mo) |Du\2dac)%.

Proof. By Caccioppoli and Sobolev-Poincaré’s inequalities (Theorem 4.4
and Proposition 3.27) we have

/ | Duldz < C—12 |u — Uz, 2r|*dT
Br(xo) R Bar(zo)

2

C2 (/ 2, 24

<2 | Dl dz) :
R? Bar(zo)

where 2, 1= 2% so that (2,)* = 2. Dividing by R" we obtain

+2
3 7
( ][ |Du|2dx> < ( ][ | Du 2*dar) ",
Br(zo) Bar(zo)
so that we may apply Theorem 6.38 to f := |Du|?* with ¢ = 2. O

Proof of Theorem 9.2. Fix xg € Q and R > 0 such that Bag(zg) C Q.
Freezing the coefficients we get

/ A;Xjﬁ(xo, Uzy.r)Dpu' Do’ dz
Br(zo)

z/ [A%—B(aco,umﬂ) — A?jﬁ(x,u)]D,guiDawjdm,
Br(zo)
(9.14)

for all ¢ € Wy*(Bgr(zo), R™). Write u = v + (u — v), where v is the
solution of

/ ( )Ai‘f’(xo,umo,R)ngiDm =0, Voe Wy?(Bg(zg),R™)
Br(xzg

v—u e Wy (Bg(zo), R™).
Since Dwv satisfies (5.13) by Proposition 5.8, similar to (5.22), we obtain

/ |Dul?dz < c(ﬁ)n/ |Du|2dx+c/ |D(u — v)|*dz.
B, (x0) R7 JBao) Br(wo)

Inserting ¢ = u — v in (9.14), using ellipticity of A and ab < % + eb?
yields

/ |D(u — v)|*dx
BR(wo)

IN

/ |A(zo, Ugy.R) — A(:c,u)|2|Du|2d:c
BR(I())

IN

/ |7 — 0|2 + [u — my_1|)2|Dul2de,
Br(zo)
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where w is the modulus of continuity of A, bounded, concave, and satis-
fying lim;_ o+ w(t) = 0. You may observe that we have followed the proof
of Theorem 5.17, but now we cannot say that w is small if R is, since
|u — Uy, r| may be large on Br(xo). Using the higher integrability of the
gradient and the boundedness of w (so that w? < ¢;(q)w if ¢ > 1), we
obtain with p > 2 given by Lemma 9.4 and Holder’s inequality

/ w(|x—x0|2—|—|u—uR|2)2|Du|2dx
Br(zo)

2
SC?(/ |Du|pdﬂf)p(/ w(|x—x0|2—|—|u—uR|2)2p%2dx)
Br(zo) Br(zo)

p—2

§03/ |Du|2dx( ][ w(|x—x0|2—|—|u—uR|2)d:U) "
Br(zo) Br(zo)

Since w is concave, we can use Jensen’s inequality and get

][ w(|x—m0\2+|u7uR|2)dzSw(R2+ ][ \ufuR\de).
BR(ZL’()) BR(mO)

In conclusion

[ e[ (5) wu(mer f

X / | Dul?dz.
BR(I())

p—2

p—2

|u — uIO,R|2da:) ’ }

r(zo0)

(9.15)
If 2o € Q\X(u), we may take R > 0 small enough in order to have
2 2 E
w(R + ][ |t — Uz, R dm) < €0
Br(zo)
and apply Lemma 5.13 to obtain that, for every p < R, we have
/ |Dul?dz < cp™ ¢, (9.16)
B/J(wo)

where € can be taken arbitrarily small, if R is chosen correspondingly
small (depending on €). For x € B B (x0), observe that

][ |u7uz’g|2d:£ < ][ |u7u1073|2d:c
B (x) ’ B ()

R

2

< om ]{Q ( )|U—U$O,R|2d$,
R\Zo
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thus what we have done applies to every = in Bx (z0), with the con-
sequence that Du € Lz’"_E(BiR (x0)) for every € > 0 (R depending on ¢).
Thanks to Morrey’s Theorem 5.7, we have that w is Holder continuous in
Br (20), hence locally in ©\ ¥(u). Now the estimate on the dimension of

3 (u) follows immediately from the characterization of the singular set in
Remark 9.3, and by Lemma 9.4 and Proposition 9.21. O

Remark 9.5 The conclusion of the theorem above can be made more
precise if the coefficients do not depend on x: A = A(u). In this case
inequality (9.15) becomes
opr=2
Qd:c) i }

[ s se[ () vu £, umun

r(zo)

X / | Dul?dz.
Br(zo)

By Lemma 5.13 and the discussion at the end of the proof, we infer that
there exists € = e(n, m, A\, sup |A|,w) such that if

][ |u — gy r|*dr < g,
Br(zo)

then u € C%(B e (x0)) and we have the following estimate

Hu||c°>w(3§(mo)) < C1||l?u||L2wH(f3§(mo)) < c(n,m,e, A)||Dul| 2By (z0))-

A similar conclusion holds in the general case A = A(x,u) for R small
enough.

9.2.3 Partial regularity of solutions to quasilinear
elliptic systems with quadratic right-hand side

Of interest are also systems of quasilinear equations with right-hand side
that grows naturally, i.e., systems of the type

—Dg (A (w,u(z))Dou’) = f; (2, u(z), Du(z)), (9.17)

where Af‘jﬁ and f; are smooth functions so that A is very strongly elliptic,
i.e.

AP w)gleh > A2, vEeR™™, (9.18)

and f satisfies the so-called natural growth condition

|f(z,u,p)| < a(M)|p|*, Vz,u,p with [u| < M, (9.19)
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where a is a nondecreasing function, or even diagonal systems as

—Aui(z) = fi(z,u(x), Du(x)). (9.20)
As first noticed by S. Hildebrandt and K. O. Widman, weak solutions
of (9.20) need not be regular everywhere. Indeed u(x) := f7 is a weak

solution in R? of the system
—Au = u|Dul?.
But the argument in the proof of Theorem 9.2 easily extends to prove

Theorem 9.6 Letu € WH2NL®(Q,R™) be a weak solution of the system
(9.17) where (9.18), (9.19) and |u| < M hold. Assume

2a(M)M < A, (9.21)

Then u is Holder continuous in an open set g C Q and the closed singular
set has Hausdorff dimension strictly less than n — 2.

Proof. In fact (9.21) allows us to prove Caccioppoli’s inequality and,
consequently, higher integrability of the gradient of u. The rest of the
proof proceeds exactly as previously. O

The next theorem provides also the possibility of bootstrapping regu-
larity by means of Schauder results.

Theorem 9.7 Let u € VV&)C?(Q, R™) be a weak solution to system
—Dg (A3 (2)Dou’) = f;(z,u(z), Du(z)). (9.22)

Suppose that Af}ﬁ € C%(Q) for some pu € (0,1) and satisfy the Legendre
condition, f is smooth and satisfies (9.19). If u € C%*(Qq) for some open
set Qg C Q, then Du € CO*(Q).

Proof. For the sake of simplicity, we present the details of the proof in the
simpler case of diagonal systems, leaving the rest for the reader. So let
u € WH2 N C%(Qg,R™) be a weak solution of (9.20). For all zo € o,
p < R < dist(xqg, ), letting H € WH2(Br(x0), R™) be the solution to

AH =0, H—ueW,?*Bg(xo),R™),

we have

/ |Duf2da < c(ﬁ)"/ |Du|2dx+c/ \D(u—H)2dz (9.23)
By (o) R/ JBg(xo) Br(xo)

9 p n+2 9
/ |Du — (D), ,|dz < C(E) / |Du—(Du)gy. 5 |2dz (9.24)
B,(z0) Br(zo)

+c/ \D(u— H)|2dz,
Br(zo)
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From (9.22) we infer

/ |D(ufH)|2dx:/ (w—H) - f(z,u, Du)dzx
Br(zo)

BR(Z())

< c/ |u — H||Du|*dx (9.25)
BR(IQ)

< CR“/ | Du|?dz,
BR(CDQ)

since u € CY#(£y) implies H € C%*(Qg). Therefore we conclude from
(9.23) and Lemma 5.13 that for p sufficiently small

/ |Duldx < cop™ T2, forallo, 0 <o <1,
Bp(mo)

and, as in (9.25), for some € > 0

/ |D(u — H)|*dz < cR""¢.
BR(Z())

The estimate (9.24) then yields, as in Schauder theory, that Du is
Holder continuous with some small positive exponent, which is enough to
get Holder continuity of Du with all exponents. O

For later use, we also consider the case of continuous solution.

Theorem 9.8 Let u € Wl’z(Q,Rm) be a weak solution to system

loc

—Au' = f;(z,u(z), Du(z)), (9.26)
where f is smooth and satisfies (9.19). If u € C°(Q), we get u € COH(R).

loc

Proof. Following the proof of Theorem 9.7, we obtain, instead of (9.25)

/ |D(u — H)|*dx < cw(R)/ | Du|?dz, (9.27)
Br(zo) Br(zo)

where w is the modulus of continuity of u. Then, again with Lemma 5.13,

we get
/ |Du|?dx < c.p" ¢
BP(IO)
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for any given £ > 0 and p sufficiently small. Taking into account the
inequality of Poincaré, we then get

/ |’LL - ufro’P|2d1' < Cfpn+2_87
By (wo)

hence Holder continuity of  follows from Campanato’s theorem (Theorem
5.5). O

Remark 9.9 Actually, bounded solutions of diagonal systems for which
(9.21) (and, in fact, a weaker condition) holds are regular everywhere,
as shown by S. Hildebrandt and K. O. Widman, see [61], while bounded
solutions of scalar equations with right-hand side of natural growth are
everywhere regular without assuming any smallness condition like (9.21),
see [67]. We shall not deal with these topics, the interested reader is
referred, besides the works already mentioned, to [37] for an account.

Here we would like to present an alternative proof of Theorem 9.6.
This proof, taken from [29], has its origin in Simon’s proof of the regularity
theorem of Allard, see Chapter 11, compare [97] and [11], and avoids the
use of the higher integrability result. To illustrate the ideas, we confine
ourselves to the case of diagonal systems (9.20); the reader can easily
supply the missing details to treat the general case.

Let u be a bounded weak solution of (9.20). Fix a ball Br(zo) €
and let H be a harmonic function in Bg(zo) with

/ |DH|?dx < / | Du|?dz.
Br(zo) Br(zo)

As we have seen several times, we then have for p < R

/ |u—um0’p|2dx < 2/ lu — H|*dx + 2/ |H — Hzo,p‘gdx
B, (x0) By (z0) By (o)
n+2
< 2/ |u—H|2d:E+c( ) / |H — Hy, gr|*dx
BR(Io) BR(JUO)

n+2
§c/ |u—H|2dx+c( ) / | — Uy 1| ?dz,
BR(Io) BR(wO)
(9.28)

and the point is to estimate the last term. This is accomplished by means
of the following two propositions.

Tl =l

Proposition 9.10 Given any € > 0 there exists 6 > 0 such that for any
g € WH2(Bg(zo),R™) satisfying

f |Dgl?dz < 1,
Br(zo)

<3J sup |Dy], Yo € C’i(BR(a:O),]Rm),
BR(:E())

‘ ][ DgDpdx
BR(IU)
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then there exists a harmonic function H with J[BR(CCO) |DH|?dx < 1 satis-

fying
1

s |H — g\QdI <e.
Rn+2 /BR(EO)

Proof. We can assume xg = 0, R = 1, as the result will follow by rescaling.
Were the conclusion false, we could find € > 0, gx € W12(B;1(0), R™) such
that

f 5100 198 — H]?*dx > ¢  VH harmonic, f5.0) |IDH|? <1
JCBl(o) |Dg|?dz <1
| fBl(O) ngDgodm| < %supBl(o) |Dy| Vo € CY(Bgr(z0), R™).

(9.29)
Without loss of generality we can assume JCBI ) grdz = 0; therefore,

by Poincaré’s inequality, the g;, are equibounded in W2, and up to a
subsequence
gr — g weakly in WhH2, gr — g in L2, ][ |Dg|?dz < 1.
B1(0)
Consequently
| Dabgdz—0 Ve ClBal). R,
B1(0)

and that contradicts (9.29) with H replaced by g and k large enough. [

Proposition 9.11 Given any € > 0, there exists C' > 0 such that for any
Br(zo) and any g € W2 (Bg(z0), R™) we have

1
2 1
inf <][ H—g|2dx> <C sup T/ DgDydx
HEA\ J By (a0) 0eC> (Br(z0)R™) B2 JBp(20)
[Delloo <%

+€<1/ |Dde:17>é
Rn—2 Br(zo) )

Ay = {H harmonic on Bg(zg) ‘ ][ |DH|?dx < ][
Br(zo) Br(zo)

where

|D9|2d33}
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Proof. By a rescaling argument it suffices to consider the case z¢o = 0,
R =1. Set B := B1(0), and let ¢ be the constant in Proposition 9.10.
First assume that

sup{ [ DaDeds | o € C22(B(0) ). [Dell <1} < 0Dyl
B

(9.30)
Then

1
inf{(/ |H — g|2dx) ’ ‘ H harmonic in B}
B
H g 2 3
= ||Dg|| L2 inf { </ dx)
B

IDgll Dyl .2
<e| Dy >
by Proposition 9.10. If (9.30) does not hold, we have by the Poincaré
inequality

1
inf{(/ |H —g|2d:r) ’ ’ H harmonic in B}
B

< ( [ Ja@ = { atway

< Ssw{ [ Dappic| € cx(p.R"). Dol <1},
B

H harmonic in B }

N
dx) < ¢| Dy 2

This completes the proof. O

Returning to (9.28), we now estimate the term JCBR(IO) lu — H|*dz
using Proposition 9.11 by

‘1 e?

2
— DuDpdz| + —— / | Dul|?dx
Rn—2 /BR(JCO) Rn=2 Br(zo)

1 / 2 2) 1 / 2
<\ 5 |Du|“dx + ¢ — | Du|“dzx.
<R ? JBa(ao) B2 Jn(eo)

Next we observe that the smallness condition (9.21) allows us to prove
Caccioppoli’s inequality

/ | Dul?dx < % U — Ugy 2r|2dz,
Br(zo0) R Bar(zo)

to conclude that

n+2
/ uuzo,pzdxgc{<p) + ][ uuzo,pbzdz+s]
B, (z0) R Br(zo)

X / |u — Uz, r|*de.
Br(zo)
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Now if

][ [u — Uy g|?dr < e
BR(wo)

is true at a point xg, it remains true in a neighborhood of x, if we allow
for a larger c¢. Then the Holder continuity of w follows by Lemma 5.13
and Campanato’s lemma, as we have seen several times.

Remark 9.12 The proof outlined above is indirect. It is to be mentioned
that indirect methods, a blow-up technique that originates in the works of
De Giorgi [25] and in [5] were used in the original works of Giusti-Miranda
and Morrey. Indirect methods were also used for quasiconvex functionals
by [94] and [30], for a direct approach see [38].

9.2.4 Partial regularity of minimizers of non-differen-
tiable quadratic functionals

The study of the regularity of non-differentiable functionals differs from
the study of smooth functionals in the lack of the Euler-Lagrange equa-
tion, and consequently, of Caccioppoli’s inequality. On the other hand,
for quadratic functionals, i.e. functionals of the form

F(u) := / A?jﬁ(gc,u)DauiD,@ujdx,
Q
Caccioppoli’s inequality is still available, as we see in the following

Proposition 9.13 (Caccioppoli inequality) Let u € VVI}J’?(Q,RT”) be
a local minimizer of the functional

F(u) ::/A?jﬁ(x,u)DauiDgujdm,
Q
with A%ﬁ bounded and elliptic: \|€]? < Azﬁ&lﬁé < AJ€|?. Then there
exists a constant ¢ = c¢(\, A) such that
/ Dufde < 5 / lu — g, rf2de (9.31)
B g (wo) R Br(z0)\B g (z0)
for all zo € Q, 0 < R < dist(zg, 0N).

Proof. Take zog € Q, 0 < t < s < R, and choose a cut-off function
n € C () with

1. sptn C Bs(xp) and n =1 in By(z0);

2
2. [Dnl < 2.
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Consider the test function
vi=u—n(u— Uy, R)
and use the minimality of u, together with the ellipticity and boundedness
of A%’B to get
2 1 af i j
|Dul*dx < — Ai7 (x,u)Dou' Dgu! dx
B.(x0) A JB. (o)

1 . _
X/B A%ﬂ(x,v)Dalegvjdx
S(Io)

IN

IN

A
3L il )P
BS(IO)

<af [ a-wiDifis
Bs(zo0)
+/ |u—uxO,R|2|Dn|2dx}.
Bs (o)

Therefore

/ |Dul*dx < cl/ | Dul?dx
Bi(wo) Bs(x0)\Bt(z0)

4C1 / 2
+ — U — Ugy R|dT.
(s = 1) JB.(wo)\Bi(x0) | o5
Adding ¢, times the left-hand side to both sides, we get

/ |Dul?dx < a / | Du|?dx
Bt(wo) 1 + 1 BS(QJO)

C2 / | 2
— U — Uy, |- dx.
(s —1)2 B (x0)\ Bz (z0) "

Setting ¢(s) := [5 (o) | Du|?dx, Lemma 8.18 implies that there exists a

+

constant ¢ depending on ¢; = ¢1(\, A) such that

c
| Dul?dz < —/ |u — g, r|*d,
/Bp(xo) (B —=0)* JBr(xo) o

and the result follows taking p = %. g
With the same proof of Lemma 9.4 we get

Lemma 9.14 In the hypothesis of Proposition 9.13, there existp > 2 and
¢ =c(n,m,\,A) such that Du € L} (Q,R™) and

loc

1 1
( ][ |Du|pdm) "< c( ][ \Du|2dx) °
Br(zo) Bar (o)

whenever Bag(xo) € Q.
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The following result is due to Giaqunta and Giusti [41]

Theorem 9.15 Consider a local minimizer u of the variational integral
Flu) = / Af‘jﬁ(ac,u)DauiDgujd:E,
Q

where the coefficients A%ﬁ = Aff‘ are uniformily continuous in (x,u) and
satisfy the Legendre condition

A (z,u)El el > NE2, Vo e QueR™ E R,

Then for any o € (0,1) there exist eg = eo(n,m,\,w,0) (w being the
modulus of continuity of A?jﬁ) such that u € CO7 (Q\X(u)), where

loc
X(u) = {J: € Q: liminf L/ |Du|*dz > 50}.
R—0 Rn-2 Br(zo)

Moreover dim” (3 (u)) < n — 2.

Proof. Step 1. Fix zg € Q and R with 0 < 2R < dist(zg,0), and
consider the functional

_7:0(1)) = /B ( )A?jﬁ(xo,uzo,R)DaviDﬁvjdx.
r(Zo

Thanks to the ellipticity of the coefficients, the functional is coercive thus,
following the proof of Theorem 3.29, it admits a unique minimizer v in
the class

{g € WY2(Bg(wo)): € —u € Wol’Q(BR(xo))}.

By Lemma 9.14, Du € LP(Bpg(xo)) for some p > 2. Since the coeflicients
of Fy are constant, the corresponding Euler-Lagrange equation is elliptic
with constant coefficients:

)

/ A% (20, uzy R)Dav' Dagldr = 0, Yo € Wo2(,R™).  (9.32)
Br(zo)
Step 2. By LP-theory, Theorem 7.1, we have
/ |Dv|Pdx < cl/ |Du|Pdz, ¢1 =c1(p, A A), (9.33)
Br(zo)

Br(zo)

and by Proposition 5.8, for every 0 < p < R

PN 2
|Dv|?dz < co / | Dv|“dzx.
/B,,(mo) (R> Br(zo)
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If we set w := u — v, the last equation easily implies

/ | Du|*dx §63(£)n/ |Du|2dx—|—03/ | Dw|*dz. (9.34)
B, (zo) R Br(zo)

Br(zo)

Step 3. To estimate the term fBR(zo) | Dw|?dz we first observe that

A | Dw|*dx S/ A%ﬁ(xg,um,R)DawiDﬁwjdx,
BR(mo) BR(:EO)
and by (9.32) with ¢ = w € Wy?(Q, R™)

/ A?jﬁ(xo,uwo,R)DawiDgwjdx
Br(zo)
— / AP (20, Uy, ) Dot Dgw? da
Br(zo)
= / [A%’B(xo,uxoﬁ) - Af‘jﬁ(x,u)]Da(ui + v ) Dgw’dx
BR(:DQ)
+/ [A%ﬁ(x,v) fA%B(x,u)]Davingjd:r
BR(IQ)
—|—/ A%ﬁ(m,u)DauiDﬁujdx—/ A?jﬁ(x,v)Davingjdx.
BR(IQ) BR(IO)

The sum of the last two terms is non-positive because u is a minimizer.
2
For the other two terms, after using ab < ea® + b?, we get

/ | Dw|?dx

Br(zo)

<o [ (1D D] (AR + )+ ol = o) ),
Br(zo)

where w is the modulus of continuity of Af}ﬁ 2 Set
w1 = wW(R* + |u — gy g]), wo=w(u—1v]?).

Using the boundedness of w and the higher integrability of Du we get

/ | Dul?(wy + wo)dz
BR((E[))

2 1—2
< 05(/ |Du|Pdm) ! (/ (w1 + wg)dx) !
Br(zo) Br(zo)

1—2
§c6/ |Du\2dm( ][ (wq —|—w2)dx) "
Bar(zo) Br(zo0)

2w : Rt — RT is a concave increasing function satisfying lim,._, o+ w(r) = 0 and

1AS (2,u) — ATL (y, 0)| < w(l@ = yI? + [u— vf?).




224 Partial regularity in the vector-valued case

and by (9.33) together with the preceding equation,

1—2
/ | Dv|*(wy + wg)deCG/ \Du|2dx(][ (w1 + wg)dx) "
Br(xo) Br(zo) B

2r(20)

Now by the concavity of w, we get

][ wodx < w<R2 + ][ |u — v|2dx>
Br(zo) Br(zo)

1
< w<R2 + 15— / |Dw|2dx)
~ Rr Br(zo)

Poincaré

1
< w(R2 + s 5— / |Du|2d$c)7
~ R Br(zo)

L2 theory

where in the last inequality we used that

/ | Dw|*dx < 2/ | Dul*dx + 2/ | Dv|?dx
Br(zo) Br(zo) Br(zo)

< (2+c)/ | Du|?dz,
Br(zo)

and the last inequality follows from L2-theory, since u = v on Br (o) and
v satisfies the elliptic system with constant coefficients (9.32). Similarly

1
][ wide < w(R2 + 85— / \Du|2dx).
Br(zo) R Br(zo)

Step 4. Now estimate (9.34) may be rewritten as

/ | Dul|?dx
BP(IO)
1—2

<al(7) (@ roms [, 1) ][, it

dist(zg,08)

valid for every 29 € Q2,0 < p < R < and with constants cg
and c¢g depending on n,m, A, A, p. Since lim,_ ¢+ w(r) = 0, Lemma 5.13
implies that given o € (0,1) there are Ry and £y depending on n, m, A, A
and o such that whenever R < Ry and

1 / 9
] |Du|*dz < &,
Rr—2 Br(zo)

(and this last condition can be met when zg € Q\ 3(u)) then

n—2+20
/ |Du|2daj < c(£>
Bp($0) R

, 0<p<Ry. (9.35)
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Since for a fixed R, ﬁ fBR("fUO) |Du|?dz varies continuously with re-

spect to g, (9.35) holds in a neighborhood V of zg, yielding Du €
L?1=2%29(V); by Morrey’s Theorem 5.7, u € C%° (V).

The estimate on dim’*(2(u)) follows from the characterization of ¥ (u),
together with Lemma 9.14 and Proposition 9.21. O

In fact one can show, see [37], [42], [45]:

Theorem 9.16 Let u € WL (Q) (for some fived r > 2) be a minimizer
of the functional

/ F(x,u, Du)dz, (9.36)
Q
where

(i) Alp|” < F(x,u,p) < Alp|", for some A\,A > 0 and every (x,u,p) €
Q x R™ x R*"*™,

(ii) F is twice differentiable in p and for some L, A > 0
| Fpp(x,u,p)| < L(1 + |p|)ri2

Fy (@ p)€hgh > (14 [p)™ P, v e R

(iii) The function (1 + |p|*)*~"F(x,u,p) is continuous in x,u uniformly
with respect to p, and

|F(z,u,p) = Fy,0,p)| < L1+ |p|")w (e = y[" + Ju —o]"),
where w(t) < Amin{t?, 1}, for some o > 0.

Then there exists an open set Qg C € such that uw has Hélder continuous
first derivatives in Qqy. Moreover Q\Qp = X1 U Xo, where

¥ = {$0 € Q| sup [(Du)g, r| = +oo}
r>0
Yo = {xo €N ‘ limi(r)lf ][ |Du — (D), |2 d2 > 0},
r— B, (w0)

hence meas(2\Qp) = 0.

Also considering the previous results, it is natural to ask whether or
not dim” (31 U3Xs) < n. A positive answer was given by Kristensen and
Mingione in [66]; indeed (similar to the case r = 2) there exists a higher
integrability exponent ¢ > r, depending only on n,m, A, A, but otherwise
independent of the minimizer and of the functional considered, such that

Due Li ().
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Then we have
Theorem 9.17 Let u be a minimizer of the functional (9.36) under the
assumptions of Theorem 9.16. Then

dimH(Q \ Qo) <n—min{o,q—r}.

Moreover, in the low dimensional case casen < r+2 the previous estimate
improves in
dim™(Q\ Qo) <n—o.

Finally, Qo = Q holds in the two dimensional case n = 2.

In the case of solutions to nonlinear elliptic systems similar estimates
were obtained by Mingione in [73, 74]. Finally, when the functional has
a splitting type, special structure, of the type considered in [42], it was
shown in [66] that the dimension estimates improve in every dimension.

Theorem 9.18 Let u be a minimizer of the functional
f(z, Du) + g(x,u) dx
Q

under the assumptions of Theorem 9.16 satisfied by the integrand F =
f+g; then
dim™(Q\ Qo) <n—o.

A further refinement of the previous result eventually leads to consider
measurable dependence of x — g(z,-); further cases are also considered
in [66].

9.2.5 The Hausdorff dimension of the singular set

We briefly recall the definitions of Hausdorff measure and dimension.

Definition 9.19 For k > 0 integer, define wy to be the volume of the
unit ball in R*, given by

2r® (9.37)
W = s .
kL(5)
where I is the Euler function
+oo
I'(t) := / o' le "dx, t>0. (9.38)
0

Since ' is defined for every positive number we shall use (9.37) to define
wy for any real number k > 0.

Given a set A C R™ and k,§ > 0, define

HE(A) = inf{Zwkpf A C U By, (x)), pj <0, x; € R”}.
=0 =0
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Definition 9.20 The k-dimensional Hausdor{f measure H*(A) of a set
A CR"™ is defined as

H*(A) := sup HE(A).
6>0

The Hausdorff dimension of A is defined as
dim™(A) := inf {k >0:HF(A) = O}.

We also recall that for every k > dim’¢(A), we have H*(A) = 0, and for
every k < dim"(A), H¥(A) = +oo0.

Proposition 9.21 Let Q C R" be an open set and f € Ll (), 0< a <
n. Define

1
Y i= {x € Q: limsup —
o p°

p—

\f|da > o}.
Bn(m)

Then HY(24) = 0. In particular dim™ (2,) < o

Proof. For s =1,2,... define

1 1
F, := {zeﬂ:limsup/ |f|d:c>}.
p—0 P* JB,(x) $

Then ¥, = Uj:{ F, and it suffices to show that H§(Fs) = 0 for every s,
since it can be easily seen that

HE(S,) = lim HE(F).

By definition of Fy, for every 6 > 0 and = € F; there exists r = r(z,d) < ¢
such that ) )

T BT(z) S
Then F; is covered by { B, 5)(2) : © € F,} and, by Besicovitch’s covering
lemma, there exists a disjoint countable subfamily {B,, (z;)} such that
{Bs;,(x;)} covers Fs, r; = r(x;,0). Now

+00 400
S e < Zs/ \fldz = s/ fldz,  (9.39)
i=1 i=1 By, (z4) uge

§21 Br; (w4)
because the balls are disjoint. Therefore

—+oo —+oo

+oo
.C"( U B (zi)) =wp > 1P S wpd"TY e < wnanfas/ |f|da.
=1 Q

i=1 =1
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Hence, as 6 — 0, the last integral in (9.39) vanishes (absolute continuity
of Lebesgue’s integral). Therefore

HS (Fs) §Zwa(5m)a §5°‘s/ |fldx — 0, asd— 0.
i=1 v

{51 Br; ()



Chapter 10
Harmonic maps

A harmonic map between two Riemannian manifolds (M, g) and (N, ) of
dimension n and m respectively is, roughly speaking, a critical point for
the Dirichlet integral

E(u) ::/ |Vu|2alV01M7
M

where, for x € M and charts ¢ and ¢ at = and u(x) respectively, and

wi=ouop

|Vul|?(z) == %jgaﬁpaa;(x)pﬂai ()’

with (%) = (gap) "' If M = Q C R” and N = R", then harmonic maps
are simply maps whose components are harmonic functions. In general
the curvature of N introduces an important nonlinearity in the problem.

In this chapter we shall present the results of Giaquinta-Giusti and
Schoen-Uhlenbeck about the regularity of local minimizers of the Dirichlet
integral.

10.1 Basic material

Thanks to a theorem of John Nash we can assume that the target manifold
(N,~) is isometrically embedded into R? for some p. For the sake of
simplicity, we shall also assume that the manifold M is an open set 2
of R™ with the standard Euclidean metric." Then the Dirichlet energy
becomes

E(u) :=/S2|Du|2dx, (10.1)

1The general case of the results we shall present may be obtained with minor
changes, see [98].
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where

p n )
|Dul? := > > [Dou’ .

i=1 a=1
Definition 10.1 Given Q and N as above, we define

Wh2(Q,N) = {ue WL2(Q,RP) - u(z) € N, for ae. z € Q}.

loc oc

Definition 10.2 (Local minimizers) A map u € W.22(Q, N) is a local

loc

manimizer of the Dirichlet energy (10.1) if for every ball B,(xo) € Q and
every v € WH2(B,(zg), N) with v=u on 0B,(x¢), we have

/ | Dul*dx < / | Dv|?dz. (10.2)
By (z0) By (z0)

10.1.1 The variational equations

Consider a local minimizer u. For a ball B,(xg) € © and some § > 0
suppose that there exists a family of maps {u, }se(—s,5 € WH2(B,(x0), N)
such that

1. up =u;
2. us = uon OB, (zo) for every s € (=6, 9).

Then by (10.2) we have

4 (/ |Dus|2dx)
ds \ JB,(x0)

whenever the derivative exists.
There are two particularly useful ways of choosing families {us} as
above: we shall refer to them as inner and outer variations.

=0, (10.3)
s=0

Outer variations
For any ( € C°(B,(xo),RP), set
us := I o (u+ s¢),

where II is the nearest point projection onto IN. Clearly for s small enough
the image of u + s( lies in a tubolar neighborhood of N, so that wug is well
defined. By the Taylor expansion, we find

Doty = Do + s(dTL, (Do) + d*11, (¢, Do) + O(s?).
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As one can verify (see e.g. [98, Sec. 2.2]), together with (10.3), this yields

Dot - DoC — ¢ - Ay(Dott, Dow)| dz = 0, 10.4
;/BM[ ” (Do, D) d (10.4)

where A, is the second fundamental form of N at u(z), compare Section
11.1.3. We can also write (10.4) in the form

Au+ " Ay(Dau, Dau) = 0. (10.5)
a=1

Inner variations
For any ¢ € C°(B,(zo),R"™), define
us(x) = u(z + s¢(x)),

well defined for s small enough. Then (10.3) implies

/ [1|Du|2 div ¢ — DauiDguiDQCB} dz = 0. (10.6)

B,(w0) -2
Proof. Set Qu(x) := x+t¢(x). For || small enough Q; is a diffeomorphism
of B,(z0) onto itself. Set Uy (x) := u(Q; *(x)). Then
U € Wl’Q(Bp(xo),N), U =u

and U, agrees with u in a neighborhood on 0B,(x). From (10.3) we have

i( / |Dut2dx>
dt \ JB, (z0)

/ DU |2 da :/ \Du(z)DQ; (Qy () det DO, (x)da,
Bp(IO)

By (z0)
Du(z) - DQ; ! (Qi(w)) = Du(z)(I — tD¢(x) + O(t?)),
det DQ(x) = 1+ tdiv((z) + O(t?),
as t — 0, gives (10.6). O

=0.
t=0

Together with

Definition 10.3 Let u € VVILQ(Q, N). Then u is said to be a

ocC

1. weakly harmonic map if it satisfies (10.4) for every ball B,(xo) € Q
and every ¢ € CX(B,(xo,RP));

2. stationary harmonic map if it is weakly harmonic and satisfies (10.6)
for every B,(zo) € Q, ¢ € C°(B,(zo),R™).

Remark 10.4 If u € C?(Q, N), integration by parts yields that (10.4)
implies (10.6). However this is false in general for u € VVﬁ)C2 (Q,N).
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10.1.2 The monotonicity formula

Proposition 10.5 (Monotonicity formula) Letu be an inner extremal
of the Dirichlet integral, that is (10.6) holds for every ball B,(xo) € Q,
and every ¢ € CX(B,(xo,R™)). Then, setting

= m, R := |z — x|,
|z — o]

we have for any xo € Q and almost every p € (0,dist(zo, 0)),

d 1 d 1 |0uj?
Ly Dul?dz) = 2L _ 7’ d 10.
dp(pn—Q /Bp(z0)| ul x) dp(/Bp(:z:o) R2|9r x), (10.7)

and for every xg € Q and 0 < o < p < dist(zg, Q)

1 1
— / | Dul*dx — — / | Dul?dx
P2 JB,(x0) "% JB, (20)

=2

/ | ’@’de (10.8)
B, (20)\Bo (o) B2 107

Proof. Since (10.8) easily follows by integrating (10.7), we only need to
prove (10.7). Fix a smooth radial cut-off function n = n(|z — z¢|) with
sptn C By(zo), 0 < < 1, n(0) = 1. Tnserting ¢(x) = (z — zo)n(| — zo])
in (10.6), we find

1
5| ADuP s~ aol) + Rz ~ o))do
By (zo)

(2" = o§)(a” - :c€>> i

~ Du Dt (3% ol o)
B |z — o]

p(-"f())

i.e. B 12

in
—| dx.
or ‘ *

/ Duf((n — 2)n + R )dz = 2 / R
By (x0) B (zo)

Choosing a sequence 7; suitably approximating the characteristic function
of [0, p], and taking the limit, we get for almost every p € (0, dist(xg, 9))

d
(n— 2)/ |Dul*dz — p— / | Du|*dx
B, (w0) d/’( B, (w0) )

— —2pjp(/Bp(w0) %‘Zd:ﬂ)

Dividing by p"~! we obtain (10.7). O
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Observing that the right-hand side of (10.8) is positive, we infer
Corollary 10.6 In the hypothesis of the above proposition, the quantity
1
— / | Du|*dx
p Bp(zo)

is monotone increasing with respect to p.

Definition 10.7 (Density) We define the density of the harmonic func-
tion u at Ty as

1
= i — / | Du|?dz,
p—0+ p B, (z0)

where the limit exists thanks to Corollary 10.6.

10.2 Giaquinta and Giusti’s regularity
results

We now study the regularity of locally energy minimizing harmonic maps.

In this section we assume that the target manifold N is diffeomorphic

to an open set of R™, or equivalently that there exists a global chart
P N —R™,

10.2.1 The main regularity result

Let us generalize Definition 10.2 to the case in which 2 is an arbitrary
Riemannian manifold.

Definition 10.8 We define Wli’f(M, N) to be the space of functions u
such that for every chart ¢ : U C M — R™,

PYouop t € WL2(p(U),R™).

Definition 10.9 (Local minimizer) A function u € W;2*(M,N) will

loc

be called local minimizer of the Dirichlet energy if for every chart p : U C
M —R™ G:=1ouop " is a local minimizer in W2(o(U),R™) of

1
E(m) = —/ Yii (u(2))g*? (2) Do (x) Daw? (x)\/g(z)dz,
2 Jow)
where g(x) := det(gag(x)).
Let now the chart ¢ : U C M — R”™ be fixed. Define

Aaﬁ x u V gaﬁ 77,]
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and observe that if u (or @) is locally bounded, say supg, [ < C(€o) for
every Qo € ¢(U), then
NP < A (v, w)elel < Alg?,  for all € Qq,

where A and A depend on Qo, M Ny~ (), NNBc(q,)(0). Then Theorem
9.15 gives at once

Theorem 10.10 A (locally) bounded local minimizer T of the Dirichlet
energy is Holder continuous except in the singular set

1
Y= {meM:liminf—Q/ |Dﬂ|2d1:>0}.
R—0 R" Br(z)

More precisely, for every My @ M one has
o 1 9
YN My =<z € Mp:liminf —— |Dul“dx > €g ¢.
R—0 R Br(x)

where eg > 0 depends only on My and N. Moreover dimH(E) <n-—2.

In fact u € C°°(M\X, N) by Theorem 9.7 and Schauder estimates.

10.2.2 The dimension reduction argument

Following [44], we now improve the estimate on the dimension of the
singular set, using the dimension reduction argument of Federer. We
shall prove

Theorem 10.11 Let X be (as in the previous section) the singular set of
a bounded local minimizer of the Dirichlet energy £. Then

1. forn =3, ¥ contains only isolated points;
2. forn >4, dimH(E) <n-—3.

In fact we have

Theorem 10.12 The same conclusions of Theorem 10.11 hold for locally
bounded minimizers of
ji

J () = /Q A% (2, u) Do Dgudz, A% = AP

where the coefficients A;-Xjﬁ
1. are of the form A%—ﬂ = g*Pvij,
2. are bounded: |A(z,u)] < M for some M,
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3. satisfy the Legendre condition: A%ﬂﬁéfé > |€]2 for every &,

4. are uniformly continuous: |A(z,u) — A(y,v)| < w(lx —y|*> + |u —
v|?), where w(t) is a bounded continuous and concave function with
w(0) =0,

and

/01 @dt < 4o0. (10.9)

We shall need the following lemma on the convergence of minimizers,
based on Caccioppoli’s inequality and the higher integrability of the gradi-
ent.

Lemma 10.13 Let AW (z,u) = A%ﬁ(y) (z,u) be a sequence of continuous
functions in B1(0) X R™ converging uniformly to A(x,u) and satisfying
hypothesis 2,3,4 of Theorem 10.12, uniformly with respect to v. For each
v €N let u™) be a minimizer in B1(0) of

)

T (w; B1(0)) ::/ A‘?‘,ﬁ(y)(x,w)DawiDgwjdx,
B1(0)

and suppose that the sequence (u(”)) is uniformly bounded in L and
converges weakly in L*(B1(0),R™) to v. Then v is a minimizer of

J(w; B1(0)) := / AP (2, w) D' Dgw! da.
B1(0)

Moreover, if z,, is a singular point for u*) and x, — xo, then zo is a
singular point of v.

Proof.
Step 1. By Proposition 9.13, for every B,.(z¢) C B1(0) we have
/ |Du™ |2dx < %/ Ju®) — u;’(’))r\gdaz, (10.10)
By (zo) T JB,.(0) ’

and by Lemma 9.14, there exists p > 2 such that Du®) € LP

(f,

where ¢, ¢ and p do not depend on v. By the weak L2-convergence,
the L2-norm of u) is equibounded with respect to v and this implies,
by (10.10) and (10.11), that the L? and LP-norms of Du(®) are locally

(B1(0)) and

1 1
|Du<”>\de)” < cQ( ][ |Du(”)|2dx)2, (10.11)
(wo) Br(wo)

r
2
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equibounded. In particular there exists a function ¢(R) such that for
R<1

/ |Du) |Pdz < ¢(R). (10.12)
Br(0)

By Rellich’s theorem, up to a subsequence, u*) — v in L2 (B;(0)).

Step 2. We now prove that for any R € (0,1)
J (v; Br(0)) < lim +ian@)(u(V); Br(0)). (10.13)

In order to do that, write

/ AW (2,0 Du™ Du) da — / A(z,v)DvDvdz
Br(0) Br(0)

= / {A(”) (z,u™) — A(z, u(”))] Du”) Du™ dx:
Br(0)
+/ [A(%u(”)) - A(x,v)} Du™) Dudz
Br(0)

+/ A(z,v)Du™ Du da: — / A(zx,v)DvDuvdzx.
Br(0) Br(0)
As v — 400 we have
/ {A(”) (z,u)) — A(z, u(”))} Du™) Du dz
Br(0)

< sup [A)(@,u®) = Aw,u)]1Du 22307 — 0
Br(0)
because of the uniform convergence of the coefficients and the equiboun-
dedness of Du) in L?(Bg(0)). By Hélder’s inequality

/ {A(x, u®)) — A(x,v)} Du™ Du™ dx
Br(0)

7 5 (10.14
< (/ ‘A(a:,u(”)) —A(x,v)‘qu> </ |DuPd1:> ( )
Br(0) Br(0)

— 0,

where ¢q := ]%, because, up to a subsequence, u(*) converges a.e. to v,
hence by continuity and uniform convergence of the coefficients,

Az, u™ (z)) — A(z,v(z)) ae.,

and (10.14) follows by Lebesgue’s dominated convergence theorem. Fi-
nally

liminf/ A(z,v) Du™) Du™ dz 2/ A(x,v)DvDvdz,
vt JBr(0) Br(0)
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because the function

u A?jﬁ(x, v)Dou' Dgu? dx
Br(0)

is continuous in W2(Bg(0)), convex thanks to the Legendre condition,
and therefore weakly lower semicontinuous in W2(Bg(0)).

Step 3. Again fix R € (0,1). Let w be an arbitrary function matching v
outside Br(0), and choose n € C*(B1(0)) satisfying:

LO0<n<L
2. n=0in B,(0) for some r < R;
3. n =1 outside Bg(0).
Then v := w + n(u) — v) equals u*) outside Bg(0), therefore
J¥ (u); Br(0)) <T@ (v"); Br(0)). (10.15)

By the boundedness of A®) and by (10.12) we get

T (™) BR(0))
</ AW (z, v DwDwdz + ¢3(R)||n||
Br(0)

LP22 (BR(0))
+ ea(B)l|u® = vllzazacon (1 + 14 = vllz2Bagaan )-
Letting v — 400, we deduce from (10.13) and (10.15)

J (v; Br(0)) < J(w; Br(0)) + cslnll, 2, 3 (Ba(0))'
Taking r close to R, the last term can be made arbitrarily small, and that
proves that v is a minimizer for 7.

Step 4. In order to prove the second part of the lemma, let us recall that,
because of Caccioppoli’s inequality (10.10) and Theorem 9.15, a point T
is singular if and only if

1
liminf — / lu — uz ,|*dz > e,
p—0t p" /B ()

where ¢ is independent of v.
Suppose now that xg is a regular point of v and #(*) — x. Then for
some p small enough we have

1
—n/ |U—’Um07p|2d$ < o,
P Bp(x())
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and hence, by dominated convergence,

1 1
lim _n/ ‘u(u) - u;’:z)») |2 = _n/ v — vzo,P‘Qd‘T < &o,
votee 1 JB, @) PP B,(a0)

which implies that z,, is a regular point for u(*) for v large enough. This
completes the proof of the lemma. O

Lemma 10.14 (Monotonicity) Let A%ﬁ satisfy the hypothesis of The-
orem 10.12 and let u be a local minimizer of J on B1(0). Then, for a.e.
p, R with 0 < p < R <1, we have

R
[ uthn) — po)Par =t < clog () @(R) ~ 9(). (10.16)
8B (0) P
where
t 2
() :=t" % exp (cl/ Mds)/ A%ﬁ(m,u)DauiDgujdx.
0 S B;(0)

Proof. For simplicity, we shall only consider the case of the Dirichlet
integral, i.e. A%ﬁ = 5‘155ij, referring to [44] for the general case. Then
the expression for ®(t) simplifies to

1
o(t) = — | Du|?dz.
tn—2
B:(0)

For 0 <t < 1let ay :=t% and w(z) := u(z;). We have

o]
J (u; Bi(0)) < T (u; Bi(0)) (10.17)

and since ulgp, = ui|an,

T (ug; Bi(0)) = / r (5ah - “W”h) (5ak— M)Dhui(xt)Dkui(xt)dx.

B,(0) |7[? |2 >

Assume that n > 3 (the case n = 2 will not be treated). Observing that
for every f € L (B1(0)) and a.e. t < 1 we have

loc

1
—2 d _ d n—1
/B e = [)Bt<o>f(m)” ,

Lalh Lol

T (ug; Bt(O))Zﬁ/ {|DUI2 Tl {25% - —] DhukaUi}dHnl-
9B¢(0)

j?
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Therefore

2
waso) < L5l [ e [ S0 ]
dB;(0) ||

n—2 0B (0)

where (x, Du) := z*D,u. Now for a.e. ¢ < 1 we have

P

1
/ |Dul?dH" ™" = ®'(t) + (n — 2)L,
9B,(0) ¢

tn72

therefore, from (10.17), (10.18) we get

1 Du)l|?
‘I)/(t) Z — / ‘<‘T7 ;‘L>| dHn717
13 oB,(0) |7l

and integrating

R D 2
O(R)—®(p) > [ " W@ DO pn-1gy.
2
o 9B,0) 17|

On the other hand

2

u(R) —u(pr)? < (AR«qummw)

log (%) /Rt|

p

IA

(z, Du(tz))|dt,

and the conclusion follows at once integrating over 9B (0). O

Proof of Theorem 10.11. Assume n = 3 and suppose that u has a sequence
of singular points x, converging to xg; up to translation we can assume
xo = 0. We use a rescaling argument. Let R, := 2|z, | < 1 for v large
enough; the function «®)(z) := u(R,x) is a local minimizer in B;(0) for

T (w™); B1(0)) := / AW (z,u™) Du™ Du™ dz,
B1(0)

where
AW (z,0) == A(R,x,v).

Each u(*) has a singular point y, with lyn| = % Since the u(*)’s are uni-
formly bounded, up to a subsequence, they converge weakly in L?(B;(0))
to some function v.2 By compactness, we may also assume that y, — yg
for some yo with |yo| = 2.

2By the theorem of Banach-Alaoglu.
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By Lemma 10.13 we conclude that v is a local minimizer of
T (v; B1(0)) := / A(0,v) DvDudy
B1(0)
and that v is singular at yg. Moreover by monotonicity we shall see that
v is homogeneous of degree zero:

v(ty) =v(y), V7€ (0,1), y € By1(0).

Indeed by Lemma 10.14 ®(t) is increasing, and therefore tends to a finite
limit as ¢ — 0; moreover, setting p := AR,, R:= uR,, 0 < A < pu <1, we
have

/ [u) () = u) () 2aH" < clog (4) [@(uR,) — SAR,)),
0B1(0) A

hence, letting v — 0, we conclude that
/ () — v(pa)PdHP! = 0
0B1(0)

for a.e. A and pu.

Since v is homogeneous of degree 0, we have that Ty lies in the singular
set X for every 7 € (0,1), hence dim’™(X) > 1, contradicting Theorem
10.10, thus proving part 1.

To prove part 2, let us recall without proof that for any set A
HM(A)=0< HE (A)=0,° (10.19)
and that, given a Borel set 3, then for H*-a.e. € ¥ we have

kxNnB
lim sup H(=0B,r) (20 B(z,1) > Yk

—. 10.20
r—0+ rk 2k ( )

Finally, if Q,Q.,,v = 1,2,..., are compact sets such that every open set
A D @Q contains @, for v large enough, then

HE(Q) > limsup HE (Q,).* (10.21)

v——+400

Let X be the singular set of u and assume that for some k& > 0 we have
H*(X) > 0, so that also H%_ (3) > 0. Then there exists a point xg, which
we may take to be the origin, such that (10.20) holds. Let R, — 0 be a
sequence such that

HE(SNB(O,R,)) _ wy
>
RE = ok

(10.22)

3Compare Definition 9.20
4The same property is false for the measure H*, and this is why we work with H’;o.
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and let u(®) (z) := u(2R,x). Again by Lemma 10.13, up to a subsequence,
u'”) converges to a 0-homogeneous local minimizer v. If ¥(,) denotes the
singular set of u(), from (10.22)

k Wk
Hoo(z(y) N B% (0)) = 241"

Set Yo to be the singular set of v; by (10.21) with Q = ¥o, Q, = X(,), we

have
Wk
HI;O(EO N B% (0)) = 92t

In particular there exists 2 such that (10.20) holds with 3¢ in place of
3. Up to rotation, assume o = (0,0,...,a) for some a # 0 and blow up
at xg as before. We obtain a local minimizer w; in R™ independent of =™,
so that

ﬂ;l(xla---axn—l) = wl(a:l,...,mn_l,())

is a local minimizer in R*~!. Moreover its singular set 3, satisfies
Hkil(zl) > 07

as comes easily from the invariance of the singular set of w;. Suppose
now k > n — 3 and apply the procedure n — 3 times. We obtain

HE- (8, 5) >0, k—(n—3)>0,

contradicting the fact that w,_3 is local minimizer in R?, and has only
isolated singularities by step 1. O

10.3 Schoen and Uhlenbeck’s regularity
results

Let us discuss the general results by Schoen and Uhlenbeck [95].

10.3.1 The main regularity result

The following theorem, an e-regularity result, says that an energy min-
imizing harmonic map is regular in a neighborhood of every point with
density suitably small. It is the analog of Theorem 10.10, and implies that
the (n — 2)-dimensional measure of the singular set is zero. We present
here the original proof of Schoen and Uhlenbeck, which does not make use
of Caccioppoli’s inequality. In fact a Caccioppoli type inequality can be
proved using a lemma of Luckhaus, leading to a different proof of Theorem
10.15 below, see [98], [99].
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Theorem 10.15 (Schoen-Uhlenbeck [95]) Letu € W22 (By(0), N) be
a local minimizer of the Dirichlet integral. Assume also that the Rieman-
nian manifold (N,~) is closed (compact and without boundary). Then
there exist g9 > 0, o € (0,1) depending on (N,v) such that if for some

ball Br(zo) € B1(zo) we have

1
Rn72

/ |Dul?dzx < g, (10.23)
Br(zo)

then u € C%*(B,g(z0), N), for some a € (0,1).

The main step in the proof of the above theorem is the following decay
estimate.

Proposition 10.16 Under the assumptions of Theorem 10.15 there exist
€0 >0 and 7 € (0,1) such that if

/ |Dul*dx < &, (10.24)
B1(0)

then
1

1
72/ | Dul?dx < —/ | Dul?dz. (10.25)
"% JB.(0) 2 /B (0

Proof of Theorem 10.15. Thanks to Morrey’s Theorem 5.7, it is enough
to prove that for any x in a neighborhood V' of zy we have

1
pn72

/ |Duf?dz < cp**, ¥p>0 (10.26)
By (x)

for some ¢ > 0, that is Du € L?"2¥2¢(V). Since for z € Bg(:ro) we
have

2\n—2 2\n—2
(—) / | Dul?dz < (—) / |Dul?dx < 2" 2¢,
R By (@) R Br (o)

we shall first prove (10.26) for x = z¢ and then, up to take 5725 instead
of g9, we have that (10.26) holds true in V = Br (x0).

Let u satisfy (10.23), and assume without loss of generality that z¢ =
0. Then the rescaled map ug(z) := u(Rx) satisfies

1
/ |Dup|*dr = — / | Dul?dz.
B1(0) B2 Jpr(o)

This shows that we may also assume R = 1. Now apply Proposition 10.16
to u: B1(0) — N:

1 1
— / | Du|?dx < —/ | Du|?dz.
T B, (0) 2 /B, (0)




10.3 Schoen and Uhlenbeck’s regularity results 243

Also the rescaled map u,(z) := u(7z) satisfies the hypothesis of Proposi-
tion 10.16:

1
|Dul?dx < 7/ | Du?dz < &,
(0) 2 /B0

1
/ |Du, |*dx = _2/
B1(0) "% JB, (0

.

Therefore )

1
_2/ |Du,|?dx < —/ | Du.|?dz,
"% JB,(0) 2 /By (0

which is the same as

1 1\2
ﬁ/ | Du|?dz < (7) / | Du|?dz,
(72)"=2 JB 4 (0) 2/ JBy(0)

and iterating

1 1\¢
72/ | Dul?dx < (7) / | Du|?dz,
()" JB (0 27 (o)

for any positive integer i. Given now p € (0, 1), choose i such that 7¢+! <

log 2
; log 2 . —i ey
p <7 and set a = ﬂcf)g%' Then, since 27" = (7")les7—T | we find

1 n—2 .
(7) / |Dul?dz < (7'2)2'1/ Du?dzx,
T B,(0) B1(0)

and finally
1 1 1
nfz/ | Duf*dz < ﬁﬁ/ | Duf*de
P B,(0) T (%) B_;(0)
1\¢
STQ_”(—) / | Du|*dx
2 B1(0)

1 ,
< — (T’)QO‘/ | Du|?dx
T B1(0)

1 2
< o (B) / | Du|?da
T T Bl(o)

(7_2771720(/ |Du|2dm)p2a.
B1(0)

IN

a
Proof of Proposition 10.16. We shall first approximate u with a smooth
function u; (step 1), then prove a decay estimate similar to (10.25) for
ug; (step 2), and finally show how to compare the Dirichlet integral of us;

with the Dirichlet integral of « using the minimining property of u (steps
3 and 4).



244

Step 1. Fix a smooth radial mollifier ¢ : R® — R, with spt ¢ C B(0)
and [p o ¢(z)dr = 1. Set

u* = / o(x)u(r)dr € R.
B1(0)

By a variant of Poincaré inequality® we have

/ |u — u*\de <c / |Du\2dac < c180.
B1(0) B1(0)

In particular
dist(u™, N) < ¢c24/20. (10.27)

By monotonicity, for the map u, ,(y) := u(x — hy), we have

1
/ |Dug i (y)|Pdy = =) / |Du(y)|*dy
B1(0) By ()

03/ |Dul?dx < c3e0
B1(0)

IA

for every 2 € B1(0) and h € (0,1/4]. Therefore, if we define for 2 € B1(0)
and h € (O, %] the A-mollified function

U(h)JfZ: ulxr — = (h).'E—ZUZ YA
(z) /Bl(oﬁ’(y” hy)dy /Bh(mﬁ”( Yu(2)dz,

where M) (z) := (%), we infer from (10.27)

1
dist(u® (2), N) < eay/o, V€ By(0), he (0, ﬂ. (10.28)

Consequently, for €y small enough, depending on N, u(™ lies in a tubolar
neighborhood N := {z € R? : dist(z, N) < §} of N, and can be smoothly
projected onto N. If IT : Ns — N is the normal projection, define uy, :
B 1 (0) = N

up :=1Ilo u™.

Next observe that

/ |Du™ 2dz < 65/ | Dul?dz. (10.29)
B1(0) B1(0)

1
2

5Whose simple proof may be obtained using Rellich’s theorem, as in the proof of
Proposition 3.21.
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Moreover, by Jensen’s inequality

2
DAP@P = | [ o g Dul)dy
By ()
< / o™ (z — y)| Du(y)Pdy
B;L("E)
< ¢ ! | Du|*dy
= 67
h"™ JB, (z)
E
S c7h_?1’

hence |Du® ()2 < c7+/0 if we choose h = . Consequently

sup |u® () — u™ (0)]? < cssé, hi=el" (10.30)
QJEB% (0)

Step 2. Let v € C°°(B1(0),R?) be the solution of

1
2

v=u" ondBi(0).

2

{AU:O in By (0),

Then by (10.30) and the maximum principle for v, we have

sup |v(x) — u™ (z)]> < 095§. (10.31)
IEB% (0)

By (5.13) we have

sup |Dv|?* < 010/ | Dv|?dz,
B

By (0) 1(0)

while (10.29) and the minimality of v give

/ | Dv|*dx < / \Du(z)|2dav < 05/ | Dul?dz.
B, (0) B, (0) B1(0)

Hence we have

sup |Dv|?* < 011/ | Dul*dz. (10.32)
B4 (0) B1(0)
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Since DII is bounded, for any 6 € (0, i), we can estimate

1 / 2 1 h) |2
— |Dur|*dx §013—7/ | Du™|?dx
02 Jpp0) " 072 Iy (0)

1 _
< 014—/ (ID™ —v)[*> + |Dv|?)da
6n—2 Bo(0)
1 _
S C15w/B o ‘D(u(h) — U)|2dx
0

+ 61592/ |DU|2d£C,
B1(0)
(10.33)

where we also used

][ | Dv|?dx < ][ | Dv|dx < ][ |Dul|?dz,
Bg(m) Bl(O) Bl(O)

coming from (5.13) (remember that Dv is harmonic). Integration by parts
and (10.31) give

/ |D(u(ﬁ) —)]2dr = —/ (u(ﬁ) —v)- A(u(ﬁ) —v)dz
B%(O) B%(O)

IN

6166§ /B \Au(ﬁ) |dz.
1(0)

On the other hand, from the Euler-Lagrange equation for u we have

n

Au® () = / oMz — )Y Au(Diu, Diu)dy,
By ()

i=1
hence, since | A, (D;u, D;u)| < c16|Dul?, Jensen’s inequality gives

/ \Au(ﬁ) (z)|dx < 017/ | Du|?dz.
B%(O) B1(0)

Therefore we deduce from (10.33)

1
4
1 )

gz / |Duﬁ\2dx < 018(97172 + 92) / | Du|?dz, (10.34)
By (0) B1(0)

for any 6 € (O7 %), with h := s(ﬁ and c1g depending on N but independent
of g9 and 6.

Step 3. In order to compare u; to u, we modify u; so that it agrees with
uw on 0B1(0), and then we use the minimality of u.
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Set 7 := ¢} where vy € (0, 1—16] will be chosen depending only on n.
We assume, by taking g possibly smaller, that 7 < % and let p be the
greatest integer such that p < -, and write

355‘

1 P 1
[rr+3ped] = (I L= [r+3(i— Vel 7+ 3ied ]
i=1

_1 _1
Since v < %, we have p > T — 1 > %60 1% —1 2> ci9g, '°. Since
3608

P
/ . |Dul?dx < Z/ | Dul?dz < / | Du|?dz,
{lz|€[r,m+3peg |} i—1 7 {l=lel:} B1(0)

we can choose j with 1 < j < p such that

1
1 16
/ | Dul?dx < —/ |Duf?dx < EL/ |Dul*dz.  (10.35)
{lzlel;} P JB1(0) €19 JB1(0)

Let 6 be such that I; = [0 — 5§,9+25§] and let h : Rt — RT be a
non-increasing smooth function such that (see Figure 10.1)

1. h(r) = h for r < 6;
2. h(r)zOforrEH—&—sé;

3. |W(r)] < 2heg ® = 2¢8 .
Set

W @) = D sula) = [ GO = gty 7=,
B1(0)
and by (10.28) we can also define
uo(x) == Hou™(z), r:=|z|

It is easily seen that uy € W12 (B 1 (0), N) and that

9+250§
() = ug(x) for |z| <6, )
0 u(xz) for |z| >0 +¢f.

Therefore from the minimality of v we have

/ \Dulds < / | Dug 2dz (10.36)
{|z]<0+ey/"} {|z|<0+ey/®}

0 0

= / |DuE|2dx—|—/ | Duo|?da.
Bo(0) {lz|€[0,0+55"°]}

0

A
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B~

0—c5 0 0+ 23
Figure 10.1: The cut-off function h(r).

We now claim that

/ | Dug|?dx < 020/ | Dul*d. (10.37)
{lz1€[0,0+25""]} I

[¢]

Combining (10.34), (10.35), (10.36) and (10.37) and using the fact that
0 € [r,27] we infer

1 1 L
— / | Dul?dx < — / | Dug;|*dx + 2132 g’ / | Du|?dx
T B (0) T By(0) T B1(0)

1
5€0° +T2) / | Du|*dz
B1(0)

< (:21(6(?6 —vn2) 5(2)7)/ | Dul?dz.
B1(0)

< 1
> C21 (T”—

Choosing 7 := min{[32(n — 2)] 71,6471}, we get

1

— |Du|?da < cp0el” | Du|?dz,
n—2 0

T B-(0) B1(0)

whence (10.25), provided &g is small enough so that 622537 < %

Step 4. It remains to prove (10.37). By the boundedness of DII it is
enough to prove it for u("(1#1)(z) instead of uo(z). Remember that

W) () :/B o, Pula = @iy
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First assume u smooth, so that also u("{ID)(z) is smooth. Set
A={z:0<|r|<O+e5}, Ap:={x:0—c5 <|z|<O+2e5}.

Next compute

Diyu®(#) () = /B o, P D h(@)y) = Dub(a])- Dula—h(@)y)]dy

thus, observing that h’ < 2, we have

/\Du(h(m)) )| da:<023//B (0) y)?|Du(z — h(z)y)|*dydz.
1

The map = — = — h(z)y for each y € B;1(0) defines a diffeomorphism of
A into Ay with Jacobian close to 1, thus we have

/|Du x — h(z)y)|de < 2/ | Du|*dz;
Ay

/|Du(h 1=D) ()] da:<024/ | Dul?. (10.38)
Ay

therefore

Now use (10.38) to prove that if u; — u in W12(Aq, RP), then ugh(x))(m)
is a Cauchy sequence in W12(A,RP) and converges to u"®)(z). Con-
sequently (10.38) extends by density to any arbitrary v € W1H2(B;(0))
and (10.37) is proved. O

Corollary 10.17 For any energy minimizing harmonic map

we Wh2(Q,N), QcR",

loc

we have

H"*(8(w)) =0,
where X(u) is the singular set of u.

Proof. Apply Proposition 9.21 with f = |Dul?. O

10.3.2 The dimension reduction argument

Finally we prove

Theorem 10.18 The singular set X(u) of a locally energy minimizing
harmonic map u € Wli’f(Q, N), Q CR™, N compact

1. contains only isolated points, if n = 3,

2. has dimension at most n — 3, if n > 3.
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As we shall see, essentially the proof of Theorem 10.11 works, if we
can provide a compactness theorem replacing Lemma 10.13. This is done
in Theorem 10.25 and Proposition 10.26.

Remark 10.19 Theorem 10.18 is sharp. For instance the map

u: R — §% u(x) == —
@)=

is a locally minimizing harmonic map, compare [16] and [56].

The compactness theorem

In this section we shall prove the compactness theorem of Luckhaus; it
generalizes earlier results of Schoen-Uhlenbeck [95] and Hardt-Lin [57].
Then we shall use it to prove Theorem 10.18.

Definition 10.20 For any v € L*(S" 1, RP), set v(rz) := v(z) for every
r>0,z€ 8", and define

Wi2(sn—1 RP) := {v € L2(S""L,RP) : 5 € WL2(U,RP)

for some neighborhood U of S"il}.

By W12(S"=1 N) we shall denote the maps v € Wh2(S"~1 RP) such
that v(z) € N for a.e. x € S™71.

Similarly, for any v € L2(S"71 x [a,b],RP), set v(rx,t) := v(z,t) for
everyr >0, x € S"~ 1 t € [a,b], and

WL2(Sm1 x [a,b], RP) := {v € L2(5" ! x [a,b],RP) :

v € WH2(U x [a,b],RP) for some neighborhood U of S”_l}

Lemma 10.21 (Luckhaus) Let N C RP be compact, n > 2, and con-
sider u,v € WH2(8"=Y N). Then there is a constant C such that for
every € > 0 there is a function w € WH2(S"=1 x [0,¢],RP) such that

w|S"—1><{O} =4 w|S"—1><{a} =Y

/ FwldH" < 05/ (1Vul? + [Vol2)dH !

S Ix(0.e] CS"” (10.39)

+ — |u — v]2dH" "t
g Jgn-1
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and

dist 2(w(z, s), N) < ¢ (/ (Vu|2+|Vv|2)dH”_1>2
Sn—l

&-n—l

X (/ |u—v|2dH”1) + % lu —vPdH™ !,
Sn—1 9 Sn—1
(10.40)

for a.e. (z,5) € "1 x [0,¢]. Here V is the gradient on S"~! and V is
the gradient on the product space S"~* x [0, ].

Proof. In the case n = 2 we choose the absolutely continuous repres-
entative for « and v on S'. Then by 1-dimensional calculus on S' and
Cauchy-Schwarz’s inequality we have

1
sup |u — v|? < / |V|u—v|2|dH1+—/ |u — v|?dH*
S1 S1 2w St

<C< V(u—v)|2d7-[1> (/ |u_v|2dH1> (10.41)
St g1
—l—C’/ lu — v|>dH .
S’l

Define now s s
= (1= Dt + o).
w(w, s) ( 8 u(w) + <€v(o.))
Then 1
V| < |Vu| + V(v —u)| + Sl —ul,
hence

_ 2
Vwl* < 8(IVul® +[Vo?) + Zlo —uf”.

By integrating over S! x [0, ] we get at once (10.39). Moreover, as u(S*) C
N, (10.41) implies that for each w € S*, s € [0, ¢] we have

dist(w(w, 5), N) < C([; V(u—v)|2dH1>i</Sl |u—v|2dH1>

+C’</ |uv|2d7'l1> ,
g1

which is even stronger than (10.40), since there is no dependence on ¢ on
the right-hand side.

1
4

For the case n > 3, we only show how to construct the function w,
omitting the verification of (10.39) and (10.40). For a complete proof see
[71], [98].
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We first extend uw and v to the cube [—1,1]" by u(rw) := u(w) and
v(rw) := v(w) for every w € S"71 r > 0, and then choose absolutely
continuous representatives for v and v on [—1,1]".¢ Then, for any ¢ €
(0, %), we partition R" into cubes Q;, i = (i1, ..., i) € Z",

Qi = [ilf, (’Ll + 1)6] X ... X [in€, (in + 1)6},

and consider those cubes @ of the form a + Q; for any Q; C [ — %, %}n,
where a is a suitably chosen point inside [— %7 %] ". We then define w on

Q % [0,¢] by an inductive procedure. First consider the 1-skeleton” Q' of
Q@ and set

w(z, s) = (1 - z)u(x) + Sv(m), reQsel0e]
For k > 2 we assume that w has been defined on Q*~! x [0, ¢] and extend
it to Q¥ x [0, €] observing that for any k-dimensional face F¥ C Q¥, w has
already been defined on

A(F* x [0,¢]) C ( U F*'x [0,50 UF* x {0,e}.
Fk—1
Hence we can use the homogeneous degree zero extension of w| B(F*x[0.¢])
to F* x [0,¢] with origin at (g, 5), ¢ being the center of F*, to define w
on F* x [0,¢], thus on Q* x [0,¢]. This induction completes the definition
of w on @ X [0,¢], and choosing several )’s, we can define w on all of
([-3.4]"\[-%. £]") %[0, £]. By absolute continuity and Fubini’s theorem,
one can find p € [, 1], such that the restriction of w to d([—p, p]") x [0, €]
is a Wh2-function. To obtain a function defined on S"~1 x [0,¢] it is
enough to radially project d([—p, p|™) onto S™~1, this being a bilipschitz

tranformation. O

Remark 10.22 Given g > 0 integrable on B,(y), using the identity

P
/ gdxz/ (/ gd’)—["_l)da, (10.42)
Bp(y)\Bg (v) 5 9B4(y)

2

6 An absolutely continuous representative u of a W1:2-function on a cube la1,b1] x
... X [an,bn] is an L2-function such that the restrictions

uD (@) = u(@t, .. 2?7 2l 2 + 1, 2")

are absolutely continuous as functions from [aj,b;] into R for H" l-ae.
(b, ...,29 7t 23+ . 2™). A way to construct such a representative is to define
u(z) := Ay at all points where there exists a A\ such that

lim — / lu(y) — Asldy = 0,
Bp(z)

and to define u arbitrarily at the points where such a A; cannot be found.
"The k-skeleton of the cube Q is the union of its k-dimensional faces.
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we have that for all 8 € (0,1)

2
/ gdH™ ™ < = / gdx (10.43)
9B (y) 00 JB,)\By )

for all o € (g,p) with the exception of a set of measure at most %p.
Otherwise, integrating the reverse inequality on a set of measure greater
than 22 would give

2
P
/ gdx</ (/ gd?—l”1>da,
Bp(y)\Bg (v) g 9B, (y)

2

contradicting (10.42).

Remark 10.23 Given w € WH?(Q,R), and a fixed ball B,(y) C €,
define w, € W12(S"~1 R) by wy(w) := w(y + ow), w € S"~1. Then it
can be easily verified that for each 6 € (0, 1), we have

/ VS, |2dH T < 1_3/ | Dw|?dx
Sn—1 on 8Bg(y)

2 /2\n—2
< —(—) / | Dw|*dz,
0\p B,)\B (v)

for all o € (g, p) with the exception of a set of measure at most gz—p.

(10.44)

Corollary 10.24 Given a smooth compact manifold N C RP and A > 0,
there exist 6o(n, N, A) and C(n, N, A) such that the following holds:
Ife € (0,60], and if u,v € WI’Q(B(Hs)p(y)\BP(y),N) satisfy
1

pn_2 /B(1+s)p(y)\BP(y)
1

82npn /B<1+5)p(y)\BP(y)

(|Dul? + |Dv|*)dz < A,

|lu — v|2 < 4y,

then there is w € W2(B(142),(y)\B,(y), N) such that

o, = Uon,wr ®losar,w = YUosass,w
and
1 2 1 2 2
— |Dw|*dz < C—— (|Dul|* + | Dv|*)dz
P B(ite)(W)\B,(y) p B(ite)o(1)\B,(y)

C

- / |u — v|2dx.
€77 B4y, (W)\Bo(v)
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Proof. Up to translation, we can assume y = 0. To simplify the notation,
we shall write B, := B,(0) for every p > 0. By (10.43) and (10.44) there
is aset of o € (p, (1 + %)p) of positive measure such that

1 C
- / (IDuf* + [Dof?)yarr—t < —< / (IDul? + |Dv|?)dz
o™ OB, Epn B(1+E)p\BP
(10.45)
and
1 C
— / lu —vPdH™ ! < — lu —v|*dx
g 0B, EP” JB4e),\B, (1046)
< Csge L

By (10.44) we know that, for almost all of these o, u,v € W12(9B,,RP).
Now we can apply Luckhaus’ lemma with § in place of € to the functions
t(w) = u(ow) and v(w) := v(ow), obtaining a function @ on S"~1 x
[0,e/4] with w = @ on S"~! x {0}, w = v on S"~! x {/4} and

/ Vil2dHe
57-1x[0,¢/4]
C

< Ce (|Va|? + |Vo|2)dH" ! + ;/ | —v2dH" 1
Snfl

Snfl
C c
< fg/ (|Dul? + |Dv|?)dH™ 1t + _1/ lu — v2dH" 1
om 9B, egn OB,
C C
< n_2/ (IDuf? + |Dof)da + — n/ lu — v|2da,
p B(146)p\Bp €°P" JB(116),\B,

(10.47)

by (10.45) and (10.46). Moreover

dist 2(@, N) < C(/ (Val? + v5|2)dH"1>
Snfl

1
1 _ _ 2
X( i 2/ |u_v|2dHn_1> (10.48)
g«n— gn—1

1 ~ o~
+— [u —v|*dH" 1.
677, Sn—1

Again by (10.45) and (10.46), the right-hand side of (10.48) is bounded
by Cdy, where C depends only on n, N, A, hence for 9 = do(n, N, A)

small enough we conclude that w maps into a small neighborhood N, of
N, where the closest point projection Il : N, — N is well defined. Now
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define w € W2(B(14./2)5) by

w(z) =4 TMow(w, 2 1) if 2| € (,(1 + £/4)0)
v(¥(l2l) ) if |z € (1 +¢/4)0, (1 +£/2)0),

where ¢ € C*(R) satisfies
(i) ¥((1+e/4)o) =0,
(ii) ¥((1+¢/2)0) = (1 +¢/2)0,
(iif) [y ()] < 2 for t € (1 +¢/4)a, (1 4¢/2)0).

In view of (10.47) it is straightforward to verify that w satisfies the in-
equality stated in the corollary. O

Theorem 10.25 Consider a sequence of energy minimizing harmonic
maps u; € WH2(Q, N) with locally equibounded energies, i.e. such that
for every Br(zo) C Q, we have

sup/ | Du;|?dz < +oo.
JEN J Br(wo)

Then a subsequence uj, 2converges mn I/Vli)cz(ﬂ, RP) to an energy minimizing
harmonic map u € W,-2(Q, N).

loc

Proof. By Rellich’s and Banach-Alaoglu’s theorems we can assume that,
up to a subsequence,

uj — u strongly in L2 _(Q, N) and weakly in W,-2(Q, N),

loc

for some u € W,22(€, N). Let B,,(y) C Q and let § > 0 and 6 € (0,1) be

loc
given. Choose any positive integer M such that

1
limsup —; / |Duj|2da: < M,
j—oo  Po By (y)

and note that if € € (O, 1—1\7)7 then there is some integer [ such that
1

n—2 /
Po B 0+16) W\ Bpg (0+(1—2)e) (¥)

|Du;|*dz < §
for infinitely many j, because otherwise we could sum over ! and get

pg_”/ |Du;|?dz > M§
Bpg (y)
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for all sufficiently large j, contrary to the definition of M. Now choose
such an [ and set p := po(0 + (I — 2)e); noting that p(1+¢) < po(6 + le),

we get
1

062 JBysey )\Bo(w)

|Duj, |*dx < & (10.49)

for some subsequence u;,. By weak convergence of Du;, to Du in L2, we

get
1
n—2

Po /Bp<1+5) (W\B,(v)

/ lu — uj, |*dx — 0,
Bpo (y)

by Corollary 10.24 we can find a function wj, € W?(B,142)(y)\B,(y), N)
with wj, = u on 9B,(y) and wj, = uj, on 0B,14¢)(y), and

|Dul*dx < 6. (10.50)

Since

1
— / |Dwj, |*dx
p Bp(1+e)(y)\Bﬁ(y)
< — / (|Du|2 + |Duj, |* + %)dm,
p By14e)(®)\Bo(y) &P

(10.51)

where C' depends only on n and N. Now take any v € W'2(By,, (y), N)
with v = u on 9By, (y), extend v to a function ¥ € W12(B,, (y), N) by
setting v = u on By, (y)\Bap, (), and define

Uj,,  ON BPO (y)\B(1+a)p(y)
ajk = Wj, ON B(l-‘rs)p(y)\Bp(y)
v on B,(y).

Then, by the minimizing property of u;, we have

[ D
B(1+s)p(y)

IA

/ | D, |*dx (10.52)
B(14¢)p(y)

/ |D5|2dx+/ |\ Duy, P,
B,(y) B14e)p(W)\ B, (y)

hence, by (10.49), (10.50), (10.51),

IN

1 1
— / |Dul?dz < liminf — / |Du;, |*dx
P B, (w) k—oo P2 JB, )

1
pn72

/ |Dv|dx 4+ CS.  (10.53)
Bﬂ(y)
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Therefore
1

1
n72/ | Du|?dz < n72/ | Dv|?dz.
P Bop, (¥) P Bo, (v)

Since § > 0 was arbitrary, this shows that w is minimizing on By, (y),
and in view of the arbitrariness of €, p and y, u is a locally minimizing
harmonic map.

To prove that the convergence is strong, we note that if we use (10.53)
with v = u, then we can conclude

1 1
lim inf n—2/ |Duj, |*dx < n—2/ | Du|?dx + O,
k—oo p B,(v) P B,(v)
hence, by the arbitrariness of # and 4,

1 1
liminf —— / |Du;, |*dz < — / | Du|?dz,
k=00 p" By, (v) P Bpg (y)

for each p; < pg. It follows from this that

liminf/ |Dujk|2dx§/ | Du|?dz, (10.54)
By (y) By (y)

k—o0

for every ball B,(y) C . Now writing

/ |Du;, — Dul*dz = / |Duj, |*dx +/ | Dul|?dx
By (y) By (y) By (y)

— 2/ Duj, - Dudz,
Bp(y)

and observing that the left-hand side is nonnegative, (10.54) implies strong
convergence on B, (y), hence in W,-2(Q, N). O

loc

An important consequence of the compactness theorem of Luckhaus
is the semicontinuity of the density:

Proposition 10.26 The density function O, (y) is upper semicontinuous
with respect to the joint variables y and u, meaning that if y; — y and

{u;} C VV&?(Q) is a sequence of locally energy minimizing maps with

locally equibounded energies and u; — w in L?, then
O4(y) > limsup O (y;)-

Proof. By Luckhaus’ compactness Theorem 10.25, u; — u strongly in

WI’Q(Q). Let y; — y and fix p,e > 0 such that B,.(y) C Q. For j large

loc

enough |y — y;| < €, hence B,(y;) C By4<(y), implying

1 1
0. (y)) < 7/ | Duy[2da < H/ | Duy[2da
Bﬂ(yj) ‘0 BP+€(y)

pn2
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By the I/Vli)c2 -convergence we get, for j large enough, that

1 1
— / |Du;|*dx < — / |Duf?dz + ¢,
P Bpte(y) P Bpt: ()

hence
1
limsup O, (y;) < —— / |Dul?dx + ¢.
Jj—00 p Bp+€ (y)
Letting € — 0 first, and then p — 0, completes the proof. a

Proof of Theorem 10.18. Let n = 3 and assume that we have a sequence
of singular points x, converging to zy, and we can assume xg = 0. Res-
caling as in the proof of Theorem 10.11, we find an equibounded sequence
of harmonic maps u)(z) := u(2|z,|z) with singular points y, = ]
ly| = %; by Theorem 10.25 we may assume, up to a subsequence, that

u) — v in VVI})’CQ(Bl(O), RP), where v is energy minimizing. We can also
assume that y, — yo, |yo| = %7 and by Theorem 10.15 and Proposition
10.26, we have that g, is a singular point.

We now claim that v is positively homogeneous of degree 0: by W12-

convergence, we have

1 1
_2/ |Dv|?dz = lim _2/ |Du™|da:
P B,y (0) oo P B, (0)

1
= lim 7/ | Dul|?da (10.55)
B2P\EV\(O)

v=oo (2p|x,[)" =2

hence the left-hand side does not depend on p. Then, by the monotonicity
formula (10.8), %| = 0 a.e., and the claim follows. We now have that
the whole segment {Ayo : A > 0} N By (0) is singular, contrary to Corollary
10.17.

The second part of the proof follows exactly as in Theorem 10.11. O

10.3.3 The stratification of the singular set

We now discuss the structure of the singular set of a locally energy minim-
izing harmonic map as related to the tangent maps at singular points. The
techniques used here can also be found in the theory of minimal surfaces
and mean curvature flow. We shall closely follow [99], to which we refer
for a deeper discussion of the singular set of energy minimizing harmonic
maps.
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Tangent maps

Let u € I/Vli)f (€, N) be a locally minimizing harmonic map, consider a

ball Br(y) C 2 and define the rescaled map u,, , € W Q(BR( ), N) by

Uy p(x) = uly + px). (10.56)

As we already saw in the proof of Theorem 10.18, we have

Proposition 10.27 (Blow-up) There exist a sequence p; — 07 and a

locally minimizing harmonic map ¢ € Wli)cz (R™, N) such that u, , — ¢

m Wé’f(R", RP). Moreover ¢ is positively homogeneous of degree zero:

o(A\x) = p(z), forallz e R", A > 0. (10.57)

Remark 10.28 Tangent maps need not be unique, as shown by B. White
[114].

Remark 10.29 By Theorem 10.15 and equation (10.55), for any y € Q,
the following facts concerning a locally minimizing harmonic map u are
clearly equivalent:

1. w is regular at y;
2. ©4(y) =0;

3. there exists a constant tangent map ¢ for u at y.

Proposition 10.30 Let ¢ € I/Vlif (R™, N) be a locally minimizing homo-
geneous of degree zero harmonic map. Then, for every y € R™ we have
0,(y) < 0,(0). Set
S(p) = {y € B : 0, (y) = 0,(0)}. (10.59)
Then S(p) is a linear subspace of R™ and
plx+y) =¢(x), foreveryzeR" ye S(p). (10.59)
Proof. As 0 — 0" in (10.8), we obtain

1
2/ — dz 4+ O, (y) = — / | D?|da, (10.60)
w B 2‘ ‘ P2 )

where

R:=|z—yl,r:= T
|z —yl
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Since B,(y) C B4y (0) and

1
/ |Dp|* = ©,(0) for every o > 0,
B, (0)

O—n72
we have
1 1
ﬁ/ |Dp|dx < |Do|?dx
p By(y P77 By (0)
n—2 1
— ( |y‘) 77”/ |D@‘2dl‘
(p+ lyl) By 1y (0)
|y‘ n— 2
- ( ) 0,,(0). (10.61)

As we let p — +o00, we infer from (10.60) and (10.61)

2

mn R 2‘ ’ dz + 04 (y) < ©,(0). (10.62)

This implies at once that ©,(y) < ©,(0). Moreover if y € S(y), that is
O,(y) = ©,(0), then g—f(x) =0 for a.e. z, with r := \i%ZI In particular

oy +Ar) =p(y), VreR",yeS(p),A>0.

Using homogeneity we infer

o) =p(a) = oly+Oa—y) =p(y+22Y)
@(A(er /\$); y)) = o(x + ty), t:=XA— "L

Since ¢t may be chosen to be any real number, we have obtained

oz +ty) =p(x), YxeR" yeS(p),teR.
For y1,y2 € S(p) and t1,t3 € R we then have
p(z + tiyr +taya) = (x), Vo e R™,
which implies that ©,(t1y1 +t2y2) = ©,(0), hence t1y1 +t2y2 € S(¢) and

the proof is complete. O

Remark 10.31 If ¢ is non-constant, then by homogeneity it is discon-
tinuous at 0, hence 0 lies in ¥(y), the singular set of ¢. Then by (10.59)
we have

S(p) C Z(p), (10.63)

for any non-constant local minimizer homogeneous of degree 0.



261

Definition 10.32 Given a locally minimizing harmonic map

ue W2 (Q,N)

loc

define
Sj(u) := {x € ¥(u) : dim S(p) < j for every tangent map ¢ of v at x},

where X(u) is the singular set of u.

Lemma 10.33 For a locally minimizing harmonic map u € Wli’f(Q,N)
we have

So(u) C S1(u) C ... CSp_s(u) = Sp—2(u) = S,-1(u) = X(u).

Proof. The inclusions are obvious. S,_1(u) = X(u) is a consequence of
Remark 10.29. Since we also know that

Sn_g(’l.b) C Sn_z(u) C Sn_l(u) = E(U),

to conclude the proof it is enough to show that ¥(u) C S, _3. Consider z €
Y(u). Any tangent map ¢ for u at x is a non-constant locally minimizing
harmonic map. By Remark 10.31 S(p) C X(p). Therefore if dim S(p) >
n — 2, then H"2(X(¢)) = +oo, contradicting Corollary 10.17. Hence
dim S(¢) <n —3, and x € Sp,_3(u). O

Proposition 10.34 For any j = 0,1,...,n — 3 we have dim™ S;(u) <
n—3. For any a > 0, andn = 3 So(u) N{z € Q: Byu(x) > a} is a
discrete set.

A straightforward corollary of this proposition is an alternative proof
of Theorem 10.18.

Corollary 10.35 For any energy minimizing harmonic map

ue W2 (Q,N)

loc

we have
dim™ X (u) <n — 3.

Forn =3, ¥(u) is a discrete set.

Proof. The first assertion is a direct consequence of Lemma 10.33 and
Proposition 10.34. For n = 3 take a = ¢, and apply Theorem 10.15: O
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To prove Proposition 10.34, we need the following

Lemma 10.36 Set 1, ,(z) := %(m —y). Then for each y € S;(u) and
each § > 0, there is an € = e(u,y,d) > 0 such that for every p € (0,¢] we
have

Ny, o1 € Bo(y) : Ou(x) > Oy (y) —e} C {z € R" : dist(x, Ly ,) < 6},
for some j-dimensional subspace L, ,.

Proof. Were the lemma false, we could find § > 0, y € S; and two
sequences pr — 0, € — 0 such that

{z € B1(0): Oy, ,, (¥) > Ou(y) —ex} € {z € R" : dist(z, L) < 0},

(10.64)
for every j-dimensional subspace L of R™, where u, ,, () := u(y+pz). Up
to a subsequence uy ,, — ¢ for some tangent map ¢, and ©,(y) = ©,(0).
Since y € S; we have dimS(y¢) < j, and we can set Ly to be any j-
dimensional subspace containing S(p). Since for x € B1(0)\S(¢) we have
O,(z) < B,(0), we conclude by compactness and upper semicontinuity
of the density that there exists a > 0 such that

O,(z) < O4,(0) —a, forallz € B1(0), dist(x, Ly) > 4. (10.65)
We want to show that for k large enough, we have

{z € B1(0): Ou,.,, () > 0,(0) —a} C {z € R" : dist(x, Ly) < 0}.
(10.66)
Indeed assume the inclusion false for arbitrarily large k. Up to a sub-
sequence, we can find points z; — x¢ in By(0), with dist(zg, Lo) > 9,
such that

Ou, . (z1) > ©,(0) — a.

By upper semicontinuity, this implies

Op(z0) > 04(0) — a,

Uy, pp

contradicting (10.65). Therefore we have proved (10.66), which implies
that (10.64) cannot be true for every j-dimensional subspace L C R™. O

Proof of Proposition 10.34. Fix 6 > 0 and for any integer ¢ > 1 set S, ;(u)
to be the set of points in S;(u) such that the statement of Lemma 10.36
holds with e = 1. By Lemma 10.36 we have S;(u) = U2,S;;(u). Next
for any integer ¢ > 1 define

Sjialu) = { € 540 : Ou () € (q%l d)
Clearly
+oo
Si(w) = | J Sjiqw).

i,q=1
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For any y € S;; (u) we trivially have

Sja(w) < {1 € Su(w) - 0,() > Ouly) - 7 .

7

hence, by Lemma 10.36 with & = 1, we have that for any p < 1
Ny.p(Sji,a(w) N By(y)) C {z € R™ : dist(z, Ly,p) < 0},

for some j-dimensional subspace L, , C R". Thus every set S;; 4 has the
d-approzimation property, as defined below, with pg = %, and for every
6 > 0, hence
dim” §j.;4(u) < j

by Lemma 10.38 below. Since the Hausdorff dimension does not increase
under countable union, the first part of the propostition is proved.

For the second part, assume that z; € So(u) = X(u) and z — w0,
T # xo. We may assume without loss of generality that o = 0. Consider
the rescaled maps uy(x) := u(|zk|x). Up to a subsequence, uy, converges
in Wli’f(R",R”) to a tangent map ¢ and Ii—:l — & € 8”1, By upper
semicontinuity of the density, ©,(§) > «, thus £ is singular for ¢. By
0-homogeneity of ¢, the half line {A\¢ : A > 0} lies in the singular set
(), hence H"2((p)) = +o0, contradicting Corollary 10.17. O

Definition 10.37 A set A C R" is said to satisfy the d-approximation
property if there is pg > 0 such that for every y € A and every p € (0, po]

Ny,p(ANB,(y)) C {z € R" : dist(x, L, ,) < d},

for some j-dimensional subspace L, , C R™.

Lemma 10.38 There is a function 3 : (0,+00) — (0,400) with
li 0)=0
Jim_5(5)

such that, if 6 > 0 and A C R"™ satisfies the d-approximation property
above, then HI+PO)(A) = 0.

Proof. For § > £, fix B(6) = n—j+1, so that HI P (A) = H"+1(A4) = 0.
From now on let § € (07 %) It is easy to see that there is a constant c;

such that for every o € (0, %) we can cover the closed unit ball By (0) C RJ

with a finite collection of balls {B,(yk)tk=1....Q, Y € B1(0), such that
Q < %L, For any o we can find 3 = 3(c) such that Qo7 +#(@) < 1 and
hmg_,oJr 6(0’) =0.

Let now L C R™ be a j-dimensional subspace. From the discussion
above it follows that for any § € (0, é), o := 44, we can find balls B, (yx) C
R™ such that

Q
{z e R" N By1(0) : dist(z,L) <} C U By(ys), QoiTP®) <
k=1

N =
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By scaling we obtain that, for a suitable choice of the centers y, € LN
Br(0),

- Q

{z € R" N Bg(0) : dist(z, L) < 6R} C | J Bor(yr),
k=1
and
Q(oR)I PO < Lpi+ae),
-2

Now let A satisfy the d-approximation property for some py. We as-
sume without loss of generality that A is bounded, we cover it by balls

B%o(yk), E=1,...,Q, An B%o(yk) # (), and set Ty := Q(%)jJrﬁ(é).
For each k pick zp € ANB 0 (yx); by the d-approximation property with
p = po, AN B%o (yx) is contained in the 2pgd-neighborhood of some j-
dimensional subspace L. Since Ly N Beo (yx) is a j-dimensional disk, by
the discussion above, its 20pg-neighborhood (and so also ANBeo (yx)) can
be covered by balls B% (zk,), I =1,..., P such that

p(g_po)j+ﬁ(5) < 1(@)]'-&-5(6).
2 —2\2
Therefore A can be covered by balls B% (w), l=1,..., M such that
op\IHB®) 1
r < ZTh.
M( 2 ) 5T

Proceeding iteratively, for every ¢ € N, we can find a cover of balls

O'qpo)j"l‘ﬁ(é) < TO

Bm(wl)v lzla"'quv Rq( 9 o0

2

= 9q .
As @ — oo, this proves that H/+A)(A) = 0. O

10.4 Regularity of 2-dimensional weakly
harmonic maps

A direct consequence of Schoen-Uhlenbeck’s theorem (Theorem 10.15) is
that a 2-dimensional locally energy minimizing harmonic map is in fact
smooth. Whether this also holds for 2-dimensional weakly harmonic maps
(i.e. Wh2-functions weakly solving (10.5)) is far from obvious, but still
true, as proven by F. Hélein.

Theorem 10.39 (Hélein [59]) Let u € WH2(Q,N) be a weakly har-
monic map from the 2-dimensional domain Q C R? into the closed (and
smooth) manifold N. Then u € C*(, N).
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We will present the elegant and simple proof of Hélein when the target
manifold NV is the round sphere S™. Also the general case was obtained
by Hélein, with the moving frame technique, but we will present a more
recent proof, due to T. Riviere [88] (see also [89]), whose interest actually
goes beyond the case of harmonic maps.

Let us also remark that continuous weakly harmonic maps are in fact
smooth:

Proposition 10.40 Let u € W22 N CY (Q,N) be a weakly harmonic
map, where N is a closed manifold and Q C R™. Then u is smooth.

Proof. Since u satisfies (10.5), and

n

Z Ay (Do, Do)

a=1

< ¢|Dul?

we can apply Theorem 9.10 to show that u is Holder continuous, and then
bootstrap regularity using Schauder’s theory. |

Then, as in the case of energy minimizing harmonic maps, the problem
is to prove continuity. Notice that u € I/Vli)c2 (2, N) (with N closed) implies
that

Al < el Dul? € L (9).

When € is 2-dimensional, proving that D?u € L (Q) would suffice, since

loc
W2HQ) < () for Q € R2.

On the other hand, as seen in Example 7.5, the LP-estimates fail for p = 1.

In the following sections we shall see how the lack of LP-estimates for
p = 1 can be "compensated” by the special structure of the right-hand
side of (10.5).

10.4.1 Hélein’s proof when the target manifold is S™

Since the result is local we can assume
Q=D?:={zcR?:|z| < 1}.
Moreover we will set
S"i={x e R :|2| = 1}.

Let u € W,?(D% 5™) be a weakly harmonic map. In this case (10.5)

loc
reduces to the system

—Au = u|Vul?, (10.67)
where v = (u',...,u™T!). As already discussed, the right-hand side of
(10.67) lies in Li (D% R™), but as seen in Example 7.5, this information

loc
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does not guarantee that u is continuous. On the other hand, we can recast
(10.67) in such a way that the right-hand side has a particular structure,
yielding a better integrability of u than the one given by the LP-estimates.
Let us first write (10.67) as

n+1
—Au' = Z u'Vul -Vl (10.68)
j=1

Then notice that |u| = 1 implies

n+1 1n+1 1
j i i i j 12 _ % 2\ _
> W'Vl = VitV 3 S| =vui-v <§|u| ) =0. (10.69)

=1 =1

Then, subtracting (10.69) from (10.68) we get a new version of (10.67),
namely

n+1
—Aut = Z (uiVuj B VT VAT Vuj)

Jj=1

(10.70)

Now observe that for each ¢ and j the vector field
Al = UV — V' € L7, (D, R?)
is divergence-free: formally (if u € C?)

2
div A; = Z (De(u'Dou?) — Dy(w! Dou')) = u'Aw/ — v Au' = 0,
(=1

where the last identity follows from (10.67). To be more precise we write
for ¢ € C2°(D?)

/ div(Aé)wdx = —/ A; - Vedz
D2 D2
= / (—u'Vu? - Vo +u/Vu' - V)d
D2
= / (=Vu! - V(u'p) + Vu' - V(v p))dx
D2

since by (10.67)

— [ V- V(uip)da :/ —u! | Vul*u'pdz = —/ Vu' - V(w p)da.
D2 D2

D2



267

Since for every i,j the vector field A; is divergence-free, by Corollary
10.70 we can find a vector field B} € W,-2(D? R?) whose curl is A;, ie.

oc

V* B} = (=DyB}, D, B}) = A,

Then we can rewrite (10.70) has

n+1 n+1
~Au' =) VBl -Vl =Y (=DyB;Dyw’ + D1 BiDyu’) . (10.71)
j=1 j=1
Notice that the right-hand side of (10.71) is still no better than L{
as far as integrability is concerned, but now it presents the same Jac-
obian structure as in Wente’s theorem, Theorem 7.8, which then yields
u € CL (D?;5™), hence (together with Proposition 10.40) completing the
proof of Hélein’s theorem in this case.

10.4.2 Riviere’s proof for arbitrary target manifolds

The regularity of 2-dimensional weakly harmonic maps follows from The-
orem 10.41 below (thanks to Proposition 10.44), whose interest goes bey-
ond harmonic maps, since it allows to prove Hildebrandt’s conjecture,
namely that every critical point of a 2-dimensional conformally invariant
functional is continuous.

Theorem 10.41 (Riviere [88]) Consider a vector field
Q€ L*(D? A'R? @ so(m)),
and suppose that u € VV&)’CQ(DQ, R™) satisfies

—Au=Q-Vu. (10.72)

Then u € Wﬁ)’f(D2,Rm) N CIOO’S(DQ,R'") for every p € [1,00) and every
a€[0,1).

Notation The vector field  can be seen as a tensor ; anti-symmetric
with respect to ¢ and j. The scalar product €2 - Vu is the vector given by

Similarly, for matrix-valued functions A, B € W12(D?, gl(m)),

VA-VB e LYD? gl(m))
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is the matrix-valued function with components

-z DAL OBY
(VA-VB); ZZ o, Em'

k=1/=1

We will also often use the curl operator on D?:

o 0
vl (—
o < Oxo’ 8371) '

We will also use the following groups of m x m matrices:

gl(m) = arbitrary m x m matrices,
GL(m) = invertible m x m matrices,
(
(

SO

)
m) = orthogonal m x m matrices with positive determinant,
so(m)

= anti-symmetric m X m matrices.

Remark 10.42 While in Hélein’s proof one uses that A; is divergence-
free, such condition is too restrictive for general manifolds (which is the
motivation for introducing the moving-frame technique). Theorem 10.41
shows on the other hand that the anti-symmetry of A; is in fact sufficient
to give regularity. Shifting the attention from the divergence-free property
to the anti-symmetry is natural because, as shown by Riviere in the same
paper [88], weakly harmonic maps into arbitrary manifolds satisfy (10.72)
for some Q € L? anti-symmetric. This is the content of Proposition 10.44
below.

Remark 10.43 Theorem 10.41 is sharp for what concerns the regularity
of u. Indeed B. G. Sharp [92, Section 4.3] recently constructed a solution
u of (10.72), under the same assumptions as in Theorem 10.41 but with
u g Wi (D2, R™) = O (D2, R™).

Proposition 10.44 ([88]) Let u: D?* — N C R™ be a weakly harmonic
map. Then u satisfies the hypothesis of Theorem 10.41. In particular u
is continuous, hence smooth.

Proof. We have
—Au' = i Al () Vb -Vl = i Al Z ut Ow!
Jh=1 7 k=1 dx¢ Oy’

where we extended the second fundamental form A(u) to a bilinear form
on T,,R™. But since A(u) is orthogonal to T, (N), we have

zm: ALVl =0,

j=1
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hence
—Aul = Y (Al(u) — A () Vb Vol = Q)
§.k=1
where

Q(x) = (A (u(x)) — Al (u(2)))Vu* (2) € LA(A'D? @ so(m)).

Then by Theorem 10.41 we have u € C*(D?, N) for o € [0,1), hence u

loc

is smooth by Theorem 9.8. ]

Proof of Theorem 10.41

The proof is split in several steps. By Proposition 10.45 below, Equation
(10.72) can be recast in the form of a conservation law (Equation (10.74)
below) if one can find suitable matrix-valued functions A and B satisfying
(10.73). In the following Theorem 10.46 we see that the solutions (in
Wéf) of such a conservation law are Holder continuous. Theorems 10.47
and 10.48 will deal with the proof of the existence of the matrix-valued
functions A and B needed in Proposition 10.45, at least locally. This
completes the proof of the Hélder continuity of w. But in fact Theorem
10.46 below also gives Du € L22*(D?) 8 for a € (0,1), which then implies
~Au=Q-Vue LY (D*R™).

loc

This also implies

Du € L{ _(D?) for some q > 2,

loc

by a result of Adams [1], and by LP-theory and a simple bootstrap argu-
ment we finally infer

Due Ll

loc

(D?)  for every q € [1,00).

We will not give the details of this part.

Proposition 10.45 Let Q € L?(D? A'R? ® so(m)) and
AeWr*(D?* GL(m)), BeW"(D? gl(m)), A,A™'eL>.

Assume that
VA+ VB = AQ. (10.73)

Then (10.72) is equivalent to

div(AVu — BV*u) = 0. (10.74)

8L2,2a
loc

(D?) denotes the Morrey space, see Chapter 5.
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Proof. Tt is enough to observe that, at least formally, (10.73) implies
div(AVu — BV+tu) = VA - Vu+ AAu + VB - Vu = AQ - Vu + AAu.

To be rigorous one actually computes for ¢ € C2°(D?)
0= / div(AVu — BV u)pda
D2
= / (AVu — BV*u) - Vda
D2

= / (V(Ap) - Vu—VA-Vup —V(By) -Viu+ VB -Viuyp)de
D

= / V(Ap) - Vudz — / AQ - Vupdz.
D2 D?
O

Theorem 10.46 (Riviere [88]) Let u € WH2(D? R™) be a solution to
div(AVu — BV+tu) = 0.
with
AecWh3(D? GL(m)), B WY (D? gl(m)),
A AT e L(D?, GL(m)).
Then Du € L>2*(D2,R™) for every o € (0,1). In particular u €

loc

Cl(D?,R™).

loc

Proof. First notice that
div(AVu) = div(BV+tu) = VB - V%u.

Observe that if A is the identity matrix, then we are in the hypothesis
of Wente’s theorem 7.8, which would immediately give u € C{ (D? R™).
Fix now Bg(zo) € D? and define C € W,''(D? R™) to be the unique
solution to

{ AC = div(AVu) = VB - V4tu  in Br(zo)

C=0 on dBg(x). (10.75)

By Wente’s theorem (Theorem 7.8) we have u € C° N W12(Bg(zo), R™)
and

/ VO Pde < co/ \VB|2da:/ Vuldz.  (10.76)
Br(zo) Br(zo) Br(zo)

Now observe that
div(AVu — VC) =0,
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hence by the Hodge theory (see Corollary 10.70) there exists a function
D € Wh2(Bg(xo), R™) such that

VD = AVu — VC. (10.77)

Now we bound

/ VD[2dz < 2/ |AVu?dz + 2/ VO PRde
Br(zo) Br(zo0) Br(zo)

< 2 A~ / Vul?dz (10.78)
r(zo)

+2Co/ |VB|2d:c/ |Vul|*d.
Br(zo) Br(zo)

Let v € W12(Bg(z0),R™) be the solution to
Av =0 in Bgr(xg), v=D on dBgr(zp).

Since v is harmonic we get by (5.13)

2
/ |Vo|2de < c<£> / |Vol2dz, 0<r <R,
B, (20) RJ Jr(o)

hence as in (5.22) and setting w:=D —v

2
/ IVD|2dx < c(ﬁ> / IVD|2dw + c/ \Vw|2dz,
B, (o) R) JBa(ao) Br (o)
(10.79)

for r € (0, R). On the other hand by (10.77)

Aw=AD = -VA-V4tu in Bg(zo)
w=0 on 0Bg(xo),

and again by Wente’s theorem

/ |Vw|?dx < CO/ |VA|2dx/ |Vul|*d. (10.80)
Br(zo) Br(zo) Br(zo)

Then, collecting (10.76), (10.77), (10.78), (10.79), (10.80) and further
assuming that R is so small that

/ (VAP +|VBP)dz < e
Br(zo)
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for some £ > 0 to be chosen, we bound

/ \AVU\Qdm§2/ |VC’|2dx+2/ |VD*dx
B,(z0) B, (z0) By (z0)
gzco/ \VB|2dx/ |Vu|dz
Br(zo) Br(zo)

—&—0(1)2/ |VD|2daU—|—/ |Vw|*dz
R/ I (o)

Br(zo)
r

2
<alldli=(3) [ VPdores [ VaPde
R Br(xo) Br(xo)

In fact, using that A=! € L>°, we bound, with a constant ¢ depending
on ||A||z~ and [[A71|| e

2
/ |Vul*dz < cz(%> / |Vul|*dx + ch/ |Vul*d.
Br(20) Br(zo) Br(zo)

(10.81)
Now by Lemma 5.13 for every o € (0,1) we can choose € so that (10.81)
implies
2a
/ Vul?dz < 63(1) / Vu|?dz, (10.82)
B, (z0) R Br(zo)

where now c3 also depends on «. As usual (10.82) now holds for x in
a neighborhood of zy (up to modifying the constants slightly), hence we
have actually proven

Vu e L22*(D?)  for every a € (0,1),

loc

hence by Theorem 5.7 u € C:% (D2, R™). O

Theorem 10.47 (Riviere [88]) There exists g = eo(m) > 0 such that
if
Q € L*(D?, A'R? ® so(m))

satisfies |2, < eo, then there eists
A e WY3(D? GL(m)), B e Wy?(D? gl(m))

solvin
! VA+ VB = A0

and
IVA|Z2 + [I[VBI[7: + || dist(4, SO(m))||z= < C(m)[|Q]|7..  (10.83)

In particular A € L>°(D? ,GL(m)), and if eo is small enough we also have
A=t e L>(D? GL(m)).
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The proof of Theorem 10.47 will require the following result, whose
proof will be presented later.

Theorem 10.48 (Riviere [88]) For Q € L?*(D? A'R? ® so(m)) there
exists € € Wy 2 (D?, gl(m)) and P € WY2(D?,50(m)) such that

P7IVP + PIQP = V¢ (10.84)

and
IVEN72 + VP72 < 3[Q7.

Proof of Theorem 10.47. We first show that for ¢y sufficiently small the
following system, defined for

A e L nWh3(D? gl(m)), Be WY2(D? gi(m))

has a unique solution:

AA=VA.Vi¢-ViB.VP in D?
AB =V+A.VP~! +div(AVEP) + div(VEPY)  in D?
% =0, B=0 on 0D?
ov
Jpe Adz =0,
(10.85)

where ¢ and P are as in Theorem 10.48. Indeed consider the operator
T:X— X,

where
X = (L nWH(D? gl(m))) x W'(D?, gl(m)),

associating to (A, B) € X the unique solution (4, B) € X to

AA=VA.-Vi¢-VIiB.VP in D2
AB=V+A VP! +div(AVEP™!) 4 div(VEP™!)  in D?
% =0, B=0 on 0D?
ov
Jpe Adz = 0.
(10.86)

In fact (A, B) € X by Wente’s theorem (Theorem 7.10), which together
with the Poincaré inequality gives
[Allwr2 + 1Al < CIVE| L2V Al 22 + cl| VP 22| VB 2
< el 2 (IVA[ L2 + [V B]|2)
< ceol|/(4, B)| x-
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Similarly, using Theorem 7.8, the L2-theory and noticing that
|1AVEP™ L2 < [[AllL=[IVEllLe,  [IVEP™ 12 < [IVE]|L2
we obtain
1Bllwiz < (VA2 VP |22 + [ All e V€] 22 + [ VE] 2)

< cl|l 2 (IVAllgs + [ All = +1)
< ceo(| VAl 2 + Al + 1).

Then if g¢ is small enough T is a contraction,® hence it has a fixed point
(A, B) € X which solves (10.85) and satisfies

[ Allwr2 + 1Al 2 + | Bllwre < C[Q.
Finally, setting _ '
A=A+ 1)P7Y (L)l =,
we conclude as follows. Notice that with A’ := A + I,,, we find
div(VA' — A'VEE+VEBP) =0

by the first equation in (10.85). Then according to Corollary 10.70 we can
write

VA — AV +VEBP =V!D,

where D solves
div(VD P~ ') =0,

and using that £ = 0 on D? and the boundary conditions in (10.85) we
can choose D = 0 on 0D?.

We now claim that if £g is chosen possibly smaller, then D = 0. Indeed
we can write, again by Corollary 10.70,

VDP!=-V'FE (10.87)

with E € W12(D?, gl(m)), and Neumann boundary conditions (since the
tangential derivative of D on dD? is 0). In particular, applying V* to
(10.87) we see that E solves

OF _ 0 on 0D?.

{ AE=-VD -V+P~! inD?
7

9.e.
IT(A1, Br) — T(Az, Ba)||x < (A1 — A2, By — By)| x,

for some a < 1.
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By Theorem 7.10 we then infer

/ |VE|2d:v§CO/ |VD|2d:v/ VP! 2da.
D2 D2 D2

On the other hand, from (10.87) we infer |[VD| < |VE|, hence
/ |VE*dz < Coso/ |VE|*dz,
D2 D2

which implies E = 0if g < C; . Then from (10.87) we conclude VD = 0,
hence D = 0, as claimed.
Therefore we have proven

VA — AV +VEBP =0.
This, together with
P7IVP+PQP =Vte
finally shows that A := A’P~! solves

VA+V+B=vA'PYH+ViB
= (VA + AVP ' P+ ViBP)P!
= (AVe+ AvPIP) P!
= (AP 'VP+ AP QP+ AVPIP)P!
= AQ

)

as wished. O

Proof of Theorem 10.48

The proof we present here is due to A. Schikorra [93]. It essentially follows
from the two lemmas below.

Lemma 10.49 For any reqular domain D C R™ and vector field
Q € L*(D, A'"R™ @ so(m)),
there exists P € WLH2(D, SO(m)) minimizing the variational functional
B = [ 1077VQ - Q'0QPds, Q< W'D, 50(m)).
Furthermore,

VP 2oy <292y, 1PTVP =P QP 2 (p) < (|19 22(0)-
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Proof. The function Q = I := (0;5)i; is clearly admissible. Thus, there
exists a minimizing sequence Q) € W12(D, SO(m)) such that

B(Qr) < E(I) = ||Q]Z., keN.

By a.e. orthogonality of Qx(x) € SO(m) we know that Qx(x) is bounded
and

IVQi| = 1Q;'VQi| < 1Q,'VQr, — Q;'QQx| + 19| ae. in D,

hence
IVQll72(py < 2(B(Qk) + [21172(p)) < 4190172(p)-
Up to choosing a subsequence, we can assume that () converges weakly in

Wh2 to P € WH2(D, gl(m)). At the same time it shall converge strongly
in L?, and pointwise almost everywhere. The latter implies

pPlp= Jim Q.'Qr=1 ae,
and det(P) =1 a.e., that is P € SO(m) almost everywhere. Denoting
Qf .=p-'vP-rprlapr
and recalling that
0=V(PPY)y=vPP '+ PVP !
we obtain
Q'VQr— Q. 'QQk = (PT1Qu0) T 'V(PTIQu) + (PT1Q) Q7 (PTQ1),
and consequently

Q.'VQr — Q' QQu)? = [V(PT'Qr) + QP P71Qy
=|V(P7'Qu)|?
+2(V(P1Qy), QP P71Qy) + 1072,

where in this case (-,-) is just the Hilbert-Schmidt scalar product for
tensors: in this case

This implies
E(Qr) = /D (IV(P1Qu)P + 2(V(P~'Qx), Q7 P~1Q))) dx + E(P)
—1 2d
Z/D |V(P Qk)| T

+2/ (V(P™'Qr), Q" P7'Qp)dx + inf E(Q).
D Q
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The middle part of the right-hand side converges to zero as k — oco. To see
this, one can check that QF P~1Q;, converges to Q2 almost everywhere
and Lebesgue’s dominated convergence theorem implies strong conver-
gence in L2. On the other hand

V(P7'Qy) — 0 weakly in L.

Now using
Jim B(Qi) = inf E(Q).

we have strong W'2-convergence of P~1Qj to I. Then Q) converges
strongly to P, which readily implies minimality of P. O

Lemma 10.50 Critical points P € W12(D,SO(m)) of
E(Q) = / Q7IVQ - QTI0QPdr, Q€ WY(D, S0(m)),
D
with Q € L*(D, A\'R™ ® so(m)) satisfy
div(P~'VP - P 'QP)=0 in D (10.88)
and calling v the exterior unit normal to 0D,
v-(P7'VP - P 'QP)=0, ondD. (10.89)

If P7YVP — P7YQP is not regular enough (10.88) and (10.89) mean
/ (P7'VP - P 'QP)-Vpdr =0 for o € C®(D,gl(m)). (10.90)
D

Proof. Let P be a critical point of E(Q). A valid perturbation P. is the
following

P. := Pe*?® = P+ epPa + o) € WH%(D, SO(m))
for any p € C*(D), a € so(m) and with

lim @

e—0 ¢

=0.

Indeed the exponential function applied to a skew-symmetric matrix is
an orthogonal matrix; in fact the space of skew-symmetric matrices is the
tangential space to the manifold SO(m) C R™*™ at the identity matrix.
Now

Pl =P —cpaP™ +o(e),

VP.=VP+¢epVP a+eVy Pa+o(e).
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Thus, denoting again QO := P"'VP — P~1QP, we obtain
O = QF + cp(QPa — aQF) + eVipa + o(e).

Using the anti-symmetry of QF and « one verifies that

m
Z (QP)Z(QPQ - OtQP)%j =0 ae forl</<n,
ij=1
since, ignoring the index ¢, we see that
(QF, 00— aQ") = 2(270F a) =0,

the last identity coming from that fact that QFQF is symmetric, while
a is anti-symmetric and where only in this occasion ( , ) denotes the
product of matrices in gi(m) (i.e. ignoring the index /). It follows that,

Q712 = |QF 12 + 2:(QF  aVp) + o(e),
which implies

d

0= —
de

E(P;)

:/(QP,anp)daB. (10.91)
e=0 D

This is true for any ¢ € C*(D) and a € so(m). Now for arbitrary
1 < s,t < m setting o := §26% — 636 we obtain (10.90). If QF is also
regular enough, then integrating by parts gives (10.88) and (10.89). O
Proof of Theorem 10.48. Considering Lemma 10.49 and Lemma 10.50, we
find P € W2(D?,S0(m)) such that

div(P~'VP + P7'QP) =0,
hence by Corollary 10.70
QF = P7IVP + P71QP = V¢,
for some ¢ € WH2(D? gl(m)). Assume that QF is smooth. Then since
QOF . v = 0, we also have that the tangential derivative of ¢ on 9D?
vanishes, hence &|gp2> is a constant, which we can choose to be 0. If QF

is only square-summable, we use (10.90), getting with an integration by
parts

0:/ OF . Vedzx

D2

:/ V4ie- Ved
D2

= EVp-TdH, for every p € C°°(D?),
aD?
where 7 is the unit tangent vector to dD?, taken with the appropriate
orientation. This implies that £ is constant on dD?, and again we can
choose this constant to be 0. |
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10.4.3 Irregularity of weakly harmonic maps
in dimension 3 and higher

It is natural to wonder whether in dimension 3 and higher weakly har-
monic maps are regular, at least on large regions of their domains. This
is in general not the case, as shown by Riviere:

Theorem 10.51 (Riviere [86]) Let B denote the unit ball in R3. For
any non-constant map @ € C°(0B3,5?%) there exists an everywhere dis-
continuous weakly harmonic map v € WH2(B3,8?) with u = ¢ on 0B3.

Remark 10.52 Clearly Theorem 10.51 implies the existence of every-
where discontinuous weakly harmonic maps from the unit ball B® C R”
with values into SP for every n > 3 and p > 2.

Remark 10.53 Actually in [86] a more general version of Theorem 10.51
is proved. In fact the target manifold S? can be replaced by an arbitrary
manifold ¥ homeomorphic to S?. Without any assumption of the target
manifold, things are different. For instance a weakly harmonic map from
B3 into a 2-dimensional torus of revolution is always smooth, see [87].

Remark 10.54 We will not prove Theorem 10.51, but only remark that
it is based on the relaxed Dirichlet energy introduced by Bethuel, Brézis
and Coron [10] (also recast in terms of Cartesian currents by Giaquinta,
Modica and Souc¢ek [48]), and on a subtle dipole construction which ex-
tends previous dipole constructions by Brézis, Coron and Lieb [16] and
Hardt, Lin and Poon [58].

10.5 Regularity of stationary harmonic maps

As already discussed, a map u € T/Vlfjf (D, N) from a domain D C R™ into
a manifold N C R™ is called stationary harmonic map if it is a weakly
harmonic map which is also critical for inner variations. In other words
if it satisfies (10.5) and (10.6). In this section we shall prove, using an
approach of Riviere and Struwe, that for stationary harmonic maps an

e-regularity theorem similar to Theorem 10.15 holds.

Theorem 10.55 Given a closed manifold N C R™ and a domain D C
R™ there exists € = £(n, N) such that if u € W,52(D, N) is a stationary
harmonic maps and for some ball Br(zo) € D we have

1 / 9
v} |Vul“dz < e,
Rn=2 Br(zo)

then u is smooth in a neighborhood of xg.
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Theorem 10.55 was first proven by C. Evans [31] when the target
manifold is a round sphere. Then, using the moving frame technique of
F. Hélein, F. Bethuel [9] generalized the result to the case of an arbitrary
(say closed) target manifolds N. The proof of T. Riviere and M. Struwe
which we present here uses the conservation laws technique of Riviere and
avoids the moving frames.!?

Theorem 10.55 follows easily from the more general Theorem 10.56
below, since we have already seen in the proof of Proposition 10.44 that
a weakly harmonic map u : D — N — R solves

—Au=Q-Vu
for a vector field Q € L2(D, A'R™ ® so(m)) with
|Q] < C|Vu| a.e. in D.
Moreover the condition (10.94) in Theorem 10.56 follows at once from the

monotonicity formula for maps which are stationary harmonic maps in
B(0), Proposition 10.5.

Theorem 10.56 ([31], [9], [90]) Thereisc =e(n,m) € (0,1) such that
for B := B1(0) C R"™ and u € WY2(B,R™) a solution of

Au=Q-Vu inB (10.92)

with Q € L*(B,A'R™ ® so(m)) such that

sup  ——s / QP dz < e (10.93)
B.(z)cBT B,.(z)
and )
sup — / |Vul® dz < oo, (10.94)
B (z)cBT" B, (z)

then u € C2%(B,R™) for some o € (0,1).

loc

In the proof of Theorem 10.56 we shall use the following gauge con-
struction, which is the equivalent of Theorem 10.48 in higher dimension,
and which follows at once from Lemma 10.49 and Lemma 10.50.

Theorem 10.57 Let D € R™ be a regular domain and consider

Q € L*(D, A'"R™ @ so(m)).

101n addition to being relatively simple, this technique works also for target manifolds
of class C? (a minimal requirement), while the moving-frame technique used by Bethuel
requires N to be of class C®.
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Then there exists P € W12(D,SO(m)) such that
div(P™'dP 4+ P7'QP) =0 in D

and
IVP| 2+ ||[P~rdP + P71QP|| 1> < 3|92

Proof of Theorem 10.56. The following proof is a slight modification, due
to A. Schikorra [93], of the original proof of T. Riviere and M. Struwe.

Let z€ B,0<r<R< %dist(z,aB). By Theorem 10.57 there exists
P € WY2(Bg(z), SO(m)) such that

div(QF) = div(P7'VP — P7'QP) =0 weakly in Bg(z), (10.95)
with the estimate
IVPll2(Br(e)) + 197 L2(Br(e)) < 322 (Br(2)- (10.96)

We have weakly

- p—1 _OoP . p-lv, ._ Pyi :
div(P~'Vu) = QF - P71V = £§_1jj§k_ilﬂ (PO Se n Balz).

(10.97)
By the Hodge decomposition (see Theorem 10.66), and identifying the
vector field P~'Vu (with coefficients in R™) with the 1-form P~'du, we
can find

f e Wy (Br(2),R™), g€ Wx*(Br(2), NR" @ R™),

and
h € C*(Bgr(2), N'R™ @ R™)

such that
P~ ldu=df +dg+h ae. in Bg(z), (10.98)

where f satisfies

{Af = §(P~ldu) = div(P~'Vu) = QF - P~'Vu  in Bg(z),
f=0 on 0Bg(z),
(10.99)
g satisfies
dg =0 in Br(z),
Ag = dsg = d(P~tdu) in Bg(z),
gn=0 on 0BR(z),
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and h is harmonic. Fix 1 < p < -25. One estimates with (10.98)

/ |Vu|pda:=/ |P~ VulPdz
B, (z) B, (z)

<C, (/ \h|pd:17+/ (|Vf|p + |Vg|p)dx> }
Br(z) Br(2)

Here and in the following C, denotes a generic constant depending on p.
Since h is harmonic we have by (5.13)11

/ P de < C, (1)"/ P dz, 0<r<R
B, (2) R/ JBgp(z)

Consequently, again by (10.98),

VulPdx < C Ln/ VulP dz
~/BT(z) | p(R) BR(z>| |

+GCp (V1P + |6g")da.
BR(Z)

(10.100)

In order to estimate fBR(Z) |V f|Pdx note that since f = 0 on dBr(z), by
duality

IVfllr(Brez)) < Cp sup / Vf-Vedz,
$€CE® (Br(2).R™),||VellLa<1JBr(z)
(10.101)

where

vi-ve ::ZZZ 83]; 507
=11

=1

— . — 12
andqu'f#. If

Vol LaBrezy) <1

1 Actually the LP-version of (5.13), which can be easily obtained with the same
proof.
12By duality

IVfllLe(Br(z) = sup / Vf-Xdx
X€eLY(BR(z),R"®R™),||X||Lq<1/Bg(z)

= su / df - wdx.
w€LI(BR(2),AN'R"®R™),|lw||,q <1/ Br(2)

On the other hand, applying the Hodge decomposition to w (Theorem 10.66 and Re-
mark 10.67), we write w = da+JB3+ h and integration by parts (actually using Stokes’

theorem) implies
/ (df -w)dz = / (df - da)dez,
Br(z) Br(z)
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one calculates with the Sobolev embedding and a scaling argument

n

@l e (Br(z)) < CoR™P ™", |IVoll2(ppy) < CpRP 2. (10.102)

By (10.99),

/ Vf- -Vedr = / (QF - P71Vu) - pdz.
Br(z)

Br(z)

Taking (10.95) into account, we can apply Lemma 10.58 below by choosing

I'=(QF), c=(P ¢, a=ur forl<ijk<m, 1<<n,

where 4, j, k are fixed. Then (10.101) yields

IV £llzr < Coll @72z (VP g2 llelz + 96l 22) IVl oon- (8o
<G, lo

2 ([Qz2llell e + IVl o) IVull Lonr (B2 (2))
< CpeRY |V Lo v (Ban(e))s
where we also used (10.96), (10.93) and (10.102) and the above norms are

taken in Br(z), except for the Morrey norm of Vu. By a similar argument
we will also bound

||59||LP(BR(z)) < CpER%_l HV’U‘”LT’*”'_P(BzR(Z))'

Indeed we have!3

l6gllze < G, sup / (59 68)da
BEW Y (Br(2),A2R"@R™), |68 La=1 Br(z)

i.e. given X € LI(Bg(z),R" ® R™)

/ Vf-Xd:E:/ Vf-Vede,
Br(z) BRr(z)

for some ¢ € Wol’q(BR(z),]Rm) with [|[Vel|lLe < C||X||La. This proves (10.101).
13 Again writing

I6gl o = sup [ Ggewas,
wELI(BR(2),AI1R"QR™),||w|/ ;¢ =17 Br(z)

using the Hodge decomposition to write w = da + §3 + h and

/ (6g - w)dz = / (6g - 68)dz,
Br(z2) Br(z2)

since gy = 0 on 0BR(z).
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and for s satisfying % + % + % =1 we bound (up to signs)

/ GRS [ @g-pys

Br(z)

= / (dP™ A du) - Bdx
Br(z)

= / (dP~'.50) (u — uZ’R)dx
Br(z)

< ClldP| L2(Br) 198/ La(Br(2)llv — vz, R
< CeR™P7Y|Vul| pon—s(Bypn (=)

L#(Br(2))

where we also used Corollary 6.22 and the Poincaré inequality to bound
[ — s 5l L (Ba(z)) < CR™*[uls < CR™*||Vul|Lon-s(Byn(s)s
and (10.93), (10.96), |[VP| = |[VP~!| to bound
AP L2(Br(z)) < CeR™?71.

Plugging these estimates into (10.100) we arrive at

r\n
|VulP doe < C, (= / |Vul? dz
/Br<z> 3 <R> Br(=)

+ Cpe R PV} sy (o)

The right-hand side of this estimate is finite by (10.94). We divide by
r™ 7P to get

1 2 r\P 1
de < C - — Pd
rnTP /Br(z) |VU| e <R) Rn—p /BR(Z) |VU‘ ’

R\"?
p
+Cpe <?) HVUHLM—”(BZR(Z))'

Hence,

1 r\P R\n—P »
Tnp/B(z)|Vu|Pda:SCp<<ﬁ) +E(?) )|vum"—ﬂ(32ﬂ(z))'

Choose v € (0, ) such that C,7? < § and set & := 4™. Then for 7 := YR
we have shown

1 1
(yR)n—P /B r(2) Vulfde < §||vu||1£p’"7"(32R(Z))’
¥ z

This is valid for any R > 0, z € D such that Bag(z) C B. For arbitrary
p €(0,1), y € B, such that Bar(z) C B,(y) and B,(y) € B this implies

1 1
- p _ p
(vR)"7 /Bm(z) Vulde < SIValirn-rs,w)-



10.5 Regularity of stationary harmonicmaps 285

that yields

1
P - P
||Vu||Lp,"*p(Bﬁm/2(y)) S 9 ||vu||Lp,n—p(Bp(y))~
As in the proof of Theorem 10.15, iterating we obtain
[VullLom—p(B, ) < cp™

for some « > 0, hence
Vu € me—p-i'ap(B)

loc

which yields u € C%(B) by Theorem 5.7. O

loc

Lemma 10.58 For any p > 1, there is a uniform constant C = C(n,p)
such that for any triple of functions

ae WHH(R™), T e L*R"R"), ceWy>nL®R")
with divD = 0 in the support of ¢, we have

’ / (Va-T)eda

whenever the right-hand side is finite, where

< Cll ez [IVell [ Vall Lon-»,

1
IVallyoyi= s [ VaPaa.
B,(z)CR™ P B, (z)

Proof. First assume that ¢ € C°(R"™), the general case following by
density. We have

/ (Va-T)edr = —/ al’ - Vedz.

Notice that curl(Ve) = 0, hence by Theorem 6.33* we have
L-Vee KIRY), |T- Vel < [TlzlIVel 2.

Observe that by the Poincaré inequality (Proposition 3.12) we have a €
BMO(R™) with
lal+ < cllVallLpn-»,

and the conclusion follows from the duality H' — BM O, Theorem 6.35. O

The original proof of Riviere and Struwe instead of Lemma 10.58, uses
the following lemma, which is similar in many respects. It also follows
from the theorems of Coifman-Lions-Meyer-Semmes and Fefferman-Stein.
We state it because it is interesting to compare it with Wente’s Theorem,
see Remark 10.60.

14 Actually Theorem 6.33 would require divI’ = 0 in all of R™, but from its proof it
is clear than only the behavior of I" over the support of Ve matters.
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Lemma 10.59 Given two differential forms
ac WH(R™ A"2R™), B e WH2(R™, A’R™) ~ WH2(R™)
and a function v € BMO(R"™), we have
da A df € HY(R™, A"R™) ~ H' (R™)
and

/ da NdBv < Cllda||pz||dB|| Lz |v]«,
Q

where the above integral is defined by density as in the duality H' — BMO
(Theorem 6.35), and |v|. denotes the BMO seminorm of v.

Proof. We see the form df as a vector field B := V3. Then curl B = 0.
Similarly, to the (n — 1)-form
w:=da= Z wid/a;i
i=1

we associate the vector field E = (Ey,...,E,), with E; = (=1)1w;.
Then, the condition dw = 0 yields div E' = 0. Then

dg Ndo = (E - B)dz' A--- A da”,
with £ - B € H*(R") thanks to Theorem 6.33 and
[E - Bll3r < ClE||2||Bllz2 = Clldal|r2(|dB]| 2
The conclusion follows from Theorem 6.35. O
Remark 10.60 Theorem 10.59 can be seen as an extension of Wente’s

theorem (Theorem 7.8). In fact Wente’s theorem can be equivalently
stated for 2-forms 1 € W12(D?, A’R?) solving

Ay =daAdBin D?, 1 =0 on dD?,
with
ac Wh3(D?), pgewh?(D?).

Then the core of the proof of Wente’s theorem was (in this formulation
with differential forms) the bound

1
/ log (—)da AdB < Cllda 2 ]|dB) 2,
D2 T

which follows from Theorem 7.9 observing that log(1/r)x € BMO(R?),
where X is a smooth cut-off function supported in By /5(0).

In fact Ay € H! (locally, in a suitable sense) implies that D%y € Wit
which in turn implies Dy € W12 and ¢ € L°°.
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10.6 The Hodge-Morrey decomposition

In the regularity theory for stationary harmonic maps we used the Hodge-
Morrey decomposition of a k-form with coefficients in L?. Before stating
it let us recall some definitions.

Definition 10.61 (Hodge dual) The Hodge dual, also called Hodge-x
is the linear isomorphism

% - /\kRn N /\nfkar
defined on a basis of AFR™ by
wdz®t A Adat = dxt A Adate,

whenever {i1,...,in} s an even permutation of {1,...,n}. Similarly one
can define the Hodge dual on differential forms, for instance

0 WH2(Q, AFR™) — WH2(Q, A"FR™).
Definition 10.62 (Codifferential) Given a differential form
we Wh2(Q,AFRY) (k> 1),
we define
Sw = *d xw € WH2(Q, AFTIR™).
If k=0, then dw := 0.
Remark 10.63 There exist definitions of the Hodge-* and of the codif-

ferential & which differ from ours by a sign, which anyway is irrelevant for
our purposes.

Definition 10.64 For w € WH2(Q, AFR™) let wy € L2(0, AKR™) be the
tangent part of w|pq. This can be defined as i*w, where i : 9Q — R”
is the trivial inclusion (i(x) = x for every x € 9Q). Equivalently, given
an orthonormal basis {71,...,7,} of R" at x € 00 with {r1,...,Th—1}
spanning T,0Q and T,, orthogonal to O at x we set

wr () (Tigy o3 Tiy) = W(@) (Tiyy ey Tay) f 1<y <-o- < <m,

and
wr(@)(Tiyy ooy Ti) =0 if 1 <4y < -+ < if =n.

We also define
Wy = w|aq — wr € L*(09, /\kR").
Finally we set
W2 (Q,AFRY) = {w € WH2(Q, AFR™) : wr = 0},
WJ{,’Q(Q, AFR™) = {w € WH2(Q, APR™) : wy = 0}
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Example 10.65 We consider 3 special cases.
1) When k = 0, wr = w|aq, wy = 0, hence

Wr2(Q, APR™) = Wi ?(Q),  Wy*(Q,A"R™) = WH2(Q).
2)Similarly when k =n, wr = 0, wy = w|gn. In particual
W2 (@ AR = WHA(Q), Wi (QA"R") = W (Q).

3)When k = 1, if we identify w = wyda' +- - - +w,dz™ with the vector field
X = (w1,...,wn), then wr at x € IQ corresponds to the orthogonal pro-
jection of X onto T,082 and wy at x € 9S) corresponds to the orthogonal
projection onto the normal line N,0f2.

10.6.1 Decomposition of differential forms

We are now ready to state the Hodge-Morrey decomposition of a k-form
in L?. We will assume the the domain € is bounded and has smooth
boundary.

Theorem 10.66 (Hodge-Morrey decomposition) For a domain Q) €
R"™ (with smooth boundary) and 0 < k < n, consider w € L?(Q, AFR™).
Then there exist

a e WA AFTIRY), B e W (Q,ARTIRY),  he L2 N O=(Q, AFR™)

such that
w=da+ 00+ h,

where h is harmonic, i.e. dh = 0, 0h = 0 (and it is understood that if
k=0 then « =0, and if k =n then 8 =0). There also exist
[y € W22(Q,AFRY), Ty € W22 (Q, APR™)

such that « = 61"y, B = dls. In particular oo = 0, dF = 0. Moreover da,
88 and h are mutually orthogonal with respect to the L?-product, and

[Tillwaz + [IT2llwze + (|2l < Cllw||re,
with C' depending on €.

We will not prove Theorem 10.66 but refer the interested reader to
[49] (Volume 1) or [23]. We only remark that the core of the proof is the
existence of I'y and I'y, which can be shown with variational methods,
in the spirit e.g. of Theorem 3.29, i.e. minimizing suitable functionals,
which are coercive thanks to the so called Gaffney inequality.
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Remark 10.67 Theorem 10.66 is still valid if we assume w € LP(Q, AFR™)
for some p € (1,00). In this case

Ty € W2P(Q,AFR™), Ty € WaP(Q,AFR™),  h e LP N C=(Q, AFR™),
and one has the bound
[ITillwze + [IT2llwzr + [|Allr < Cllwllze.
for some constant C' depending on 2 and p.

The Poincaré lemma, stating that on a topologically trivial set a closed
form is also exact, can be very useful in conjunction with the Hodge
decomposition.

Lemma 10.68 (Poincaré) Let w € WP (Q, A*FR™) with Q C R™ con-
tractible (i.e. homotopic to a point), £ > 0, p € (1,00) and 1 < k < n,
satisfy dw = 0. Then

w=dn for somen € Wflﬁtl’p(Q, AFTIR™).
Similarly, if 0 <k <n—1 and dw = 0 we have

w=40n for somen € VVf)—Zl’p(Q, AFFIR™),
If Q is also bounded then we actually have in both cases

Inllwesrr < Cllwllwes

for a constant depending on £, p and €.

10.6.2 Decomposition of vector fields

Using the Hodge decomposition and the Poincaré lemma we easily obtain
the following well-known decomposition results for vector fields.

Corollary 10.69 Let Q C R3 be contractible. Then any vector field X €
L?(Q,R3) can be decomposed as

X =Vp+ curly,

for a function p € WOI’Q(Q) and a vector field Y € WH2(Q,R3). If in
addition div X = 0, then p = 0.

Proof. We can associate to X = (X1, X2, X3) the 1-form

3
w=Y Xida' € L*(Q,N'R®).

i=1
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By Theorem 10.66
w=da+ 306+ h

with o € Wy?(Q), 8 € Wh2(Q,A2R?), h € C® N L2(Q,A'R3) and h
harmonic. By the Poincaré lemma we can also write h = § H, hence

w=da+ 6+ H). (10.103)
Write
B4 H =: vy =vyda?® Ada® + yadx® A dzt + yzda* A da?.
We obtain
A R VR I A A A VI A A R Y
= (5;5“5;§ oG " a1 )™ T\ G a2 )

hence setting
p=oa, and Y =(-71,—72,—73)
and switching back to vector fields in (10.103) we obtain
X =Vp+curlY.

If div X = 0, then since div(curlY') = 0 we also infer Ap = 0, hence since
p =0 on 9N we have p = 0. ]

Corollary 10.70 Let Q C R? be contractible. Then any vector field X €
L?(Q) can be decomposed as
X =Vp+ V&,

for functions p € W01’2(Q) and £ € WH2(Q). If in addition div X = 0,
then p = 0.

Proof. As in the proof of Corollary 10.69 we write

w = Xdz' + Xodz? = da+ 53+ h = da + 6y

with
a € W), v =rodz' Ada? € WH2(0, A2R?).
Then 5 5
Y0 5 1 Y0 ; 2

Switching back to vector fields we can choose p = a and & = ~g.
As before, if div X = 0, then Ap = 0, hence p = 0. |
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Corollary 10.71 Assume that X € LP(Q,R"™) for some p € (1,00) is a
vector field in a contractible domain Q@ C R™ (not necessarily bounded),
and that curl X =0, i.e

0xt  0XxJ
— — — =0 weadkly for1 <i<j<n.
0xJ ox*

Then we can write X = Va for some function o € W27 (Q).
Proof. Writing
wi=Y X'da' € LP(Q,A'R™),

i=1
the condition curl X = 0 is equivalent to dw = 0. Then by the Poincaré
lemma we can find « € VVlicp(Q) such that w = da, i.e. X = Voa. O



Chapter 11
A survey of minimal graphs

In this chapter we shall discuss minimal graphs, i.e. graphs whose area has
vanishing first variation. After introducing the variational equations, we
shall work on the existence of minimal graphs with prescribed boundary
(Plateau problem), their uniqueness, stability and regularity in codimen-
sion 1.

In higher codimension we shall only discuss the regularity theory. In
particular we shall prove that any area-decreasing Lipschitz minimal graph
is smooth. This result of M-T. Wang is based on the regularity theorem of
Allard and a Bernstein-type theorem for area-decreasing minimal graphs.

Some relevant facts in the theory of abstract and rectifiable varifolds
shall be collected in the last section.

11.1 Geometry of the submanifolds of R"*™

Let us recall a few facts about submanifolds of R**™, and introduce the
concepts of minimal submanifold and minimal graph.

11.1.1 Riemannian structure and Levi-Civita connec-
tion

Given a Riemannian manifold (M, g), a Levi-Civita connection on M is
an application

YV T(M) x T(M) — T (M),

where 7 (M) is the space of tangent vector fields on M, such that

1. VxY is C®-linear in X: for every f,g € C®(M), X1,X2,Y €
(M)

VfXH-ngY = va1Y =+ gVX2Y7
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2. VxY is R-linear in Y: for every a,b € R, X,Y1,Y, € T(M)
Vx(aYr +bY2) = aVxY) +bVxYo;

3. it satisfies the Leibniz rule for the product: for every f € C°(M),
X, Y eT(M)

Vx(fY) = fVx(Y)+ X(f)Y;
4. it is torsion free: if [X,Y]:= XY — Y X, then
VxY -VyX =[X,Y], forevery X,Y € T(M);

5. it is compatible with the metric: for every X,Y,Z € T (M)
Dxg(Y,Z) = g(VxY,Z) + g(Y,Vx Z).

We recall without proof:

Theorem 11.1 Fvery Riemannian manifolds admits exactly one Levi-
Civita connection.

In what follows R™* has the usual Riemannian structure, in which
the scalar product of two vectors X,Y € R™""™ is denoted by X - Y or
(X,Y). We identify R**™ with its tangent space at any of its points. The
Levi-Civita connection V of R"*™ is the flat connection. Let

{e1,.- s entm}
be an orthonormal basis of R™*"; then V., e; = 0, for any i, j.

An n-dimensional submanifold ¥ C R*™™ of class C", r > 2, will be
seen as a Riemannian manifold with the metric induced by the ambient
space R™™™ . In other words the metric g on X is simply the restriction
of the metric of R”*™ on each tangent plane.

We denote by T'E. the tangent bundle of X, of class C" !, and for each
p € ¥, T,X will be the tangent space to ¥ at p. Similarly N¥ and N,X
will denote respectively the normal bundle and the normal space at p. In
the following {7y, ...7,} will always denote an orthonormal basis of T, %,
while {v1,...,vn} will denote an orthonormal basis of N,X.

The Levi-Civita connection V¥ of ¥ is simply the projection on TS
of the flat connection V of R®**™. More precisely:

Proposition 11.2 Let X, Y € T(X) be tangent vector fields on ¥; given
X and Y, arbitrary extensions to a neighborhood of ¥ in R™*™ of X and

Y, we have _
VXY = (ViY)T, (11.1)
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where (VX,?)T is the orthogonal projection of V;(}N/ onto the tangent
bundle TY.

Proof. Notice that V 5(}7 does not depend on the extensions X and }7, see

Exercise 11.3. Then we shall simply write VxY instead of V 5(17 Thanks
to the uniqueness of the Levi-Civita connection it suffices to prove that the
map (X,Y) — (VxY)7 is a Levi-Civita connection. The C'*-linearity in
X, the R-linearity in Y and the Leibniz rule are obvious. Let’s show that
there is no torsion:

(V)T = (Vy X)T = (VxY - Vy X)T = [X, V]! = [X,Y].
Finally, let’s verify the compatibility with the metric:
Dxg(Y,Z) = g(VxY, Z)+g(X,VyZ) = g(VxY)". Z) +g(X, (Vy 2)").

O

Exercise 11.3 Show that given X,Y € 7(X), VxY does not depend on the
choice of the extensions X and Y.

[Hint: prove that V);f/(p) depends only on X(p) and the value of Y on the
image of any curve 7 : (—¢,¢) — R""™ with (0) = p, ¥(0) = X ]

11.1.2 The gradient, divergence and Laplacian
operators

In what follows ¥ will be a submanifold of class C' at least, although
assuming that X is a rectifiable set would suffice in most cases, see Section
11.4.1.

Given a C! function f: ¥ — R and X € T,,%, define

Dx f(p) = d

al o),

t=0

where 7 : (—¢,¢) — ¥ is any C''-curve satisfying v(0) = p and 4(0) = X.
The gradient on X of f in p is defined by

n

VI f(p) =Y (Ds, f(0)7,

j=1

for any orthonormal basis {7;};=1,.. n of TpX.
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Exercise 11.4 Prove that sz(p) does not depend on the particular orthonor-
mal basis {7;};=1,....n of T,X chosen.

Exercise 11.5 Prove that if f is defined in a neighborhood of p in R™*™, then

Vi (p) = (V)"

where Vf(p) = Z;ilm %(p)ej, and {e;};j=1,...,n+m is the orthonormal basis of
R™*™ corresponding to the coordinates {x;}j=1,... ntm, i.e. ej = %,

Given a chart ¢ : V C ¥ — R", and the corresponding local parametriz-

ation F = ¢!, we have
" . Of OF
X i el
vEf Mzﬂg o B (11.2)
where B A(f o 1) OF OF
_ oy I il

and (g/) is the inverse matrix of (g;;).

The divergence on 3 of a vector field (not necessarily tangent to X)

n+m
X = Z Xie; € CHZ,R™™)
j=1
is defined by
n+m . n
dive X = > e (VPXT) =) (D, X) - 7. (11.3)
j=1 i=1

In local coordinates, setting g := det(g;;), we have

1 0 .
div: X = — —(/gX* 11.4
1v \/‘a ozt (\/§ )7 ( )
where we wrote OF
X = Xi—.
Z al‘l

i=1n
The Laplacian on X of a function f € C?(X) is defined as
Asf = div? (V> f);
this may be written in local coordinates inserting (11.2) into (11.4):

0

1
Asf = ——
=f V9 0z

(\/ggij%). (11.5)



297

11.1.3 Second fundamental form and mean curvature

Let A (X) denote the vector space of normal vector fields on 3, NY the
normal bundle of ¥ and N,X the normal space to X at p.

Definition 11.6 (Second fundamental form) The second fundamental
form of ¥
h:T(E)xT(X)—N(X)

is the normal part of the connection of R*™™ in the following sense: given
X, Y eT(Y)
h(X,Y) := (VxY)V.

As before, we need to extend X and Y to a neighborhood of ¥, compare
Exercise 11.3.

Proposition 11.7 The second fundamental form h:

(i) is symmetric: h(X,Y) = h(Y, X);

(i) is C*°-linear in both variables;

(iii) A(X,Y)(p) depends only on X (p) and Y (p).
In particular h is well defined as a family of bilinear applications

hy : Tp3 x T2 — NpX.
Proof. Since for X, Y € T(X) we have [X,Y] € 7(X), we have
h(X,Y) - hY,X)=(VxY -VyX)V = [X, Y]V =0,

hence h is symmetric.
To prove (ii), observe that h is the difference of two connections:

h(X,Y)=VxY — V%Y,

hence it is C*°-linear in X. By symmetry, A is also C*°-linear in Y.
Finally, both VxY (p) and VXY (p) depend only on Y and X (p), hence
also (iii) follows by symmetry. O

Definition 11.8 (Mean curvature) The mean curvature H of 3 is the
trace of the second fundamental form.:

for any orthonormal basis {7;} of T,X.
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Exercise 11.9 If {v1,...,v,} is an arbitrary basis of T,%, then

n

H(p) = > 97 (p)ho(vi, vy), (11.6)

ii=1
where, as usual g;;(p) := g(vi,v;) and (¢¥) = (gi;) " *.

Let F: Q — X be a local parametrization of ¥ at p, that is a dif-
feomorphism of Q (as regular as ) onto a neighborhood of p. Then F
induces a basis of T),3, given by

OF
Oz’ i:l,...,n.

o, O PF
57 Oxd  Ozidzd

Since

from (11.6) we infer

n 2 N
H(p) = ( > 9“(19)351-3};]- (F‘l(p))> 7 (11.7)

i,7=1

._ OF _OF
where g;; == 57 - 5.5

Lemma 11.10 (Derivative of a determinant) Let

g(s) == det(gi;(s)),

where (g;;(s)) is a family of square matrices differentiable with respect to
s. Then
% _ 99" %gii
0s s

The proof is left for the reader.

(11.8)

Proposition 11.11 Let F : Q — X be a local parametrization at p of
class C?. Then
H(p) = AsF(p), (11.9)

where the Laplacian of F = (F,... F"™) is defined componentwise.

Proof. We first prove that Ay F(p) is orthogonal to T,,X. Thanks to (11.5)
we have

OF 1 8, _4OF OF, . OF O°F

[ - . VW=, - -
AsF g = Jgow (V99" 505 5ar) =9 07 " pwar
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On the other hand, (11.8) and the symmetry of g yield

1 0 OF OF 1 0 iy 1 909
. 1 B W g,y YVI
@axi(‘@g 907 9at) /g 0z <\/§g gf’f) /g OzF
1 .. 0 (0F OF . O’°F  OF
:_glj—(—l‘—<) = ”7.'—,.
27 Oxk\ozt OzI Ozkoxt OxJ
Therefore OF

Since k is arbitrary we conclude that Ay F' is orthogonal to 3.
To prove (11.9) write the Laplacian in coordinates and differentiate:

1 9 . OF 1 0 N\OF . 0°F
A F = — - 2] I = ——— /LJ I Zj - T .
=T Jgoxi (\@g 8333) /g 07 (\/59 )8953 9 rion
The first term on the right-hand side is tangent, and by (11.7) we get
O O2F \N
AsF = (AsF)N = (¢ ——) =
oF' = (AsF) (9 c')xlaxﬂ)

11.1.4 The area and its first variation

We define the area A(X) of an n-dimensional submanifold ¥ as its n-
dimensional Hausdorff measure, i.e. A(X) := H"(X), compare Definition
9.20. It can be expressed in terms of local parametrizations thanks to the
area formula, compare [32], [49].

Theorem 11.12 (Area formula) Let F': Q — R®™ pe g locally Lipschitz
and injective map of an open set  C R™ into R"T™. Let 3 be the image
of F'; then

H (%) = /Q JAR(@F () dF (@) dz, (11.10)

where dF* : R"™™ — R™ is the transposed of the matriz dF = <gf; )

If gij = gﬁ; . —gfj, we have
n+m
. OF% OF“
(dF*dF);j = e

o=

Therefore if g := det g;;, we have

AS) = /Q Jo@)da. (11.11)
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In particular, \/gdx is the area element of X, hence, given an H"L X-
integrable function f, we have

s = [ s Vataas,

Exercise 11.13 (Area of a graph in codimension 1) Show that if
F(z) = (3, u(@)),
with z € Q@ C R™ and u : Q — R locally Lipschitz continuous, then
dF*dF = ((SZ] 4 uziuzj),

and
det(dF*dF) =1+ |Vul?,

so that for ¥ := F(Q2) we have
H(E) = / V¥ VaPde.
Ja

Exercise 11.14 (Area of a graph in dimension and codimension 2)
Show that if

F(:C,y) = (x,y,u(x,y),v(x,y)), ($7y) €QC R27

with u,v :  — R locally Lipschitz continuous, then

wom [ 14Ul 02 usuy 4 vy
dF*dF = ( PR ek B (11.12)

and use (11.12) to prove that
det(dF*dF) = 1+ |dU|* + (det(dU))?,

where U := (u,v) : Q — R?, so that for X := F(Q2) we have

HE(S) = /ﬂ VT F AU + (det(dD))2da.

Definition 11.15 Given a Lipschitz and injective map
F:QCR" —R"™,
a variation of ¥ := F(Q) is a family of diffeomorphisms
p R S R e (—1,1)
such that

1. @(t,x) := pi(x) is of class C? in (—1,1) x R*t™;
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2. there exists a compact set K non intersecting 0% := F(9Q) (possibly
0¥ = 0) such that pi(x) = x for each x ¢ K and t € (—1,1);
3. po(x) =z for each x € R™,
We shall set 3y := ¢(2) and X := 8% |t o € CT(R™M™ R™M™),

Proposition 11.16 Let F', ¥ and X; be as in the preceding definition.
Then

d
A

- —/ AsF - XdH", (11.13)
t=0 b))

where, since F' can be differentiated only once, the Laplacian is intended
in the weak sense:

19 SOFON
o0 o

- [,

/ g OF O o F)
P

7/A2FXdHn =
by

Oxd ozt dH".

Proof. Write the Taylor expansion
ei(y) =y +tX(y) + o). (11.14)

To differentiate the area formula (11.11) we set

oF;, OF;
— to= .
Ft(x) - QDt(F(fﬂ)), glj 890’ 81‘2 ’

and obtain with (11.8)
—A dt/ Vgtdx
oV gt
:/ I i (11.15)
q Ot

oq!
:/Q%< g" agtj>dx

where the derivatives with respect to ¢ are evaluated at ¢t = 0 and g = ¢°.

t
To compute Bgzj we observe that, thanks to (11.14),

0o (F(x)) OF _’_t@X
ozt T Qat oz’

+o(t)
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and substituting into (11.15) yields

Ogt.
/L<gglj 9ij )dm
Q 2\/§ ot t=0

- b (B v ) (858 )}
_ /Q%\/ggij{ax(F(x)) OF N OF .w}d%

dx
t=0

ozt oxJ Ozt oxJ

Due to the symmetry of g%/ the last term becomes

/f iy OX (@) OF /AZF-XdH", (11.16)

ox? oz

and we conclude. O

Proposition 11.17 Let 3, p; and X be as in Proposition 11.16. Then
iA(zt)’ — / divE XdH".
dt t=0 5
Proof. Let {v1,...,v,} be a basis of T,,3, and set g;; = v;-v;. By linearity
div’ X = ¢¥V,, X - v;.

Consequently, choosing a local parametrization F' in p, and setting v; :=

(%L and using V o, X (X(),F) we obtain

, _OX(F(z)) OF
Ty g
div g Oxt Ozi”

We conclude by comparison with (11.16). 0

In fact we have proven that
/ div? XdH" = — / AxF - XdH"
b b

whenever F': Q — R"™™ parametrizes ¥ and X vanishes in a neighbor-
hood of 9%.
First variation and mean curvature

The first variation of the area of a submanifold ¥ and the mean curvature
of X are closely related, as the following proposition shows.
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Proposition 11.18 Let X be a C? submanifold and let @; be as in Defin-
ition 11.15; set X := %—f o ¢ := @(X). Then the first variation of the
=

area of ¥ with respect to c,; 1

d n
%A(Et)’t:o:_/zH'XdH . (11.17)

Proof. Insert (11.9) into Proposition 11.16. O

Definition of minimal surface

In the following an n-dimensional Lipschitz submanifold ¥ of R™t will
be the image of a Lipschitz maps F': Q C R® — R™*™ which is injective
and such that the rank of dF(x) is n for a.e. x € Q. By 9% := F(9Q) we
denote the boundary of ¥. Notice that the condition on the rank of dF
is always satisfied when F(z) = (z,u(z)) parametrizes a graph, which is
the case we shall focus on.

Definition 11.19 (Minimal surface) Let X be a Lipschitz n-dimensio-
nal submanifold of R*™™. We shall say that ¥ is minimal if for every
variation gy defined as in 11.15, we have

d

a tZOA(Et) =0.

Thanks to Propositions 11.16, 11.17 and 11.18, we have the following
characterization of minimal surfaces.

Proposition 11.20 Given a Lipschitz submanifold ¥ of R**™, the fol-
lowing facts are equivalent:

1. ¥ is minimal;

2. for every vector field X € CLR" ™ R"*™) such that X =0 in a
neighbourhood of 9%

/ div® XdH" = 0;
>

3. for any local parametrization F : Q — 3 we have AxF = 0.

Moreover, if ¥ is of class C?, the preceding statements are equivalent to
H=0.
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Proof. For every vector field X € C}(R"+™ R"*™) vanishing in a neigh-
borhood of 9% we may find a family of diffeomorphisms ¢; as in Definition
11.15 satisfying 22 = X. For instance the solution ¢ of

W‘tzo
dp(t,x)
o @)
»(0,z) =0,

which exists for small times thanks to ODE theory. Then the equivalence
of 1, 2, and 3 follows from Propositions 11.16 and 11.17.
The last claim is an immediate consequence of Proposition 11.18. [J

The minimal surface system

Consider a parametrization F' : Q — R"™™ of a Lipschitz submanifold
¥ C R*™™, Thanks to Proposition 11.20, ¥ is minimal if and only if F
satisfies the following system, called minimal surface system:

Z%(\/ﬁg“%ij)zo, a=1,...,n+m, (11.18)

ij=1

where g = det(gi;), gij = gfi : % and (g"7) = (gi) ™"

A non-parametric Lipschitz surface X is by definition the graph
Gy = {(z,u(x)) : x € Q}
of a Lipschitz function u : 2 — R™. Clearly G, can be parametrized by
F:Q—R"™™  F(x) = (z,u()).

In this case, the minimal surface system becomes

n a Z .
;8331(\/593):0 ji=1,....n
> aii (\/ﬁg”%) =0 a=1,...,m (11.19)
ij=1
"L u® Qu g
9ij = 0ij + ; 521- % (97) = (gi)~"

If u € C?(Q,R™), then the system (11.19) reduces to a quasilinear elliptic
system in non-divergence form, as shown in the following proposition.

Proposition 11.21 Let u € C?(Q,R™). Then (11.19) is equivalent to

n

. 0%ue
Zgj(‘)xiaxj:o’ a=1,...,m, (11.20)

ij=1
where g¥ = g (Du) is as in (11.19).
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Proof. Assume (11.20) and set F(z) = (z,u(x)). Then

1 9 _ . 0F . O°F
. L/ S 17
V500 V99 ) 505 T 97 G

AsF =

The last term vanishes by (11.20) and because clearly % = 0 for
k=1,...,n. Since AxF € NX and ﬁa‘z(\/gg”)% € TY, they both
vanish, whence Ag F' = 0.

Conversely, if (11.19) holds and u is C2, then, thanks to Proposition

11.20, H = 0, and we use (11.7) to conclude. O

11.1.5 Area-decreasing maps
The area-decreasing condition will be useful when dealing with the regu-

larity theory for minimal surfaces. Let us first recall

Proposition 11.22 (Singular-value decomposition)
Let L € M(m x n) be any m x n matriz. Then there exist orthogonal
matrices U € O(m) and V € O(n), such that B := ULV € M(m x n) is

1 s With Ao = 0 whenever o # i.

For the proof of this proposition, the reader can refer to e.g. [70].

Remark 11.23 We can always assume that \,; > 0, as changing the
sign of the basis vectors corresponds to an orthogonal transformation.

The numbers \; := \;; in Proposition 11.22 are called singular values
of L. They are the square roots of the eigenvalues of L!L: indeed we can
diagonalize L'L as follows:

VILILV = VIL'U'ULV = B'B = diag{)\?,...,\2},
where if n > m we set \; :=0 for n < i < m.

Exercise 11.24 Let u : Q@ — R™ be a Lipschitz map and let A1(x),..., A, ()
be the singular values of du(x) : R™ — R™. Show that

A(gu):/Q\/H?:l(l—&-kf(x))dm. (11.21)

[Hint: Use (11.10).]

Definition 11.25 (Area-decreasing map) Letu: Q — R™ be a Lipschitz

map. Let {\;(z)}i=1,...n be the singular values of du(x). We shall say that
u is area-decreasing if there exists € > 0 such that for a.e. x €  we have

Ai()\j(z) <1—¢e, 1<i<j<n. (11.22)
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The name area-decreasing comes from the following geometric fact:
consider du(z) restricted to a 2 dimensional subspace V' of R™. Then for
each A C V with H2(A) < oo we have H?(du(z)(A)) < H?(A).

Remark 11.26 A scalar function uv : Q — R is always area-decreasing.
This follows immediately from the definition because the nonzero singular
values of du(x) correspond to a basis of the image of du(z), therefore there
is at most one of them.

11.2 Minimal graphs in codimension 1

11.2.1 Convexity of the area; uniqueness and stability

The area functional in codimension 1 is
Alu) = / V' 1+ |Dul?dz, (11.23)
Q

compare Exercise 11.13 and (11.21).

Proposition 11.27 (Convexity) The area functional A : Lip(Q) — R
in codimension 1 is strictly convex, that is

A+ (1= No) < M(w) + (1= NA@), (11.24)

for every u,v € Lip(Q) and A € (0,1) and equality holds if and only if
u=v+ c for some c € R.

Proof. The function f(t) = v1+t2, t € R, is strictly convex, as

1

fr(t) = m

>0,

and it follows easily that the function

p— 1+ |p? peR”

is strictly convex. Then inequality in (11.24) follows at once, with identity
if and only if du = dv a.e., hence if and only if u — v is constant. O

Remark 11.28 Convexity is a major property of the area functional in
codimension 1. In fact we shall see that uniqueness and stability of min-
imal graphs in codimension 1 (which do not hold in higher codimension
as shown by Lawson and Osserman [68]) come from convexity.
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Uniqueness and minimizing properties

Theorem 11.29 The graph of a Lipschitz solution u : @ — R of the
minimal surface system (11.19) minimizes the area among the graphs of
Lipschitz functions v such that

vloa = ulag =: V.

Moreover u is the unique solution to the minimal surface equation

(11.25)

— 07
Z; V1+ |Du\
with prescribed boundary data u|so = 1.

Proof. Step 1. The minimal surface system implies that the first variation
of the area of the graph G, vanishes. In particular, for a given function
© € CHQ) (or in fact ¢ € Lip(Q2) with ¢|sq = 0) we have

0=

Alu + tp)

t=0

8
—+/1+ |Du+tDyl|?dx
¥

dt

- / Z D; ’LLDlSD
V1+ \Du|2
which is the minimal surface equation (11.25).

Step 2. Equation (11.25) means that w is a critical point for the area
functional. On the other hand convexity implies

A(v) > A(u)+ A(u+t(v—u)) = A(u), Vv e Lip(Q
t=0

at ) 0]aq = tlpg:

Step 3. Uniqueness follows at once by the strict convexity of A. O

Remark 11.30 In fact one can also show that a Lipschitz solution u of
(11.25) also solves (11.19).

Stability under parametric deformations

Theorem 11.31 Let u : Q — R be a Lipschitz solution to the minimal
surface equation (11.25). Then:

1. if Q is homologically trivial (for instance, Q0 convex, star-shaped or
contractible; in fact we only need H™(2) = 0), then the graph of u
minimizes the area among every Lipschitz submanifold ¥ C Q x R
having the same boundary;
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2. if Q is convez, then the graph of uw minimizes the area among the
Lipschitz submanifolds ¥ C R™"*! having the same boundary.

The proof is based on the existence of a calibration, that is an exact
n-form w of absolute value at most 1, whose restriction to G, is the area
form.

Proposition 11.32 (Calibration) Let w € L>(2 x R; A"R" ") be an
exact n-form in Q x R, such that |w| < 1. Let g C Q2 x R be a Lipschitz
submanifold and assume that w|20 s the volume form of ¥g. Then X

has least area among all Lipschitz submanifolds ¥ C Q x R such that
0% = 0%.

Proof. Let n € Wh*°(Q x R; A" ' R™*1) be an n — 1 form such that
dn = w. Let ¥ be as in the statement of the proposition; then, by Stokes’
theorem and since the two submanifolds have the same boundary,

/ w = / n=0.
- 95 —-8%,

On the other hand, since |w| < 1, and w|20 is the volume form of X,
AS) > / W= / w = A(o).
b %o

Proof of Theorem 11.31. Define in 2 x R the calibration form

—

(Z?:l(—l)"“'i_lDiu(x)dmi A dy) +dzt A Ada”
wlx, = )
(#:9) V14 |Dul?

where

dot :=da' A AdeT P AdeTTE A - Ada™.

By the minimal surface equation (11.25) dw = 0; since Q x R is homolo-
gically trivial, w is also exact. Moreover |w| = 1 and the restriction of w to
G, is the volume form of G,,, thus w is a calibration for G,, and Proposition
11.32 applies.

The second claim follows from the first one: consider ¥ ¢ R**! with
0¥ = 0G,. The closest point projection 7 : R — Q x R doesn’t
increase the area and fixes the boundary. By part 1

ARX) = Ar (%)) = A(Gu)-
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Remark 11.33 The topological hypothesis (or at least some kind of hy-
pothesis) on 2 is necessary: R. Hardt, C. P. Lau and Fang-Hua Lin [55]
proved the existence of a solution of the minimal surface equation whose
graph doesn’t minimize the area among the n-submanifolds of R"*! hav-
ing the same boundary.

11.2.2 The problem of Plateau: existence of minimal
graphs with prescribed boundary

Finding a minimal graph with prescribed boundary is equivalent to solv-
ing the Dirichlet problem for the minimal surface system (11.20). In
codimension one that is

"o 92
Z gljaiiauj =0 inQ
=1 ITIT (11.26)
u=1 on 012,
with, say, ¢ € C>°(92), and
. . DiuD;u
Ly DU — (52 _ t J .
9" = g (Du) = §;; 1+ 1Duf

The counterexample of Bernstein seen in section 2.3 shows that finding
minimal graphs on arbitrary domains and for any boundary value is not
possible in general. In fact by Theorem 2.20 a necessary condition to
have existence for any boundary value is that the mean curvature of 00
be non-negative. The next theorem proves that this condition is also
sufficient.

Theorem 11.34 (Jenkins-Serrin [62]) Let Q be a smooth, bounded,
connected domain whose boundary has nonnegative mean curvature. Then
for each i) € C*%(Q), there exists a unique function u € C*(Q)NC?*(Q)
solving the Dirichlet problem for the minimal surface equation (11.26).

Remark 11.35 Equation (11.26) is quasilinear and elliptic. On the other
hand, it is not uniformly elliptic since the ellipticity constant A > 0 in

g9 (p)&i&; > NP, V& peR™

depends on |p|. In fact
1 .
T lE? < g7 (Du(@)&g; <IEP, ni=sup|Dul?, (11.27)
+n Q

for all £ € R™.
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To prove Theorem 11.34, we shall use the fixed point theorem of
Caccioppoli-Schauder, which we recall without proof, see e.g. [47].

Theorem 11.36 Let T : K — K be a completely continuous operatort
which sends a non-empty, convez, closed, bounded subset K of a Banach
space B into itself. Then T has a fized point, meaning that there exists
T € K such that T(T) =T.

Proposition 11.37 Consider a completely continuous Banach-space op-
erator T : B — B and M > 0 such that for each pair (o,u) € [0,1] x B
satisfying u = 0T (u) we have ||u|| < M. Then T has a fixed point.

Proof. Let K = {u € B|||u|| < M} and define the operator on B
T(u) if T(u) € K

T(u) = T(u)
1T (u)l

Then T sends K into itself, hence by Theorem 11.36, it has a fixed point
u € K. Were ||T(u)|| > M, we would have

if T'(u) € B\K.

M M
= Tan™ ™ Ty <0 (11.28)

u

thus [|ul| < M by hypothesis, absurd because (11.28) implies that |[ul| =
M. So | T(u)|| < M and T(u) = T(u) = u. O

Proof of Theorem 11.34. Uniqueness follows from Theorem 11.29 (com-
pare Lemma 11.40 below). We will prove the existence of a solution
u € C%%(Q), but then by Schauder estimates (Theorem 5.20) we will
have u € C*(Q) N C%(Q).

On the Banach space B = C1*(10), consider the operator 7' which
associates to a function u € C1*(Q) the unique solution v € C%%(Q) to
the Dirichlet problem

S iDu 2 0 i
—— =0 in
ij:lg Y 0z 0w (11.29)

v =1 on 01},
which exists thanks to Theorem 5.25 and is bounded, i.e. sets bounded

sets into bounded sets, thanks to Theorem 5.23. The inclusion operator
7 C2%(Q) — C12(Q) is compact thanks to Ascoli-Arzeld’s theorem.?

IContinuous and sending bounded sets into relatively compact sets; we do not
assume T' to be linear.
2We are using
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Therefore the operator
T:=noT:C"Q) — C"*Q)

sends bounded sets into relatively compact sets. We want to show that T’
is continuous. Consider the sequences

u®) o u, v® = Tu®),
Given a subsequence u(k/), thanks to the compactness of the immersion
C2(Q) — C*(Q),
there exists a sub-subsequence uw*") such that

" C2
o) 2y

Also v solves (11.29), as the following diagram explains:

g (Du")) Do = 0

| e

g9 (Du)  Djjv =0

(the sum over ¢ and j is understood) and by uniqueness we have v = Tu.
The arbitrariness in the choice of the first subsequence implies

Tu® % 1y,

whence the continuity.

The proof of the theorem will be completed if we can show that T
has a fixed point. By Proposition 11.37, it only remains to prove that
T satisfies the following a priori estimate: there exists M > 0 such that
lulle, @) < M whenever u = oT'(u) for some o € (0,1). This is the
content of the following section. g

Corollary 11.38 The immersion C™*(Q) — C"(Q), 0 < a < 1, r € N, is compact.

Proof. Let u; be bounded in C™*(2), that is ||u;||r,o < M for some M > 0. Then the
derivatives of highest order are equicontinuous thanks to the estimate

|Dj(z) — Dj(y)| < K|z —y|*, VjeN,z,yeQ

Moreover the lower order derivatives are equicontinuous by boundedness of the highest
order derivatives and we may apply the theorem of Ascoli and Arzela to each derivat-

ive. O
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11.2.3 A priori estimates

This section is devoted to prove the following a priori estimate.

Theorem 11.39 Let Q be bounded, smooth, connected, and assume that
the mean curvature of O is everywhere non-negative. Let ¢ € C%(Q).
Then there exists a constant C = C(v,) such that any solution u €
C?(Q) of

2

=0 in O
”219 m (11.30)
U= o on 0N).

satisfies |ull cra @) < C.
This will be obtained in four steps: we shall estimate
1. supg |ul
2. supyq |Dul
3. supg |Dul
4.

The first step is a simple application of the maximum principle:

sup |u| < sup o3| < sup [¢],
Q oQ a9
see e.g. Exercise 1.4.

Gradient estimates

To obtain an estimate of the gradient on the boundary we use barriers,
already introduced in Chapter 2. Here is where the assumption on the
mean curvature of 90 plays a crucial role.

Lemma 11.40 Let u,v € C%(Q) N C°(Q) satisfy

2

(% .
Z g% axlaxﬂ =0 in Q,
1,j=1
2L d%v (11.31)
¥ .
Z g (Dv) DB <0 in Q,
7,7=1
u < on Of).

Then v < v on all ofﬁ.
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Proof. By the mean value theorem of Lagrange there exists £ € (0,1) such
that

ou v )

y g " dgi
9"(Du) = ¢ (Dv) + 8%’“(@” +(1-9Du) (5~ 5
k=1

Subtracting in the previous system and setting w := v — u we get
n n
. 0w ow
(Dv)=—=— + WW=—<0 inQ
D 9D 2 G <
i,j=1 k=1
w >0 on 0N

to which the maximum principle, Exercise 1.4, applies. Hence w > 0
in Q. ]

Proposition 11.41 Let Q be such that 02 has everywhere nonnegative
mean curvature. Then there exists a constant C = C(Q,v¢) such that
every C?-solution of (11.30) satisfies

sup |Du| < C.
Q

Proof. First we prove that supyg |Du| < C for a suitable C = C(¢, Q).
Let d : 2 — R be the function distance from the boundary

= inf —
d(z) = nf |z —yl,

and define
Ny i={zeQld(x)<r}, T,:={zeQ|dx)=r}
these domains are smooth for  small enough. Consider on N,. the barrier
v given by
v(x) = op(n(z)) + h(d(z)),

where 7 : N, — 0 is the closest point projection and h : [0,7] — Ry is
a C'°°-function to be determined, which satisfies

R(0) =0, W' (t) > 1, A"(t) <0, te]|o,r]. (11.32)

With these choices we get

(1+[Dv|*) > g"(Dv)Dyjv < b + Ch'™? + W Ad.

ij=1
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The behaviour of Ad is determined by the mean curvature of 90X : if 92
has nonnegative mean curvature, then Ad < 0,? thus,

(1+[Dv|*) > g(Dv)Dyjv < 1" + C (1),

ij=1

Now, setting h(d) = klog(l + pd), we may choose the constants k and
p independent of ¢ in such a way that conditions (11.32) are satisfied,
h(r) > 2supyq || > 2supyg o] and b + C(h')? <. Then

tL 0 )
Z g”(Dv)ﬁxiaxj <0 in N,

ij=1
v>u on ON,

Then, by Lemma 11.40, v < v in N,.. Since u = v on 0f), we obtain

u(z) — u(y) < v(w) — U(y)’ x€Q, yecon. (11.33)
|z =y 9]

The similar construction of a lower barrier, say w, yields the opposite
inequality, hence

—kp=D,w < Dyu < D,v=kp,

where Du = (Daﬂu,Dl,u) , and v is the interior normal to 0f2. Taking
into account u = 1) on €2 we have D%y = 0 D%, which together with
(11.33) gives

sup | Dul < \/sup IDY? + (kp)?,
o0 o0

and this estimate extends to the interior points thanks to the method of
Haar-Rado, Proposition 2.11. O

The C1%(Q) a priori estimates

To prove the a priori estimates in C1:*(Q2) we need a global (up to the
boundary) version of De Giorgi’s Theorem 8.13. That has been obtained
by O. Ladyzhenskaya and N. Ural’tseva [67]:

Theorem 11.42 Let w € W2(Q) be a weak solution of

af _ :
{ Do (A*’Dgw) =0 in Q, (11.34)

w=p on 02

3See [50] or [52]
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where M|¢|? < AP E5 < AE)? and ¢ € Lip(Q). Then w € C%¥(Q),
a=a(Q, A\ A), and there is a constant C; = C1(Q, A\, A) such that
||U’||cﬂva(§) = ClH‘PHcovﬂ(ﬁ)' (11.35)
We shall apply this theorem to the derivatives of the solution u of
(11.30), according to the following proposition.

Proposition 11.43 Set A(p) := \/1$|—|2’ for p € R™ and let u € C?()
P

(or in fact just u € Wlicz(ﬂ)) be a solution of the minimal surface equation

div A(Du(z)) = 0.
Then if we set w := Dsu (s =1,...,n), we have
Do (a*® Dgw) = 0,

where a®(x) i= Dy, A*(Du(w)) = s (509 — 21258 ).

Proof. Differentiate the minimal surface equation with respect to x°. [

Corollary 11.44 In the hypothesis of Proposition 11.41, there exists a
constant M = M(Q,) such that

lullgra@ < M.

Proof. By Proposition 11.41, supg |Du| < C, with C depending on 2 and
1; by Theorem 11.42 and Proposition 11.43,

| Dullgngp < C1llD¥lonay (11.36)

The constant C; depends on 2, A and A; by the ellipticity estimate (11.27),
we may choose A = 1 and

1 1
A= > ,
1+sup|Dul2 — 1+C

depending only on ¢ and Q. Putting together (11.36) and Proposition
11.41 we conclude. g

11.2.4 Regularity of Lipschitz continuous minimal
graphs

As a consequence of De Giorgi’s theorem, every Lipschitz solution to the
minimal surface equation is smooth.
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Theorem 11.45 Let u € Lip(Q2) be a Lipschitz solution to the minimal
surface equation (11.25). Then u € C*(Q).

Proof. Since |Du| < C the function

Alp) = —=2

V1 Ipl?

satisfies (8.5), at least for |p| < supq |Du| < C (the behavior of A(p) for
|p| > supgq, |Dul is of course irrelevant). Then by Proposition 8.6 we have
u € I/Vlif (), and by Proposition 11.43 Dsu satisfies an elliptic equation,
whose ellipticity constant A can be estimated as in Corollary 11.44. Then
by Theorem 11.42 we have Du € C’llo’f‘ (©2). The higher order regularity
follows from Schauder estimates, Theorem 5.20. g

Let us remark that a minimal surface (defined in a suitable generalized
sense) in codimension 1 which cannot be expressed locally as a Lipschitz
graph (for instance a varifold, an area minimizing current, or the boundary
of a Caccioppoli set of least area) need not in general be regular. Indeed
Bombieri, De Giorgi and Giusti [12] have shown that Simons’ cone

C = {x:(xl,...,xS)GRS|z%er%Jr:z:ngxi:ngrz%Jrz%erg},

which is singular at {0}, is an area-minimizing current (if given an orient-
ation).

Moreover the product C' x RP C R8P is also minimal, and its singular
set is {0} x RP. This makes the conclusion of the following theorem,
concerning area-minimizing integral currents, optimal, compare [97].

Theorem 11.46 Let T C R™! be an n-dimensional area-minimizing
integral current. Then

(i) If n <7, T is regular.
(ii) If n =7, T has only isolated singularities.
(iii) Ifn > 7, the Hausdorff dimension of the singular set of T is at most
n—"7.

11.2.5 The a priori gradient estimate of Bombieri,
De Giorgi and Miranda

The a priori estimate for the gradient of solutions to the minimal surface
equation was obtained by Bombieri, De Giorgi and Miranda in 1968 [13],
and will be the key tool in the proof of the regularity of BV minimizers
of the area problem, whose existence is granted by Theorem 2.34.
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Theorem 11.47 (Bombieri-De Giorgi-Miranda [13]) Letu € C?(Q)
be a solution of the minimal surface equation

(o)
V| — =
1+ |Dul?
Then

supq u — u(zg)

|Du(zo)| < Cy exp [C’g 7

], d = dist(x0,00), (11.37)

where C1 and Cy are constants depending only on n.

The proof we shall present here is due to N. S. Trudinger [108].

Let ¥ := G, be the graph of u, and let v = (v1,...,v,41) € R"*! be
the normal unit vector to ¥ pointing upward (v" ! > 0). At p = (z,u(z))
this is given by

—Diu 1

V= ————, fori=1,...,n, v =
' ’ " T+ Dup

where the derivatives are computed at z. Define also the following oper-
ators on X:

52' = Di—Vil/ij, 7::1,...,7’7,—"-1,
§ == (01,--,0n41),
AE = 516“

where the summation over repeated indices is understood, and D; is the
partial derivative in the i-th direction in R™ x R. The operator Ay; is the
Laplace-Beltrami operator. The reader can verify that the scalar mean
curvature of ¥ (the length of the mean curvature vector) is

H(p) =3 owilp), pe. (11.38)

When ¥ is minimal, i.e. H =0, (11.38) yields
Asw > |6w|?, on X (11.39)

where w(z,u(x)) := Iny/1+ |Du(z)|? = —Invyyi(x,u(z)). This means

that w is subharmonic on X.
The following lemma can be considered a generalization of the mean
value inequality for subharmonic functions on R", compare Proposition 1.9.
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Lemma 11.48 Let w be as before. Then, for
xo €Q, 0< R <dist(xg,08), p:= (o, u(z0)),
we have

w(zg) < in/ wdH", (11.40)
R Zr(p)

where r(p) :=={q € ¥ : |p— q| < R} and the constant ¢ depends only on
n.

Proof. We can assume that p = 0. Assume also n > 2; the case n = 2,
being similar, will be omitted. For 0 < ¢ < R and z € R"*! we set

1 2- 2- Lo - 2 .
— "R 4+ —(RT"—€e" f0<
ot )4 (R e [ef? 0S¢ <
2—n 1 1
Pe(2)= B 7" —— R ife <|z| <R
: n(n —2) + 2n|2| 2(n—2) ifes<le <
0 if |z| > R.

Since . > 0 and both . and Dy, vanish on 99, we have by (11.39)

/ wAsp.dH" = / peAswdH™ > 0.
> >

Since
As|z|® = ala — 2)[z|*2 (1 - %) + anlz|*72,
we have
R™™—e" ifo<|zl<e
Aspc(2) ==X R —|z|2™(z-v)? ife<|z|<R
0 if |z| > R.
Therefore

0< / (R7" —e™™MwdH" + / (R™™ — 2|72 "(2 - v)®)wdH"
2:(0) Zr(0)\Z:(0)

1 1
< Dn wdH™ — _n/ wdH™.
Sr(0) € Js.(0)

To complete the proof it is enough to observe that

1
w(0) = lim wdH"™.
=0 wne™ Js_(0)
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Proof of Theorem 11.47. After a translation, we can assume that 0 € Q
and u(0) = 0. We may rewrite (11.40) as

w(0) < - / wy/1+ |Dul?dx < / wy/1+ |Dul?dz.

\u|<R
(11.41)
Now take any R < £ dist(0,99), and set

2R ifu>R
up: =4 u+R ifjul <R
0 if u < —R.

Take n € C}(Bzr(0)), with 0 < 5 < 1, n = 1 on Bg(0), |Dn| < 2.

Inserting the test function ¢ := wugn in the minimal surface equation

DiuD;p

o Vit Dup "

and observing that |Du| < /1 + |Du|?, we get

=0, o € CHQ), (11.42)

w|Du|2
“Eg V1+ |Du|2

Multiplying (11.39) by a test function ¢? € C1(Car(0)), integrating over
¥ intersected with the cylinder Cor(0) := Bagr(0) x R, and integrating by
parts, we infer

R/ el<2 (w|Dn| + n|Dw|)dz. (11.43)
>—R

/ P |6w|*dH™ < -2 / bW pdH™,
$NC2r(0) SNC2r(0)

. 2
and, since ab < ca? + %7

/ *|ow|PdH™ < ¢y / |6p|>dH".
SNC2r(0) ENC2r(0)

This implies, by Holder’s inequality,
/ Plow|dH™ < o max |5¢|’H"(Z N spt ). (11.44)
EQCQ}?( ) ENC2r

Now choose ¢(z,y) := n(z)7(y), with 7 € C}(=2R, R+ sup u),
BzR(O)

dr c
0<7<1, 7=1lin(—R, sup u), ’<—.
( B2r(0) : dy R
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Then, since D,,+1w = 0 implies |Dw|vp4+1 < |dw|, using (11.44) we find

J— n
/EISQR n|Dw|dx = /x|§2R n|Dw|vp1dH
u>—R u>—R

< / B n|ow|dH"

u_

< / B|ow]dH
ZOCQR(O)

< %’H"(z N spt @)

lo|<2R V' 1+ |Dul?dz.

u>—2R

Since w < /1 + |Du|?, we also have
/ |<2Rw|Dn\dx < E \<2R V14 |Dul|?dx.
u>—R

Combining these last two estimates with (11.43), we find

/ wy/1+ |Dul?dx <
|lu|<R [u|<R _ / 2
|z|<R |z|<R I+ |Du|

w|Du|2

11.45
lU{jg 1+ |Du|2 ( )
<y (R" /> o V1t |Du|2dx)

|z|<2R
To estimate the last integral, take ¢ = nmax{u+ 2R, 0} in (11.42), where
. 2
n € Ce(Bsr(0)), nm=1inBar(0), [Dn|< 4.

We then obtain

[w‘QR 1+ [Dudz < R" (01 + & u) (11.46)

u>—2R R B3r(0)

Putting together (11.41), (11.45) and (11.46) and exponentiating we fi-
nally obtain

|Du(0)] < /14 |Du|? < Cyexp (% sup u)

B3r(0)

from which (11.37) follows by translation. O
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11.2.6 Regularity of BV minimizers of the area
functional

We shall now prove that a BV minimizer u of the area functional (as
defined for BV -functions in Section 2.5) is smooth. Thanks to Theorem
11.45, it suffices to prove that u is locally Lipschitz continuous.

Recall that for u € BV(§2) we define the relaxed area of its graph as

Au) = / V14 |Dul?
Q
= sup {/ (uZDigi —i—gnﬂ)dx 1g € CHOR™) |g| < 1}.
Q

=1
(11.47)

The absence of the term ”dz” in the first integral of (11.47) comes from
the fact that /1 + |Du|? is a measure which is in general not absolutely
continuous with respect to the Lebesgue measure.

Exercise 11.49 If u € W!(Q), then (11.47) reduces to

Alu) = /Q T+ [Dufda,

where the last integral is intended is the classical sense, since Du is absolutely
continuous with respect to the Lebesgue measure.
[Hint: Start with v € C*(Q). The vector (—Du(x),1) € R™"* has length

V14 |Dul?]

Lemma 11.50 Let Q be connected, let g € L*(0Q) and assume that there
are two functions u,v € BV (), with v locally Lipschitz, both minimizing

the area functional
Z(u) = / v/ 1+ |Dul?
Q

over the set
S:={w e BV(Q) : wlaa = g}.

Then u = v.

Proof. With the same proof as in Proposition 11.27, it is easy to infer

that the functional
Ap) = [ VT TP,
Q

is strictly convex on L(€2,R"™). Now apply the Lebesgue decomposition
to the vector measure Du with respect to the Lebesgue measure:

Du = Du'” + Du(®,
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where Du(® is the absolutely continuous part, and Du(® is the singular
part. We can still denote by Du(®) € L*(Q,R™) the Radon-Nikodym rep-
resentative of the absolutely continuous part. Since Du(®) is concentrated
on a set of measure zero, we have

u):/ ./1+|Du<a>|2dx+/ |Du'®)|,
Q Q

/ |Du®| := | Du'®|(Q)
Q

is the total variation of Du(®) on Q. By the strict convexity of A(p) we
have that, unless Du(®) = Dv a.e.,
Du(®)
T + /
Q

(a) 2
7 U+ v :/ 14 Dul®) + Dv
2 Q 2 2
1
< (/ \/1+\Du(“)|2d:v+/ 1+|Dv|2dzc)
Q
/|Du(s

= () +I(),

where

contradicting the minimality of v and v. Therefore Du(®) = Dv a.e., but

then
v —|—/ | Du?|,
Q

hence, again by minimality of u, Du(®) = 0. Therefore Du = Dv, and
since v = v on 9, we get u = v. This follows for instance by the
Poincaré inequality applied to u — v, observing that u,v € W11(Q) since
their derivatives are absolutely continuous. O

Lemma 11.51 Letu € BV (2) be a local minimizer of the area functional
A, i.e.
A(u) < A(v)

for every v € BV (Q) such that spt(u—v) € Q. Then u is locally bounded.

Proof. Assume that there exists a minimizer u such that supg |u| = oo,
where K C Q is compact, say dist(K,9Q) > e. Then we can find a
sequence of points p; = (z;,u(z;)) € Gy such that [p; —pg| > 2¢ for every
j # k. Moreover, by standard measure theory, such points can be chosen
such that
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By the monotonicity formula, Proposition 11.94,* and since B.(pj) N
Be(px) = 0 for j # k, it follows that

"(Gu) zz ™(Gu N Be(py) >wnzle”®pj
j=1 J

hence J(u) = oo, contradiction. O

Theorem 11.52 Let u € BVio(2) be a local minimizer of the area func-

tional
A(u, Q) := / V' 1+ |Dul?,
Q

compare (11.47). Then u is locally Lipschitz continuous, hence smooth.

The following proof is due to C. Gerhardt [36].

Proof. Set u. := u * p., where p. is a family of smooth mollifiers, and
let g € Q, R > 0 be such that Bsp(z) € Q (if € is small enough u. is
well-defined on Bsg(xg)). According to Theorems 11.29 and 11.34, there
exist a unique minimizer v. € C*°(Bgr(x)) of the area functional

A(w, Br(xo)) / vV 1+ |Dw|?dz,
BR CE()

in the class
B:= {w € Lip(Br(zo)) : w‘BBR(zo) = U‘E‘BBR(ID)}'
By the maximum principle, and assuming ¢ < R,

sup |ve| < sup |ue| < sup |u| =: L,
Br(zo) Br(x0) Bsr(zo)

where L < oo by the Lemma 11.51. By the a priori estimate (11.37), for
every p < R there is a constant M depending on p, R and L such that

sup |Dve| < M.
BP(IO)

By Ascoli-Arzeld’s theorem a sequence v., converges uniformly on B, (z)
to a Lipschitz function v, and by a diagonal procedure, we have locally

4In fact, in order to apply the monotonicity formula one should first prove that
(0(8G.)) N X R can be seen as a minimal variold, where

SGy = {(z,y) 1y < u(z)}.
We skip the details.
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uniform convergence of a subsequence (still denoted by v.,) to a locally
Lipschitz function v in Bgr(zg). Set now

3 Ve, in Bg(xp),
f()s = .
Ug,, 1N BQR({I}(J)\BR(LI}()).

Then
/ Do, |de < / V1T Do, Pda
Bar(zo0) Bar(xo)
< / V' 1+ |Dug,|?dx
Bar(zo)
<

/ v/ 1+ |Dul?,
Barye(z0)

where the last inequality is justified by the convexity of the area and
the fact that the convolution is an average. We then have that the v, ’s
are equibounded in BV (Bag(zp)), and by Theorems 2.32 and 2.33, a
subsequence, still denoted by v, converges in L' to

{v in Bg(zo),
u in Bag(z0)\Br(7o),

and
/ V1+|D7)2 < liminf/ V1+|Dv,, |2
Bar(wo) k=00 ) Bon(wo)
< liminf/ V14 |Dug, |?dx
k=00 Bar(xo)
<

/ 1+ [Dul?,
Baprte(zo)

and letting ¢ — 0 we conclude
/ 1+ [Dof? < 1+ |Dul. (11.48)
BQR(IO) BQR(I())
We now have
6‘8323,(350) = u’@BQR(ZL’O) (11.49)

and of course u minimizes
T(w) ;:/ V1T Dwp,
Bar(zo)

in
S :={w € BV(B2r(20)) : W|oB,x(z0) = WoBsr(ze) }-
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By (11.48) and (11.49) also ¥ minimizes Z over S, hence, by Lemma 11.50,
u =7 in Bag(x), therefore u = v is locally Lipschitz in Br(x¢), hence in
all of Q by the arbitrariness of the ball Br(xg). From Theorem 11.45 we
finally infer u € C*°(Q). O

11.3 Regularity in arbitrary codimension

To study the regularity of minimal graphs in arbitrary codimension we
shall use a blow-up procedure, i.e. we rescale a minimal graph and analyse
the limit. The blow-up of the graph of a smooth function converges to
a plane. Allard’s theorem says that, in the case of minimal graphs, the
converse is also true: if the blow-up at a point p of a minimal graph con-
verges to a plane, then the graph is smooth in a neighborhood of p. This
reduces the regularity problem to the classification of the objects arising
as blow-ups of minimal graphs. Since such objects are entire minimal
graphs, the result we need is a Bernstein-type theorem: entire minimal
graphs, under suitable assumptions, are planes. In fact we shall prove
that any area-decreasing entire minimal graph (see Definition 11.25) is a
plane (Theorem 11.59), and consequently that an area decreasing minimal
graph is smooth (Theorem 11.69).

Throughout this section V = v(X,0) := 0H" L X will denote a rectifi-
able varifold with support > and multiplicity 6, where 3 is rectifiable and
6 > 0 is locally H"-integrable. In fact we will make a very limited use of
varifolds, and we refer the reader to Section 11.4 for a brief introduction
to the subject.

11.3.1 Blow-ups, blow-downs and minimal cones

The following propositions are the basic tools in the blow-up argument.

Proposition 11.53 Consider a sequence of equi-Lipschitz equibounded
maps

uj: @ —=R™ with sup(|uj| + |Du;|) < M for some M.
Q
Assume that each u; satisfies the minimal surface system (11.19), i.e.

each Gy, is a minimal Lipschitz submanifold. Then there exists a sub-
sequence uj uniformly converging to a Lipschitz function

v:Q—R"™ with sup(Jv|+ |Dv]) < M,
Q

which is a solution to the minimal surface system. Moreover
V(guj/ b 1) - V(QU? 1)

in the sense of varifolds.
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Proof. This proof requires the notion of varifolds, discussed in Section
11.4, and can be skipped at a first reading.

Step 1. By Ascoli-Arzela’s theorem there exists a subsequence, still de-
noted by u;, with u; — v uniformly and

sup(|v| + |Dv|) < M
Q

We shall prove that the convergence is also in the sense of varifolds.
By Proposition 11.93, the rectifiable varifolds U; := v(X2;,1), ¥, :=
Gu; are minimal, and this implies that

18U =0 in Q x R™,

compare Definition 11.105 (here we identify a rectifiable varifold and the
corresponding abstract varifold, see Remark 11.101). By Allard’s com-
pactness theorem, Theorem 11.108, up to extracting a further subsequence
we have U; — V in the sense of varifolds, where V' = v(T',6) is a min-
imal integer multiplicity rectifiable varifold. We only need to prove that
V =v(Gy,1),ie. =G, and 0 =1 H™a.eon I.

Step 2. Let us show that V = v(G,,1). Clearly sptV C G,: indeed
let A C R™™ be open with AN G, = 0. Since G, is closed, for any
f € C°(A), we have dist(spt f,G,) = € > 0. By uniform convergence we
have |u;(z) — v(z)| < e for j large enough, hence

U) = | @@ —o.

Hence V(f) = 0 and by the arbitrariness of A we have that I' = spt V' C

Go.
We now prove that for H™-a.e. p € G, we have 6(p) = 1. Indeed the
convergence U; — V in the sense of varifolds implies that

W#Uj —>7T#V (1150)

in the sense of varifolds, where 7 : R**™ — R"™™ ig the orthogonal
projection onto R™ x {0}. Indeed by (11.80) we have

v(Qx {0}, 1)(f) = mxU;(f)
/ f(n(x),dn,S)Jn(xz,S)dU.

— / f(m(x),dnyS)Jm(x, S)dV

= W#V(f)
= v(Qx{0},0)(f), 0(z):=0(z,v(z)),
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for any f € C%(G,,), where G,, = G,,(2 x R™) is the Grassmann bundle
on Q x R™, as defined in 11.99, and v(€2 x {0},1) is seen as an abstract
varifold, compare Remark 11.101.

Therefore § = 1 H"-a.e on G,. O

Proposition 11.54 (Blow-up) Let u : Q@ — R™ be a Lipschitz map
solving the minimal surface system (11.19). Let uy = uy 4, be defined by

1
uy(x) = X(u(xo + Ax) — u(xo)),

for a given xo € Q. Then there exists a sequence \(i) — 0 such that
ux@) — v locally uniformly in R™, where v is a Lipschitz solution of the
minimal surface system and the graph of v : R™ — R™ is a (minimal)
cone with vertex at the origin®.
Proof. The convergence of a sequence uy;) to a Lipschitz minimal graph
is an immediate consequence of Proposition 11.53. From the convergence
is the sense of varifolds, we have

w — lim Hn(BP(O) n gux(i))
Wy p™ T isoo W p"
. H™(Ba@)e(po) NGu)
- T L00"
= 0"(Gu,po),

where pg := (29, u(zg)) and the last limit exists thanks to the monoton-
icity formula (11.72). Then the ratio %ﬁ,{mg”) does not depend on p.
Letting p — oo and o — 0 in the monotonicity formula (11.72) yields

2
/ |(VT)J—| dH™ = 0’

v Tn
where r(p) := |p| for p € R"*™ and (Vr)* is the projection of Vr into
the tangent bundle T'G,. Therefore Vr(p) € T,G, for a.e. every p € G,,
hence G, is a cone, i.e. v(rx) = Tv(z) for every 7 > 0. O

Proposition 11.55 (Blow-up of a cone) Letu : R™ — R™ be a Lipschitz
map solving the minimal surface system (11.19). For o € R™\ {0} set

un(z) = ;(u(a:o + Az) — u(xo)).

5A cone C C R™"™ with vertex at the origin is a set such that for every A > 0 we
have \C = C.
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Then there exists a sequence (i) — 0 such that uy) — v, locally uni-
formly in R™ to a solution of the minimal surface system, and

V(gux(t‘)v 1) - V(gv7 1)

in the sense of varifolds and G, is a (minimal) cone. Moreover G, is a
product of the form C x R (up to a rotarion), where C' is a minimal cone
of dimension n — 1 in R"T™~1 which is also a graph.

Let 7 = (2%,...,2"1). The last assertion means that there exists an

orthonormal system of coordinates R, a function v : R"~! — R™ and
o € R™ such that

v(x!, ... 2") = oz" + (%) (11.51)

and G5 is a minimal cone.

Proof. Considering Proposition 11.54, we have that uy;) — v locally uni-
formly, where v : R® — R™ solves the minimal surface system. Moreover
the convergence of the graphs is in the sense of varifolds. That up to a
rotation or R we can write v as in (11.51) is a simple exercise left for
the reader. Hence G, = C X R is the sense specified above. It remains
to prove that C' = G5, which is an (n — 1)-dimensional cone in R?~+m
is also minimal, i.e. also v satisfies the minimal surface system. But this
can be done easily using that v solves the minimal surface system and
that Dv, hence g;; = ¢;;(Dv), do not depend on z™. O

Proposition 11.56 (Blow-down) Letwu : R™ — R™ be a Lipschitz solu-
tion to the minimal surface system 11.19. Let uy be defined by

1
ux(z) = X(u()\:c) —u(0)), A>0.
Then there exists a sequence (i) — oo such that uyy — v uniformly on
compact sets, where v solves the minimal surface system. Moreover the
convergence of the graphs Gy, to G, is in the sense of varifolds and G,
is a (minimal) cone.

Proof. The proof is identical to the proof of Proposition 11.54, with
A — oo instead of A — 0, except that we shall use that the limit

lim H™(Bx(i)p(po) N Gu)
im0 wn (A(@)p)™ ,

Po = (07 u(O)),

exists thanks to the monotonicity formula (11.72) and is finite because

Vdet(I + (du)*du) < C(M), M :=sup |dul.
R’IL
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11.3.2 Bernstein-type theorems

As we shall see, Bernstein-type theorems play a crucial role in the regular-
ity theory of minimal graphs, particularly in codimension greater than 1.

A Bernstein-type theorem is a rigidity theorem which, under suitable
hypothesis, implies that an entire minimal graph, i.e. the minimal graph
of a function defined on all of R™, is an affine subspace. The following is
the first such theorem, as formulated by Bernstein in a memoir published
in 1927.

Theorem 11.57 (Bernstein [8]) Let u:R? — R be a C? function sat-
isfying the minimal surface equation. Then w is affine, i.e. u(x,y) =
Yo + o1 + o2y, with 01,09 € R.

Several generalizations have been proved since then. In 1965 De Giorgi
[26] proved a Bernstein-type theorem for 3 dimensional graphs in R?
while Simons [100] generalized Bernstein’s theorem to R"*! for n < 7.
This result is sharp for what concerns the dimensions because Bombieri,
De Giorgi and Giusti [12] showed that there exists a non-affine function
u : R® — R whose graph is minimal. Some years before Moser [79] had
proved that the minimal graph of a scalar function whose gradient is
bounded is an affine subspace.

In higher codimension, Lawson and Osserman [68] have shown that
the cone over Hopf’s map (9.4) is minimal. Since it is the graph of a
function with bounded gradient this shows that Moser’s result does not
extend to higher codimension.

The first Bernstein-type theorems in arbitrary codimension were proved
by Hildebrandt, Jost and Widman [60] who studied the Gauss map of a
minimal graph. With a similar approach, Jost and Y. L. Xin [64] improved
the result of [60], obtaining the following theorem.

Theorem 11.58 Let u : R — R™ be a smooth function satisfying the
minimal surface system (11.19). Let

1

) = T Da)) Dae)

and take By > 0 such that

i >
Bo < { 2 ifm=2 (11.52)

oo ifm=1.

Then, if xw > %, u s affine.
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Observe that

sw(x) >

1 implies | Du(z)| < 63 — 1,

Bo

while in codimension 1, although Moser’s theorem requires Du to be
bounded, say |Du| < M, we do not have any restriction on M. The
theorem we shall prove below, due to M-T. Wang [109], implies the result
of Moser for codimension 1 and the result of Jost and Xin in arbitrary
codimension. It is a natural extension of Moser’s theorem because it only
requires Du to be bounded and area-decreasing, Definition 11.25, and this
latter assumption is always true in codimension 1, see Remark 11.26.

Theorem 11.59 (M-T. Want [109]) Let u : R — R™ be a smooth
area-decreasing map with bounded gradient and satisfying the minimal
surface system (11.19). Then w is linear. The same is true if u €
C>(R™\{0},R™), as will be the case later.

To prove the theorem we study the behaviour of the function
1 B 1
Vdet(I + (Du(x))*Du(w))  /TTi=, (1 + Ai(2)?)

where z € R, y € R™, (i.e. we now extend xw to the product space
R™*™) and the numbers \;(z) are the singular values of Du(z), i.e. the
square roots of the eigenvalues of (Du(z))* Du(x).

*w(T,y) =

Exercise 11.60 Verify that

1 2
W > ———— = |Dul® <1—6; |Dul <1/(2—-0)V" —1= *w >
N | Dl | Dl ( )
Let ¥ ¢ R™™ be an n-dimensional submanifold of R**™ and define w
to be the n-form on R**™ given by

2-§

wler,...,ep) =1
w(eil,...7ei”) =0 ifiy <...<ip, inp >n,
where {e1,...,en1m} is the standard basis of R**™. Its covariant deriv-

ative and its Laplacian on ¥ are, by definition,
n
Viw(Y, ..., Yy) = Dx(w(Y,...,Ya) = 3 _w(¥1,...,VXYi,..., ;).
i=1
Asw(p) = ViViw
k=1

where {7} } is an orthonormal frame of T in a neighborhood of p.
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Exercise 11.61 For p € ¥, prove that
*w(p) = w(T1,...,Tn)

for any orthonormal basis {71,...,7n} of TpX.
[Hint: Choose {7;} according to the singular value decomposition of Du.]

Lemma 11.62 Consider an orthonormal frame {r,..., 7} of T in a
neighborhood of a point p € X.. Then

(Asw)(11, .-, Tn) = As(w(1, ..., ™)) = As(xw).
Proof. Set
W(T1y ooy Tn) = Wien,  (Asw)(71,...,70) = (Asw)1..p-

Then

(Asw)1n = Dry (VEW) (11,0 ,70)) = Y VEW(T1, ., Vi Tis e, T)
_DTkDTk( (717 ~7Tn))

23 D (el V)
i,k=1

b
+ E 7'1,.. Ti,... VTkTJ,...,Tn)
1,J,k=1
i#]

+ Z w(Tiy .. V VZTJ,...,Tn)

j,k=1
=a+b+c+d.

Now
a=As(w(r1,...,7a))

because {7} is an orthonormal frame, b = 0 because
Ti - (ngﬂ') = %D.rk(n- 1) =0
and w is alternating. Finally, also ¢+ d = 0: using that for i # j
0= D, (1,75) = (V T, Tj) + (Ti, kaTj),

i.e.
<V THTJ> <Ti,V§ij>,
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and that

n

VETi= Z(V Tis Te)Te
=1

M:

= " Tiy Te)Te,

S
SN

=
because
<v TZ?Tl>_DTk<TiaTi>:DTk1:O7

we compute

C+d = — Z (V 7'1,7-]><7-17v 7']>UJ1 n

- Z w(ty, ... (VEVE 7,707, ..., Ty)

G k=1

n n
( E VTle,TJ E T],V >> Wleom
w, =1 J,k=1

i#j

where the last identity is justified by
Z(V T, ) = | Vi | = (Vo 7, Vo),
j=1
1#]
and we also used that
<V2V TJ7TJ>: Tk:<v TJaTJ> <V Tjav i) = <VZTJaV i)
|
We recall without proof an important identity from Riemannian geo-

metry:

Lemma 11.63 (Codazzi’s equation) Let h; := (Vﬂ.Tj)-I/a and h® :=
H - v, be the coefficients in local coordinates of the second fundamental
form and of the mean curvature, respectively:

hMX,Y) =h XY v, H=h",.

Then
f‘k;k = h“Z (11.53)

where the semicolons denote the covariant derivatives.
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Notation Assume given a local orthonormal frame {7;};,=1 ., of TY and

a local orthonormal frame

,,,,,

{Va}azl,...,m

of the normal bundle N at a generic point p € 3. In what follows we
shall write
WieqieBien *= Wil (i=1)a(i+1)-(G=1)B(G+1)--n
= (.U(Tl, ey Ti—1s Vs Tit1y e« - ,ijl,l/ﬁ,TjJ’»l, N ,Tn)
to denote that v, occurs in the i-th place and v in the j-th. With a little

abuse of notation the Greek letters will always denotes components in the
normal bundle. For instance in general

W(Vas T2y s Tn) =i Wa2..m # Wig..m = w(Ti, T2y ..., Tn), evenif a=i.

Proposition 11.64 On a smooth (embedded) surface ¥ C R™™ which
is minimal, i.e. which has H =0, w satisfies

n m
—Azwl...n = w1~~»n|A|2 -2 Z Z wl,,,az‘,,ﬂj hzkh’gk’ (11.54)
i,7,k=1 a,B=1
1<j

where

|A] =

is the norm of the second fundamental form. In fact the same holds if we
just assume H to be parallel, i.e. V*H = 0.

Proof. Since w is constant in R**™ we have Vw = 0. Thus

(kaw)lu_n =((VZ - Vo w), . = Zw(ﬁ, sV T = VE T Th).

Observing that
(Vo m)V Z RS, Ve

we get
n m
Wiemsh = V2 w(T1, ..., Ty) = Z Z W1oqiom (11.55)
i=1 a=1
Similarly
Wiai-nsk Zwln-elm hlk +Zzwl Bt jﬁka
Jj=1p=1

J#i
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where we also defined

Viua = (V)T
while originally Vi was defined only on tangent vector fields, and using
that v - 7, = 0, we also computed

(Vo — vi)l/a == Zhgﬁ'é-
=1

Then
m n m  n
W1k = Z Zwl---ai---n;kh?k + Z ZWL.AOL’L'...n ;‘lk;k' (11.56)
a=11i=1 a=1i=1

By Codazzi’s equation (11.53) and by (11.56) we get:

Wi..m;kk = —Z Z wl---l‘“-nhlkh + Z wlﬁ]a‘nhfkhzak

a=14,l k=1 i,j=1

i#]
m n
= —Wi.n Z Z —|—2 Z wl...ﬁj,‘,ai,,,nh]@kh?k

i,k=1a=1 1<i<j<n
m n
§ § «
Wi...qt.. th

The last term vanishes because H = 0 (in fact it sufficies V*H = 0), and
we conclude with Lemma 11.62. g

Let us come back to the case in which ¥ is the graph of a smooth
function v : © C R™ — R™. For any zy € Q2 by the singular value
decomposition, Proposition 11.22, applied to the linear map Du(zg) :
R™ — R™, we can find orthonormal basis {v; }i=1, .. » and {wa}a=1,..m
of R™ and R"™ respectively with respect to which Du is represented by
a diagonal matrix, say Ao, with A\;o, = 0 if i % «. To such basis we
associate a basis of the tangent space and a basis of the normal space to
Y = Gy at p 1= (zo,u(xp)). Set A; := Ay if ¢ < min{m,n}, A\; = 0 if
min{m,n} < i <mn, and

{Ti . v/ 1 i— >\2 <Ui * Bzm:_l )\iﬁwﬁ) }i_l o

s

o = Nia .
{V \/1+)\2 Z J UJ } :1,...,m
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Since u is smooth, also the 7;’s and v,’s can chosen to depend smoothly
on zg. Observe that if we define m to be the projection of R**™ on the
first n coordinates, we have

m(Va) = = 3 Xjar(7)). (11.57)
j=1

Since w(ay, ..., a,) = w(n(ay),...,m(ay,)), we may use (11.57) to compute
Wi..qie i = wl...n(/\gj/\ai — >\Bz’>\aj)

Now Proposition 11.64 can be written in terms of the singular values of
Du:

—Ag(*w) = *w(|A|2 +2 Z Z —AgjAai + )\m)\aj)hlkhjk>

i,j,k=1a,8=1
1<
= w(|A|2 +2 3 (= NNihighl 4+ A hjkhzk)>
i,j,k=1
1<j

(11.58)

We are now ready to prove Theorem 11.59.

Proof of Theorem 11.59. Let € > 0 be such that \;(z)\;(z) < 1 —¢ for
1 # j and for every x € R™, where the \;(z)’s are the singulare values of
Du(zx).

Step 1. Denote by Ay, the Laplacian on ¥ := G,,. We have

*wAy (xw) — | VZ(5w) | 2

o ?

Ayx(In*w) =

(11.59)

The covariant derivative of *w may be computed using the singular value
decomposition of Du and equations (11.57) and (11.55):

()w)ip = — *w (Z > )\aih?k> — —xw <Z /\ihik> . (11.60)

i=1 a=1
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Inserting (11.58) and (11.60) into (11.59) yields

As(—Insw) =[AP+2 Y NXhihl =2 > ANhighd,
i,j,k=1 i,j,k=1
i<j 1<j

3 (3o ni)’
k=1 =1

= AP 2 >0 Ndghjehi+ D N (hy)?
i,5,k=1 ik=1
i<y (11.61)

> AP +2 ) Adhlh
i,5,k=1
i<j

> AP+ ) AN(h)?
ij k=1

> AP - (1-9)|AP?

= ¢|A]?,

where we also used the inequality 2h§khgk < (hh)? + (h1,)2.
Step 2. We perform a blow-down of the graph of u. By Proposition 11.56
there exists an equi-Lipschitz sequence

U,\(j)(f) = =u(A(j)z), A(j) — o0

uniformly converging to an area-decreasing Lipschitz function w. Moreover
the convergence is also in the sense of varifolds and Gz is a minimal cone
with vertex in the origin. The differential of @ is positively homogeneous,
that is

Di(tz) = Du(z), t>0, z € R™{0}.

We shall assume that @ is smooth in R™\{0}. The general case is studied
in Step 3. The homogeneity of Du implies that on every annulus with
center in the origin *w attains an interior minimum; this, together with
(11.61) and the maximum principle, implies |A| = 0 in every annulus and
so in R™\{0}. Therefore the cone is a linear subspace, i.e., @ is linear. We
now prove that Du(z) = Du(0) for every x € R™, whence u is linear. Let
0 and v be as in Allard’s Theorem 11.98, jo and p such that for every
J=Jo

(G, N B1(0))

Wn

<144,
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where this is possible because from the varifold convergence we get

lim H"(Gu; N B1(0)) _ H"(GaN B1(0))

Jj—00 Wn Wn

=1.

Then u; € Ch* (B;L(O)) with uniform bounds in C'* O‘(B"( )), thanks to
(11.78). By Ascoli-Arzeld’s theorem, a subsequence, stlll denoted by u;,
converges in C'(B2(0)) to the linear map @. For every x € R™ we have,
for j large enough, ﬁ € B,(0) and

oo () e (i) <=

As e goes to 0, observing that Du, (ﬁ) = Du(x), we get that Du is

constant hence u is linear.

Step 3. If the blow-up generates a cone which has at least a singularity
in g # 0, we may perform a blow-up in xg and, by Proposition 11.55 we
obtain a minimal cone C' of dimension n — 1 in R**™~1 If such a cone is
smooth except at the origin, we apply Step 2 to prove that C' is actually
a plane, which is a contradiction by Allard’s theorem, since then

lim H (Gi N B7(p0))

r—0 wpr™

= 1, Po = (1‘0, (l‘o))

Otherwise we iterate the procedure until we get a cone of dimension 1,
which cannot be singular and minimal at the same time, and obtain a
contradition. O

Remark 11.65 Theorem 11.59 implies Theorem 11.58 because (11.52)
yields, for 1 < i < j < n and for some ¢ > 0

(1+29)

I
=

>1 A7+ A+ ATNS

> 142X + AN

= (14 M\,

which yields
)\Z(IIZ))\J(IL') S \/4 —6—-1=1- 5/

for some ¢’ > 0 and for every x € R™.

6Here we let By (x) denote the ball of radius r in R**™ centered at x € R*+™ and
BI'(x) denote the ball of radius r in R™ centered at = € R™.
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Remark 11.66 To prove that — In *w is a subharmonic function, we only
used the area-decreasing condition |A\;\;| < 1 —¢ and the minimal surface
system (in fact a weaker version corresponding to V¥ H = 0): thus we have
shown that —In+*w is subharmonic on any area-decreasing smooth min-
imal graph (or any area-decreasing graph with parallel mean curvature).

Remarks on Bernstein’s theorem: the Gauss map

Wang’s proof of Theorem 11.59 is based on inequality (11.61) which says
that — In*w is a subharmonic function on ¥ (with respect to the Rieman-
nian metric of ¥). We shall sketch a geometric interpretation of that.

Definition 11.67 (Gauss map) Given a smooth n-dimensional subman-
ifold of ¥ C R™™ its Gauss map

v:3 — G(n,m)

is the map associating to each x € ¥ the tangent space T, seen as an
element of the Grassmannian G(n,m) of n-planes in R"+™.

The differentiable and Riemannian structures of G(n, m) have been
studied by Yung-Chow Wong [116] and Jost and Xin [64]. An important
theorem concerning the Gauss map of a minimal surface is due to Ruh
and Vilms:

Theorem 11.68 (Ruh-Vilms [91]) The Gauss map 7y of a submanifold
¥ C R™™ 4s harmonic if and only if the mean curvature H of ¥ is

parallel, i.e. if
VH =0.

In particular, if ¥ is minimal, i.e. H = 0, the Gauss map of ¥ is
harmonic on Y. Jost and Xin observed that the condition *w > %7
determines a region of the Grassmannian over which

f(L) :==—1In+/det(I + L*L) (11.62)

is convex’ (in (11.62) we identify a plane with the linear map L : R" —
R™ of which it is the graph; we shall only consider the region of the
Grassmannian given by such planes). In [110], M-T. Wang proved that

7Convex here means that, given a geodesic o — =, where = C G(n,m) is the subset

of the Grassmannian containing the graphs of area-decreasing linear maps, we have
that

d? _——

o (- VAetT+ L7 L) o 0) > 0.
This notion of convexity is different from the one used in codimension 1 when we say
that \/1 + |Dul? is a convex function: in the latter case, indeed, the 1 X n-matrix space
where Du lives is endowed with the flat metric, which is different from the Riemannian
metric on the Grassmannian.
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f is convex on a larger region of the Grassmannian: the graphs of area-
decreasing linear maps. Thus *w = f o+ is subharmonic because it is the
composition of a harmonic map and a convex function.

11.3.3 Regularity of area-decreasing minimal graphs

As a consequence of Theorem 11.59, Allard’s theorem (compare Theorem
11.98 below), and the dimension reduction argument of Federer, we obtain
a regularity result for minimal graphs of Lipschitz maps which are area-
decreasing (Theorem 11.69). As before, we remark that since the area-
decreasing hypothesis is always met in codimension 1, this new result
generalizes Theorem 11.45 to arbitrary codimension. We also remark
that, due to the minimal cone of Lawson and Osserman (see (9.4)), an
hypothesis on Du, other than its boundedness, is necessary.

Theorem 11.69 (M-T. Wang [111]) Consider a Lipschitz map u :  C
R™ — R™ satisfying the minimal surface system (11.19) and assume that
there exists € > 0 such that

Xi(@)A\j(z) <1—¢, forl<i<j<min{m,n}, z€Q,
where the A\;(x)’s are the singular values of Du(x). Thenu € C*(Q,R™).

Proof.
Step 1. Let zg € Q. Up to translation, we may assume z¢ = 0 and u(0) =
0. Performing a blow-up in 0, by Proposition 11.54 we get u; := uy) — v
uniformly and in the sense of varifolds for a sequence A(i) — 0 as i — oo,
where G, is a minimal cone. Moreover the uniform convergence preserves
the area-decreasing.

If v € C*°(R™\{0}) then v is affine by Theorem 11.59. In particular

H" (G, N B1(0)) = wy,.
From the varifold convergence we infer as i — oo

H™(Gu N Br»(0))  H"(Gu,;, N B1(0)) _, HY (G N Bi(0) _ 1
wa A (i)™ B W, wn -

In particular for every § > 0 we can find 7 large enough so that

H™(Gu N Byi)(0))

<146
o o

By Allard’s theorem (a suitably scaled version of Theorem 11.98) we get
u € Cl’U(B;LA(O)) for some o,y > 0.
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Step 2. Now assume that v is not smooth in all of R™\{0}. As in the proof
of Theorem 11.59, assume that there exists a singularity in zg # 0. We
may generate another cone in (zg,v(zg)) with another blow-up. Thanks
to Proposition 11.55, such a cone factorizes and we obtain an (n — 1)-
dimensional area-decreasing cone which is minimal. If this cone is smooth
except at most at the origin, then applying Step 1 we obtain that v is
smooth is xg, contradiction.

Then, by induction, we perform blow-ups and find cones with sin-
gularities until we find a minimal cone of dimension 1, union of two
straight lines, which must be flat. Since zy was arbitrary, we obtain
u e CL7(Q,R™) for some o > 0.

loc

Step 3. The existence of the higher order derivatives is consequence of
Schauder estimates, Theorem 5.20. ]

Remark 11.70 By a theorem of Allard’s [4], the solutions v of the Di-
richlet problem for the minimal surface system are smooth up to the
boundary if Q is strictly convex and the boundary data is smooth.

11.3.4 Regularity and Bernstein theorems for Lipschitz
minimal graphs in dimension 2 and 3

The proof of Theorems 11.59 and 11.69 can be recast in dimensions 2 and
3 without the assumption that u be area decreasing.

Theorem 11.71 (Barbosa [7], Fisher-Colbrie [33]) Assume that
u € C®(R",R™)

has bounded gradient and satisfies the minimal surface system (11.19).
Assume also that n =2 orn = 3. Then u is linear. The same is true if
u € C°(R™\{0},R™).

Proof. The only place in the proof of Theorem 11.59 where the area-
decreasing assumption was used was (11.61). Let us assume n = 2. From
the first lines of (11.61) we infer

2 2
Asp(—Insw) = [AP +2 > ANNhih, + > (Nihiy)?
i,j,k=1 i,k=1
1<J

= |A* + 2\ Aahd 3, 42X Aahdohi,
+ (Ahi)? + (Mhiy)? + (Nah2))? + (M2h3,)?
=:(I)

(11.63)
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Now using the assumption H = 0, i.e.
hiir +hy =0, hi; +h3, =0
and the symmetry hzk = h};j, we compute
(1) = [AP + (\thiy + A2hiy)? + (Aihiy — A2h3y)?,
hence
Ax(—In*w) > |A]?, (11.64)

which is the equivalent of (11.61), and the proof is complete for n = 2.
When n = 3, we first blow-down as in Step 2 of the proof of Theorem
11.59, obtaining a minimal cone which is the graph of a Lipschitz function
v. Assuming that v € C*°(R?\{0}, R™), we can again prove (11.64), as for
n = 2, this time using that the second fundamental form vanishes in one
direction, hence reducing essentially to the one 2-dimensional case. If v
has singularities away from 0, we apply the dimension reduction argument
as in the proof of Theorem 11.59. The details are left for the reader. O

Remark 11.72 The above proof is due to M-T. Wang [109].

With the same proof of Theorem 11.69, replacing Theorem 11.59 with
Theorem 11.71, we obtain:

Theorem 11.73 Let u € Lip(2,R™) solve the minimal surface system
(11.19), with Q C R? or Q C R3. Then u is smooth.

Remark 11.74 Theorems 11.71 and 11.73 are sharp for what concerns
the dimension (n = 2 or n = 3), since the cone of Lawson and Osserman
(Section 9.1.3) is a 4-dimensional entire minimal graph which is Lipschitz
continuous and singular at the origin.

11.4 Geometry of Varifolds

We recall a few facts about rectifiable and general varifolds. For more
details see [97].

11.4.1 Rectifiable subsets of R*™™

Definition 11.75 A Borel subset M C R™™ is said to be countably
n-rectifiable (or simply n-rectfiable) if

McNou(GNj), (11.65)
j=1

where H"(No) = 0 and, for j > 1, N; is a C'-submanifold of R"*™ of
dimension n.
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The connection between rectifiable sets and Lipschitz functions is es-
sentially a consequence of the theorems of Rademacher and Whitney, see
[32], [49] and [97].

Theorem 11.76 (Rademacher) FEvery Lipschitz function f : R™ — R
is almost everywhere differentiable. In particular its gradient is a.e. well

defined
o ﬁ)
ozl 7 Oam

vi=(

and for a.e. x9 € R™ we have

lim f(z) = f(xo) = V- (x —20)

T—x0 |LL’ — (L‘0|

=0.

Remark 11.77 The gradient Vf is the a.e. limit of measurable func-
tions (the difference quotients) and is thus measurable. Moreover, if f is
Lipschitz with Lipschitz constant K, it is clear that |V f| < K, so that
Vf e L®R").

Theorem 11.78 (Whitney) Let f : R” — R be a Lipschitz function.
Then for every e > 0 there exists a function h : R™ — R of class C* such
that

L'({z eR": f(z) # h(z)} U{z e R" : Vf(z) # Vh(z)}) <&,
where L™ is the Lebesgue measure on R™.

Observe that, thanks to Rademacher’s theorem, the right term in the
union is well defined up to £™-null sets.

Proposition 11.79 (Characterization of rectifiable sets) A subset
M C R™™ s countably n-rectifiable if and only if there exists a sequence
of Lipschitz maps Fj : R™ — R"™™™ and a set My with H"(My) = 0 such
that

M = MyU ( U Fj(Aj)), (11.66)
j=1
where A; C R™ is measurable for every j.

Proof. (=) Every C'-submanifold N; in R"*™ is locally the image of
C'-maps which we denote by h;; : B1(0) C R™ — R™"*™. Therefore

N, C E;U (G hij(Bl(O))), H*(E;) = 0. (11.67)

i=1
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If (11.65) holds, choose h;; as in (11.67). Let

Agj = hiN(M), No:=|]J E;nM.

ij
Jj=1

Then .
M=Nou ({J hislAi).

i,j=1

Since A;; is Borel (because inverse image of a Borel set) and since we may
assume h;; to be Lipschitz, we get (11.66).

(<) Let F; be as in (11.66). By Whitney’s theorem we may find
a family h;; : R* — R"™™ of C'-maps and a measurable set E; with
L"(E;) = 0 such that

Fi(A;) € B; U ( [j hi(RM)), ¥j=1. (11.68)

Indeed we may choose h;; as in the statement of Whitney’s theorem with
Dij = {IE eR": F](IL’) 7£ h”((L‘)} @] {IE eR": VF](ZL') 7é thj(:zr)},

and

| =

Dlj D] D2j DD Dij D D(i+1)j D, ,Cn(Dij)

~

Setting D; := N;D;; we have L™(D;) = 0 and by the area formula
H"(F}(Dj)) = 0.

Then set E; := F;(D;) and we have (11.68).
Set C;; = {x € R : rankh;;(z) < n}. Then H"(h;;(Ci;)) = 0 by
Sard’s lemma. Set

No=(UE)u( U o).

j=1 i,j=1

Then H"(Ny) =0 and

M C NyU (Nij)a
with N;; := h;;(R™\C;;) countable union of C''-submanifold thanks to the
rank-max theorem (N;; is a C'-submanifold if h;; is injective, otherwise

we use the local injectivity of h;; to write N;; as countable union of C''-
submanifolds and a null set). O
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Corollary 11.80 The image of a Lipschitz map
F:QCR" —R"™

is a countably n-rectifiable set. In particular the graph of a Lipschitz
function u : Q@ — R™ is n-rectifiable.

Since the only rectifiable sets Y. we shall use are the graphs of Lipschitz
function, we shall assume that H"™L X is locally finite, that is, for every
compact set K C R"t™ H" (XN K) < .

Definition 11.81 (Tangent plane) Given a countably n-rectifiable set
Y in R™T™ we define the tangent plane to X at p, if it exists, to be the
only n-dimensional subspace P in R™"™™ such that

lim y)dH" (y / f)dH™ (y), Vf e COR™™),

A—0 nm(z)

where M,z = A"y — p) for every y € R™™. Such plane P will be
denoted by T,X.

Given an n-rectifiable ¥ C R™**™ for instance a Lipschitz submanifold,
its tangent plane at p is well defined for H™-a.e. p € X. It is clear that
if ¥ is of class C!, then the tangent plane just defined is the same as
the tangent plane defined for smooth submanifolds as the set of tangent
vectors. Given X n-rectifiable, thanks to Proposition 11.79, for H™-a.e.
p € X there exists N, C'-submanifold such that p € N. j(p)- It may be
seen that T, M = T},Nj,) for H"-a.e. p € ¥; in particular T}, N,y doesn’t
depend on the choice of the manifolds /N; covering >, nor on the choice
of j(p).

For these reasons, given U C R™"™™ open and given f € Lip(U), it is
H™-a.e. well defined in £ N U the gradient V> f := Vi f. The latter is
H" L Nj-a.e. well defined thanks to Rademacher’s theorem.

11.4.2 Rectifiable varifolds

Definition 11.82 A rectifiable n-dimensional varifold in R ™™ with sup-
port 2 and multiplicity 0, V = v(2,0), where ¥ C R"™™ s n-rectifiable
and 6 is positive and locally integrable on X, is the Radon measure (i.e. a
Borel measure which is finite of compact sets)

V= 0H"LY,

i.e.
V(A) = / 0(y)dH"(y), YA CR"™™ Borel.
AnS
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Remark 11.83 Equivalently we may see a rectifiable varifold as an equi-
valence class of couples (3, 0) as above under the equivalence relation

(21,91) ~ (22, 92) if H”(El\Ez U 22\21) =0and 61 = 92, Hn — a.e.
(11.69)
The simple proof of the equivalence of the two definitions is left for the
reader.

Remark 11.84 An n-rectifiable subset ¥ C R"™ such that H"L ¥ is
locally finite can be seen as an n-rectifiable varifold with multiplicity 6 = 1
(in this case we identify, without further comments ¥ and V = H"L X).
For instance the graph of a Lipschitz function can be seen as a varifold.

Definition 11.85 Given a rectifiable varifold V- = v(X,0), the tangent
plane of V at p € ¥ is defined as

T,V :=T,%,

compare Definition 11.81. The definition is well posed H™-a.e. and does
not depend on X, except for an H"™-null set (recall that V' is a measure
which determines 3 only up to sets of null H™-measure).

The mass of a varifold V is its mass in the sense of measures and is
denoted by M(V):

M(V) = V(R"™) = / OdH™.
b
The convergence we define on the space of rectifiable varifolds, differ-
ent from the convergence in the sense of varifolds which we shall define
for abstract varifolds, is the weak-* convergence induced by the duality
between Radon measures and compactly supported continuous functions:

Definition 11.86 (Weak convergence) We say that a sequence of vari-
folds V; converges weakly to V' (and we write V; = V') if

lim favi= | fav,

)= JrRn+m Rn+m

for every f € CO(R"T™).

Proposition 11.87 The mass is continuous with respect to the weak con-
vergence in a compact set K C R™™™ e if V; =V, sptV; C K for
every j > 0, then M(V;) — M(V).

Proof. Set R > 0 such that K C Bgr(0) and ¢ € C2(R"™™) such that
¢ =1 on Bg(0). Then

M) = [ v — [ aav = M),

Rn+7n
since also sptV C K. a
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11.4.3 First variation of a rectifiable varifold

The concept of first variation, which we defined for Lipschitz submanifolds
of R"*™ compare Definition 11.15, may be easily extended to a rectifiable
varifold V = v(%, 0).

Definition 11.88 (Image varifold) Given f : R"™™ — R"*™ Lipschitz
and proper® and an n-rectifiable varifold V = v(%,0), the image varifold
of V under f is defined by

faV = v(f(2),0),

where

)= 3 6.

zeXTNf~1(y)

Thanks to Proposition 11.79, f(X) is rectifiable and, since f is proper,
we have that H" L f(X) is locally finite: indeed, given a compact set K,
by the area formula we get

f4V(K) = / OdH™ = / (Jf)0dH™,
Knf(¥) f-HK)ND

Jf = +/det(df*df).
The last integral is finite because J f is bounded, f~!(K) is compact and
OH™L Y is locally finite.

where

Definition 11.89 (First variation) Let ¢ : R"*™ x (—1,1) be of class
C? and such that

1. there exists a compact set K C R"™™ guch that pi(x) = p(x,t) = 2
for every x ¢ K;

2. po(z) =z for every x € R"T™,
Then the first variation of a varifold V' with respect to ¢ is

d

SlME, Vi (e

t=0

With the same proof of Proposition 11.17 we get

Proposition 11.90 Consider a family of diffeomorphisms p; as in Defin-
ition 11.89 and an n-rectifiable varifold V = v(3,0). Let

X(x):= % tio(pt(:c)

8For every compact K C R**™ f~1(K) is compact.
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be the first variation field of . Then

4
dt

M((p1)4V) = / div® X0dH". (11.70)
t=0 b

Definition 11.91 (Minimal varifold) We say that an n-rectifiable vari-
fold V =v(%,0) is minimal in an open set U C R"™ if its first variation
is zero for every choice of v in 11.89 with K € U; equivalently, V' is min-
imal in U if for every vector field X € CH({U,R"*™) we have

/ div™ X0dH"™ = 0. (11.71)
2

Definition 11.92 (Minimal graph) We say that the graph G, of a Lipschitz
function u : Q@ — R™ is minimal in the sense of varifolds if the associated
varifold V :=v(Gy, 1) is minimal in Q x R™.

This means that the mass of V(G,,0) is stationary with respect to vari-
ations compactly contained in € x R™, thus fixing the boundary of the
graph.

Proposition 11.93 Let u: Q — R™, Q C R™, be a Lipschitz map. Then
u satisfies the minimal surface system (11.19) if and only if the associated
varifold v(Gy, 1) is minimal in Q x R™.

Proof. This follows at once by Proposition 11.20 and (11.71), since choos-
ing F(z) = (z,u(x)) in Proposition 11.20 the equation AgF = 0 (with
Y = G,) reduces to (11.19). O

11.4.4 The monotonicity formula

Proposition 11.94 Consider an n-dimensional rectifiable varifold V- =
v(X,0) in R™™ which is minimal in U C R™*™. Then we have

Vb)) ViBeleo) [ (v
By(z0)\Bo (7o)

pn O-H TTL

(11.72)

for every xp € R*™ 0 < o < p < dist(zg,dU), where r(x) := |z — x|
and (Vr)* is the component of Vr orthogonal to X. Therefore the function
 V(By(a)

pTL

is monotone increasing. In particular the density at xo is well defined as

, 0<p<d(:1:o,8U)
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Proof. Fix p > 0 and define a function v € C1(R) such that
1. 4(¢) <0 for every t > 0;
2. y(t) = 1 for every t < &;
3. y(t) =0 for every t > p.
Consider the vector field
X(x) :=(r)(z —x0), 7:=|x—mol.
Let © € ¥ be such that T, exists; then

n+m

div X (z) = Z ej - (VZXY)
j=1
n+m B n+mxj—gc%xl—x6 ,
— 3J : L 70,5
SREHERE) SE

where e/! is the (n +m) x (n 4+ m)-matrix projecting R"*™ onto 7, ¥.
The trace of the projection is > e/7 = n; moreover the quantity

ntm g g

> T RE Tt (v = 1 (),

r
=1

is equal to the scalar product between the projection of Dr onto T, and
Dr = =70 itself. This implies

div® X (z) = ny(r) +r3(r) (L = [(Vr)* ).

Apply (11.71) to X and get

) = ry(r r)*12dV. .
n/zv(r)dv+/2r'y(r)dv—/z A(1)(Vr) - 2V (11.73)

Now consider a family of functions « arising from the rescaling of a
function ® € C1(R) satisfying

1. @(t) < 0 for every t > 0;

2. ®(t) =1 for every t < 1;

3. ®(t) =0 for every t > 1.

More precisely, let v(r) := @(%) for a fixed p > 0. It is clear that

i) = 2o (2) == (2(5)).
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It follows that, defining

10)= [ @(5)av g = [ o(Z) [(vn)**av,

we obtain ) _
nl(p) — pl(p) = —pJ(p),
which may be rewritten multipling by p~"~! as
I .
4 <@> _J) (11.74)
dp \ p" P

If we let ® converge from below to the characteristic function of (—oo, 1],
we obtain

I(p) = V(By(x0)), J(p) — /B ( )\(VrHde,

thus, in the sense of distributions, (11.74) becomes

S04, L

The claim of the theorem follows integrating with respect to p. 0

11.4.5 The regularity theorem of Allard

The theorem of Allard is a basic tool in the regularity theory for min-
imal surfaces. Generalized by Allard, the theorem was first proved by De
Giorgi [25] in codimension 1. De Giorgi had the fundamental idea of ap-
proximating a minimal surface with harmonic functions, introducing the
excess to estimate the error.

Definition 11.95 (Excess) Given a varifold V = v(%,0), o € X, an
n-plane T and R > 0, define the excess

1
E(xo, R, T) := 0 (o) Ilpr, v — prl?dV(2), (11.75)
R\Zo

where pr and pr,pr are the projections onto T and T, M respectively, and
for an (n+m) x (n+m) matriz A = (A;;) we set
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Theorem 11.96 (Allard) Let V = v(X,0) be a rectifiable n-varifold in
R™™ which is minimal in the open set U C R"™™ xo € sptV, Br(zg) €
U. Then for every o,a € (0,1) there are constants €,y depending on
n,m,o,a such that if

1. 1<0<1+¢, V-a.e. inU,

2. 7‘/(551&?)) <2—aq,

3. E(xo,R,T) <€ for some n-plane T C R"T™.

Then

VL Byr(0) = v(Gu N Byr(0), 1),
where w : TNByg(zo) — T+ is a smooth function. This means, that up to
a rotation of R"*™ sending T onto R™ x {0} and T+ onto {0} x R™ and

a translation sending zo to 0, we can take u € C*°(BJ(0),R™), where
Brp(0) CR™.

Second version of Allard’s theorem

The following version of Allard’s theorem can be deduced from the previ-
ous one and it is the one we shall actually use.

Theorem 11.97 Let V = v(3,0) be a rectifiable n-varifold in R"*™
which is minimal in the open set U C R"™™ 0 € sptV, B1(0) € U. Then
for every o € (0,1) there exist positive numbers §, v and ¢ depending on
m,n and o such that if

0>1, V —a.e.,
vBio)

Wn

(11.76)

then, up to a rotation of R**™ there exists u € C*7(B2(0)) with u(0) = 0
such that
VL B,(0) = v(G. N B,(0),6).

Moreover

HUHCI,U(W) < chn. (11.77)

In the case of Lipschitz minimal graphs Proposition 11.93 and Theorem
11.97 give:

Theorem 11.98 Let u € Lip(Q,R™), Q C R™, be a solution to the min-
imal surface system (11.19). Assume (up to a translation and a dilation)
that B1(0) € Q and u(0) = 0. There for o € (0,1) there exist positive
numbers §, v and ¢ depending on m, n and o such that if

H™ (G N B1(0)) < (1 4+ §)wy,
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then u € CY7(B2(0)) and

1l .o By < 07 (11.78)

11.4.6 Abstract varifolds

Rectifiable varifolds are Radon measures in R*™™. A compactness the-
orem for measures assures that a sequence of varifolds with equibounded
masses admits a subsequence converging in the sense of measures. The
limit, however, is a Radon measure whose support in general might not
be rectifiable. This motivates the introduction of a stronger convergence
and of a larger class of objects.

Definition 11.99 Given an open set U C R™"™™, the Grassmannian fiber
bundle of n-planes on U is

Gn,(U):=U xG(n,m), 7:G,U)—-U

where
O(n+m)
O(n) x O(m)
is the Grassmannian of n-planes in R"*™ and n(z, S) = x for everyx € U
and every n-plane S. We endow G,,(U) with the product topology.

1

G(n,m)

Definition 11.100 An n-varifold in U C R™™™ is a Radon measure V
on the Grassmannian fiber bundle G, (U). Associated to V there is a
measure py on U defined by

py (A) :=V(n~Y(A)), VA CU measurable.
Finally we define the mass of V,
M(V) = i (U).

Remark 11.101 The class of abstract varifolds contains the class of rec-
tifiable varifolds: to a rectifiable n-varifold v(3, ) we can associate the
abstract varifold V' defined by

V(B) =v(Z,0)(n(BNTX)), B C G,(U) measurable,

being
TY = {(z,T,X) : x € .} C Go(U)

the tangent bundle of X (X, is the set of points of 3 where the approximate
tangent plane is defined). Clearly in this case py = v(2, ) because

v (A) = V(r™H(A)) = v(%,0)(n(r~1(A) N TE)) = v(X, 0)(A).
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We give the space of n-dimensional varifolds in U the weak-* topology
of Radon measures, so that V,, — V if and only if for every f € C(G,,(U))
we have

/ f(z,9)dV,(z,S) — f(z,9)dV (z,S).
Gn(U) G, (U)

Remark 11.102 The convergence just defined, which we call conver-
gence in the sense of varifolds, is stronger than the convergence defined
for rectifiable varifolds. For instance, if Vi, = v(X, 0;) — V is a sequence
of rectifiable varifolds converging in the sense of varifolds, then in a cer-
tain sense, both the supports (with multiplicity) and the tangent planes
of the varifolds Vj converge. As we shall see, this does not yet guarantee
(without further assumptions) that V' is also rectifiable.

11.4.7 Image and first variation of an abstract vari-
fold

Definition 11.103 Given a proper Lipschitz map ¢ : U C R*™™ — U
and an n-dimensional varifold V , define the image varifold

ppV(A) = /FI(A) Jo(z,S)dV(z,S),  VACGuU),  (11.79)

where F : Gp(U) — G, (U) is given by
F(z,S) = (p(x),dpsS), z=eU, SeG(n,m),

while

Jo(z,S) = \/det ((d(pm|s)*dapm’5).

Remark 11.104 The image varifold ¢4V can also be defined using the
duality with continuous functions on G, (U):

paV(h) = [

m%v=/ F(o(@), dpsS).Jo(, S)dV (z, ).
Gn(U)

Gn(U)
(11.80)
It is possible to pass from (11.79) to (11.80) using the characteristic func-
tions of subsets A C G,,(U) and then approximating,.

We define the first variation of an abstract varifold in a way similar to
that used for rectifiable varifolds: let ¢, be as in Definition 11.89. Then
the first variation of a varifold V' with respect to ¢, is

d
t=0
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with 5
X(z) = Wéil‘) (z,0).

The definition is well posed, since §V (X) only depends on the vector field
X. In fact with the same computation as in Propositions 11.16 and 11.17
and one can see that

SV(X) = / divS X (2)dV (z, S), (11.82)
G (U)
being
div® X(z Z 7i - (V5 X),
for a choice of an orthonormal basis {71,...,7,} of S.

Definition 11.105 Given a varifold V in U C R™™  its (total) first
variation in W C U is

lovil = sup |5V (X)), (11.83)
XeCH(UR"t™)
sup | X |<1, spt XCW

where 0V (X) is defined in (11.82).

Remark 11.106 If V is the abstract varifold induced by a rectifiable vari-
fold v(%,0) (compare Remark 11.101), then ¢4V is the abstract varifold
corresponding to ¢xv(X,0) (compare Definition 11.88). For this reason
the first variation of a rectifiable varifold is the same as the first variation
of the corresponding abstract varifold.

11.4.8 Allard’s compactness theorem

Allard’s compactness theorem gives a natural condition under which a
sequence of rectifiable integer multiplicity varifolds admits a subsequence
converging in the sense of varifolds (i.e. on the Grassmannian) to an
integer multiplicity rectifiable varifold.

Example 11.107 Consider the sequence of functions u, : [0,1] — R
defined by

un(z) = {n—f (11.84)

where {x} denotes z minus its integral part.” The graph of u,, is an integer
multiplicity rectifiable 1-varifold in R? (see Figure 11.1), and as n — +o0,

9For instance {7} = 0, 14159265 ...
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N[

Figure 11.1: The functions us and uy in (11.84).

the weak limit of v(G,,,, 1) as rectifiable varifolds is v/2H! ([0, 1] x {0}),
whose corresponding abstract varifold is

V2HIL([0,1] x {0}) x &,

identifying a line in R? (an element of G1(R?)) with the angle it spans
with the xz-axis, in this case 0. On the other hand, the weak limit in the
sense of varifolds is

1
V2H'L([0,1] x {0}) x 6=,
which is not rectifiable.

It is not hard to prove that in the preceding example [|0G,,, || — +oo
and the following theorem of Allard, for the proof of which we refer to
[97], does not apply.

Theorem 11.108 (Compactness) Consider a sequence of integer mul-
tiplicity rectifiable varifolds V; in a bounded open set U whose masses and
first variations are locally equibounded, that is such that for every W € U

sup (M(V;] ) + [18V3[[(W)) < +o0.
JZ

Then there exists a subsequence Vi converging in the sense of varifolds to
an integer multiplicity rectifiable varifold V', and

IsVI[(W) < liminf IV, VW € U.
J—T o0
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