Script of lecture nmma405

Petr Kaplický

January 31, 2017

1 Motivation for weak solution

Many principles of physics can be written in the form of a partial differential equation, see (1).

1.1 Heat flow through a nonhomogeneous material

If data are not smooth, we cannot expect regularity of solutions. This situation happens for example if we are interested in heat flow through a real wall built of several material with different heat conductivity. If we are interested in stationary flow we need to solve an equation $-\operatorname{div}(A\nabla u) = 0$ in $\Omega \subset \mathbb{R}^d$ with a boundary condition $u = u_0$ on $\partial\Omega$. The unknown temperature is $u : \Omega \to \mathbb{R}$. The set Ω , the function $u_0 : \partial\Omega \to \mathbb{R}$ and the matrix function $A : \Omega \to \mathbb{R}^{d \times d}$ are given. The function A is influenced by the heat conductivity and can be discontinuous.

1.2 Calculus of variations

Let $L: \mathbb{R}^d \times \mathbb{R} \times \Omega \to \mathbb{R}$, L = L(p, z, x). For $u \in C^1(\overline{\Omega})$ we define

$$I(u) = \int_{\Omega} L(\nabla u(x), u(x), x) \,\mathrm{d}\, x.$$

We search for a local minimum or maximum of I in $X = \{u \in C^1(\overline{\Omega}), u = 0 \text{ on } \partial\Omega$.

Definition 1. We say that $u_0 \in X$ is a local minimizer of I in X if

$$\exists \delta > 0, \forall u \in X : \|u - u_0\|_{C^1(X)} < \delta \implies I(u_0) \le I(u).$$

Lemma 1 (1-necessary condition of minima). Let $L \in C^1(\mathbb{R}^{2d+1})$, $u_0 \in X$ be a local minimizer of I in X, $h \in \mathcal{D}(\Omega)$, $h \neq 0$. Define for $t \in \mathbb{R}$ $g(t) = I(u_0 + th)$. Then g'(0) = 0, *i.e.*

$$\forall h \in \mathcal{D}(\Omega) : \int_{\Omega} \partial_p L(\nabla u(x), u(x), x) \cdot \nabla h(x) \, \mathrm{d} \, x + \partial_z L(\nabla u(x), u(x), x) h(x) \, \mathrm{d} \, x = 0.$$
(1)

The equation (1) is a weak formulation of the PDE

$$\operatorname{div} \nabla_p L(\nabla u(x), u(x), x) + \partial_z L(\nabla u(x), u(x), x) = 0$$

for an unknown function u.

2 Sobolev spaces

In the whole section $\Omega \subset \mathbb{R}^d$ is an open set.

Definition 2. Let $u \in L^1_{loc}(\Omega)$, $\alpha \in \mathbb{N}^d_0$ be a multi-index. A function $v \in L^1_{loc}(\Omega)$ is called the α^{th} weak derivative of u if

$$\forall \varphi \in \mathcal{D}(\Omega) : \int_{\Omega} \varphi v = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi.$$

We denote it by $D^{\alpha}u$.

In the rest all derivatives will be understand in the weak sense if not explicitely differently.

Definition 3 (Sobolev space). For $p \in [1, +\infty]$, $k \in \mathbb{N}$ we define Sobolev space

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) | \forall \alpha \in \mathbb{N}_0^d : |\alpha| \le k \implies D^{\alpha} u \in L^p(\Omega) \}.$$

For $u \in W^{k,p}(\Omega)$ we define

$$\|u\|_{W^{k,p}(\Omega)} = \begin{cases} \left(\int_{\Omega} \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le k} |D^{\alpha} u|^p \right)^{\frac{1}{p}} & \text{if } p \in [1, +\infty), \\ \max_{\alpha \in \mathbb{N}_0^d, |\alpha| \le k} \|D^{\alpha} u\|_{L^{\infty}(\Omega)} & \text{if } p = +\infty. \end{cases}$$

We denote $V \Subset \Omega$ if V is open and bounded subset of Ω such that $\overline{V} \subset \Omega$. We say that $u \in W_{loc}^{k,p}(\Omega)$ if for any $V \Subset \Omega$, $u \in W^{k,p}(V)$. For $u, v \in W^{k,2}(\Omega)$ we define

$$\langle u, v \rangle_{W^{k,2}(\Omega)} = \int_{\Omega} \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le k} D^{\alpha} u D^{\alpha} v.$$

Remark 1. • Functions in $W^{k,p}(\Omega)$ are determined up to a set of Lebesgue measure zero.

If we say that u ∈ W^{k,p}(Ω) has some property, e.g. u is continuous, we mean that there is a representative with this property.

• If $p \in [1, +\infty)$ let us define for $u \in W^{k,p}(\Omega)$

$$|||u||| = \left(\sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}.$$

Then $||| \cdot |||$ is an equivalent norm on $W^{k,p}(\Omega)$ to $|| \cdot ||_{W^{k,p}(\Omega)}$.

Example 1. Function $f_{\alpha}(x) = |x|^{\alpha}$ for $\alpha \in \mathbb{R}$, $x \in \mathbb{R}^d$ belongs to $W^{1,p}_{loc}(\mathbb{R}^d)$, p > 1 if $\alpha > 1 - \frac{d}{p}$.

2.1 Basic properties of Sobolev spaces

Theorem 1 (2). (Properties of the weak derivative) (4, Section 5.2.3) Let $u, v \in W^{k,p}(\Omega), k \in \mathbb{N}, p \in [1, +\infty]$ and $\alpha \in (\mathbb{N}_0)^d, |\alpha| < k$. Then

- 1. $D^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$ and $D^{\alpha}(D^{\beta}u) = D^{\beta}(D^{\alpha}u)$ for $|\alpha| + |\beta| \le k$
- 2. $\lambda, \mu \in \mathbb{R} \implies \lambda u + \mu v \in W^{k,p}(\Omega) \text{ and } D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha}u + \mu D^{\alpha}v.$
- 3. if $\tilde{\Omega} \subset \Omega$ open, then $u \in W^{k,p}(\tilde{\Omega})$
- 4. if $\eta \in \mathcal{D}(\Omega)$, then $\eta u \in W^{k,p}(\Omega)$ and

$$D^{\alpha}(\eta u) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} D^{\beta} \eta D^{\alpha-\beta} u.$$

Remark 2. For $\alpha, \beta \in \mathbb{N}_0^d$, $\alpha! = \prod_{j=1}^d \alpha_j!$ and the number $\binom{\alpha}{\beta}$ is defined by $\alpha!/((\alpha - \beta)!\beta!)$.

- **Example 2.** 1. If d = 1 and f(x) = sgn(x) then for any $p \in [1, +\infty]$, $f \notin W^{1,p}(-1, 1)$.
 - 2. If d = 1 and f(x) = |x| then for any $p \in [1, +\infty]$, $f \in W^{1,p}(-1, 1)$.
 - 3. $W^{1,1}(-1,1) = AC(-1,1)$
 - 4. Cantor function c is continuous on (0,1), with c' = 0 a.e. in (0,1), but for all $p \ge 1$, $c \notin W^{1,p}(0,1)$. The function c is not absolutely continuous.

Let $h \in \mathcal{D}(\mathbb{R}^d)$, spt $h \subset U(0,1)$, $\int_{\mathbb{R}^d} h = 1$. We define $h^j(x) = j^d h(jx)$ for $x \in \mathbb{R}^d$.

Definition 4. For $u \in W^{k,p}(\Omega)$ we denote $u^j = u \star h^j$ where the expression on the right hand side is well defined.

Lemma 2 (3). (3, Lemma 2.1.3) Let $u \in W^{k,p}(\Omega)$, $p \in [1, +\infty)$, then for all $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$ there holds $(D^{\alpha}u)^j = D^{\alpha}(u^j)$ and $u^j \to u$ in $W^{k,p}_{loc}(\Omega)$.

Theorem 2 (4). (3, Theorem 2.1.4)

Let $u \in L^p(\Omega)$, $p \ge 1$. Then $u \in W^{1,p}(\Omega)$ if and only if u has a representative \tilde{u} that is absolutely continuous on λ^{d-1} a.e. line segments in Ω parallel to the coordinate axis and whose classical partial derivatives (that exits almost everywhere) belong to $L^p(\Omega)$.

Proof was not presented.

Corollary 1 (5). (3, 2.1.11) Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function and $u \in W^{1,p}(\Omega)$, $p \ge 1$. If $f \circ u \in L^p(\Omega)$ then $f \circ u \in W^{1,p}(\Omega)$ and for a. e. $x \in \mathbb{R}$ $\nabla(f \circ u)(x) = f'(u(x))\nabla u(x)$.

Definition 5. For a function $u: \Omega \to \mathbb{R}$ let $u^+ = \max(u, 0), u^- = \min(u, 0)$.

Corollary 2 (6). (3, 2.1.8) Let $u \in W^{1,p}(\Omega)$, $p \ge 1$. Then $u^+, u^- \in W^{1,p}(\Omega)$ and

$$Du^{+} = \begin{cases} Du & \text{if } u > 0\\ 0 & \text{if } u \le 0 \end{cases} \qquad Du^{-} = \begin{cases} Du & \text{if } u < 0\\ 0 & \text{if } u \ge 0 \end{cases}$$

a.e. in Ω .

Theorem 3 (7). (3, 2.2.2) Let $T : \mathbb{R}^d \to \mathbb{R}^d$ be a bi-Lipschitzian mapping such that $T : \Omega' \to \Omega$ and

$$\exists M > 0, \forall x, y \in \Omega, \forall x', y' \in \Omega' : \frac{|T(x') - T(y')| \le M|x' - y'|}{|T^{-1}(x) - T^{-1}(y)| \le M|x - y|}.$$

If $u \in W^{1,p}(\Omega)$, $p \ge 1$, then $v = u \circ T \in W^{1,p}(V)$ where $V = T^{-1}(\Omega)$ and for a. e. $x \in \Omega'$ and any $\xi \in \mathbb{R}^d$

$$\nabla u(T(x))\nabla T(x)\xi = \nabla u(x)\xi$$

Remark 3 (8). In the situation of the previous theorem there is C > 0 such that for any $U \subset \Omega$, $V = T^{-1}U$ open sets, $||u||_{W^{1,p}(U)} \leq C||v||_{W^{1,p}(V)} \leq C^2 ||u||_{W^{1,p}(U)}$.

Theorem 4 (8). (Basic properties of Sobolev spaces) Let $k \in \mathbb{N}$.

- 1. If $p \in [1, +\infty]$, $(W^{k,p}(\Omega), \|\cdot\|_{k,p})$ is a Banach space.
- 2. $(W^{k,2}(\Omega), \langle \cdot, \cdot \rangle_{k,2})$ is a Hilbert space.
- 3. If $p \in [1, +\infty)$, $W^{k,p}(\Omega)$ is separable.
- 4. If $p \in (1, +\infty)$, $W^{k,p}(\Omega)$ is reflexive.

Theorem 1 (9,10). (2, Theorem 3.8) Let $p \in [1, +\infty)$, $N \in \mathbb{N}$ be a number of multiindices $\alpha \in \mathbb{N}_0^d$ such that $|\alpha| \leq m$. For every $L \in W^{m,p}(\Omega)^*$ there exists an element $(v \in L^{p'}(\Omega))^N$ such that, writing the vector v in the form $(v)_{\alpha \in \mathbb{N}_0^d, |\alpha| \leq N}$ we have for all $u \in W^{m,p}(\Omega)$

$$L(u) = \sum_{\alpha \in \mathbb{N}_0^d, |\alpha| \le N} \langle D^{\alpha} u, v \rangle.$$
(2)

Moreover $||L||_{W^{m,p}(\Omega)^*} = \inf ||v||_{L^{p'}(\Omega)^N} = \min ||v||_{L^{p'}(\Omega)^N}$, the infimum being taken over, and attained on the set of all $v \in L^{p'}(\Omega)^N$ for which (2) holds for every $u \in W^{m,p}(\Omega)$.

2.2 Approximation and extension of Sobolev functions

Lemma 3 (11). (Partition of unity) (3, Lemma 2.3.1) Let $E \subset \mathbb{R}^d$, \mathcal{G} be a collection of open sets such that $E \subset \bigcup_{U \in \mathcal{G}} U$. Then there is a family \mathcal{F} of nonnegative functions $f \in \mathcal{D}(\mathbb{R}^d)$ such that $0 \leq f \leq 1$ and

- 1. $\forall f \in \mathcal{F}, \exists U \in \mathcal{G} : \operatorname{spt} f \subset U$
- 2. $\forall K \subset E, K \text{ compact} : \operatorname{spt} f \cap K \neq \emptyset \text{ for only finitely many } f \in \mathcal{F}$
- 3. $\sum_{f \in \mathcal{F}} f(x) = 1$ for every $x \in E$
- 4. if E is compact, the family \mathcal{F} is finite
- 5. family \mathcal{F} is at most countable

Theorem 5 (12). (3, Theorem 2.3.2) The set $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. The set $\{f \in C^{\infty}(\Omega), \exists R > 0 : \operatorname{spt} f \subset U(0,R)\} \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Lemma 4 (13). Let $u \in L^p(\mathbb{R}^d)$, $p \in [1, +\infty)$. For $h \in \mathbb{R}^d$, $h \neq 0$ and $x \in \mathbb{R}^d$ define $u_h(x) = u(x+h)$. Then $u_h \to u$ in $L^p(\mathbb{R}^d)$ as $h \to 0$.

Lemma 5 (14). Let $V = U(0, R) \cap \{x \in \mathbb{R}^d; x_d > 0\}$, $\epsilon > 0$, $u \in W^{k,p}(\{x \in \mathbb{R}^d; x_d > 0\})$ with spt $u \subset V$. Then there is a function $v \in C^{\infty}(\{x \in \mathbb{R}^d; x_d \geq 0\})$ such that spt $v \subset U(0, 2R) \cap \{x \in \mathbb{R}^d; x_d \geq 0\}$ and $||u - v||_{W^{k,p}(V)} < \epsilon$.

Theorem 6 (15). (4, Section 5.3.3, Theorem 3), (2, Theorem 3.18) Let $k \in \mathbb{N}$, $p \in [1, +\infty)$, $\Omega \subset \mathbb{R}^d$ be bounded with C^1 boundary. Then $C^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$.

Lemma 6 (16). Let us equip $X = \{U \in C^1(\{x \in \mathbb{R}^d | x_d \ge 0\}) | \operatorname{spt} U \subset U(0, R)\}$ with a norm $\|\cdot\|_X = \|\cdot\|_{W^{1,p}(U(0,R)) \cap \{x \in \mathbb{R}^d | x_d \ge 0\}}$ and $Y = \{U \in C^1(\mathbb{R}^d) | \operatorname{spt} U \subset U(0,2R))\}$ with a norm $\|\cdot\|_Y = \|\cdot\|_{W^{1,p}(U(0,2R))}$. Then there is a linear mapping $\tilde{E}: X \to Y$ such that

$$||E||_{\mathcal{L}((X,\|\cdot\|_X),(Y,\|\cdot\|_Y))} < C(p,R).$$

and $\tilde{E}u = u$ on $\{x \in \mathbb{R}^d | x_d \ge 0\}$ for any $u \in X$.

Theorem 7 (17). (4, Section 5.4, Theorem 1) Assume $\Omega \subset \mathbb{R}^d$ open, bounded and with C^1 boundary. Fix $V \subset \mathbb{R}^d$ open such that $\Omega \Subset V$. Then there is a bounded linear operator $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^d)$ such that for all $u \in W^{1,p}(\Omega)$

- 1. Eu = u a.e. in Ω
- 2. spt $Eu \subset V$
- 3. $||E|| \leq C$ with $C = C(p, \Omega, V)$

2.3 Embeddings of Sobolev spaces

We introduce a notation

$$\int_{\mathbb{R}^{d-1}} \widehat{f \, \mathrm{d} \, x_i} = \int_{\mathbb{R}^{d-1}} f \, \mathrm{d} \, x_i \dots \mathrm{d} \, x_{i-1} \, \mathrm{d} \, x_{i+1} \dots \mathrm{d} \, x_d.$$

Lemma 7 (18). (4, Section 5.6, Theorem 1) Let $d \ge 2$, for $i \in \{1, \ldots, d\}$, $u_i \in C_c^1(\mathbb{R}^{d-1})$ and u_i be independent of x_i . Then

$$\int_{\mathbb{R}^d} \prod_{i=1}^d |u_i| \le (\prod_{i=1}^d \int_{\mathbb{R}^{d-1}} |u_i|^{d-1} \widehat{\mathrm{d} x_i})^{\frac{1}{d-1}}.$$

Lemma 8 (19). (4, Section 5.6, Theorem 1) Let d > 2, $u \in C_c^1(\mathbb{R}^d)$. Then for $p \in [1, d)$, $p^* = \frac{dp}{d-p}$, i.e. $-\frac{d}{p^*} = 1 - \frac{d}{p}$

$$||u||_{L^{p^*}(\Omega)} \le p \frac{d-1}{d-p} ||\nabla u||_{L^p(\mathbb{R}^d)}.$$

Theorem 8 (20). Let $p \in [1, d)$, d > 2. Then $W^{1,p}(\mathbb{R}^d) \hookrightarrow L^{p^*}(\mathbb{R}^d)$.

Definition 6. For $p \in [1, +\infty]$ we define $W_0^{k,p}(\Omega) = \overline{\mathcal{D}(\Omega)}^{\|\cdot\|_{k,p}}$

Theorem 9 (21). Let $p \in [1, d)$, d > 2, Ω bounded. Then for all $q \in [1, p^*]$ exists C > 0 such that for all $u \in W_0^{1,p}(\Omega)$ there holds $\|u\|_{L^q(\Omega)} \leq C \|\nabla u\|_{L^p(\Omega)}$.

Remark 4. $\|\cdot\|_{1,p}$ and $\|\nabla\cdot\|_p$ are equivalent norms on $W_0^{1,p}(\Omega)$ if Ω is bounded.

Theorem 10 (22). Let $p \in [1, d)$, d > 2, $\Omega \subset \mathbb{R}^d$ bounded with C^1 boundary. Then

 $\exists C_p > 0, \forall u \in W^{1,p}(\Omega) : \|u\|_{L^{p^*}(\Omega)} \le C_p \|u\|_{W^{1,p}(\Omega)}.$

Lemma 9 (24). (5, Lemma 7.16) Let $u \in C^1(\mathbb{R}^d)$, $\Omega \subset \mathbb{R}^d$ bounded convex, $x \in \Omega$. Then

$$|u(x) - \int_{\Omega} u| \leq \frac{R^d}{d|\Omega|} \int_{\Omega} |\nabla u(y)| |y - x|^{1-d} \,\mathrm{d}\, y.$$

Theorem 11 (25-Sobolev-Poincaré inequality). Let $\Omega \subset \mathbb{R}^d$ be bounded and convex. Then

$$\forall q < p^*, \exists C > 0, \forall u \in W^{1,p}(\Omega) : \|u - \int_{\Omega} u\|_{L^q(\Omega)} \le C \|\nabla u\|_{L^p(\Omega)}.$$

Remark 5. (3, Corollary 4.2.3) Previous theorem holds also if $p \ge 1$ and $q = p^*$.

Lemma 10 (26). Let $u \in C_c^1(\mathbb{R}^d)$, $\alpha = 1 - \frac{d}{p}$. Then

$$\forall x, y \in \mathbb{R}^d : \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(p, d) \|\nabla u\|_{L^p(\mathbb{R}^d)}, \quad |u(x)| \le C(p, d) \|u\|_{W^{1, p}(\mathbb{R}^d)}.$$

Definition 7. We define for $\alpha \in (0,1]$ and $f: \Omega \to \mathbb{R}$ a

$$[f]_{C^{0,\alpha}(\overline{\Omega})} := \sup\{\frac{|f(x) - f(y)|}{|x - y|^{\alpha}}; x, y \in \Omega, x \neq y\},\\ \|f\|_{C^{0,\alpha}(\Omega)} = \|f\|_{L^{\infty}(\Omega)} + [f]_{C^{0,\alpha}(\overline{\Omega})}.$$

We define $C^{0,\alpha}(\overline{\Omega}) = \{f: \Omega \to \mathbb{R}; \|f\|_{C^{0,\alpha}(\overline{\Omega})} < +\infty\}.$

Theorem 12 (27). (6, Theorem 1.3.3) Let $\alpha \in (0, 1]$. The space $(C^{0,\alpha}(\overline{\Omega}), \|\cdot\|_{0,\alpha})$ is a Banach space.

Theorem 13 (28). Let $p \in (d, +\infty]$, $\alpha = 1 - \frac{d}{p}$, then $W^{1,p}(\mathbb{R}^d) \hookrightarrow C^{0,\alpha}(\mathbb{R}^d)$.

Theorem 14 (29). Let $p \in (d, +\infty]$, $\Omega \subset \mathbb{R}^d$ bounded with C^1 boundary. Then $W^{1,p}(\Omega) \hookrightarrow C^{0,\alpha}(\overline{\Omega})$.

Theorem 15 (30). (4, Theorem 5.5.1) Let $d \in \{2, ...\}$, $\Omega \subset \mathbb{R}^d$ be bounded with C^1 boundary, $p \in [1, +\infty)$, $p^{\#} = \frac{(d-1)p}{d-p}$ if p < d. Let

$$q \in \begin{cases} [1, p^{\#}] & \text{ if } p < d, \\ [1, +\infty) & \text{ if } p = d, \\ [1, +\infty] & \text{ if } p > d. \end{cases}$$

Then there is a bounded linear operator $\operatorname{Tr} : W^{1,p}(\Omega) \to L^q(\partial\Omega)$ such that for $f \in C^{\infty}(\overline{\Omega})$ the equality $\operatorname{Tr} f = f|_{\partial\Omega}$ holds on $\partial\Omega$.

Theorem 16 (31). (2, Theorem 6.2), (2, Theorem 5.4) Let $d \in \{2, ...\}$, $\Omega \subset \mathbb{R}^d$ be bounded with C^1 boundary, $p \in [1, +\infty)$.

case
$$p < d$$
 — If $q \in [1, p^*)$ the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact.
— If $q \in [1, p^{\#})$ the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ is compact.

 $\begin{array}{ll} case \ p=d & - \ I\!f \ q \in [1,+\infty) \ the \ embeddings \ W^{1,p}(\Omega) \ \hookrightarrow \ L^q(\Omega) \ and \ W^{1,p}(\Omega) \ \hookrightarrow \\ L^q(\partial\Omega) \ are \ compact. \end{array}$

case
$$p > d$$
 – If $\alpha \in [0, 1 - \frac{d}{p})$ the embedding $W^{1,p}(\Omega) \hookrightarrow C^{0,\alpha}(\overline{\Omega})$ is compact.
– If $\alpha \in [0, 1 - \frac{d}{p})$ the embeddings $W^{1,p}(\Omega) \hookrightarrow C^{0,\alpha}(\partial\Omega)$ is compact.

This theorem was presented in a different form without proof.

Theorem 17 (32). Let Ω be bounded with C^1 boundary, $p \in [1, +\infty)$. Then

$$W_0^{1,p}(\Omega) = \{ u \in W^{1,p}(\Omega) | \operatorname{Tr} u = 0 \text{ on } \partial\Omega. \}$$

2.4 Difference quotients and weak derivatives

Definition 8. Let $u \in L^1_{loc}(\Omega)$, $i \in \{1, \ldots, d\}$. The *i*-th difference quotient of size $h \in \mathbb{R} \setminus \{0\}$ is $D^h_i u(x) = \frac{1}{h}(u(x+he_i)-u(x))$ for $x \in \Omega$ s.t. $x+he_i \in \Omega$.

Theorem 18 (32). *i)* Let $p \in [1, +\infty)$, $u \in W^{1,p}(\Omega)$. Then there is C > 0 such that for all $V \subseteq \Omega$, $i \in \{1, \ldots, d\}$, $|h| < \frac{1}{2}(\operatorname{dist}(V, \partial\Omega))$ there holds $\|D_i^h u\|_{L^p(V)} \leq C \|\partial_i u\|_{L^p(\Omega)}$.

ii) Let $p \in (1, +\infty)$, $u \in L^p(\Omega)$ and there is C > 0, $V \Subset \Omega$, $i \in \{1, \ldots, d\}$ such that for all $|h| < \frac{1}{2}(\operatorname{dist}(V, \partial \Omega))$ there holds $\|D_i^h u\|_{L^p(V)} \leq C$. Then the weak derivative $\partial_i u$ exists and $\|\partial_i u\|_{L^p(V)} \leq C$.

3 Linear elliptic PDE's of second order

In this section we will assume

Assumption 1 (33). The set Ω and functions $A = (a_{ij})_{i,j=1}^d : \Omega \to \mathbb{R}^{d \times d}$, $b = (b_i)_{i=1}^d : \Omega \to \mathbb{R}^d$, $c, f : \Omega \to \mathbb{R}$, $g, u_0 : \partial\Omega \to \mathbb{R}$ are given with the following properties.

- $\Omega \subset \mathbb{R}^d$ with C^1 boundary, a bounded domain
- there is $\alpha > 0$ such that for all $\xi \in \mathbb{R}^d$ and a.e. $x \in \Omega$ there holds $\alpha |\xi|^2 \leq A\xi \cdot \xi$
- for all $i, j \in \{1, \ldots, d\}$ there holds $a_{ij}, b_i, c \in L^{\infty}(\Omega)$
- $f \in L^2(\Omega)$
- $g \in L^2(\partial \Omega)$
- u_0 is a trace of a function from $W^{1,2}(\Omega)$, we denote it again $u_0 \in W^{1,2}(\Omega)$

We will study the equation

$$-\operatorname{div}(A\nabla u) + b \cdot \nabla u + cu = f \quad \text{in } \Omega \tag{3}$$

with two types of boundary conditions. We will prescribe either Dirichlet boundary condition

$$u = u_0 \quad \text{on } \partial\Omega \tag{4}$$

or Neumann boundary condition

 $A\nabla u \cdot \nu = g$ on $\partial\Omega$, here ν denotes the normal unit vector to Ω . (5)

Definition 9. We say that $u : \Omega \to \mathbb{R}$ is a weak solution to the problem (3) with the boundary condition (4) if $u \in W^{1,2}(\Omega)$, $u - u_0 \in W^{1,2}_0(\Omega)$, i.e. Tr $u = u_0$, and

$$\forall \varphi \in W_0^{1,2}(\Omega) : \int_{\Omega} A \nabla u \cdot \nabla \varphi + b \cdot \nabla u \varphi + c u \varphi = \int_{\Omega} f \varphi.$$
 (6)

We say that $u : \Omega \to \mathbb{R}$ is a weak solution to the problem (3) with the boundary condition (5) if $u \in W^{1,2}(\Omega)$ and

$$\forall \varphi \in W^{1,2}(\Omega) : \int_{\Omega} A \nabla u \cdot \nabla \varphi + b \cdot \nabla u \varphi + c u \varphi = \int_{\Omega} f \varphi + \int_{\partial \Omega} g \operatorname{Tr}(\varphi).$$
(7)

3.1 Existence of a weak solution by Riesz Theorem

Theorem 19. (7, Theorem 19) Let H be a real Hilbert space. Define for $y \in H$, $f_y \in H^*$ by $f_y(x) = \langle x, y \rangle$ for all $x \in H$. The mapping $I : H \to H^*$, $I(y) = f_y$ is linear isometry of H onto H^* .

Theorem 20 (35). Let Assumption 1 hold. Moreover let for all $i, j \in \{1, ..., d\}$ and a.e. $x \in \Omega$ $a_{ij}(x) = a_{ji}(x)$, b(x) = 0.

- 1. Then there is $\gamma < 0$ such that if $c > \gamma$ on Ω then a weak solution of (3) and (4) exists. It satisfies $\|u\|_{W^{1,2}(\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|u_0\|_{W^{1,2}(\Omega)})$ for a suitable C > 0 independent of f and u_0 .
- 2. If c > 0 on Ω then there is a weak solution of (3) and (5). It satisfies $\|u\|_{W^{1,2}(\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|g\|_{L^2(\partial\Omega)})$ for a suitable C > 0 independent of f and g.

The solutions are unique.

Lemma 11 (36 Lax Milgram). (4) Let H be a real Hilbert space with a scalar product $\langle \cdot, \cdot \rangle_H$ and an induced norm $\|\cdot\|_H$. Let $B : H \times H \to \mathbb{R}$ be a bilinear mapping that is

- (elliptic) $\exists m > 0, \forall u \in H : m ||u||_{H}^{2} \leq B(u, u)$
- (bounded) $\exists M > 0, \forall u, v \in H : B(u, v) \le M \|u\|_H \|v\|_H$

Then for every $F \in H^*$ there is a unique $u \in H$ such that $\forall v \in H : B(u, v) = F(v)$. Moreover, $\|u\|_H \leq \frac{1}{m} \|F\|_{H^*}$.

Theorem 21 (37). Let Assumption 1 hold. Then there is $\gamma \in \mathbb{R}$ such that if $c > \gamma$ on Ω then there is a weak solution u of (3) and (4) or (5). The solution is unique and satisfies $||u||_{W^{1,2}(\Omega)} \leq C(||f||_{L^2(\Omega)} + ||u_0||_{W^{1,2}(\Omega)})$, resp. $||u||_{W^{1,2}(\Omega)} \leq C(||f||_{L^2(\Omega)} + ||g||_{L^2(\Omega)}).$

Theorem 22 (38). *Let*

- $A: \mathbb{R}^d \to \mathbb{R}^{d \times d}, b: \mathbb{R}^d \to \mathbb{R}^d, c, f: \mathbb{R}^d \to \mathbb{R}$
- $A, b, c \in L^{\infty}(\mathbb{R}^d), f \in L^2$

There is $\gamma \in \mathbb{R}$ such that $c > \gamma$ implies existence of $u \in W^{1,2}(\mathbb{R}^d)$ such that

$$\forall \varphi \in W^{1,2}(\mathbb{R}^d) : \int_{\mathbb{R}^d} A \nabla u \cdot \nabla \varphi + b \cdot \nabla u \varphi + c u \varphi = \int_{\mathbb{R}^d} f \varphi.$$

The solution is unique and $||u||_{W^{1,2}(\mathbb{R}^d)} \leq C ||f||_{L^2(\mathbb{R}^d)}$.

3.2 Application of Fredholm Theorems

We introduce the differential operator

$$Lu = -\operatorname{div}(A\nabla u) + b \cdot \nabla u + cu - \operatorname{div}(du)$$
(8)

and its formal adjoint

$$L^*u = -\operatorname{div}(A^T \nabla u) + d \cdot \nabla u + cu - \operatorname{div}(bu)$$
(9)

We consider here only homogeneous Dirichlet boundary condition u = 0 on $\partial \Omega$.

If we assume sufficient regularity of functions c and d we may apply the theory developed in the previous section to get existence of a weak solutions to the problem Lu = f in Ω and u = 0 on $\partial\Omega$. The statement $u \in W_0^{1,2}(\Omega)$ solves the problem Lu = f in Ω with the boundary condition u = 0 on $\partial\Omega$ is understood in the weak sense in what follows.

We will assume that Assumption 1 hold and moreover for simplicity $b, d, \in W^{1,\infty}(\Omega)$.

- **Theorem 23** (39-Fredholm alternative). 1. (a) Either for all $f \in L^2(\Omega)$ there exists a unique $u \in W_0^{1,2}(\Omega)$ a weak solution of Lu = f in Ω , u = 0 on $\partial\Omega$
 - (b) or there is $u \in W_0^{1,2}(\Omega) \setminus \{0\}$ a weak solution of Lu = 0 in Ω , u = 0 on $\partial\Omega$.
 - 2. In case 1b) denote $\operatorname{Ker} L = \{u \in W_0^{1,2}(\Omega); Lu = 0\} \neq \emptyset$, $\operatorname{Ker} L^* = \{u \in W_0^{1,2}(\Omega); L^*u = 0\}$. Then dim $\operatorname{Ker} L = \dim \operatorname{Ker} L^*$.
 - 3. In case 1b) there is a weak solution to Lu = f in Ω , u = 0 on $\partial\Omega$ if $f \in L^2(\Omega)$ and for all $\varphi \in \text{Ker } L^*$, $\int_{\Omega} f\varphi = 0$.

Theorem 24 (40). (4, Section 6.2, Theorem 5) Let Ω be a bounded domain. There is at most countable set $\Sigma \subset \mathbb{R}$ such that the following is equivalent:

- 1. $\lambda \notin \Sigma$
- 2. $\forall f \in L^2(\Omega), \exists ! u \in W_0^{1,2}(\Omega)$ a weak solution of the problem $Lu = \lambda u + f$ in $\Omega, u = 0$ on $\partial \Omega$.

If Σ is not finite, then $+\infty$ is its only cluster point.

Remark 6. The set Σ is called (real) spectrum of L.

Theorem 25 (41). Let the operator L satisfy: A be symmetric ($\forall i, j \in \{1, ..., d\}$: $a_{ij} = a_{ji}$), $\forall j \in \{1, ..., d\}$: $b_j = d_j$. Let Σ be the set from Theorem 24. Then

- 1. Σ is infinite. If we denote $\Sigma = \{\lambda_k\}_{k=1}^{+\infty}$ then $\lambda_k \to +\infty$ as $k \to +\infty$.
- 2. There exists an orthonormal basis $\{w_k\}_{k=1}^{+\infty}$ of $L^2(\Omega)$ such that $w_k \in W^{1,2}(\Omega)$ and it solves $Lw_k = \lambda w_k$ in Ω , $w_k = 0$ on $\partial\Omega$ for some $\lambda \in \Sigma$.

3. If b = d = 0 and $c \ge 0$ on Ω , then $\Sigma \subset (0, +\infty)$.

Theorem 26 (43-maximum principle). Let $u_0 \in L^{\infty}(\partial\Omega) \cap \operatorname{Tr}(W^{1,2}(\Omega)), c \geq 0$ on Ω and $u \in W^{1,2}(\Omega)$ is a weak solution to $-\operatorname{div}(A\nabla u) + cu = 0$ in Ω , $u = u_0$ on $\partial\Omega$. Then $u \in L^{\infty}(\Omega)$ and $||u||_{L^{\infty}} \leq ||u_0||_{L^{\infty}(\partial\Omega)}$.

Theorem 27 (44). Let $a_{ij} \in C^1(\overline{\Omega})$, $b_i, c \in L^{\infty}(\Omega)$ for all $i, j \in \{1, \ldots, d\}$, $f \in L^2(\Omega)$, $u \in W^{1,2}(\Omega)$ be a weak solution of Lu = f in Ω , u = 0 on $\partial\Omega$. Then $u \in W^{1,2}(\Omega)$ and $\|u\|_{W^{2,2}(\Omega)} \leq C(\|f\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)})$. The constant C > 0 is independent of f and u.

4 Nonlinear elliptic PDE's of second order

4.1 Basics of Calculus of Variations

Setting:

- 1. $\Omega \subset \mathbb{R}^d$ open bounded set with smooth boundary
- 2. $L: \mathbb{R}^d \times \mathbb{R} \times \overline{\Omega} \to \mathbb{R}$ a function called Lagrangian, $L = L(p, z, x), \ p \in \mathbb{R}^d, \ z \in \mathbb{R}, \ x \in \Omega.$
- 3. $g: \partial \Omega \to \mathbb{R}$

We are looking for a minimizer of

$$I(w) = \int_{\Omega} L(\nabla w(x), w(x), x) \, \mathrm{d} \, x$$

on the set of functions $X = \{w; w = g \text{ on } \partial \Omega\}.$

We will assume coercivity of L

$$\exists q \in (1, +\infty), \exists \alpha > 0, \beta \ge 0, \forall p \in \mathbb{R}^d, z \in \mathbb{R}, x \in \Omega : L(p, z, x) \ge \alpha |p|^q - \beta.$$
(10)

Remark 7. • If L is coercive then $I(w) \to +\infty$ as $\|\nabla w\|_{L^q(\Omega)} \to +\infty$.

•

$$\inf_{w \in X} I(w) = \inf\{I(w); w \in X, \|\nabla w\|_q \le \left(\frac{2L(w_0) + \beta'}{\alpha'}\right)^{\frac{1}{q}}\}$$

for any $w_0 \in X$ and suitable α' and β' .

Definition 10. $X = \{ w \in W^{1,q}(\Omega); \text{ Tr } w = g \text{ on } \partial \Omega \}.$

Lemma 12 (45). Let R > 0, $A = \{w \in X; \|\nabla w\|_{L^q(\Omega)} < R\}$, then there is R' > 0 such that $A \subset U(0, R') \subset W^{1,q}(\Omega)$.

Corollary 3 (46). Choose $w_k \subset X$ such that $I(w_k) \to \inf_{w \in X} I(w)$, then $\exists R' > 0, \forall k \in : ||w_k||_{1,q} \leq R'$, i.e. minimizing sequences are bounded.

Definition 11. We say that I is weakly sequentially lower semicontinuous on $W^{1,q}(\Omega)$ if $I(u) \leq \liminf_{k \to +\infty} I(w_k)$, whenever $w_k \rightharpoonup u$ in $W^{1,q}(\Omega)$.

Theorem 28 (47). Assume that L is smooth (C^2 is definitely enough/too much), bounded below and in addition

the mapping
$$p \to L(p, z, x)$$
 is convex for any $z \in \mathbb{R}, x \in \Omega$. (11)

Then I is weakly sequentially lower semicontinuous on $W^{1,q}(\Omega)$.

Theorem 29 (48). Assume that L satisfies the coercivity condition (10), and is convex with respect to the variable p, see (11), and X is not empty. Then there is (at least one) function $u \in X$ solving $I(u) = \inf_{w \in X} I(w)$.

Theorem 30 (49). Suppose that L is smooth and independent of z and

$$\exists q > 1, \theta > 0, \forall p \in \mathbb{R}^d, \xi \in \mathbb{R}^d, x \in \Omega : \sum_{i,j=1}^d \partial_{p_i} \partial_{p_j} L(p,x) \xi_i \xi_j \ge \theta |\xi|^q.$$

Then there is at most one minimizer of I.

Proof. Theorem was presented in a student's presentation.

Definition 12. We say that $u \in X$ is a weak solution to the boundary value problem

$$-\operatorname{div} \nabla_p L(\nabla u, u, x) + \partial_z L(\nabla u, u, x) = 0 \quad in \ \Omega,$$
(12)

with boundary condition u = g on $\partial \Omega$ for the Euler Lagrange equation provided

$$\forall v \in W_0^{1,q}(\Omega) : \int_{\Omega} \nabla_p L(\nabla u, u, x) \cdot \nabla v + \partial_z L(\nabla u, u, x)v = 0.$$

Theorem 31 (50). Assume L verifies the growth conditions

$$\exists C > 0, \forall p \in \mathbb{R}^d, z \in \mathbb{R}, x \in \Omega : |L(p, z, x)| \le C(|p|^q + |z|^q + 1) \\ \exists C > 0, \forall p \in \mathbb{R}^d, z \in \mathbb{R}, x \in \Omega : |\nabla_p L(p, z, x)| + |\nabla_z L(p, z, x)| \le C(|p|^{q-1} + |z|^{q-1} + 1)$$

and $u \in X$ satisfies $I(u) = \inf_{w \in X} I(w)$. Then u is a weak solution of (12).

Proof. Just a sketch of a proof. Computation was shown in a presentation but without precise reasoning for interchange of limit passage and integration. \Box

4.2 Existence of a weak solution by method of Brower and Minty

Assumption 2 (51). Let $a: \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$, q > 1 satisfy

• a is a Caratheodory function, i.e. for a.e. $x \in \Omega$ the mapping $(z, p) \rightarrow a(x, z, p)$ is continuous and for all $z \in \mathbb{R}, p \in \mathbb{R}^d$ the mapping $x \rightarrow a(x, z, p)$ is measurable

- (boundedness) $\exists C > 0, \forall x \in \Omega, z \in \mathbb{R}, p \in \mathbb{R}^d : |a(x, z, p)| \le C(1+|p|)^{q-1}$
- (coercivity) $\exists C_1, C_2 > 0, \forall x \in \Omega, z \in \mathbb{R}, p \in \mathbb{R}^d : C_1 |p|^q c_2 \le a(x, z, p) \cdot p.$
- (monotony) $\forall x \in \Omega, z \in \mathbb{R}, p_1, p_2 \in \mathbb{R}^d : (a(x, z, p_1) a(x, z, p_2)) \cdot (p_1 p_2) \ge 0$
- **Remark 8.** Monotony is an assumption of a similar type as convexity in variational techniques.
 - Coercivity was needed also for variational techniques.
 - Boundedness was not needed for variational techniques.

We consider the next problem: for a given a, f and u_0 find a solution u to the partial differential equation

$$-\operatorname{div} a(x, u, \nabla u) = f \quad \text{in } \Omega \tag{13}$$

with Dirichlet boundary condition $u = u_0$ on $\partial \Omega$.

Definition 13 (weak formulation of (13)). Let $f \in W_0^{1,q}(\Omega)^*$, $u_0 : \partial\Omega \to \mathbb{R}$ and $a : \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$. We call $u \in W^{1,q}(\Omega)$ a weak solution of the problem (13) with boundary condition $u = u_0$ on $\partial\Omega$ if $\operatorname{Tr} u = u_0$ on $\partial\Omega$ and

$$\forall \varphi \in W^{1,q}_0(\Omega) : \int_\Omega a(x,u,\nabla u) \cdot \nabla \varphi = \rangle f, \varphi \langle .$$

Remark 9. Under Assumption 2 all terms in the definition are well defined.

Theorem 32 (52). If $f \in (W_0^{1,q})^*$, Assumption 2 holds and $u_0 \in W^{1,q}(\Omega)$, then there is a weak solution of the problem (13) with boundary condition $u = u_0$ on $\partial\Omega$.

Lemma 13. Let R > 0, $m \in \mathbb{N}$, $\Phi : \mathbb{R}^m \to \mathbb{R}^m$ be continuous such that for all $c \in \partial U(0, R) : \Phi(c) \cdot c \geq 0$. Then there is a $c_0 \in \overline{U(0, R)}$ such that $\Phi(c_0) = 0$.

Proof. The proof rests on Brower fixed point theorem but was not presented. \Box

Theorem 33 (53). Let assumptions of Theorem 32 hold. Let a be independent of z, i.e. $a: \Omega \times \mathbb{R}^d \to \mathbb{R}^d$, a = a(x, p), and strictly monotone in p, i.e.

$$\forall p_1, p_2 \in \mathbb{R}^d, p_1 \neq p_2, a.e. \ x \in \Omega : (a(x, p_1) - a(x, p_2)) \cdot (p_1 - p_2) > 0.$$

Then the weak solution to the problem (13) with the boundary condition $u = u_0$ in $\partial \Omega$ is unique.

Proof. Will be proved in presentation.

5 Did not fit into schedule

Theorem 34 (54-Maximum principle). Let Assumption 2 hold, a be strictly monotone in p, for all $z \in \mathbb{R}$ and a.e. $x \in \Omega$ a(x, z, 0) = 0, f = 0 and $u_0 \in L^{\infty}(\partial\Omega) \cap \operatorname{Tr} W^{1,q}(\Omega)$. Let $u \in W^{1,q}(\Omega)$ be a weak solution to (13) with the boundary condition $u = u_0$ on $\partial\Omega$. Then $u \in L^{\infty}(\Omega)$ and $\|u\|_{L^{\infty}(\Omega)} \leq \|u_0\|_{L^{\infty}(\partial\Omega)}$.

Proof. The theorem was not presented.

Theorem 35 (55-local regularity). Let Assumption 2 hold, a be independent of z and x, f = 0 and

$$\begin{aligned} \exists \theta > 0, \forall p_1, p_2 \in \mathbb{R}^d : (a(p_1) - a(p_2)) \cdot (p_1 - p_2) \ge \theta(|p_1| + |p_2|)^{q-2} |p_1 - p_2|^2 \\ \exists C > 0, \forall p_1, p_2 \in \mathbb{R}^d : |a(p_1) - a(p_2)| \le C(|p_1| + |p_2|)^{q-2} |p_1 - p_2|. \end{aligned}$$

Let $u \in W^{1,q}(\Omega)$ be a weak solution to (13) with the boundary condition $u = u_0$ on $\partial\Omega$ and B be a ball of radius R > 0 such that $B \subset 2B \subset \Omega$. Then $|\nabla u|^{\frac{q}{2}} \in W^{1,2}(B)$ and

$$\int_{B} |\nabla|\nabla u|^{\frac{q}{2}}|^{2} \leq \frac{C}{R^{2}} \int_{2B} |\nabla u|^{q}.$$

Proof. Theorem was not presented.

5.1 Existence of a weak solution by Banach fixed point theorem

Theorem 36 (56-nonlinear Lax Milgram). Let X be a real Hilbert space, $T : X \to X$ Lipschitz continuous, i.e.

$$\exists M > 0, u, v \in X : \|Tu - Tv\|_X \le M \|u - v\|_X$$

and strongly monotone, i.e.

$$\exists m > 0, \forall u, v \in X : (Tu - Tv, u - v)_X \ge m \|u - v\|_X^2.$$

Then for any $F \in X$ exists a unique $u \in X$ such that Tu = F.

Proof. The theorem was not presented.

Example 3. For any $f \in L^2(\Omega)$ there is a weak solution to the problem $-\operatorname{div}\left(\operatorname{arctg}(1+|\nabla u|^2)\nabla u\right) = -\operatorname{div} f$ in Ω with homogeneous Dirichlet boundary condition u = 0 on $\partial\Omega$.

14

Proof. The example was not presented.

Bibliography

- [1] R. Feynmann, .
- [2] R.A. Adams, J.J.F. Fournier, Soboles Spaces, Elsevier, 2005.
- [3] W.P. Ziemer, Weakly Differentable Functions, Springer-Verlag, 1989.
- [4] L.C. Evans, Partial Differential Equations, AMS, 2010.
- [5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
- [6] A. Kufner, O. John, S. Fučík, Function Spaces, Academia, 1977.
- [7] O. Kalenda, Introduction to Functional Analysis, http://www.karlin.mff.cuni.cz/~kalenda/pages/ufa1516.php.