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1 Motivation for weak solution

Many principles of physics can be written in the form of a partial differential
equation, see (1).

1.1 Heat flow through a nonhomogeneous material

If data are not smooth, we cannot expect regularity of solutions. This situation
happens for example if we are interested in heat flow through a real wall built
of several material with different heat conductivity. If we are interested in
stationary flow we need to solve an equation — div(AVu) = 0 in  C R? with
a boundary condition u = ug on 9€2. The unknown temperature is u : 2 — R.
The set Q, the function uy : 9Q — R and the matrix function A : Q — R¥x¢
are given. The function A is influenced by the heat conductivity and can be
discontinuous.

1.2 Calculus of variations

Let L: R xR xQ =R, L=L(p,z,z). For u € C'(Q) we define
I(u) = / L(Vu(z),u(z),z)dz.
Q

We search for a local minimum or maximum of I in X = {u € C*(Q),u =
Oon 0f2.
Definition 1. We say that ug € X s a local minimizer of I in X if

36 > 0,Vu € X : ||'LL — uOHCl(X) < = I(UO) < I(’LL)

Lemma 1 (1-necessary condition of minima). Let L € C*(R?*¥+1) uy € X be a
local minimizer of I in X, h € D(Q), h # 0.Defineforte R g(t) = I(ug + th).
Then ¢'(0) =0, i.e.
Vh € D(Q) : / OpL(Vu(z),u(z),z)-Vh(zx) dz+0,L(Vu(x),u(x), z)h(z)dz = 0.
Q
(1)



The equation (1) is a weak formulation of the PDE
div V,L(Vu(z), u(z),z) + 0, L(Vu(z),u(z),z) =0

for an unknown function w.

2 Sobolev spaces

In the whole section Q € R is an open set.

Definition 2. Letu € L} (), a € N& be a multi-index. A functionv € L}, ()

loc loc
is called the o' weak derivative of u if

vgpeD(Q);/sz(—n\al/ﬂum@.

We denote it by D*u.

In the rest all derivatives will be understand in the weak sense if not ex-
plicitely differently.

Definition 3 (Sobolev space). Forp € [1,4+o0], k € N we define Sobolev space
WHhP(Q) = {u € LP(Q)Va € NI : |a| <k = D% € LP(Q)}.
For uw € WkP(Q) we define
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[X rar] el
HU”W’W(Q) = QaeNg,|a\§k
max  [|[D%ul| pee(q) if p= 4o0.
aeNg,|a|<k

We denote V@ Q if V is open and bounded subset of ) such that V C Q.
We say that u € Wl]ch(ﬂ) if for any V € Q, u € WhP(V).,
For u,v € WF2(Q) we define

(u, V) w20 :/ Z D%uD%v.
@ aeNG, |a|<k

Remark 1. o Functions in W*P(Q) are determined up to a set of Lebesgue
measure 2ero.

o If we say that u € W*P(Q) has some property, e.g. u is continuous, we
mean that there is a representative with this property.



o Ifpc[l,+00) let us define for u € WHP(Q)

3=

Bl = S ID%ul, g,
aGNg,|a|§k
Then ||| - ||| is an equivalent norm on W*P(2) to || - |[ws.r(q)-

Example 1. Function f,(z) = |z|* for a € R, x € R? belongs to Wﬁ)’f(Rd),
p>1ﬁa>1—%

2.1 Basic properties of Sobolev spaces

Theorem 1 (2). (Properties of the weak derivative) (4, Section 5.2.8) Let u,v €
WkP(Q), k €N, p€[l,+oc] and a € (Ng)?, |a| < k. Then

1. D € Wk=1alr(Q) and D*(DPu)) = D (D)) for |a| + (8] < k
M €R = \u+ pv € WFP(Q) and D*(Au + puv) = AD%u + pD%%.
if @ C Q open, then u € W’W’(Q)

e b

if n € D(Q), then nu € WP(Q) and

D) = 3 (g) DPnDo Py,

Bl
Remark 2. For o, 3 € N¢, ! = H?zlaj! and the number (g) is defined by
ot/ (o~ B)1BY).

Example 2. 1. If d = 1 and f(z) = sgn(x) then for any p € [1,+0o0],
f#Whe(-1,1),

2. Ifd=1 and f(x) = |z| then for any p € [1,+o00], f € WLP(—1,1).
3. Whi(=1,1) = AC(-1,1)

4. Cantor function ¢ is continuous on (0,1), with ¢ = 0 a.e. in (0,1), but
forallp>1, c¢ WHP(0,1). The function c is not absolutely continuous.

Let h € D(R?), spth C U(0,1), [pah = 1. We define hi(x) = j%h(jz) for
z € R,

Definition 4. For u € W*?(Q) we denote u/ = uxh? where the expression on
the right hand side is well defined.

Lemma 2 (3). (3, Lemma 2.1.3) Let u € W*P(Q), p € [1,+00), then for all
a € N2, |a| <k there holds (D*u) = D*(u?) and ui — u in WP(Q).

loc



Theorem 2 (4). (3, Theorem 2.1.4)

Letu € LP(Q), p > 1. Thenu € WHP(Q) if and only if u has a representative
@ that is absolutely continuous on \%~1 a.e. line segments in Q parallel to
the coordinate axis and whose classical partial derivatives (that exits almost
everywhere) belong to LP(S).

Proof was not presented.

Corollary 1 (5). (8, 2.1.11) Let f : R — R be a Lipschitz function and u €
WLP(Q), p > 1. If fou € LP(Q) then fou € WLP(Q) and for a. e. x € R
V(fou)(z) = f'(u(z))Vu(z).

Definition 5. For a function u : Q — R let vt = max(u,0), v~ = min(u, 0).

Corollary 2 (6). (3, 2.1.8) Let u € WYP(Q), p > 1. Then ut,u~ € WHP(Q)
and
Dut — Du z:fu>0 Du- — Du z:fu<0
0 ifu<0 0 ifu>0

a.e. in Q.

Theorem 3 (7). (3, 2.2.2) Let T : R — R? be a bi-Lipschitzian mapping such

that T : Q) — Q and
Tz =T < Mz —
3M>0,Vx,y€Q,Vx’,y’€Q':‘ (_1) (y_)1|_ | vl
T (z) =T (y)| < Mz —y|.

Ifue WhP(Q), p> 1, thenv =uoT € WHP(V) where V. = T~1(Q) and for a.
e. x € QY and any € € R?Y

Vu(T (2))VT (2)§ = Vu(x)§

Remark 3 (8). In the situation of the previous theorem there is C > 0 such
that for any U C Q, V. = T'U open sets, ||[ullwrr@) < Clvlwieq) <
CQHUHWLP(U).

Theorem 4 (8). (Basic properties of Sobolev spaces) Let k € N.
1. If p € [1,+o0], (WEP(Q), | - |lxp) is a Banach space.
2. (Wk2(Q), (-,")r.2) is a Hilbert space.
3. Ifp € [1,4+00), WEP(Q) is separable.
4. If p € (1,+00), WFP(Q) is reflezive.

(2, Theorem 3.8) Let p € [1,400), N € N be a number of
multiindices o € N& such that |a| < m. For every L € W™P(Q)* there exists an
element (v € LP ()N such that, writing the vector v in the form (V) aend ja] <N
we have for all u € W™P(Q)

L(u) = Z (D“u,v). (2)



Moreover || L|lwm.»)- = inf[[v]| 0 v = min|[v]|py gy, the infimum being

taken over, and attained on the set of all v € LP (Q)N for which (2) holds for
every u € W™P(Q).

2.2 Approximation and extension of Sobolev functions

Lemma 3 (11). (Partition of unity) (3, Lemma 2.3.1) Let E C R%, G be a
collection of open sets such that E C UycgU. Then there is a family F of
nonnegative functions f € D(R?) such that 0 < f <1 and

1. Vfe F,AU G :sptfCU

2. VK C E,K compact: spt f N K # () for only finitely many f € F
8. Y perf(@)=1 for everyz € E

4. if E is compact, the family F is finite

5. family F is at most countable

Theorem 5 (12). (38, Theorem 2.8.2) The set C>=(2) N WFP(Q) is dense in
WHEP(Q). The set {f € C*(Q),3R > 0:spt f C U0, R)} N W*P(Q) is dense
in WEP(Q).

Lemma 4 (13). Let u € LP(RY), p € [1,4+oc). For h € R%, h # 0 and v € R?
define up(z) = u(z + h). Then up, — u in LP(RY) as h — 0.

Lemma 5 (14). Let V. = U(0,R) N {x € RG24 > 0}, € > 0, u € WrkP({z €
R% 24 > 0}) with sptu C V. Then there is a function v € C®({x € R% x4 >
0}) such that sptv C U(0,2R) N {z € R% x4 > 0} and ||u — vllyrnqr) < e

Theorem 6 (15). (4, Section 5.3.3, Theorem 3),(2, Theorem 3.18) Let k € N,
p € [1,+00), Q C RY be bounded with C' boundary. Then C*(Q) is dense in
Wkp(Q).

Lemma 6 (16). Let us equip X = {U € C'({x € R¥|xz4 > 0})|sptU Cc U(0,R)}
with a norm HHX = ||'||W1,p(U(O,R))m{x€Rd‘zdzo} andY = {U S Cl(Rd)| Spt UcC
U(0,2R))} with a norm |||y = ||-|lwr.rw(0,2r))- Then there is a linear mapping

FE: X —Y such that
1B ¢x.x0.viv ) < C(p, R)

and Bu=u on {x € RYzy > 0} for anyu € X.

Theorem 7 (17). (4, Section 5.4, Theorem 1) Assume Q C R? open, bounded
and with C' boundary. Fiz V. C RY open such that Q € V. Then there is a
bounded linear operator E : WHP(Q) — WLP(RY) such that for all u € WHP(Q)

1. Fu=wu a.e. in )
2. sptEuCV
3. ||E|| < C with C = C(p,Q,V)



2.3 Embeddings of Sobolev spaces

We introduce a notation

/ fd/lzz/ fdxi...d$i71d$i+1...dxd.
Rd—1 Rd—1

Lemma 7 (18). (4, Section 5.6, Theorem 1) Let d > 2, for i € {1,...,d},
u; € C} (RI=1Y and u; be independent of x;. Then

d d
LTl <dT [ i d e,
R =1 i=17/RI7!

Lemma 8 (19). (4, Section 5.6, Theorem 1) Let d > 2, u € CX(R?). Then for

pelld),p' =72, ie —L =1-1¢

d—1
1wl Le* (@) < pm”vu”Ll’(Rd)-

Theorem 8 (20). Let p € [1,d), d > 2. Then WIP(R?) — LP"(R?).

-1k o

Definition 6. For p € [1,+0c] we define WiF () = D(Q)
Theorem 9 (21). Let p € [1,d), d > 2, Q bounded. Then for all q € [1,p*]
exists C > 0 such that for all u € W, P(Q) there holds lullac) < ClIVullLr o)

Remark 4. |-||1, and ||V-||, are equivalent norms on W, *(Q) if Q is bounded.

Theorem 10 (22). Let p € [1,d), d > 2, Q C R? bounded with C* boundary.
Then
3C, > 0,Yu € WP(Q) : ||ull 1o ) < Cpllullwrre)-

Lemma 9 (24). (5, Lemma 7.16) Let u € C*(RY), Q C R? bounded convex,
x € Q. Then

Rd/ 1-d
u(zx) —F u| < —= Vu(y)lly — = dy.
)~ f ul < g7 [ IVt =

Theorem 11 (25-Sobolev-Poincaré inequality). Let Q@ C RY be bounded and
conver. Then

Vg < p*,3C > 0,Yu € WHP(Q) : |lu —][ ul|Lag) < Cl|VullLr()-
Q

Remark 5. (3, Corollary 4.2.3) Previous theorem holds also if p > 1 and
q=p".
Lemma 10 (26). Let u € CH(R?), a =1 — %. Then

|u(z) — u(y)]

Vz,y € RY:
|z —y|*

< Clp, NI Vullprge), |u(@)] < Clp,d)|lullwrr s



Definition 7. We define for a« € (0,1} and f: Q >R a
{|f(if) - Wl

o myE DAk

[f]cO,a(ﬁ) ‘= sup
[fllco-a@) = [IfllL= @) + [flooa @)
We define CO%(Q) = {f : Q = R; 11l coa gy < 400}

Theorem 12 (27). (6, Theorem 1.3.3) Let o € (0,1]. The space (C**(Q), ||l0.a)
is a Banach space.

Theorem 13 (28). Letp € (d,+o0], a =1 — g, then WHP(RY) — C%(R?).

Theorem 14 (29). Let p € (d, +oc], 2 C R¢ bounded with C* boundary. Then
WhP(Q) — CO(Q).

Theorem 15 (30). (4, Theorem 5.5.1) Let d € {2,...}, Q C R? be bounded
with C' boundary, p € [1,+00), p* = % if p<d. Let

[1,p%] if p<d,
qc [17+OO) pr = d7
[1, +o0] if p>d.

Then there is a bounded linear operator Tr : WHP(2) — L9(9Q) such that for
f € C>®(Q) the equality Tr f = flaq holds on Of).

Theorem 16 (31). (2, Theorem 6.2), (2, Theorem 5.4) Let d € {2,...}, Q C
R be bounded with C' boundary, p € [1,+00).

casep<d — Ifq€[l,p*) the embedding WP (Q) — LI(S) is compact.
— If g € [1,p™) the embedding W1P(Q) — LI(0R) is compact.

casep=d — If ¢ € [1,4+00) the embeddings W1P(Q) — L4(Q) and WHP(Q) —
L1(09) are compact.

casep>d — Ifae[0,1— %) the embedding W1P(Q) — C%*(Q) is compact.
— Ifaec[0,1— %) the embeddings W1P(Q) — C%*(dQ) is compact.
This theorem was presented in a different form without proof.

Theorem 17 (32). Let 2 be bounded with C* boundary, p € [1,+00). Then

Wam(©) = {u € W(Q)[Tru =0 on 90



2.4 Difference quotients and weak derivatives

Definition 8. Let u € L}, (), i € {1,...,d}. The i-th difference quotient of

loc

size h € R\ {0} is D'u(z) = & (u(z + he;) — u(z)) for v € Q s.t. x + he; € Q.

Theorem 18 (32). i) Let p € [1,+c0), u € WLP(Q). Then there is C > 0
such that for all V.€ Q, i € {1,...,d} , |h| < 3(dist(V,09)) there holds
IDfull o vy < Clldgull o)

ii) Let p € (1,400), u € LP(Q) and there is C >0,V € Q, i € {1,...,d}
such that for all |h| < 3(dist(V,09)) there holds || D!ul|pvy < C. Then the
weak derivative Oyu exists and ||O;ul|p» vy < C.

3 Linear elliptic PDE’s of second order

In this section we will assume

Assumption 1 (33). The set Q and functions A = (az;)f,—, + Q@ — R,
b=(b),: Q=R ¢, f: Q= R, g,up: 90 — R are given with the following
properties.

e O C R? with C' boundary, a bounded domain

e there is a > 0 such that for all ¢ € R? and a.e. = € Q there holds
alg]* < Ag-¢

o foralli,je{l,...,d} there holds a;j,b;,c € L>°(Q)
o fe )
o g L?(00)
e wg is a trace of a function from W'2(Q), we denote it again uy € W1H2(Q)
We will study the equation
—div(AVu) +b-Vu+cu=f inQ (3)

with two types of boundary conditions. We will prescribe either Dirichlet bound-

ary condition
u=1ug on I (4)

or Neumann boundary condition
AVu-v =g on 09, here v denotes the normal unit vector to 2.  (5)

Definition 9. We say that u : 2 — R is a weak solution to the problem (3) with
the boundary condition (4) if u € Wh2(), u — ug € Wy2(Q), i.e. Tru = ug,
and

chGWOLQ(Q):/AVu~Vga+b~Vug0+cu<p:/fgo. (6)
Q Q



We say that u : Q@ — R is a weak solution to the problem (3) with the
boundary condition (5) if u € WH2(Q) and

VQDGWLQ(Q):/AVu~ch+b-Vu<p+cug0:/fgaJr/ gTr(p). (1)
Q Q 0

3.1 Existence of a weak solution by Riesz Theorem

Theorem 19. (7, Theorem 19) Let H be a real Hilbert space. Define fory € H,
fy € H* by f,(z) = (x,y) for allxz € H. The mapping I : H — H*, I(y) = f,
18 linear isometry of H onto H*.

Theorem 20 (35). Let Assumption 1 hold. Moreover let for alli,j € {1,...,d}
and a.e. x € Q a;;(x) = aji(z), b(x) =0.

1. Then there is v < 0 such that if ¢ > v on Q then a weak solution of (3)
and (4) exists. It satisfies ||ullw1.2q) < C([|fllr2) + lluollwr2(q)) for a
suitable C' > 0 independent of f and uy.

2. If ¢ > 0 on Q then there is a weak solution of (3) and (5). It satisfies
lullwrz) < CUIfll2) + lgll2a0) for a suitable C > 0 independent of
f and g.

The solutions are unique.

Lemma 11 (36 Lax Milgram). (4) Let H be a real Hilbert space with a scalar
product {-,-Yg and an induced norm || - ||g. Let B: H x H — R be a bilinear
mapping that is

e (elliptic) Im > 0,Yu € H : m|jul|} < B(u,u)
e (bounded) IM > 0,Vu,v € H : B(u,v) < M||ul|g||v|| g

Then for every F € H* there is a unique u € H such that Vv € H : B(u,v) =
F(v). Moreover, ||ullg < | F| -

Theorem 21 (37). Let Assumption 1 hold. Then there is v € R such that
if ¢ > v on Q then there is a weak solution w of (3) and (4) or (5). The
solution is unique and satisfies ||ullw1.2) < C(||fllz2) + lluollwr2(a)), resp.
[ullwrz@) < CUIf 2@ + l9llL2@)-

Theorem 22 (38). Let
o A:RY R p:RE SR ¢, f:RT 5 R
o Ab,ce L®(RY), f e L?

There is v € R such that ¢ > v implies existence of u € W12(RY) such that

Vo e WHERY) : [ AV -V +b- Vup + cup = / fo.
Rd Rd

The solution is unique and [[ully12@ey < C| fll12(Ray-



3.2 Application of Fredholm Theorems

We introduce the differential operator
Lu = —div(AVu) + b - Vu + cu — div(du) (8)
and its formal adjoint
L*u = —div(ATVu) + d - Vu + cu — div(bu) (9)

We consider here only homogeneous Dirichlet boundary condition v = 0 on
of.

If we assume sufficient regularity of functions ¢ and d we may apply the
theory developed in the previous section to get existence of a weak solutions
to the problem Lu = f in © and u = 0 on dQ. The statement u € W, *(Q)
solves the problem Lu = f in  with the boundary condition u = 0 on 99 is
understood in the weak sense in what follows.

We will assume that Assumption 1 hold and moreover for simplicity b, d, €

Wheo(Q).

Theorem 23 (39-Fredholm alternative). 1. (a) Either for all f € L*(Q)
there exists a unique u € WOI’Q(Q) a weak solution of Lu = f in Q,
u =20 on 0N}

(b) or there is u € Wy > (Q) \ {0} a weak solution of Lu =0 in Q, u =0
on 0N.

2. In case 1b) denote Ker L = {u € Wy*(); Lu = 0} # 0, Ker L* = {u €
W) 2(Q); L*u = 0}. Then dim Ker L = dim Ker L*.

3. In case 1b) there is a weak solution to Lu = f in Q, u = 0 on IQ if
f € L*(Q) and for all p € Ker L*, [, f =0.

Theorem 24 (40). (4, Section 6.2, Theorem 5) Let 2 be a bounded domain.
There is at most countable set ¥ C R such that the following is equivalent:

1.A¢gY

2. Vf € L2(Q),3lu € Wy*(Q) a weak solution of the problem Lu = \u + f
in Q, u=0 on IQ.

If 32 is not finite, then +oo is its only cluster point.
Remark 6. The set X is called (real) spectrum of L.

Theorem 25 (41). Let the operator L satisfy: A be symmetric (Vi,j € {1,...,d}:
a;; =a;;), Vi €{l,...,d} :b; =d;. Let ¥ be the set from Theorem 24. Then

1. ¥ is infinite. If we denote ¥ = {\,}}/25 then Ay — +00 as k — +oc.
2. There exists an orthonormal basis {wi}25 of L*(Q) such that wy €

WL2(Q) and it solves Lwy, = Awy, in Q, w, = 0 on 9Q for some A € X.

10



3. Ifb=d=0and c>0 on 2, then & C (0,+00).

Theorem 26 (43-maximum principle). Let ug € L*(9Q)NTr(W2(Q)), ¢ >0
on Q and u € WH2(Q) is a weak solution to — div(AVu) +cu =0 in Q, u = ug
on Q. Then u € L>(Q2) and ||u|lp~ < |luol| L~ (a0)-

Theorem 27 (44). Let a;; € C1(Q), b;,c € L>=(Q) for all i,j € {1,...,d},
f € L*(Q), ue WH(Q) be a weak solution of Lu = f in Q, u=0 on Q. Then
uwe Wh2(Q) and ||lul|w220) < C(|fllL2) + lullL2(e)). The constant C > 0 is
independent of [ and u.

4 Nonlinear elliptic PDE’s of second order

4.1 Basics of Calculus of Variations
Setting:
1. Q ¢ R? open bounded set with smooth boundary

2. L:R*x R x Q — R a function called Lagrangian, L = L(p,z,z),p € R4,
zeR, x €.

3. g:00—=>R

We are looking for a minimizer of

I(w):/QL(Vw(x),w(x)m)dx

on the set of functions X = {w;w = g on 9Q}.
We will assume coercivity of L

Jge (1,400),3a>0,3>0,YVpeR 2 e R,z € Q: L(p, z,2) > alp|? — B.

(10)
Remark 7. o If L is coercive then I(w) — 400 as || Vw| peq) — +o0.
[ ) 1
i . 2L(U)0) + BI a
= : <|\——
u}Ielgfl(w) inf{I(w);w € X, ||V’LU||q = < o }

for any wo € X and suitable o’ and B'.
Definition 10. X = {w € W9(Q); Trw = g on 9Q}.

Lemma 12 (45). Let R > 0, A = {w € X;||Vwl|[zaq) < R}, then there is
R’ >0 such that AC U(0,R') Cc WhH(Q).

Corollary 3 (46). Choose wy, C X such that I(wg) — inf,ex I(w), then
AR > 0,Vk €: ||will1,4 < R/, i.e. minimizing sequences are bounded.

11



Definition 11. We say that I is weakly sequentially lower semicontinuous on
Wh(Q) if I(u) < liminfy o0 I(wg), whenever wy, — u in WH4(Q).

Theorem 28 (47). Assume that L is smooth (C? is definitely enough/too
much), bounded below and in addition

the mapping p — L(p, z,x) is convex for any z € R, x € Q. (11)

Then I is weakly sequentially lower semicontinuous on WH4(Q).

Theorem 29 (48). Assume that L satisfies the coercivity condition (10), and
is convex with respect to the variable p, see (11), and X is not empty. Then
there is (at least one) function u € X solving I(u) = inf,ex I(w).

Theorem 30 (49). Suppose that L is smooth and independent of z and

d

Jg>1,0>0,VpeR,EER 2 € QY 0,0, Lp, x)6:&; > 0I€|7.
i,j=1
Then there is at most one minimizer of I.
Proof. Theorem was presented in a student’s presentation. O

Definition 12. We say that u € X is a weak solution to the boundary value
problem
—divV,L(Vu,u,z) + 0, L(Vu,u,z) =0 in Q, (12)

with boundary condition u = g on OS2 for the Fuler Lagrange equation provided

Yo € Wy9(Q) : / VpL(Vu,u,z) - Vo+ 0, L(Vu,u,x)v =0.
Q

Theorem 31 (50). Assume L verifies the growth conditions
3C >0,¥pe Rz e Rz € Q: |L(p,z,x)| < C(Ip|? + |27 + 1)
30 >0,¥peRY 2 € R,z € Q: |V,L(p, 2,2)| + |V.L(p, z,x)| < O(|p|T " + 2|77 + 1)
and uw € X satisfies I(u) = infyex I(w). Then u is a weak solution of (12).
Proof. Just a sketch of a proof. Computation was shown in a presentation but

without precise reasoning for interchange of limit passage and integration. [

4.2 Existence of a weak solution by method of Brower and
Minty

Assumption 2 (51). Leta: QxR xR? — R, ¢ > 1 satisfy

e a is a Caratheodory function, i.e. for a.e. x € Q the mapping (z,p) —
a(x,z,p) is continuous and for all z € R,p € R? the mapping * —
a(x, z,p) is measurable

12



e (boundedness) 3C > 0,Vx € Q,2 € R,p € R? : |a(x, z,p)| < C(1 + [p|)?~*
e (coercivity) 3C1,Cy > 0,Vz € Q, 2 € R,p € RY: Oy|p|? — 2 < a(x, 2,p) - p.

o (monotony) Vo € sz € Rap17p2 € Rd : (a’(xwzapl) - a(x7z7p2)) ’ (pl -
p2) >0

Remark 8. e Monotony is an assumption of a similar type as convexity in
variational techniques.

o (Coercivity was needed also for variational techniques.
e Boundedness was not needed for variational techniques.

We consider the next problem: for a given a, f and wug find a solution u to
the partial differential equation

—diva(z,u,Vu) =f inQ (13)
with Dirichlet boundary condition u = ug on ).

Definition 13 (weak formulation of (13)). Let f € Wy % (Q)*, uo : 92 — R
and a: QxR xR — R We call u € WH9(Q) a weak solution of the problem
(13) with boundary condition u = ug on O if Tru = uy on I and

Y € Wy!(Q) : /Qa(x,u, Vu) - Vo =)f, o

Remark 9. Under Assumption 2 all terms in the definition are well defined.

Theorem 32 (52). If f € (Wol’q)*, Assumption 2 holds and ug € WH4(Q), then
there is a weak solution of the problem (13) with boundary condition u = ug on
of.

Lemma 13. Let R >0, m € N, ® : R™ — R™ be continuous such that for all
c€9U(0,R) : ®(c) - ¢ > 0. Then there is a ¢o € U(0, R) such that ®(cy) = 0.

Proof. The proof rests on Brower fixed point theorem but was not presented. [

Theorem 33 (53). Let assumptions of Theorem 32 hold. Let a be independent
of z, ice. a: QxR = R4 a=a(x,p), and strictly monotone in p, i.e.

Vp1,p2 € R p1 # po,ace. € QU (a(z,p1) — a(z,p2)) - (p1 — p2) > 0.

Then the weak solution to the problem (13) with the boundary condition u = ug
in O is unique.

Proof. Will be proved in presentation. O

13



5 Did not fit into schedule

Theorem 34 (54-Maximum principle). Let Assumption 2 hold, a be strictly
monotone in p, for all z € R and a.e. = € Q a(x,2,0) =0, f = 0 and
up € L) N TrWhe(Q). Let u € WH4(Q) be a weak solution to (13) with
the boundary condition v = ug on 0Q. Then u € L™(Q) and |u| =) <

[woll Lo (a2 -
Proof. The theorem was not presented. O

Theorem 35 (55-local regularity). Let Assumption 2 hold, a be independent of
zand x, f =0 and

30 > 0,Vp1,p2 € R? : (a(p1) — alp2)) - (p1 — p2) = 0(|p1| + [p2])? % |p1 — p2f?
3C > 0,Yp1,p2 € R : |a(p1) — a(p2)| < C(Ip1| + [p2)?2[p1 — pal.

Let u € WH4(Q) be a weak solution to (13) with the boundary condition u = ug
on OQ and B be a ball of radius R > 0 such that B C 2B C Q. Then |Vu|? €

Wb2(B) and
/ IV|Vu|2]? < %/ |Vuld.
B R 2B

Proof. Theorem was not presented. O

5.1 Existence of a weak solution by Banach fixed point
theorem

Theorem 36 (56-nonlinear Lax Milgram). Let X be a real Hilbert space, T :
X — X Lipschitz continuous, i.e.

M > 0,u,v € X : ||[Tu—Tv||x < Ml|ju—v|x
and strongly monotone, i.e.
Im > 0,Yu,v € X : (Tu —Tv,u —v)x > mlu—v|%.
Then for any F € X exists a unique u € X such that Tu = F.

Proof. The theorem was not presented. O

Example 3. For any f € L%*(Q) there is a weak solution to the problem
—div (arctg(1 + |Vu|?)Vu) = —div f in Q with homogeneous Dirichlet bound-
ary condition uw =0 on 0f2.

Proof. The example was not presented. O
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