Script of lecture nmma405

Petr Kaplický

January 31, 2017

1 Motivation for weak solution

Many principles of physics can be written in the form of a partial differential equation, see (1).

1.1 Heat flow through a nonhomogeneous material

If data are not smooth, we cannot expect regularity of solutions. This situation happens for example if we are interested in heat flow through a real wall built of several material with different heat conductivity. If we are interested in stationary flow we need to solve an equation $-\operatorname{div}(A \nabla u)=0$ in $\Omega \subset \mathbb{R}^{d}$ with a boundary condition $u=u_{0}$ on $\partial \Omega$. The unknown temperature is $u: \Omega \rightarrow \mathbb{R}$. The set Ω, the function $u_{0}: \partial \Omega \rightarrow \mathbb{R}$ and the matrix function $A: \Omega \rightarrow \mathbb{R}^{d \times d}$ are given. The function A is influenced by the heat conductivity and can be discontinuous.

1.2 Calculus of variations

Let $L: \mathbb{R}^{d} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}, L=L(p, z, x)$. For $u \in C^{1}(\bar{\Omega})$ we define

$$
I(u)=\int_{\Omega} L(\nabla u(x), u(x), x) \mathrm{d} x .
$$

We search for a local minimum or maximum of I in $X=\left\{u \in C^{1}(\bar{\Omega}), u=\right.$ 0 on $\partial \Omega$.

Definition 1. We say that $u_{0} \in X$ is a local minimizer of I in X if

$$
\exists \delta>0, \forall u \in X:\left\|u-u_{0}\right\|_{C^{1}(X)}<\delta \Longrightarrow I\left(u_{0}\right) \leq I(u) .
$$

Lemma 1 (1-necessary condition of minima). Let $L \in C^{1}\left(\mathbb{R}^{2 d+1}\right)$, $u_{0} \in X$ be a local minimizer of I in $X, h \in \mathcal{D}(\Omega), h \neq 0$.Definefort $\in \mathbb{R} g(t)=I\left(u_{0}+t h\right)$. Then $g^{\prime}(0)=0$, i.e.
$\forall h \in \mathcal{D}(\Omega): \int_{\Omega} \partial_{p} L(\nabla u(x), u(x), x) \cdot \nabla h(x) \mathrm{d} x+\partial_{z} L(\nabla u(x), u(x), x) h(x) \mathrm{d} x=0$.

The equation (1) is a weak formulation of the PDE

$$
\operatorname{div} \nabla_{p} L(\nabla u(x), u(x), x)+\partial_{z} L(\nabla u(x), u(x), x)=0
$$

for an unknown function u.

2 Sobolev spaces

In the whole section $\Omega \subset \mathbb{R}^{d}$ is an open set.
Definition 2. Let $u \in L_{l o c}^{1}(\Omega), \alpha \in \mathbb{N}_{0}^{d}$ be a multi-index. A function $v \in L_{l o c}^{1}(\Omega)$ is called the $\alpha^{\text {th }}$ weak derivative of u if

$$
\forall \varphi \in \mathcal{D}(\Omega): \int_{\Omega} \varphi v=(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi
$$

We denote it by $D^{\alpha} u$.
In the rest all derivatives will be understand in the weak sense if not explicitely differently.

Definition 3 (Sobolev space). For $p \in[1,+\infty]$, $k \in \mathbb{N}$ we define Sobolev space

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega)\left|\forall \alpha \in \mathbb{N}_{0}^{d}:|\alpha| \leq k \Longrightarrow D^{\alpha} u \in L^{p}(\Omega)\right\}\right.
$$

For $u \in W^{k, p}(\Omega)$ we define

$$
\|u\|_{W^{k, p}(\Omega)}= \begin{cases}\left(\int_{\Omega} \sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq k}\left|D^{\alpha} u\right|^{p}\right)^{\frac{1}{p}} & \text { if } p \in[1,+\infty) \\ \max _{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{\infty}(\Omega)} & \text { if } p=+\infty\end{cases}
$$

We denote $V \Subset \Omega$ if V is open and bounded subset of Ω such that $\bar{V} \subset \Omega$. We say that $u \in W_{l o c}^{k, p}(\Omega)$ if for any $V \Subset \Omega, u \in W^{k, p}(V)$.
For $u, v \in W^{k, 2}(\Omega)$ we define

$$
\langle u, v\rangle_{W^{k, 2}(\Omega)}=\int_{\Omega} \sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq k} D^{\alpha} u D^{\alpha} v
$$

Remark 1. - Functions in $W^{k, p}(\Omega)$ are determined up to a set of Lebesgue measure zero.

- If we say that $u \in W^{k, p}(\Omega)$ has some property, e.g. u is continuous, we mean that there is a representative with this property.
- If $p \in[1,+\infty)$ let us define for $u \in W^{k, p}(\Omega)$

$$
\mid\|u\| \|=\left(\sum_{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

Then $|\|\cdot\||$ is an equivalent norm on $W^{k, p}(\Omega)$ to $\|\cdot\|_{W^{k, p}(\Omega)}$.
Example 1. Function $f_{\alpha}(x)=|x|^{\alpha}$ for $\alpha \in \mathbb{R}, x \in \mathbb{R}^{d}$ belongs to $W_{\text {loc }}^{1, p}\left(\mathbb{R}^{d}\right)$, $p>1$ if $\alpha>1-\frac{d}{p}$.

2.1 Basic properties of Sobolev spaces

Theorem 1 (2). (Properties of the weak derivative) (4, Section 5.2.3) Let $u, v \in$ $W^{k, p}(\Omega), k \in \mathbb{N}, p \in[1,+\infty]$ and $\alpha \in\left(\mathbb{N}_{0}\right)^{d},|\alpha|<k$. Then

1. $D^{\alpha} u \in W^{k-|\alpha|, p}(\Omega)$ and $\left.\left.D^{\alpha}\left(D^{\beta} u\right)\right)=D^{\beta}\left(D^{\alpha} u\right)\right)$ for $|\alpha|+|\beta| \leq k$
2. $\lambda, \mu \in \mathbb{R} \Longrightarrow \lambda u+\mu v \in W^{k, p}(\Omega)$ and $D^{\alpha}(\lambda u+\mu v)=\lambda D^{\alpha} u+\mu D^{\alpha} v$.
3. if $\tilde{\Omega} \subset \Omega$ open, then $u \in W^{k, p}(\tilde{\Omega})$
4. if $\eta \in \mathcal{D}(\Omega)$, then $\eta u \in W^{k, p}(\Omega)$ and

$$
D^{\alpha}(\eta u)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D^{\beta} \eta D^{\alpha-\beta} u
$$

Remark 2. For $\alpha, \beta \in \mathbb{N}_{0}^{d}, \alpha!=\Pi_{j=1}^{d} \alpha_{j}$! and the number $\binom{\alpha}{\beta}$ is defined by $\alpha!/((\alpha-\beta)!\beta!)$.

Example 2. 1. If $d=1$ and $f(x)=\operatorname{sgn}(x)$ then for any $p \in[1,+\infty]$, $f \notin W^{1, p}(-1,1)$.
2. If $d=1$ and $f(x)=|x|$ then for any $p \in[1,+\infty], f \in W^{1, p}(-1,1)$.
3. $W^{1,1}(-1,1)=A C(-1,1)$
4. Cantor function c is continuous on $(0,1)$, with $c^{\prime}=0$ a.e. in $(0,1)$, but for all $p \geq 1, c \notin W^{1, p}(0,1)$. The function c is not absolutely continuous.

Let $h \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, spt $h \subset U(0,1), \int_{\mathbb{R}^{d}} h=1$. We define $h^{j}(x)=j^{d} h(j x)$ for $x \in \mathbb{R}^{d}$.

Definition 4. For $u \in W^{k, p}(\Omega)$ we denote $u^{j}=u \star h^{j}$ where the expression on the right hand side is well defined.

Lemma 2 (3). (3, Lemma 2.1.3) Let $u \in W^{k, p}(\Omega), p \in[1,+\infty)$, then for all $\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq k$ there holds $\left(D^{\alpha} u\right)^{j}=D^{\alpha}\left(u^{j}\right)$ and $u^{j} \rightarrow u$ in $W_{\text {loc }}^{k, p}(\Omega)$.

Theorem 2 (4). (3, Theorem 2.1.4)
Let $u \in L^{p}(\Omega), p \geq 1$. Then $u \in W^{1, p}(\Omega)$ if and only if u has a representative \tilde{u} that is absolutely continuous on λ^{d-1} a.e. line segments in Ω parallel to the coordinate axis and whose classical partial derivatives (that exits almost everywhere) belong to $L^{p}(\Omega)$.

Proof was not presented.
Corollary 1 (5). (3, 2.1.11) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz function and $u \in$ $W^{1, p}(\Omega), p \geq 1$. If $f \circ u \in L^{p}(\Omega)$ then $f \circ u \in W^{1, p}(\Omega)$ and for a. $e . x \in \mathbb{R}$ $\nabla(f \circ u)(x)=f^{\prime}(u(x)) \nabla u(x)$.
Definition 5. For a function $u: \Omega \rightarrow \mathbb{R}$ let $u^{+}=\max (u, 0), u^{-}=\min (u, 0)$.
Corollary 2 (6). (3, 2.1.8) Let $u \in W^{1, p}(\Omega), p \geq 1$. Then $u^{+}, u^{-} \in W^{1, p}(\Omega)$ and

$$
D u^{+}=\left\{\begin{array}{ll}
D u & \text { if } u>0 \\
0 & \text { if } u \leq 0
\end{array} \quad D u^{-}= \begin{cases}D u & \text { if } u<0 \\
0 & \text { if } u \geq 0\end{cases}\right.
$$

a.e. in Ω.

Theorem 3 (7). (3, 2.2.2) Let $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a bi-Lipschitzian mapping such that $T: \Omega^{\prime} \rightarrow \Omega$ and

$$
\exists M>0, \forall x, y \in \Omega, \forall x^{\prime}, y^{\prime} \in \Omega^{\prime}: \begin{aligned}
& \left|T\left(x^{\prime}\right)-T\left(y^{\prime}\right)\right| \leq M\left|x^{\prime}-y^{\prime}\right| \\
& \left|T^{-1}(x)-T^{-1}(y)\right| \leq M|x-y|
\end{aligned}
$$

If $u \in W^{1, p}(\Omega), p \geq 1$, then $v=u \circ T \in W^{1, p}(V)$ where $V=T^{-1}(\Omega)$ and for a. e. $x \in \Omega^{\prime}$ and any $\xi \in \mathbb{R}^{d}$

$$
\nabla u(T(x)) \nabla T(x) \xi=\nabla u(x) \xi
$$

Remark 3 (8). In the situation of the previous theorem there is $C>0$ such that for any $U \subset \Omega, V=T^{-1} U$ open sets, $\|u\|_{W^{1, p}(U)} \leq C\|v\|_{W^{1, p}(V)} \leq$ $C^{2}\|u\|_{W^{1, p}(U)}$.
Theorem 4 (8). (Basic properties of Sobolev spaces) Let $k \in \mathbb{N}$.

1. If $p \in[1,+\infty],\left(W^{k, p}(\Omega),\|\cdot\|_{k, p}\right)$ is a Banach space.
2. $\left(W^{k, 2}(\Omega),\langle\cdot, \cdot\rangle_{k, 2}\right)$ is a Hilbert space.
3. If $p \in[1,+\infty), W^{k, p}(\Omega)$ is separable.
4. If $p \in(1,+\infty), W^{k, p}(\Omega)$ is reflexive.

Theorem 1 (9,10). (2, Theorem 3.8) Let $p \in[1,+\infty), N \in \mathbb{N}$ be a number of multiindices $\alpha \in \mathbb{N}_{0}^{d}$ such that $|\alpha| \leq m$. For every $L \in W^{m, p}(\Omega)^{*}$ there exists an element $\left(v \in L^{p^{\prime}}(\Omega)\right)^{N}$ such that, writing the vector v in the form $(v)_{\alpha \in \mathbb{N}_{o}^{d},|\alpha| \leq N}$ we have for all $u \in W^{m, p}(\Omega)$

$$
\begin{equation*}
L(u)=\sum_{\alpha \in \mathbb{N}_{o}^{d},|\alpha| \leq N}\left\langle D^{\alpha} u, v\right\rangle . \tag{2}
\end{equation*}
$$

Moreover $\|L\|_{W^{m, p}(\Omega)^{*}}=\inf \|v\|_{L^{p^{\prime}}(\Omega)^{N}}=\min \|v\|_{L^{p^{\prime}}(\Omega)^{N}}$, the infimum being taken over, and attained on the set of all $v \in L^{p^{\prime}}(\Omega)^{N}$ for which (2) holds for every $u \in W^{m, p}(\Omega)$.

2.2 Approximation and extension of Sobolev functions

Lemma 3 (11). (Partition of unity) (3, Lemma 2.3.1) Let $E \subset \mathbb{R}^{d}$, \mathcal{G} be a collection of open sets such that $E \subset \bigcup_{U \in \mathcal{G}} U$. Then there is a family \mathcal{F} of nonnegative functions $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $0 \leq f \leq 1$ and

1. $\forall f \in \mathcal{F}, \exists U \in \mathcal{G}: \operatorname{spt} f \subset U$
2. $\forall K \subset E, K$ compact : $\operatorname{spt} f \cap K \neq \emptyset$ for only finitely many $f \in \mathcal{F}$
3. $\sum_{f \in \mathcal{F}} f(x)=1$ for every $x \in E$
4. if E is compact, the family \mathcal{F} is finite
5. family \mathcal{F} is at most countable

Theorem 5 (12). (3, Theorem 2.3.2) The set $C^{\infty}(\Omega) \cap W^{k, p}(\Omega)$ is dense in $W^{k, p}(\Omega)$. The set $\left\{f \in C^{\infty}(\Omega), \exists R>0: \operatorname{spt} f \subset U(0, R)\right\} \cap W^{k, p}(\Omega)$ is dense in $W^{k, p}(\Omega)$.
Lemma 4 (13). Let $u \in L^{p}\left(\mathbb{R}^{d}\right), p \in[1,+\infty)$. For $h \in \mathbb{R}^{d}$, $h \neq 0$ and $x \in \mathbb{R}^{d}$ define $u_{h}(x)=u(x+h)$. Then $u_{h} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{d}\right)$ as $h \rightarrow 0$.

Lemma 5 (14). Let $V=U(0, R) \cap\left\{x \in \mathbb{R}^{d} ; x_{d}>0\right\}, \epsilon>0, u \in W^{k, p}(\{x \in$ $\left.\left.\mathbb{R}^{d} ; x_{d}>0\right\}\right)$ with $\operatorname{spt} u \subset V$. Then there is a function $v \in C^{\infty}\left(\left\{x \in \mathbb{R}^{d} ; x_{d} \geq\right.\right.$ $0\})$ such that $\operatorname{spt} v \subset U(0,2 R) \cap\left\{x \in \mathbb{R}^{d} ; x_{d} \geq 0\right\}$ and $\|u-v\|_{W^{k, p}(V)}<\epsilon$.

Theorem 6 (15). (4, Section 5.3.3, Theorem 3),(2, Theorem 3.18) Let $k \in \mathbb{N}$, $p \in[1,+\infty), \Omega \subset \mathbb{R}^{d}$ be bounded with C^{1} boundary. Then $C^{\infty}(\bar{\Omega})$ is dense in $W^{k, p}(\Omega)$.
Lemma 6 (16). Let us equip $X=\left\{U \in C^{1}\left(\left\{x \in \mathbb{R}^{d} \mid x_{d} \geq 0\right\}\right) \mid \operatorname{spt} U \subset U(0, R)\right\}$ with a norm $\|\cdot\|_{X}=\|\cdot\|_{W^{1, p}(U(0, R)) \cap\left\{x \in \mathbb{R}^{d} \mid x_{d} \geq 0\right\}}$ and $Y=\left\{U \in C^{1}\left(\mathbb{R}^{d}\right) \mid \operatorname{spt} U \subset\right.$ $U(0,2 R))\}$ with a norm $\|\cdot\|_{Y}=\|\cdot\|_{W^{1, p}(U(0,2 R))}$. Then there is a linear mapping $\tilde{E}: X \rightarrow Y$ such that

$$
\|\tilde{E}\|_{\mathcal{L}\left(\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)\right)}<C(p, R)
$$

and $\tilde{E} u=u$ on $\left\{x \in \mathbb{R}^{d} \mid x_{d} \geq 0\right\}$ for any $u \in X$.
Theorem 7 (17). (4, Section 5.4, Theorem 1) Assume $\Omega \subset \mathbb{R}^{d}$ open, bounded and with C^{1} boundary. Fix $V \subset \mathbb{R}^{d}$ open such that $\Omega \Subset V$. Then there is a bounded linear operator $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{d}\right)$ such that for all $u \in W^{1, p}(\Omega)$

1. $E u=u$ a.e. in Ω
2. $\operatorname{spt} E u \subset V$
3. $\|E\| \leq C$ with $C=C(p, \Omega, V)$

2.3 Embeddings of Sobolev spaces

We introduce a notation

$$
\int_{\mathbb{R}^{d-1}} f \widehat{\mathrm{~d} x_{i}}=\int_{\mathbb{R}^{d-1}} f \mathrm{~d} x_{i} \ldots \mathrm{~d} x_{i-1} \mathrm{~d} x_{i+1} \ldots \mathrm{~d} x_{d}
$$

Lemma 7 (18). (4, Section 5.6, Theorem 1) Let $d \geq 2$, for $i \in\{1, \ldots, d\}$, $u_{i} \in C_{c}^{1}\left(\mathbb{R}^{d-1}\right)$ and u_{i} be independent of x_{i}. Then

$$
\int_{\mathbb{R}^{d}} \prod_{i=1}^{d}\left|u_{i}\right| \leq\left(\prod_{i=1}^{d} \int_{\mathbb{R}^{d-1}}\left|u_{i}\right|^{d-1} \widehat{\mathrm{~d} x_{i}}\right)^{\frac{1}{d-1}}
$$

Lemma 8 (19). (4, Section 5.6, Theorem 1) Let $d>2, u \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$. Then for $p \in[1, d), p^{*}=\frac{d p}{d-p}$, i.e. $-\frac{d}{p^{*}}=1-\frac{d}{p}$

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq p \frac{d-1}{d-p}\|\nabla u\|_{L^{p}\left(\mathbb{R}^{d}\right)} .
$$

Theorem 8 (20). Let $p \in[1, d), d>2$. Then $W^{1, p}\left(\mathbb{R}^{d}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{d}\right)$.
Definition 6. For $p \in[1,+\infty]$ we define $W_{0}^{k, p}(\Omega)=\overline{\mathcal{D}(\Omega)} \|^{\|\cdot\|_{k, p}}$.
Theorem 9 (21). Let $p \in[1, d), d>2, \Omega$ bounded. Then for all $q \in\left[1, p^{*}\right]$ exists $C>0$ such that for all $u \in W_{0}^{1, p}(\Omega)$ there holds $\|u\|_{L^{q}(\Omega)} \leq C\|\nabla u\|_{L^{p}(\Omega)}$.
Remark 4. $\|\cdot\|_{1, p}$ and $\|\nabla \cdot\|_{p}$ are equivalent norms on $W_{0}^{1, p}(\Omega)$ if Ω is bounded.
Theorem 10 (22). Let $p \in[1, d), d>2, \Omega \subset \mathbb{R}^{d}$ bounded with C^{1} boundary. Then

$$
\exists C_{p}>0, \forall u \in W^{1, p}(\Omega):\|u\|_{L^{p^{*}}(\Omega)} \leq C_{p}\|u\|_{W^{1, p}(\Omega)}
$$

Lemma 9 (24). (5, Lemma 7.16) Let $u \in C^{1}\left(\mathbb{R}^{d}\right), \Omega \subset \mathbb{R}^{d}$ bounded convex, $x \in \Omega$. Then

$$
\left|u(x)-f_{\Omega} u\right| \leq \frac{R^{d}}{d|\Omega|} \int_{\Omega}|\nabla u(y)||y-x|^{1-d} \mathrm{~d} y
$$

Theorem 11 (25-Sobolev-Poincaré inequality). Let $\Omega \subset \mathbb{R}^{d}$ be bounded and convex. Then

$$
\forall q<p^{*}, \exists C>0, \forall u \in W^{1, p}(\Omega):\left\|u-f_{\Omega} u\right\|_{L^{q}(\Omega)} \leq C\|\nabla u\|_{L^{p}(\Omega)}
$$

Remark 5. (3, Corollary 4.2.3) Previous theorem holds also if $p \geq 1$ and $q=p^{*}$.

Lemma 10 (26). Let $u \in C_{c}^{1}\left(\mathbb{R}^{d}\right), \alpha=1-\frac{d}{p}$. Then

$$
\forall x, y \in \mathbb{R}^{d}: \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C(p, d)\|\nabla u\|_{L^{p}\left(\mathbb{R}^{d}\right)}, \quad|u(x)| \leq C(p, d)\|u\|_{W^{1, p}\left(\mathbb{R}^{d}\right)}
$$

Definition 7. We define for $\alpha \in(0,1]$ and $f: \Omega \rightarrow \mathbb{R} a$

$$
\begin{gathered}
{[f]_{C^{0, \alpha}(\bar{\Omega})}:=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} ; x, y \in \Omega, x \neq y\right\},} \\
\|f\|_{C^{0, \alpha}(\Omega)}=\|f\|_{L^{\infty}(\Omega)}+[f]_{C^{0, \alpha}(\bar{\Omega})} .
\end{gathered}
$$

We define $C^{0, \alpha}(\bar{\Omega})=\left\{f: \Omega \rightarrow \mathbb{R} ;\|f\|_{C^{0, \alpha}(\bar{\Omega})}<+\infty\right\}$.
Theorem 12 (27). (6, Theorem 1.3.3) Let $\alpha \in(0,1]$. The space $\left(C^{0, \alpha}(\bar{\Omega}),\|\cdot\|_{0, \alpha}\right)$ is a Banach space.
Theorem 13 (28). Let $p \in(d,+\infty]$, $\alpha=1-\frac{d}{p}$, then $W^{1, p}\left(\mathbb{R}^{d}\right) \hookrightarrow C^{0, \alpha}\left(\mathbb{R}^{d}\right)$.
Theorem 14 (29). Let $p \in(d,+\infty], \Omega \subset \mathbb{R}^{d}$ bounded with C^{1} boundary. Then $W^{1, p}(\Omega) \hookrightarrow C^{0, \alpha}(\bar{\Omega})$.

Theorem 15 (30). (4, Theorem 5.5.1) Let $d \in\{2, \ldots\}, \Omega \subset \mathbb{R}^{d}$ be bounded with C^{1} boundary, $p \in[1,+\infty)$, $p^{\#}=\frac{(d-1) p}{d-p}$ if $p<d$. Let

$$
q \in\left\{\begin{array}{lc}
{\left[1, p^{\#}\right]} & \text { if } p<d \\
{[1,+\infty)} \\
{[1,+\infty]} & \text { if } p=d \\
\text { if } p>d
\end{array}\right.
$$

Then there is a bounded linear operator $\operatorname{Tr}: W^{1, p}(\Omega) \rightarrow L^{q}(\partial \Omega)$ such that for $f \in C^{\infty}(\bar{\Omega})$ the equality $\operatorname{Tr} f=\left.f\right|_{\partial \Omega}$ holds on $\partial \Omega$.

Theorem 16 (31). (2, Theorem 6.2), (2, Theorem 5.4) Let $d \in\{2, \ldots\}, \Omega \subset$ \mathbb{R}^{d} be bounded with C^{1} boundary, $p \in[1,+\infty)$.
case $p<d \quad-$ If $q \in\left[1, p^{*}\right)$ the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact.

- If $q \in\left[1, p^{\#}\right)$ the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ is compact.
case $p=d \quad-$ If $q \in[1,+\infty)$ the embeddings $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ and $W^{1, p}(\Omega) \hookrightarrow$ $L^{q}(\partial \Omega)$ are compact.
case $p>d \quad-$ If $\alpha \in\left[0,1-\frac{d}{p}\right)$ the embedding $W^{1, p}(\Omega) \hookrightarrow C^{0, \alpha}(\bar{\Omega})$ is compact.
- If $\alpha \in\left[0,1-\frac{d}{p}\right)$ the embeddings $W^{1, p}(\Omega) \hookrightarrow C^{0, \alpha}(\partial \Omega)$ is compact.

This theorem was presented in a different form without proof.
Theorem 17 (32). Let Ω be bounded with C^{1} boundary, $p \in[1,+\infty)$. Then

$$
W_{0}^{1, p}(\Omega)=\left\{u \in W^{1, p}(\Omega) \mid \operatorname{Tr} u=0 \text { on } \partial \Omega\right.
$$

2.4 Difference quotients and weak derivatives

Definition 8. Let $u \in L_{l o c}^{1}(\Omega), i \in\{1, \ldots, d\}$. The i-th difference quotient of size $h \in \mathbb{R} \backslash\{0\}$ is $D_{i}^{h} u(x)=\frac{1}{h}\left(u\left(x+h e_{i}\right)-u(x)\right)$ for $x \in \Omega$ s.t. $x+h e_{i} \in \Omega$.

Theorem 18 (32). i) Let $p \in[1,+\infty), u \in W^{1, p}(\Omega)$. Then there is $C>0$ such that for all $V \Subset \Omega, i \in\{1, \ldots, d\},|h|<\frac{1}{2}(\operatorname{dist}(V, \partial \Omega))$ there holds $\left\|D_{i}^{h} u\right\|_{L^{p}(V)} \leq C\left\|\partial_{i} u\right\|_{L^{p}(\Omega)}$.
ii) Let $p \in(1,+\infty), u \in L^{p}(\Omega)$ and there is $C>0, V \Subset \Omega, i \in\{1, \ldots, d\}$ such that for all $|h|<\frac{1}{2}(\operatorname{dist}(V, \partial \Omega))$ there holds $\left\|D_{i}^{h} u\right\|_{L^{p}(V)} \leq C$. Then the weak derivative $\partial_{i} u$ exists and $\left\|\partial_{i} u\right\|_{L^{p}(V)} \leq C$.

3 Linear elliptic PDE's of second order

In this section we will assume
Assumption 1 (33). The set Ω and functions $A=\left(a_{i j}\right)_{i, j=1}^{d}: \Omega \rightarrow \mathbb{R}^{d \times d}$, $b=\left(b_{i}\right)_{i=1}^{d}: \Omega \rightarrow \mathbb{R}^{d}$, c, $f: \Omega \rightarrow \mathbb{R}, g, u_{0}: \partial \Omega \rightarrow \mathbb{R}$ are given with the following properties.

- $\Omega \subset \mathbb{R}^{d}$ with C^{1} boundary, a bounded domain
- there is $\alpha>0$ such that for all $\xi \in \mathbb{R}^{d}$ and a.e. $x \in \Omega$ there holds $\alpha|\xi|^{2} \leq A \xi \cdot \xi$
- for all $i, j \in\{1, \ldots, d\}$ there holds $a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$
- $f \in E^{2}(\Omega)$
- $g \in L^{2}(\partial \Omega)$
- u_{0} is a trace of a function from $W^{1,2}(\Omega)$, we denote it again $u_{0} \in W^{1,2}(\Omega)$

We will study the equation

$$
\begin{equation*}
-\operatorname{div}(A \nabla u)+b \cdot \nabla u+c u=f \quad \text { in } \Omega \tag{3}
\end{equation*}
$$

with two types of boundary conditions. We will prescribe either Dirichlet boundary condition

$$
\begin{equation*}
u=u_{0} \quad \text { on } \partial \Omega \tag{4}
\end{equation*}
$$

or Neumann boundary condition

$$
\begin{equation*}
A \nabla u \cdot \nu=g \quad \text { on } \partial \Omega, \text { here } \nu \text { denotes the normal unit vector to } \Omega . \tag{5}
\end{equation*}
$$

Definition 9. We say that $u: \Omega \rightarrow \mathbb{R}$ is a weak solution to the problem (3) with the boundary condition (4) if $u \in W^{1,2}(\Omega), u-u_{0} \in W_{0}^{1,2}(\Omega)$, i.e. $\operatorname{Tr} u=u_{0}$, and

$$
\begin{equation*}
\forall \varphi \in W_{0}^{1,2}(\Omega): \int_{\Omega} A \nabla u \cdot \nabla \varphi+b \cdot \nabla u \varphi+c u \varphi=\int_{\Omega} f \varphi . \tag{6}
\end{equation*}
$$

We say that $u: \Omega \rightarrow \mathbb{R}$ is a weak solution to the problem (3) with the boundary condition (5) if $u \in W^{1,2}(\Omega)$ and

$$
\begin{equation*}
\forall \varphi \in W^{1,2}(\Omega): \int_{\Omega} A \nabla u \cdot \nabla \varphi+b \cdot \nabla u \varphi+c u \varphi=\int_{\Omega} f \varphi+\int_{\partial \Omega} g \operatorname{Tr}(\varphi) \tag{7}
\end{equation*}
$$

3.1 Existence of a weak solution by Riesz Theorem

Theorem 19. (7, Theorem 19) Let H be a real Hilbert space. Define for $y \in H$, $f_{y} \in H^{*}$ by $f_{y}(x)=\langle x, y\rangle$ for all $x \in H$. The mapping $I: H \rightarrow H^{*}, I(y)=f_{y}$ is linear isometry of H onto H^{*}.

Theorem 20 (35). Let Assumption 1 hold. Moreover let for all $i, j \in\{1, \ldots, d\}$ and a.e. $x \in \Omega a_{i j}(x)=a_{j i}(x), b(x)=0$.

1. Then there is $\gamma<0$ such that if $c>\gamma$ on Ω then a weak solution of (3) and (4) exists. It satisfies $\|u\|_{W^{1,2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\left\|u_{0}\right\|_{W^{1,2}(\Omega)}\right)$ for a suitable $C>0$ independent of f and u_{0}.
2. If $c>0$ on Ω then there is a weak solution of (3) and (5). It satisfies $\|u\|_{W^{1,2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right.$ for a suitable $C>0$ independent of f and g.

The solutions are unique.
Lemma 11 (36 Lax Milgram). (4) Let H be a real Hilbert space with a scalar product $\langle\cdot, \cdot\rangle_{H}$ and an induced norm $\|\cdot\|_{H}$. Let $B: H \times H \rightarrow \mathbb{R}$ be a bilinear mapping that is

- (elliptic) $\exists m>0, \forall u \in H: m\|u\|_{H}^{2} \leq B(u, u)$
- (bounded) $\exists M>0, \forall u, v \in H: B(u, v) \leq M\|u\|_{H}\|v\|_{H}$

Then for every $F \in H^{*}$ there is a unique $u \in H$ such that $\forall v \in H: B(u, v)=$ $F(v)$. Moreover, $\|u\|_{H} \leq \frac{1}{m}\|F\|_{H^{*}}$.
Theorem 21 (37). Let Assumption 1 hold. Then there is $\gamma \in \mathbb{R}$ such that if $c>\gamma$ on Ω then there is a weak solution u of (3) and (4) or (5). The solution is unique and satisfies $\|u\|_{W^{1,2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\left\|u_{0}\right\|_{W^{1,2}(\Omega)}\right)$, resp. $\|u\|_{W^{1,2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\Omega)}\right)$.
Theorem 22 (38). Let

- $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}, b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, c, f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- $A, b, c \in L^{\infty}\left(\mathbb{R}^{d}\right), f \in L^{2}$

There is $\gamma \in \mathbb{R}$ such that $c>\gamma$ implies existence of $u \in W^{1,2}\left(\mathbb{R}^{d}\right)$ such that

$$
\forall \varphi \in W^{1,2}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}} A \nabla u \cdot \nabla \varphi+b \cdot \nabla u \varphi+c u \varphi=\int_{\mathbb{R}^{d}} f \varphi
$$

The solution is unique and $\|u\|_{W^{1,2}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$.

3.2 Application of Fredholm Theorems

We introduce the differential operator

$$
\begin{equation*}
L u=-\operatorname{div}(A \nabla u)+b \cdot \nabla u+c u-\operatorname{div}(d u) \tag{8}
\end{equation*}
$$

and its formal adjoint

$$
\begin{equation*}
L^{*} u=-\operatorname{div}\left(A^{T} \nabla u\right)+d \cdot \nabla u+c u-\operatorname{div}(b u) \tag{9}
\end{equation*}
$$

We consider here only homogeneous Dirichlet boundary condition $u=0$ on $\partial \Omega$.

If we assume sufficient regularity of functions c and d we may apply the theory developed in the previous section to get existence of a weak solutions to the problem $L u=f$ in Ω and $u=0$ on $\partial \Omega$. The statement $u \in W_{0}^{1,2}(\Omega)$ solves the problem $L u=f$ in Ω with the boundary condition $u=0$ on $\partial \Omega$ is understood in the weak sense in what follows.

We will assume that Assumption 1 hold and moreover for simplicity b, d, \in $W^{1, \infty}(\Omega)$.

Theorem 23 (39-Fredholm alternative). 1. (a) Either for all $f \in L^{2}(\Omega)$ there exists a unique $u \in W_{0}^{1,2}(\Omega)$ a weak solution of $L u=f$ in Ω, $u=0$ on $\partial \Omega$
(b) or there is $u \in W_{0}^{1,2}(\Omega) \backslash\{0\}$ a weak solution of $L u=0$ in $\Omega, u=0$ on $\partial \Omega$.
2. In case 1b) denote $\operatorname{Ker} L=\left\{u \in W_{0}^{1,2}(\Omega) ; L u=0\right\} \neq \emptyset$, $\operatorname{Ker} L^{*}=\{u \in$ $\left.W_{0}^{1,2}(\Omega) ; L^{*} u=0\right\}$. Then $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Ker} L^{*}$.
3. In case 1b) there is a weak solution to $L u=f$ in $\Omega, u=0$ on $\partial \Omega$ if $f \in L^{2}(\Omega)$ and for all $\varphi \in \operatorname{Ker} L^{*}, \int_{\Omega} f \varphi=0$.

Theorem 24 (40). (4, Section 6.2, Theorem 5) Let Ω be a bounded domain. There is at most countable set $\Sigma \subset \mathbb{R}$ such that the following is equivalent:

1. $\lambda \notin \Sigma$
2. $\forall f \in L^{2}(\Omega), \exists$! $u \in W_{0}^{1,2}(\Omega)$ a weak solution of the problem $L u=\lambda u+f$ in $\Omega, u=0$ on $\partial \Omega$.

If Σ is not finite, then $+\infty$ is its only cluster point.
Remark 6. The set Σ is called (real) spectrum of L.
Theorem 25 (41). Let the operator L satisfy: A be symmetric $\forall i, j \in\{1, \ldots, d\}$: $\left.a_{i j}=a_{j i}\right), \forall j \in\{1, \ldots, d\}: b_{j}=d_{j}$. Let Σ be the set from Theorem 24. Then

1. Σ is infinite. If we denote $\Sigma=\left\{\lambda_{k}\right\}_{k=1}^{+\infty}$ then $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$.
2. There exists an orthonormal basis $\left\{w_{k}\right\}_{k=1}^{+\infty}$ of $L^{2}(\Omega)$ such that $w_{k} \in$ $W^{1,2}(\Omega)$ and it solves $L w_{k}=\lambda w_{k}$ in $\Omega, w_{k}=0$ on $\partial \Omega$ for some $\lambda \in \Sigma$.
3. If $b=d=0$ and $c \geq 0$ on Ω, then $\Sigma \subset(0,+\infty)$.

Theorem 26 (43-maximum principle). Let $u_{0} \in L^{\infty}(\partial \Omega) \cap \operatorname{Tr}\left(W^{1,2}(\Omega)\right), c \geq 0$ on Ω and $u \in W^{1,2}(\Omega)$ is a weak solution to $-\operatorname{div}(A \nabla u)+c u=0$ in $\Omega, u=u_{0}$ on $\partial \Omega$. Then $u \in L^{\infty}(\Omega)$ and $\|u\|_{L^{\infty}} \leq\left\|u_{0}\right\|_{L^{\infty}(\partial \Omega)}$.

Theorem 27 (44). Let $a_{i j} \in C^{1}(\bar{\Omega}), b_{i}, c \in L^{\infty}(\Omega)$ for all $i, j \in\{1, \ldots, d\}$, $f \in L^{2}(\Omega), u \in W^{1,2}(\Omega)$ be a weak solution of $L u=f$ in $\Omega, u=0$ on $\partial \Omega$. Then $u \in W^{1,2}(\Omega)$ and $\|u\|_{W^{2,2}(\Omega)} \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right)$. The constant $C>0$ is independent of f and u.

4 Nonlinear elliptic PDE's of second order

4.1 Basics of Calculus of Variations

Setting:

1. $\Omega \subset \mathbb{R}^{d}$ open bounded set with smooth boundary
2. $L: \mathbb{R}^{d} \times \mathbb{R} \times \bar{\Omega} \rightarrow \mathbb{R}$ a function called Lagrangian, $L=L(p, z, x), p \in \mathbb{R}^{d}$, $z \in \mathbb{R}, x \in \Omega$.
3. $g: \partial \Omega \rightarrow \mathbb{R}$

We are looking for a minimizer of

$$
I(w)=\int_{\Omega} L(\nabla w(x), w(x), x) \mathrm{d} x
$$

on the set of functions $X=\{w ; w=g$ on $\partial \Omega\}$.
We will assume coercivity of L

$$
\begin{equation*}
\exists q \in(1,+\infty), \exists \alpha>0, \beta \geq 0, \forall p \in \mathbb{R}^{d}, z \in \mathbb{R}, x \in \Omega: L(p, z, x) \geq \alpha|p|^{q}-\beta . \tag{10}
\end{equation*}
$$

Remark 7. - If L is coercive then $I(w) \rightarrow+\infty$ as $\|\nabla w\|_{L^{q}(\Omega)} \rightarrow+\infty$.
\bullet

$$
\inf _{w \in X} I(w)=\inf \left\{I(w) ; w \in X,\|\nabla w\|_{q} \leq\left(\frac{2 L\left(w_{0}\right)+\beta^{\prime}}{\alpha^{\prime}}\right)^{\frac{1}{q}}\right\}
$$

for any $w_{0} \in X$ and suitable α^{\prime} and β^{\prime}.
Definition 10. $X=\left\{w \in W^{1, q}(\Omega) ; \operatorname{Tr} w=g\right.$ on $\left.\partial \Omega\right\}$.
Lemma 12 (45). Let $R>0, A=\left\{w \in X ;\|\nabla w\|_{L^{q}(\Omega)}<R\right\}$, then there is $R^{\prime}>0$ such that $A \subset U\left(0, R^{\prime}\right) \subset W^{1, q}(\Omega)$.
Corollary 3 (46). Choose $w_{k} \subset X$ such that $I\left(w_{k}\right) \rightarrow \inf _{w \in X} I(w)$, then $\exists R^{\prime}>0, \forall k \in:\left\|w_{k}\right\|_{1, q} \leq R^{\prime}$, i.e. minimizing sequences are bounded.

Definition 11. We say that I is weakly sequentially lower semicontinuous on $W^{1, q}(\Omega)$ if $I(u) \leq \liminf _{k \rightarrow+\infty} I\left(w_{k}\right)$, whenever $w_{k} \rightharpoonup u$ in $W^{1, q}(\Omega)$.

Theorem 28 (47). Assume that L is smooth (C^{2} is definitely enough/too much), bounded below and in addition

$$
\begin{equation*}
\text { the mapping } p \rightarrow L(p, z, x) \text { is convex for any } z \in \mathbb{R}, x \in \Omega \text {. } \tag{11}
\end{equation*}
$$

Then I is weakly sequentially lower semicontinuous on $W^{1, q}(\Omega)$.
Theorem 29 (48). Assume that L satisfies the coercivity condition (10), and is convex with respect to the variable p, see (11), and X is not empty. Then there is (at least one) function $u \in X$ solving $I(u)=\inf _{w \in X} I(w)$.

Theorem 30 (49). Suppose that L is smooth and independent of z and

$$
\exists q>1, \theta>0, \forall p \in \mathbb{R}^{d}, \xi \in \mathbb{R}^{d}, x \in \Omega: \sum_{i, j=1}^{d} \partial_{p_{i}} \partial_{p_{j}} L(p, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{q}
$$

Then there is at most one minimizer of I.
Proof. Theorem was presented in a student's presentation.
Definition 12. We say that $u \in X$ is a weak solution to the boundary value problem

$$
\begin{equation*}
-\operatorname{div} \nabla_{p} L(\nabla u, u, x)+\partial_{z} L(\nabla u, u, x)=0 \quad \text { in } \Omega \tag{12}
\end{equation*}
$$

with boundary condition $u=g$ on $\partial \Omega$ for the Euler Lagrange equation provided

$$
\forall v \in W_{0}^{1, q}(\Omega): \int_{\Omega} \nabla_{p} L(\nabla u, u, x) \cdot \nabla v+\partial_{z} L(\nabla u, u, x) v=0
$$

Theorem 31 (50). Assume L verifies the growth conditions

$$
\exists C>0, \forall p \in \mathbb{R}^{d}, z \in \mathbb{R}, x \in \Omega:|L(p, z, x)| \leq C\left(|p|^{q}+|z|^{q}+1\right)
$$

$\exists C>0, \forall p \in \mathbb{R}^{d}, z \in \mathbb{R}, x \in \Omega:\left|\nabla_{p} L(p, z, x)\right|+\left|\nabla_{z} L(p, z, x)\right| \leq C\left(|p|^{q-1}+|z|^{q-1}+1\right)$
and $u \in X$ satisfies $I(u)=\inf _{w \in X} I(w)$. Then u is a weak solution of (12).
Proof. Just a sketch of a proof. Computation was shown in a presentation but without precise reasoning for interchange of limit passage and integration.

4.2 Existence of a weak solution by method of Brower and Minty

Assumption 2 (51). Let $a: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, q>1$ satisfy

- a is a Caratheodory function, i.e. for a.e. $x \in \Omega$ the mapping $(z, p) \rightarrow$ $a(x, z, p)$ is continuous and for all $z \in \mathbb{R}, p \in \mathbb{R}^{d}$ the mapping $x \rightarrow$ $a(x, z, p)$ is measurable
- (boundedness) $\exists C>0, \forall x \in \Omega, z \in \mathbb{R}, p \in \mathbb{R}^{d}:|a(x, z, p)| \leq C(1+|p|)^{q-1}$
- (coercivity) $\exists C_{1}, C_{2}>0, \forall x \in \Omega, z \in \mathbb{R}, p \in \mathbb{R}^{d}: C_{1}|p|^{q}-c_{2} \leq a(x, z, p) \cdot p$.
- (monotony) $\forall x \in \Omega, z \in \mathbb{R}, p_{1}, p_{2} \in \mathbb{R}^{d}:\left(a\left(x, z, p_{1}\right)-a\left(x, z, p_{2}\right)\right) \cdot\left(p_{1}-\right.$ $\left.p_{2}\right) \geq 0$

Remark 8. - Monotony is an assumption of a similar type as convexity in variational techniques.

- Coercivity was needed also for variational techniques.
- Boundedness was not needed for variational techniques.

We consider the next problem: for a given a, f and u_{0} find a solution u to the partial differential equation

$$
\begin{equation*}
-\operatorname{div} a(x, u, \nabla u)=f \quad \text { in } \Omega \tag{13}
\end{equation*}
$$

with Dirichlet boundary condition $u=u_{0}$ on $\partial \Omega$.
Definition 13 (weak formulation of (13)). Let $f \in W_{0}^{1, q}(\Omega)^{*}, u_{0}: \partial \Omega \rightarrow \mathbb{R}$ and $a: \Omega \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. We call $u \in W^{1, q}(\Omega)$ a weak solution of the problem (13) with boundary condition $u=u_{0}$ on $\partial \Omega$ if $\operatorname{Tr} u=u_{0}$ on $\partial \Omega$ and

$$
\left.\forall \varphi \in W_{0}^{1, q}(\Omega): \int_{\Omega} a(x, u, \nabla u) \cdot \nabla \varphi=\right\rangle f, \varphi\langle
$$

Remark 9. Under Assumption 2 all terms in the definition are well defined.
Theorem 32 (52). If $f \in\left(W_{0}^{1, q}\right)^{*}$, Assumption 2 holds and $u_{0} \in W^{1, q}(\Omega)$, then there is a weak solution of the problem (13) with boundary condition $u=u_{0}$ on $\partial \Omega$.

Lemma 13. Let $R>0, m \in \mathbb{N}, \Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be continuous such that for all $c \in \partial U(0, R): \Phi(c) \cdot c \geq 0$. Then there is a $c_{0} \in \overline{U(0, R)}$ such that $\Phi\left(c_{0}\right)=0$.

Proof. The proof rests on Brower fixed point theorem but was not presented.
Theorem 33 (53). Let assumptions of Theorem 32 hold. Let a be independent of z, i.e. $a: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, a=a(x, p)$, and strictly monotone in p, i.e.

$$
\forall p_{1}, p_{2} \in \mathbb{R}^{d}, p_{1} \neq p_{2}, \text { a.e. } x \in \Omega:\left(a\left(x, p_{1}\right)-a\left(x, p_{2}\right)\right) \cdot\left(p_{1}-p_{2}\right)>0
$$

Then the weak solution to the problem (13) with the boundary condition $u=u_{0}$ in $\partial \Omega$ is unique.

Proof. Will be proved in presentation.

5 Did not fit into schedule

Theorem 34 (54-Maximum principle). Let Assumption 2 hold, a be strictly monotone in p, for all $z \in \mathbb{R}$ and a.e. $x \in \Omega a(x, z, 0)=0, f=0$ and $u_{0} \in L^{\infty}(\partial \Omega) \cap \operatorname{Tr} W^{1, q}(\Omega)$. Let $u \in W^{1, q}(\Omega)$ be a weak solution to (13) with the boundary condition $u=u_{0}$ on $\partial \Omega$. Then $u \in L^{\infty}(\Omega)$ and $\|u\|_{L^{\infty}(\Omega)} \leq$ $\left\|u_{0}\right\|_{L^{\infty}(\partial \Omega)}$.
Proof. The theorem was not presented.
Theorem 35 (55-local regularity). Let Assumption 2 hold, a be independent of z and $x, f=0$ and

$$
\begin{aligned}
\exists \theta> & 0, \forall p_{1}, p_{2} \in \mathbb{R}^{d}:\left(a\left(p_{1}\right)-a\left(p_{2}\right)\right) \cdot\left(p_{1}-p_{2}\right) \geq \theta\left(\left|p_{1}\right|+\left|p_{2}\right|\right)^{q-2}\left|p_{1}-p_{2}\right|^{2} \\
& \exists C>0, \forall p_{1}, p_{2} \in \mathbb{R}^{d}:\left|a\left(p_{1}\right)-a\left(p_{2}\right)\right| \leq C\left(\left|p_{1}\right|+\left|p_{2}\right|\right)^{q-2}\left|p_{1}-p_{2}\right| .
\end{aligned}
$$

Let $u \in W^{1, q}(\Omega)$ be a weak solution to (13) with the boundary condition $u=u_{0}$ on $\partial \Omega$ and B be a ball of radius $R>0$ such that $B \subset 2 B \subset \Omega$. Then $|\nabla u|^{\frac{q}{2}} \in$ $W^{1,2}(B)$ and

$$
\left.\left.\int_{B}|\nabla| \nabla u\right|^{\frac{q}{2}}\right|^{2} \leq \frac{C}{R^{2}} \int_{2 B}|\nabla u|^{q}
$$

Proof. Theorem was not presented.

5.1 Existence of a weak solution by Banach fixed point theorem

Theorem 36 (56-nonlinear Lax Milgram). Let X be a real Hilbert space, T : $X \rightarrow X$ Lipschitz continuous, i.e.

$$
\exists M>0, u, v \in X:\|T u-T v\|_{X} \leq M\|u-v\|_{X}
$$

and strongly monotone, i.e.

$$
\exists m>0, \forall u, v \in X:(T u-T v, u-v)_{X} \geq m\|u-v\|_{X}^{2}
$$

Then for any $F \in X$ exists a unique $u \in X$ such that $T u=F$.
Proof. The theorem was not presented.
Example 3. For any $f \in L^{2}(\Omega)$ there is a weak solution to the problem $-\operatorname{div}\left(\operatorname{arctg}\left(1+|\nabla u|^{2}\right) \nabla u\right)=-\operatorname{div} f$ in Ω with homogeneous Dirichlet boundary condition $u=0$ on $\partial \Omega$.

Proof. The example was not presented.

Bibliography

[1] R. Feynmann, .
[2] R.A. Adams, J.J.F. Fournier, Soboles Spaces, Elsevier, 2005.
[3] W.P. Ziemer, Weakly Differentable Functions, Springer-Verlag, 1989.
[4] L.C. Evans, Partial Differential Equations, AMS, 2010.
[5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
[6] A. Kufner, O. John, S. Fučík, Function Spaces, Academia, 1977.
[7] O. Kalenda, Introduction to Functional Analysis, http://www.karlin.mff.cuni.cz/~kalenda/pages/ufa1516.php.

