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Introduction

This book is devoted to the qualitative study of solutions of superlinear elliptic and
parabolic partial differential equations and systems. Here “superlinear” means that
the problems involve nondissipative terms which grow faster than linearly for large
values of the solutions. This class of problems contains, in particular, a number of
reaction-diffusion systems which arise in various mathematical models, especially
in chemistry, physics and biology.

For parabolic problems of this type it is known that a solution may cease to
exist in a finite time as a consequence of its L*-norm becoming unbounded: The
solution blows up. On the other hand, in many of these problems there exist also
global solutions (in particular, stationary solutions). Both global and blowing-
up solutions may be very unstable and they may exhibit a rather complicated
asymptotic behavior.

Concerning elliptic problems, we consider questions of existence and nonexis-
tence, multiplicity, regularity, singularities and a priori estimates. Special emphasis
is put on those results which are useful in the investigation of the corresponding
parabolic problems. As for parabolic problems, we study the questions of local and
global existence, a priori estimates and universal bounds, blow-up, asymptotic be-
havior of glebal and nonglobal solutions.

The study of superiinear parabolic and elliptic equations and systems has at-
tracted the attention of many mathematicians during the past decades. Although
a lot of challenging problems have already been solved, there are still many open
questions even in the case of the simplest possible model problems. Unfortu-
nately, most of the material, including many of the fundamental ideas, is scattered
throughout hundreds of research articles which are not always easily readable for
non-specialists. One of the main purposes of this book is thus to give an up-to-date
and, as much as possible, self-contained account of the most important results and
ideas of the field. In particular we try to find a balance between fundamental ideas
and current research. Special effort is made to describe in a pedagogical way the
main methods and techniques used in the study of these problems and to clar-
ify the connections between several important results. Moreover, a number of the
original proofs have been significantly simplified. In this way, the topic should be
accessible to a larger audience of non-specialists.

The book contains five chapters. The first two are intended to be an introduction
to the field and to enable the reader to get acquainted with the main ideas by
studying simple model problems, respectively of elliptic and parabolic type. These
model problems are of the form
Au = flu), z e, } 1)
u =0, r € 09,
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ue — Au = f(u), zefl, t>0,
u =0, z eI, t >0, {0.2)
u(z,0) = up(z), x € 1},

where {2 C R" and f is a superlinear function, typically f(u) = ju|P~ n for some
p > L. The subsequent three chapters are devoted to problems with more com-
plex structure; namely, elliptic and parabolic systems, equations with gradient
depending nonlinearities, and nonlocal equations. They include several problems
arising in biological or physical contexts. These chapters contain many develop-
ments which reflect several aspects of current research. Although the techniques
introduced in Chapters I and II provide efficient tools to attack some aspects of
these problems, they often display new phenomena and specifically different be-
haviors, whose study requires new ideas. Many open problems are mentioned and
commented.

For the reader’s convenience we have collected a number of frequently used re-
sults in several appendices. These include estimates of solutions of linear elliptic
and parabolic equations, maximum principles, and basic notions from dynamical
systems. Also, in one of the appendices, we give an account of the local theory of
semilinear parabolic problems based on the abstract framework of interpolation-
extrapolation spaces. However, this material is not essential for the understanding
of the main contents of the book and can be left for a second reading. In particular,
for the case of the model problem (0.2), the most useful results on local existence-
uniqueness are proved by more elementary methods in the main text. On the other
hand, we assume knowledge of the fundamentals of ordinary differential equations,
of measure theory, of functional analysis (distributions, self-adjoint and compact
operators in Hilbert spaces, Sobolev-Slobodeckii spaces and their embeddings, in-
terpolation, Nemytskii mapping) and of the calculus of variations (minimizing of
coercive, weakly lower semicontinuous functionals). Finally, a section of method-
ological notes and an index are provided.

We would like to stress that, due to the broadness of the field of superlinear
problems, our list of results and methods is of course not complete and is influenced
in part by the interests of the authors. For reasons of space, many interesting top-
ics and results could not be mentioned in this book {and we also apologize for any
omission.) In particular, we do not touch degenerate problems with superlinear
source (involving for instance porous medium, fast diffusion, or p-Laplace opera-
tors), nor higher order equations (where the maximum principle does not generally
apply). We do not consider superlinear problems involving nonlinear boundary con-
ditions, nor parabaolic systems with convection (chemotaxis, Navier-Stokes). These
are very interesting and intensively studied topics, but would require a book on
their own. Finally, let us mention that there exist several textbooks and mono-
graphs dealing, at least in part, with certain aspects of superlinear problems; see
[460], [466], [63], [113], [405], [504], [372], [222], for example.
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1. Preliminaries

General

We denote by Br(z) or B(x, R) the open ball in B™ with center x and radius R.
We set Br := Bg(0). The (n — 1)-dimensional unit sphere is denoted by S™~1.
The characteristic function of a given set M is denoted by yar. We write D' CC D
for . D C R™ if the closure of D' is a compact subset of D. For any real number
s, we get s == max{s,0) and s_ := max(—s,0). We also denote R, := [0, x).

Domains

Let © be a domain, i.e. 3 nonempty, connected, open subset of R™ and let & € N.
We shall say that Q is uniformly regular of class C* (cf. [13, p. 642]), if either
2 = R” or there exists a countable family (U;,y;), 7 = 1,2,... of coordinate
charts with the following properties:

(i) Bach ¢; is a C*-diffeomorphism of U; onto the open unit bail B; in R"
mapping U; N2 onto the “upper half-ball” By n(R™! x (0, 00)) and U; NN
onto the flat part B, N{R™ " x {0}). In addition, the functions ¢; and the
derivatives of ¢; and %_—1 up to the order & are uniformly bounded on U;
and B, respectively.

(ii) Theset|J; cpj_l (B1/2) contains an z-neighborhood of 80 in 0 for some & > 0.

iii) There exists kp € N such that any ky + 1 distinet sets U; have an empty
i
intersection.

In an analogous way we define a uniformly regular domain of class C2+® (shortly
domain of class C*+=). Unless explicitly stated otherwise!, we will always assume
that

QCR" 45 a uniformly regular domain of class C*t* for some a € (0,1).

On the other hand, we do not assume 2 to be bounded unless this is explicitly
mentioned.

We denote the distance to the boundary function by
d(x) := dist {z, 90).

The exterior unit normal on 9§ at a point z € 9Q is denoted by v{z), and the
outer normal derivative by 8, or 8/0r. The surface measure (on e.g. 8Q or §™ 1)
will be denoted by do or duw.

For a given domain Q and 0 < T < oo, we set
Qr:=0x(0,7),
Sp:=00x(0,T) (lateral boundary),
Pr:=8rU(Qx{0}) (parabolic boundary).

1In fact, if we want to allow nonsmooth domains, we will refer to an arbitrary domain,
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Functions of space and time

Let u = u(z, t) be a real function of the space variable z € © and the time variable
t. Without fearing confusion we will also consider u as a function of a single variahle
t with values in a space of functions defined in €, hence w(t)(z) = u(z, t).

By a solution of a PDE being positive we usually mean that u(z) > 0 or
w(x,t) > 0 in the domain under consideration. Note that, due to the strong max-
imum principles in Appendix ¥, positive is often equivalent to nontrivial nonneg-
ative.

Radial functions. We say that a domain @ C R™ is symmetric if either §} = R™,
oo =Bg={zcR":|z| <R},or 2= {xeR": R < |z|] < R}, where
0 < R < R <oo(an annulus if R < o0). Denote 7 = || and let J C R be
an interval. A function u defined on a symmetric domain Q (resp., on € x J ) is
said to be radially symmetric, or simply radial, if it can be written in the form
u = u(r) (resp., u = u(r,t) for each t € J). The function = is said to be radial
nonincreasing if it is radial and if, moreover, u is nonincreasing as a function
of r.

Banach spaces and linear operators

If X is a Banach space and p > 1, then X’ and p’ denote the (topological) dual
space and dual exponent (1/p + 1/p" = 1), respectively. We write X = ¥ or
X =< Y if X is continuously or compactly embedded in Y, respectively. If both
X =Y andY — X (that is X and Y coincide and carry equivalent norms), then
we write X =Y. We denote by £(X,Y"} the space of continuous linear operators
A X =Y, LX) = L(X,X). If Ais a linear operator in X with the domain of
definition D{A4) and ¥ C X, then the operator Ay, the Y-realization of A, is
defined by Ayu = Au, D(Ay) :={u e D(A)NY : Auec Y}

Function spaces

We denote by D(Q) the space of C®°-functions with compact support in §2. The
norms in the Sobolev space W*P((2) (or the Sobolev-Slobodeckii space W*?(2)
if £ is not an integer) and the Lebesgue space L7(Q2) will be denoted by | - & p
and | - ||, respectively. We denote by Wy**(€) the closure of D(Q) in WL2(Q).
The spaces W*?(), & € N, and Wy*(Q2) will also be denoted as H*(() and
H} (), respectively. The functions in these spaces are usually understood to be real
valued. If no confusion is likely, we shall use the same notation for similar spaces
of functions with values in R™. Otherwise we shall use the notation LP(2, R™), for
example.

Let €2 be a bounded domain in R™ (not necessarily smooth). The weighted
Lebesgue spaces L3(12) are defined as follows. Denoting as before

8(z) = dist{z, ), TEQ,

1. Preliminaries 3
we put, for all 1 < p < oo,
LY = LR(Q) .= LP(Q; 8(z) dx).

For 1 < p < oo, Lf is endowed with the norm
1/p
Il = ([ Tu(e)P o) dz) ™"
Q

Remark 1.1. Let us note that L3°(2) = L*(Q2), with same norm. Indeed, L5°(€2)
consists, by definition, of those measurable functions that are essentially bounded
with respect to the measure §(x)dz. O

For any 1 < p < oc, the uniformly local Lebesgue space (cf. [297], [253]) L?, is
defined by
Ly = L5, (R™) = {¢ € L, .(R") : [|¢llp.ut < oo},

loc

where "
o= sup ([ ot dy) "
agR™ Ny —al<i

These are Banach spaces with the norm ||.|j, .. Also, for p = oo, we define L
L= = L=(R"). We note that L7, — L7, whenever 1 < p <r < oo.

In what follows X denotes a Banach space.

Let M be a metric space. Then B(M,X), BC(M,X), BUC(M,X) denote
the Banach spaces of bounded, bounded and continnous, bounded and uniformly
continuous functions v : M — X respectively, all endowed with the sup-norm

SR
ul T

el = lltlloo,ar 2= sup flu(t)llx.
teM

We denote by C{M, X) the space of continuous functions endowed with the topol-
ogy of locally uniform convergence. If M is locally compact, then we denote by
Co(M, X) the space of functions ¥ € BUC(M, X) with the following property:
Given £ > 0, there exists a compact set K C M such that ||Ju(t)||x < e for all
t€ M\ K. We also set B(M) := B(M,R), BC(M) := BC(M,R), etc.

Let M C R™. A function u : M — X is said to be locally Holder continuous if,
for each point ¢t € M, there exist & € (0,1), C > 0 and a neighborhood V of ¢,
such that () Wl

ulz) — uly
&) o, vy = sup ——# < 0. (1.1)

@ yEMNV, xy |$ - yl
If & in (1.1) can be chosen independent of ¢ € M, then u is said to be locally
o-Holder continuous. The space of such functions is denoted by C*(M, X) (or
C*(M) if X = R) and endowed with the family of seminorms || - ||oo.ic + || a5
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where K runs over all compact subsets of M. By UC*(M,X), a € (0,1), we
denote the set of functions w : M — X such that

lt)a = u]a,m < o0

The norm in the Banach space BUC™(M, X) = B(M,X)NUC*(M, X) is the
sum of the sup-norm and the seminorm |- |,. Note that if M is compact, then any
locally Hélder continuous function u : M — X belongs to BUC*(M, X} for some
a and C*(M, X} = BUC*(M, X).

If © is an arbitrary domain in R®, then BC(Q) denotes the space of functions
u € BC(Q) whose first derivatives in Q are bounded, continuous and can be
continuously extended to 2. The norm of a function u in this space is defined
as the sum of sup-norms of  and its first-order derivatives. The spaces BC*(Q)
and BUC*(Q), k > 1 integer, are defined in an obvious way. If no confusion is
likely, we shall denote their norms by || - | gce. The spaces CF+e(Q), UCH+e (),

BUCH (), where k > 1 is an integer and o € (0,1) are defined similarly.

Let § be a bounded domain in R®. Then { is compact, hence any function in
C(%) is bounded and uniformly continuous. On the other hand, the functions in
BUC((1) can be uniquely extended to functions in C'(Q). Identifying the function
u € BUC(S2) with its extension and endowing the space C(f2) with the sup-norm,
we can write BUC(Q) = C(Q). Similarly, BUC*(Q) = C*(00).

If Q C R®* x R is & domain in space and time, then C?Y(Q) is the space
of functions which are twice continuously differentiable in the spatial variable z
and once in the time variable ¢. The space BC*'(Q) has obvious meaning. If
u € LF(Q), then uy, Dyu and D2y denote the time derivative and first and second
spatial derivatives of u in the sense of distributions. Alternatively, we shall also
use the notation Vu, D?u instead of D,u, D2u. We denote by W21(Q) the space
of functions u € LP(Q) satisfying u¢, Dyu, D2u € LP(Q), endowed with the norm

ll2ll2,2:0 = frliz,1m == llullpe + ”Dwu”p;Q + ”D?su”p;Q + [[ee]l -

Let @ = Q1 = 2 x (0,T) where £2 is an arbitrary domain in B™ and 7" > 0. Given
a € (0,1] set

£2,0) = £(3,5)
o=yl 1t - 51°72

Ef]&':-@ = sup{ LY € Qa ts € (O:T)7 ($=t) 7é (ya S)}

Let k& be a nonnegative integer, & € (0,1) and a = k + . Then we put

Iflae =D sup|DEDif|+ > iDED{fluc
18l +2i<k @ |81-+25=k

and BUC**2(Q) == {f : | f|a:@ < 00}. The spaces UC™*/2(Q) and C*%/2(Q} are
defined analogously as in the case of functions defined in I*. Note that if p > n+2,

1. Preliminaries 3

a < 2—(n+2)/pand Q is smooth enough (for example, if Q satisfies a uniform
interior cone condition), then

WEEP(Q) — BUC™(Q); (12)

see [320, Lemmas I11.3.3, I1.3.4], [399, Theorem 6.9] and the references therein for
this statement and more general embedding and trace theorems for anisotropic
spaces. Embedding (1.2) can also be derived by using the interpolation embedding
in Proposition 51.3 and embeddings for isotropic spaces.

Eigenvalues and eigenfunctions

If {2 is bounded, then we denote by Ay, Az, ... the eigenvalues of —A in WO1 2 {£}) and
by 1,92, ... the corresponding eigenfunctions. Recall that Ay < Ap < X3 < -+
Ap — 00 as k — oo, that

L sup{/ w?dr s u e Wi (Q), / |Vu|? dz = 1}: (1.3)
)\1 Q Q

and that we can choose ) > 0. Unless explicitly stated otherwise, we shall assume
that ¢ is normalized by

(,Old.."f;:l
0

We shall often use the fact that if Q is of class €2, then there exist constants
¢1, 62 > 0 such that

e16(x) < w1(x) < c2d{x), x e f} (1.4)

(this is a consequence of v € C'({?) and of Hopf’s lemma; cf. Proposition 52.1(iii)).

Further frequent notation

We denote by G{z,y,t) = Ga(z,y,t) the Dirichlet heat kernel; G;(z) = G(z,t) is
the Gaussian heat kernel in R™. The (elliptic) Dirichlet Green kernel is denoted
by K(x,y) = Ko(z,y). We implicitly mean by e™*4 the Dirichlet heat semigroup
in €.

The Dirac distribution at point y will be denoted by 4,,.

We shall use the symbols C, C7, ete. to denote various positive constants. The
dependence of these constants will be made precise whenever necessary.

Definitions of various critical exponents (pg, pBT, Psg, Ps: PIL, PL: 24, 2%, g) and
other symbols can be found via the List of Symbols.
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Chapter I
Model Elliptic Problems

2. Introduction

In Chapter 1, we study the problem

~Au= f(z,u), =z, } (2.1)

w =0, T e d9,

where f: 2 x R — R is a Carathéodory function {(i.e. f(-,u) is measurable for any
w € R and f{x,-) is continuous for a.e. z € ). Of course, the boundary condition
in {2.1) is not present if § = R™. We will be mainly interested in the model case

flz,w) = |[u u + Au, where p > 1 and A € R. (2.2)

Denote by pg the critical Sobolev exponent,

__{oo ifn <2,
ps = n+2)/(n—2) ifn>2

We shall refer to the cases p < pg, p = ps or p > pg as to (Sobolev) subcritical,
critical or supercritical, respectively.

3. Classical and weak solutions

Let u be a solution of (2.1} and f(z) := f(z, u{z}). Then u solves the linear
problem

(3.1)

—Ay = f in €2,
u=10 on O%2,

In what follows we define several types of solutions of the linear problem (3.1)
. (and, consequently, of (2.1)).

Definition 3.1. (i) We call u a classical solution of (3.1) if fec®), ue
C%(Q) N C(f2) and v satisfies the equation and the boundary condition in (3.1)
pointwise.
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(i) We call u € W, *(1) a variational solution of (3.1) if f ¢ Wy ()’ and
/ Vu-Vodr= | fods forall o € W), (3.2)
) o

(iii) Let © be bounded, u € L1(f2). Set
§(x) :=dist (,00) and  L}(Q) := LY(Q, 8(z)dz).
We call u an L'-solution of (3.1) if f € L!(2) and

/ u(—-Ap)dr = / fodr forallpe C*(2), v =0 on AL (3.3)
o Q

More generally, we call » an L}-solution, or a very weak solution, of (3.1)
if f € L}Q) and (3.3) is satisfied. Note that the definition makes sense sinee
| < C§ hence fo € L'(12). Existence-uniqueness and properties of L} solutions
of the linear problem (3.1) are studied in Appendix C.

(iv) If @ = R", then u € L}, {f) is called a distributional solution of (3.1) if

loc

the integral identity in (3.3} is true for all ¢ € D(R™). O

Remarks 3.2. (i) If we assume that f is a bounded Radon measure in (instead
of f € L1(Q)), then the definition of an L1-solution still makes sense and we refer
to [20] and the references therein for properties of such solutions.

(i) Tf f € L°°((2), then any classical solution of (3.1) satisfies v € W24(K) for
any K cc (! and any g < oco. This is a consequence of Remark 47.4(iii). If we
further assume that f is locally H5lder continuous in £, then u € C2(0).

(iii) Assume  bounded. If f € C(Q2), for example, then any classical solution of
(8.1) is also a variational solution (this follows from Remark (i) and integration by
parts). If f € L2(2), then any variational solution is an L'-solution. Some other
relations between various types of solutions defined above will be mentioned below
(see also Lemma 47.7 in Appendix A). O

In the following sections we shall often use variational methods in order to prove
the solvability of (2.1). Therefore, we derive now a sufficient condition on f which
guarantees that any variational solution of (2.1} is classical.

It n >3 we set 2* 1= pg + 1 = 2n/(n - 2), 2, == (2*) = 2n/(n + 2). Assume
that the Carathéodory function f satisfies the following growth assumption

(2| < ol@)+ Oy (ful+|ul?). & LOH (@)+L2(Q), C; >0, p < ps. (3.4)

This growth condition can be significantly weakened if n < 2 but (3.4) will be
sufficient for our purposes; cf. (2.2). Denote

Flz,u):= /Uu f(z,8)ds

3. Classical and weak solutions ¢]

and
E(u) = %/QW'LL(T)F dr — LF(m,u(:.:)) dz. (3.5)

Since p < ps we have W12(Q) — LP11(Q) and the embedding is compaet provided
p < ps and Q is bounded. In addition, the energy functional E is C! (continnously
Fréchet differentiable) in W'*(£2) and

E'(u)(p=[)VU-thdm—/Qf(-,u)cpdm

for all u,0 € W2(€2). In particular, each critical point of E in Wy () is a
variational solution of (2.1).

The following proposition is essentially due to [96]; our proof closely follows the
proof of [505, Lemma B3.3].

Proposition 3.3. Assume (3.4). If n > 3 assume also o € L*2(Q). Let u be a
variational solution of (2.1). Then u € L9(Q) for all g € [2,0).

Proof. Since the assertion is obviously true if n < 2 due to WH2(Q) — L4(2),
we may assume n > 3.
Denote f(z) := f(z,u(z)). Then
171 < e+ Crllul + [ul) < a4 b+ 2C5(Juf + [uf??),
where o = axjy>1 € Lr2(Q), b = X <1 and « can be written in the form
o = a1 + g with a1 € LEY (), ay € L2(Q).

Choose s > 0 such that u € L2(*+1(Q2). We shall prove that u € L2 G+1)(Q) so
that an obvious bootstrap argument proves the assertion.

Choose L > 0 and set
4 = min(|u|*, L), @ = uh?, Qr={xeQ:|u®*<L}L
In what follows we denote by C, C), Cs various positive constants which may vary

from step to step and which may depend on u, s, ¢, C¢ but which are independent
of L. We have

V(up) = (14 sxa,)(Vu)y,
Vi = (1 + 2sxqa, ) (Vu)p?,
and @ € Wy7*(€). Therefore, we obtain

/|Vu|27,b2dx§fVu-'?cpd;r:—/fgodas:/fm,bgdzc
€2 |94 Q2 Q
< C‘/ [(a -+ b)|ult? + u?® + u|* 4?] da
Q

IA

C/ [au®y? + blu| + [u?*T2 + |u|* ¢?] d
Q

< C(l + f (0 + [u|¥ ~2y? da:),
Q
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where we have used
f b dz < f afuldz < / (o | + |aea]) ] dz
o} ! o
< floall vy llellpra + llazll2llull: = C.

Consequently, denoting v := a + [u|? —2 € L*/2((2), we obtain

[ vt <c [ vt <o(is [ wika)

w2 da - f w(urh)? dm)
Jv| <K lu|>K

< C(l + K-/g; |u|*$72 dz + (/|v|>Kv"/2 dm)z/n(/ﬂ |l

<Ci(l+ K} + CZEK/ |V (ua)|? daz,
Y]

SC(1+K

o dm) (ﬂ-ﬂ)/ﬂ)

where g := (flbe um/? dm)gfn—> 0 as K — +00. Choosing K such that Cheyr <
1/2 we arrive at

[ WueRds = [ 9P s <2004+ K),
QL QL

Letting L — 400 we get |u|*t! € W12(), hence u € L2 G+1)(0). DO

Corollary 3.4. If f has the form (2.2} with p < pg, then any variational solution
u of (2.1) is also a classical solution. Moreover, u € C?(Q).

Proof. The assertion is a consequence of standard regularity results for linear
elliptic equations. More precisely, for any 2 < ¢ < oo, since f := f{u) € LI(Q),
Theorem 47.3(i) implies the existence of & € W W, () such that —A& = .
Since w, % € H}{(2}, the maximum principle in Proposition 52.3(i) yields u = .
Due to the embedding W9(0)  C'(Q) for ¢ > n, we deduce that f € CI(%).
Applying now Theorem 47.3(ii), and Proposition 52.3(1) again, we deduce that
weC). O

As for L'-solutions, we have the following regularity result (we shall see in
Remarks 3.6 below that the growth conditions in Propositions 3.3 and 3.5 are
optimal}.

Proposition 3.5. Assume Q bounded. Let the Carathéodory function f satisfy
the growth assumption

|fe,u)l < C(L-+[ulf), P <ps, (3.6)
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where psy is defined in (3.8). Let u be an L'-solution of (2.1). Then u € Co N
W29(QQ) for oll finite q.

Proof. It is based on a simple bootstrap argument. Fix p € (1,n/(n — 2)p) and
put f(z) = f(ac, u{z)). Assume that there holds

Fer’ (@) (3.7)

for some i = 0 (this is true for ¢ = 0 by assumption). Since

1 _1(1 1)<2
pooppttl gt n’

by using Proposition 47.5(i), we obtain v € LP?"' (Q), hence f € LPH’I(Q) due
to (3.6). By induction, it follows that (3.7) is true for all integers i. In particular
f € L¥(Q) for some k > n/2 and we may apply Proposition 47.5(i) once more
to deduce that w € L2({1). The conclusion then follows similarly as in the proof
of Corollary 3.4 (using the unigueness part of Theorem 49.1 instead of Proposi-
tion 52.3). O

Remarks 3.6. (i) Singular solution. Define the exponent

‘_{oo ifn<2, (3.8)
Po = U nfin=2) ifn>2 ‘

For p > p,, (hence n > 3), we let

here &&= ——
where ¢ 1)
One can easily check that w.(z} = U.(|z|} is a positive, radial distributional solu-
tion of the equation —Awu = »” in R". This singular solution {hence the notation
Psg) Plays an important role in the study of the parabolic problem (0.2) with
f(u) = |u|P~'u (see for example Theorems 20.5, 22.4 and 23.10).

On the other hand, if we set u(z) = u.(z) — ¢, for 0 < |z| < 1, 0 := B(0) =
{z € R™: |z| < 1}, then it is easy to verify that u is an L'-solution of (2.1) with
f(z,u) = (u+¢p)P. Moreover, u is a variational solution of this problem if p > pg.
Hence the condition p < pg in Proposition 3.3 is necessary.

{ii} Let = > 3 and let Q be bounded, f € C!, |f(z,u)| < C(1 + |u|"). The
example in (i} shows that an L'-solution need not be classical if p > psy. In fact,
it was proved in [44], [394] that the problem

Uelr) = eur-¥ -1 ¢ 5, ((n—2)p—mn). (3.9)

(3.10)

—An = |ufflu in 12,
=0 on o1,

[ e
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has a positive unbounded radial L*-solution u € C%(Q\ {0}) provided p € [psy, ps)
and Q = Bi{0). See also [404] and the references therein for related nonradial
results.

(iii) For the case of Lj-solutions, we shall see in Section 11 that the critical
exponent is different, namely (n+1}/(n —1). O

Remark 3.7. Classical vs. very weak solutions for the nonlinear eigen-

value problem. Another type of relations between different notions of solutions

appears when one considers the nonlinear eigenvalue problem
—Au = Af{u), x € £,

} (3.11)

u =0, x € 01,

Here we assume that f : [0, 00) — (0,00) is a C! nondecreasing, convex function,
and A > 0. Namely, it was proved in [94] (see also {233] for earlier related results)
that if there exists a very weak solution of (3.11) for some Ay > 0, then there
exists a classical solution for all A € (0, Ag). The proof is based on a perturbation
argument relying on a variant of Lemma 27.4 below. As a consequence of this and
of results from [305}, [142], assuming in addition that lim, . f(u)/u = oc, there
exists A* € (0, 00) such that:

(i) for 0 < A < A*, problem (3.11) has a (unique minimal) classical solution
uy, and the map A — wy Is increasing;
(ii) for A = A*, problem (3.11) has a very weak solution defined by wuy- =
linygas wa;
(iii) for A > A*, problem (3.11) has no very weak solution.

On the other hand, the solution uy~ may be classical or singular, depending on
the nonlinearity. For instance, in the case f(u) = (v + 1)? with 2 = Bg, (3.11)
has a classical solution for A = A* if and only if p < psz, where p;;, is defined in
{9.3); in the case f{u) = *, the condition is replaced with n < 9 (see [293], [369]).
Tllustrations of these facts appear on the bifurcation diagram in Remark 6.10(ii)
(see Figure 3). O

4. Isolated singularities

In this section we study the question of isolated singularities of positive classical
solutions to the equation —Aw = «?. The following result classifies the possible
singular behaviors for suberitical or critical p.

Theorem 4.1. Letn > 3 and 1 < p < pg. Assume thet v is o positive classical
solution of
—Au=u" in By\ {0} (4.1)
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and that u is unbounded ot 0. Then there erist constants Ca > C1 > 0 such that

Cr(z) < ul(z) < Chyp(z), 0< |z <1/2,

where .
|2~ if 1< p<pesg,
P(z) =< |zP (= log |z)2™2  if p = pag,
||~/ P~ 1) if psy < P < ps.

Moreover, if p < ps, then we have Cy < Cy with Cy = Ca(n, p) > 0.

Furthermore, for all p > 1, we have the following result, which explains in what
sense the equation can be extended to the whole unit ball.

Theorem 4.2. Lelp > 1 and n > 3. Assume that u 18 a positive classical solution
of

—Au=u" dn B\ {0}
(i) Then u? € L}, (B1) and there exzists a > 0 such that u is a solution of

loc
_Au:up+a§0 1 D’(B]),

where 3y denotes the Dirac delta distribution. Moreover, we have o < & with & =
a(n,p} > 0.

(ii) If p < psg ond a = 0, then the singularity is remouvable, i.e. u is bounded near
=0

(iii) If p > psg, then a = 0.

Remarks 4.3. (i) Theorem 4.1 follows from [340], [44], [240] (see aiso [83]), and
{108], for the cases p < Psg, P = Dagy Psg < P < ps and p = pg respectively.
Theorem 4.2 follows from [97] and [340]. See also the book [523] for further resulis
and references.

(ii) Under the assumptions of Theorem 4.1 with p,, < p < pg, it can be shown
more precisely that |z Du(z) — ¢,, as £ — 0, where ¢, is given by (3.9)
{cf. [240], {83]). If 1 < p < pag, then actually |z|" 2u(z) - C > 0,as z — 0
{see the proof below). Examples in [340] show that singular solutions do exist for
1 < p < psg and that the constant C' may depend on the solution .

(iti) If p > pg, then the upper estimate u(z) < C|z|~%P-1) is still true in the
radial case (cf. [213], [397]). In fact, as a consequence of —(r*~lu,), = r?*~LyP = (,
for r > 0 small, we have either u, > 0, hence u bounded, or %, < 0. In this second
case, by integration, we get —u, > r'=" f s"~luP(s) ds > (r/n)u? for r > 0 small,
hence (u!~P),. > Cr, and the upper estimate follows by a further integration. The
estimate is unknown in the nonradial case for p > pg, but related integral estimates
of solutions can be found in e.g. [238] and [89].
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(iv) A result similar to Theorem 4.1 is true for n = 2, with ¢(z) given by the
fundamental solution log |x| instead of |z|>~". These results are related to the fact
that the (H'-} capacity of a point is 0 when n > 2. When the origin is replaced by
a closed subset of 0 capacity, related results can be found in [170]). On the other
hand, the upper estimate u(x) < C|z|=2/~1), from the case ps; < p < ps, can be
generalized to sets other than a single point (see Theorem 8.7 in Section 8). O

We shall first prove Theorem 4.2. Theorem 4.1 in the case 1 < p < Dsg Will
then follow as a consequence of Theorem 4.2 and of a bootstrap argument. In the
case psg < p < pg, the upper estimate will be a consequence of the more general
result Theorem 8.7 in Section 8. For the cases p = py,, p = ps, and for the lower
estimate when p., < p < pg, see the above mentioned references.

In view of the proofs, we introduce the following notation. We denote by I'(z) =
en|z]*~" the fundamental solution of the Laplacian (Newton potential), i.e. —AT =
3o in D'(R™). We let w = {z € R™ : |z| < 1/2} and {ix x € P(B;) such that y =1
on wand 0 < x < 1. For each positive integer j, denote x;(z) = x(jz). By a
straightforward calculation using n > 3, we see that x; — 0 in H'(B;) as j — oc.
For any ¢ € D(By), we put @; := (1 — x;)@. Observe that ¢; — @ in HY(B,).

We need the following lemma.

Lemma 4.4. Let n > 3. Assume that u € C?(By \ {0}) satisfies u > 0 and
—Au > 0 m Bl \ {0}

Then w € L}, (B1) and
—Auz0 inD(B).

Proof. For each &k > 0, we take a function Gy € C2([0,00)) such that Gx(s) = s
for 0 < s <k, Gp(s) = k+ 1 for s large, G}, > 0 and G} < 0. Define uy := Gy(u)
and note that the sequence {uy}y is monotone increasing and converges to
pointwise in By \ {0}. The function wuy satisfies

—Aug = —G(uw)Au — GL(w)|Vul* 20 in By \ {0}. (4.2)
Fix o > 0 and ¢ € D(By). Multiplying inequality (4.2) by the test-function
rp?(l + )T and integrating by parts, we obtain

0< | Vuy- V(3 (1+ue)™)
By

= —af [V 03 (1 + ) ™% + 2/ Vug - Vo (1 + ue) %5
By

1

It follows that

a/ |Vuk121p?(1+uk)_1‘“
By

4]
<5 [ Wuled0+w) e o) [ 9ala b,
By By

4. Isolated singularities 15
hence

B

[Vuk?@5 (1 +ue) 77 < Cla} [ VP (1 + )™
1 By

Since |Vi;|2 — |V|? in L(B1) and (1 + u,)'~* € L>(By), we may pass to the
limit 7 — co (using Fatou’s lemma on the LHS) and we obtain

/ Vg P2 (1 + ug) ~1— gC(a)f IVol2(1 + )=
Bl Bl

First taking e = 1 and using 1 + uy < k + 2, we deduce that u, € H'(w), hence
U € H.',lnc(Bi)'

Next take o = 2/n. Consider ¢ such that ¢ = 1 for |z| < 1/4 and with support
in w. Applying the Sobolev and Hélder inequalities, we get, for any p € (0,1/2),

(/ (L+m)) * <C V[ +un) =]+ C (1+u)
|lz|<1/4

|| <174 |z|<1/4

n—2

SC/(1+uk) &

n=—2

(1+uk)) "

IA

C (1+uk)nT_2+C‘p2(f

p<lel<1/2 el <p

Since w is bounded on {p < jz| < 1/2} and w; < u, by taking p € (0,1/4) small
enough, we deduce that f 44k < C independent of k. Consequently v € L* (w),
hence u € L} (B1), and ur — win L}, (B1).

Now assuming ¢ > 0, we multiply inequality (4.2) by ¢; and integrate by parts.
We obtain

/ Vug - Vip; = / (—Aug)p; = 0.
B By

Since ux € H} (B1), we may pass to the limit j — oo to get f& Vay, - Ve 2 0,
hence [, (—A@)uy > 0. Since u, — uin Lj, (B1), we conclude that Jp, (—Ag)u =
0 and the proof of the lemma is complete. O

Proof of Theorem 4.2. (i) By Lemma 4.4, we know that uw € L}, (B;) and that
—Au > 0 in '{B;). It follows that Au is a Radon measure (in other words, a
{-order distribution) on w. Indeed, for each ¢ € D(B;) with supp(y) C w, using

llecx £ ¢ = 0, we obtain

{(—Au, [lolloox £ ) 20

hence
[{=Au, @) < [(=Du, x}| [iplleo =t Cllellso- (4.3)
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We next claim that «? € L (B;). To this end, we assume o > 0, we muitipfy

loe

{4.1) by ¢; and we integrate by parts. We obtain

/B Wio; = (~Au,03) < Cllosllon < Clllloos
1

due to (4.3), and the claim follows from Fatou's lemma.

Now a classical argument in distribution theory allows us to conclude: Denote
T = Au+uP € D'(B;) and let ¢ € D(By). Since T = 0 in P'(B; \ {0}) and
(1 —2x;)9 = 0in the neighborhood of 0, we have (T', (1 — x;)¢) = 0. Consequently,

(T, 0} = (T, x3)0(0) = (T ox3) — (T, x5)0(0) = (T, (p —0(0))x;).  (4.4)

But since || (p—9(0))x;llco — 0as j — oo, it follows that the LHS of (4.4) converges
to 0 as j — co. We first deduce that £ = lim; (T, x;) exists (take a  such that
(0) # 0). Moreover, since —Au > 0 in D'(By), we have £ < lim;j_qq [ uPx; = 0
by dominated convergence. Returning to (4.4), we obtain

Au+uf = —ady. (4.5)

with @ = —£ > 0. Now let ¥ € D(B;) satisfy —A¢ < upl/? in B, for some
¢ > 0and ¥ > C > 0 for [z| < 2/3 (such function is given for instance by
¥(z) = exp[—(1 — 2Jz[*}~1] for |z|* < 1/2 and ¥(z) = 0 otherwise). Testing
equation (4.5} with ¢, we get

a¢(0)+/;31up¢=—/l;luﬂ.wg,u,/Blu'gbl/pS %/Blup'f,b+6’(p,n).

It follows that
a+ / u? < é(n,p). {(4.6)
{lz|<2/3}

In particular, assertion (i) is proved.
For further reference, we also observe that

uzal-C inw. (4.7}

To show this, we first note that v := u — aI satisfies —Av = «? in D(B;). By
Lemma 47.7, w ;= yv is an L'-solution of
—“Aw=g:=uly—h in By, }

w=10 on 8By, (4.8)

where b := 2Vu . Vy+uAy € L°°(By). At this point, let us introduce the function
O € C?(B,), © > 0, classical solution of the problem

—-AB =1 in B],
8=0 on BBI }
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(This is the so-called “torsion” function, which will be useful as a comparison
or test-function later again.) Then w + ||2||® is an Ll-solution of (4.8) with g
replaced by g + ||k|lee = 0. By the maximum principle part of Theorem 49.1, we
deduce that w + ||h]| o8 = 0, hence {4.7).

(ii) Let 1 < p < psy and assume that & = 0. We have seen that w = yu is an
Ll-solution of (4.8). Moreover, since x = 1 near = = 0, we may write g = w?” +hin
{4.8) for some h e L*(By). It then follows from Proposition 3.5 that w € L>=(B;),
hence u € L™ (w). _

(iit) Assume p > pyg. If we had @ > 0, then (4.7) would imply w? > Clz|~(»=2)r
as & — 0 for some C' > 0. Since u? € L, {B;) due to (i), we conclude that
a=0. O

Proof of Theorem 4.1 for 1 < p < p,g. By Theorem 4.2, we know that
—Au = up + &.50 in D"(Bl)

with @ > 0. Denote vg = u, an = n — 2, and put v, == u — al' = vy — C|z|79.
Then we have
—Ay; =uP  In D'(B).

On the other hand, an easy calculation shows that —A(|z|~%) = C(a)|z|~*2 in
D'(By) for all & € (0,n — 2) and some Cla) > 0. Set ag = pay — 2 if pay > 2
and choose ag € (0, ;) otherwise. Notice that as € (0,a;) = (0,2 — 2) in both
cases due bo pay < n. Since uf < C(v)5 + Clx|™P* < Clwn)f + Cla|~*272, there
exists Co > 0 such that vy := vy — Co|z|™*? satisfies

—Avy < C(v)}  in D'(By).

Since (v1)4 < C(va)h + Clz|7P*2, we can iterate this procedure and we obtain
functions v; (4 =0,1,.. .} satisfying viy1 = v; — Cipy|z| %1, with @i € (0, @),
and
—ﬁ\'UH.l S C;(’Ui)i_ui_ in p’(Bl)

Moreover, due to (0 < a < d(n, p), the constants C;, O/ may be chosen to depend
only on n,p,i.

To conclude, we apply a bootstrap argument similar to that in the proof of
Proposition 3.5: Fix p € (1,n/(n — 2)p), let Q3 = {|z| < 2/3}, and assume that
(v;)4 € LPP () for some i > 0 (this is true for i = 0 in view of (4.6)). Since

loc !
(—A’l}i+1)+ = L‘looc(ﬂl) and
1 1 1 (1 1 ) < 2
poooppttt Pt pp/ T

we may apply Proposition 47.6(i1) to deduce that (v;,,), € L¥* o Q). By iter-
1)+

loc

ating, we get (v;),. € L¥ (1) for some sufficiently large 7 and some k > n/2. We
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may then apply Proposition 47.6(ii) once more to deduce that (). € L“’(wj.
This implies
i+1
w—al =v = vy + 3 Cyla| ™ < C(L+[2]7%2), 2] < 1/2.

j=2

Moreover, starting from (4.6), it is easy to check that the constant C' depends only
on n,p. This along with (4.7) yields the conclusion. C

5. Pohozaev’s identity and nonexistence results
In this section we prove the nonexistence of nontrivial solutious of (2.1) provided

f satisfies {2.2) with p > pg, A < 0 and £ is a bounded starshaped domain. The
following identity [419] plays a crucial role in the proof.

Theorem 5.1. Let v be a classical solution of (2.1) with f = f(u) being locally
Lipschitz and Q@ bounded. Then

2 2
—f |w|2da:—n/F(u)dm+1/ % var =0, (1)
Q Q 2 Jag 1OV

where F{u) = [ f(s)ds.

Proof. First notice that u € C*(2) (see Remark 3.2(ii)). Using integration by
parts we obtain

/[Vu V(z-Vu) — |Vul2] dx
fzamt 6‘933 d _fzawz Ba:;, (a:c.,)d‘”
2 a8 au
fmzam 38 v] do — /|Vu| dz /233:3 8:5,, dx,

hence

/28371 389::, (8xt)d$:%(/‘m g_z|2‘”'”dc’_”fﬂ|v”|2dx)

and
dzx.

1 ou|?
Vu-V:B-Vud:r;:—/ —| z-vd
L ( ) 2 a0 8U|

=
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Multiplying the equation in {2.1) by z-Vu, integrating over £ and denoting the left-
or the right-hand side of the resulting equation by (LHS) or (RHS), respectively,
we obtain

—(LHS)=/QAu(x-Vu)da:-—-/aQ%(m-Vu)dcr—/ﬁ\“/u-V(J;-Vu)dx

1 Ju |? n—2 9
_5/69 5| m-udo+T/Q|Vu| dz,

(RHS) = /Qf(u)(;r-‘?u) dz
—nf Fu)dz,
9]

_—_/.BQF(u)(xw)do—n[QF(u)dz:

where we have used that, on dQ, Vu = Cv for suitable C' € R and F(u) = F(0) =
0. The comparison of (LHS) and (RHS) yields now the assertion. O

Corollary 5.2. Assume Q@ bounded and starshaped with respect to some point
xy €  (i.e. the segment [zn, x| is a subset of Q for any x € ), n > 3. Assume
that

Flu) < nz—;z-f(u)u for all u. {5.2)

Then (2.1) does not possess classical positive solutions. If, in addition, f(0) =0,
then (2.1) does not possess classical nontrivial solutions.

Condition (5.2) is satisfied if, for ezample, f(u) = [P~ v+ Au, p > ps and
A<0,

Proof. We proceed by contradiction. We can assume that Q is starshaped with
respect to g = 0. Then = - 1 > 0 on 9% and

/‘mx-udty:/ﬂ&(%z)dm>0,

hence z - v > 0 on a set of positive surface measure in 942,

If « is a positive solution of (2.1), then du/8r < 0 on 8Q by the maximum
principle and we obtain

1 Hu |2
5/89|5|$-ud0>0. {5.3)
Multiplication of the equation in (2.1) by u and integration by parts yields
/ Vuf? dz = / Flu)uds (5.4).
a Q

Using (5.1), (5.3}, (5.4) we arrive at

s

F(u)] dz < 0,
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which contradicts (5.2).

If £(0) =0 and u is a sign-changing solution of (2.1}, then the assertion follows
from the unique continuation property. In fact, let x; € 96 be such that z-» > 0
in a neighborhood I'; of z; in 89 (recall that 8¢} is smooth). Then the above
arguments guarantee Ju/dv = 0 on I'y. Since v = 0 and Au = f(u) = 0 on 6,
all the second derivatives of u have to vanish on I';. Set u(z) := 0 for = ¢ (1. Then
u is & solution of (2.1) in a neighborhood of I', hence » = 0 in this neighborhood
due to [272, Satz 2]. Using the same result one can easily showu=0in . O

Remark 5.3. The idea of considering the multiplier x - Vu was used before in
[455] in the linear case f(u) = pu (for a different purpose, namely an integral
representation of the eigenvalues of the Laplacian). Identities similar to (5.1) (see
Lemma. 31.4 for the case of systems and see also [431]) are sometimes called Rellich-
Pohozaev type identities in the literature. O

6. Homogeneous nonlinearities

In this section we use variational methods in order to study the problem

—Au=[ufflu+du, e,
(6.1)

u =0, x € a1,

The energy functional F has the form E(u) = ¥(u) — ®(u), where

T(u) = %/s; [|[Vu(z)]* — M®] dz and  ®{u) = Eﬁ /Q [u[Pttdz.  (6.2)

Notice that ¥ is quadratic and ® is positively homogeneous of order p+ 1 # 2.
Therefore, if
V(w) = pd'(w) (6.3)

for some g > 0, then, setting ¢ := p2/~1), we get
E'(tw) = V' (tw) — ®'(tw) = t[¥(w) — 7 1@’ (w)] = 0. (6.4)

Consequently, fw is a critical point of F. hence a classical solution of (6.1) if
p < pg. A nontrivial function w satisfying (6.3) will be found by minimizing the
functional ¥ with respect to the set M = {u: ®(u) = 1} and using the following
well-known Lagrange multiplier rule.
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Theorem 6.1. Let X be a real Banach space, w € X and let W, ®q,..., 8 : X —
R ke C in a neighborhood of w. Denote M = {u € X : ®;(u) = &;(w) fori =

1,...,k} and assume that w is a local minimizer of U with respect to the set M.
If ®(w),..., B (w) are linearly independent, then there exist p1,.. .,y € R such
that

k
¥ (w) = Z p: P (w).

Our proofs of the main results of this section (Theorem 6.2 and Theorem 6.7(i))
follow those in [505, Theorem 1.2.1 and Lemma 111.2.2). Let us first consider the
subcritical case.

Theorem 6.2. Assume Q bounded. Let 1 < p < pg and X < . Then there exists
a positive classical solution of (6.1).

Proof. Set X := W}"*((2) and define ¥, ® as in (6.2). Since

¥ (w)[h, B] = 20(k) > c,\/ Vhidz, o= 1— % >0,
Q 1
the functional ¥ is convex and coercive. Let ux € M := {u € X : &(u) = 1},
ux — u in X. Then uy — w in LPY1(Q) due to X < LPYY{Q), hence u € M.
Consequently, the set M is weakly sequentially closed in the reflexive space X and
there exists w € M such that ¥(w)} = infy; ¥. Since |w| € M and U(|w|) = T{w),
we may assume w > 0. Moreover, ' (w)w = (p+1)®{w) = p+1, hence '{w) # 0.
Theorem 6.1 guarantees the existence of 4 € R such that ¥'(w) = pu®’(w), hence

0 < 2¥(w) = ¥ (w)w = p® (w)w = p(p+ )®(w) = plp +1).
Consequently, 4 > 0 and we deduce from (6.4) that u := 2!/ (P~ is a nonnegative

variational solution of (6.1), u # 0. Corollary 3.4 guarantees that u is a classical
solution and the strong maximum principle shows . > 0in . O

Remarks 6.3. (i) Annulus. Assume that @ = {z e R® : 1 < {z| < 2}, A < X
and let X denote the space all of radial functions in W, *(£2). It is easily seen
that X is compactly embedded into the space ¥ of all radial functions in LPT1(£2)
for any p > 1 (in fact, X and Y are isomorphic to W,'?((1,2)) and LP*'((1,2)),
respectively). Moreover, any critical point of E in X is obviously a classical solution
of (6.1). Hence the proof of Theorem 6.2 guarantees the existence of a positive
classical solution of (6.1) for all p > 1.

(ii) Nonexistence for A > A;. If Q is bounded, A > A; and p > 1 is arbitrary,
then (6.1) does not have positive stationary solutions. To see this, it is sufficient
to multiply the equation in (6.1) by the first eigenfunction ¢ to obtain

0=/ |u|p_1ucp1dx+(,\—)\1)fucp1 dx >0
Q Q

provided w is a positive solution. [
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Remark 6.4. Unbounded domains. Let & = R*, 1 < p < pgand A < 0
(notice that 0 is the minimum of the spectrum of —A in WH2(R™)). Let X and
¥ denote the space of radial functions in W1-2(R") and L¥*!(R™), respectively. If
n > 2, then X is compactly embedded in Y (see [76, Theorem A.T']) so that we
may use the approach above in order to get a positive solution of (6.1). Mareover,
using Schwarz symmetrization it is easy to see that the minimizer of W(u) =
3 Jo (IVul® — 2®) dein Mx = {u € X 1 33 [ [u[P*" dz = 1} is also a minimizer
in the larger set M == {u € W'3(R") : o35 [ [ufP*ldz = 1}.

In the case £ = R" one can use a similar approach to that used in Theorem 6.2
for functions f = f(u) (or f = f(|z],u)) which need not be homogeneous. In fact,
if one is able to find a minimizer u of [, |[Vu|*dz in the set N := {u € X :
fo F(u)dz = 1}, then there exists o > 0 such that the function u,(z) := u(z/c)
solves (6.1}. This idea was used in [76], for example. For more recent results on
existence and uniqueness of positive solutions of this problem with f = f(u) we
refer to [235], [420] and the references therein.

If f depends on z (and not only on |z|) or if Q is unbounded and not symmetric,
then the situation is more delicate. In some cases, one can use the concentration
compactness arguments in order to get a solution (see [50] and the references
therein). O

Let us now turn to the critical case p = pg. In view of Corollary 5.2 and the
proof of Theorem 6.2, the functional ¥ cannot attain its infimum over the set M
it €2 is starshaped and A = 0. In other words, denoting

Vu|? — Aul?] dz
Si(u, Q) = Ja [l | 5 [ul ] ,
flall3-

Sx(82) = inf{Sx(u, ) : uw € W 2(8Y), u + 0}
= inf{Sx(w, ) : w € Wy 2(9Y), |lulle- = 11,

the value Sp{f?) cannot be attained if  is starshaped. The following proposition
shows that the same is true for any Q2 # R™. In particular, this means that the
solution from Remark 6.3(i) (for p = pg and A = 0) is not a minimizer of Sy(-, ).

Proposition 6.5. We have So(£21) = So{82) for any open sets £11,8; C R, If
Q £ R, then Sp(Q)) is not aftoined.

Proof. Let 21,02 C R”™ be open. Since Sp(f2) = So(z + Q) for any z € R™, we
may assume 0 € 2; N Q. Denote w?(z) := w(Rx).

Let e > 0and 0 # y; € W(}’2(Ql), SU(U1,Q1) < S{](Q}) + . Setting ﬂl(l‘) =
u(z) if z € U, da(x) = 0 if 2 ¢ U, we have & € Wy (R") = WL2(R") and
supp (&) C Qs if R is sufficiently large. Let us be the restriction of 4 to €.
Then up € W, (), uz # 0, and

So(S22) < Sylusz,2) = So(af, R™) = Sy(@1,R™)
= Su(ul,ﬂl) < S[)(Ql) +&.

L Ll
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Letting £ — 0 we obtain S5(Q2) < Sp(0). Exchanging the role of 1) and €; we
obtain the reversed inequality.

Now assume £ # R?, v € Wy () and Sy(u, Q) = So(S2). We may assume
u> 0, u # 0. Set 4(x) :== u(z) for © € Q, 4(z) = 0 otherwise. Then Sy(,R™) =
So(£2) = So(IR™), hence & is a minimizer of Sp(-,IR™) and the proof of Theorem 6.2
shows the existence of y > 0 such that 4 is a classical positive solution of the
equation —Aw = p|ul’"'u in R™. But this is a contradiction with u = 0 outside
Q. 0

Remark 6.6. Best constant in Sobolev’s inequality. The function Sy(-, B™)
attains its minimum § = Sy(R™) = (n(n 2)#)_1/2(F(n)/r(n/2))l/n at any
function of the form wu.(z — zg), where € > 0, g € R™ and

() 1= (62 f [af?)~ D72,

This was proved by symmetrization technigues in [43] and [508] (for more general
results of this kind see [111] and the references therein). If we set

Ce == [n{n - 2)e? (n-2)/2,

then the functions Ceu. (- —xo) are the only positive classical solutions of (6.1) with
2 =R", p=ps and A = 0: This follows from Theorems 8.1 and 9.1 below. O

Theorem 6.7. letn > 3 and p = pg. Assume Q bounded, 0 < X < h. Let S be
the constant from Remark 6.6.

(i) If Sx(Q) < S, then there exists u € W3 > (Q) such that u > 0 in Q and Sy{(}) =
Sa(u, §1).

(ii) If A is close to Aq, then S\(©2) < S.

Proof. (i) Let {u4} be a minimizing sequence for Sx(-, ), ||ux|2- = 1. Replacing
g by |ug| we may assume ug > 0. Since

A
(1 - —~—) / |V dz < f (|Vug|® — Muii) dz = S (ug, ) — Sx(Q),
M/ Ja Q

the sequence {u} is bounded in VVD1 #((2) and we may assume uj — u in WA(Q).
Due to the embeddings Wy >(€2) =+ L2 () and W2(2) v L%(Q) we obtain
uy — uin L () and up — u in L2(£2). Passing to a subsequence we may assume
uk(z) — u{z) a.e. Given t € [0,1], denote

e = P (t) = 2" (ug + (¢ — V)u)|ur + (t — 1)u|2*’2, Y = (t) = 2 tultul> 2
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Then 5 — % a.e. in  and ¥, ¢ are uniformly bounded in L?-(Q), where 2, =
(2*) = 2n/(n -+ 2). Using Vitali’s convergence theorem we obtain

/[|uk| luk—ul d:c—/f |uk+ t—l)'u,| dt dz
/ /'d)kudzdt—)f /q&udxdt ]|u|2’dz as k — oo,

3 +o(1),

hence

lellz- = 1~ flug — ul

where 0(1) — 0 as & — oo. The weak convergence uy, — u in W;2(£2) implies

/]Vuk|2d:c:/ |V(uk—u)|2d:r+/ |Vul? dz + of1),
Q L4 a
hence

Sa(€) = Sa(uk, ) + o(1)

- f IV (g — w)|? d +f [IVuf® - x?] de + of1)
Q Q
> Sllux — ull3- + Sa(|ull3- +o(1)
> Sllug —ul% + S,\(Q)Hull%: +0(1)
= (S — 5:() llux — ull3- + Sx(2) +o(1).

Now S > Sx(f) implies vy — u in L2 (), hence [ullz« = 1. The weak lower

semi-continuity of the norm in W,?(Q) guarantees

Sa(u, ) < likminf.S'A(uk, ) = 8\ (£},
—00

thus S (u, ) = S5(€2). Similarly as in the proof of Theorem 6.2, a suitable positive
multiple of u is a classical positive solution of (6.1) with p = pg, hence u > 0 in €.

(ii) Let y be the first eigenfunction, ||¢1] 2« = 1. Then
S1(©Q) < Sa(or, @) = (A — /\)[ PRdr < S
3!

if Aiscloseto Ay, O

Corollary 6.8. Let n > 3 and p = pg. Assume ( bounded, 0 < A < Ay, If A is
close to Ay, then problem (6.1) has a classical positive solution.

i R
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Remarks 6.9. (i} Positive solutions in the critical case [98]. Let Q be

hounded, p = ps,
A= inf{A e (0, )\1) : S)\(Q) < S}

Set ue(z) = (¢ + [#]*}~ /2 (cf. Remark 6.6) and assume 0 € . If n > 4
and A > 0, then careful estimates show Sy(u.p,Q2) < 8 provided ¢ € D(f) is
nonnegative, ¢ = 1 in a neighborhood of 0 and ¢ is small enough. Consequently,
A* = 0 in this case and problem (6.1) possesses a positive solution for any X ¢
(0, M)

Now let »n = 3 and Q = By(0). If A > XAy /4, then Sy(u., Q) < 8 provided
@{x) = cos(w|z|/2) and £ is small enough. On the other hand, one can use a
Pohozaev-type identity for radial functions in order to prove that {6.1) does not
have positive radial solutions if A < A;/4. Since any positive solution of (6.1) is
symmetric due to [239] we have A* = A1 /4 in this case and the problem possesses
positive solutions if and only if A € (A /4, A).

Another proof of the above results for 2 = B;{0) based on the ODE techniques
can be found in [40]. The authors use the symmetry of positive solutions u = u(|z|)
of (6.1) and the substitution y(t) = u(|z|), t = (n — 2)*~?|z|~ ("2} which trans-
forms the problem into the ODE ¢/ +¢=*(Ay+y?$) = O with k := 2(n — 1)/(n — 2).

(i) Uniqueness for p < pg. Uniqueness of positive solutions of (6.1) in the
case 0 = B)(0), p < pg, was established in [239] (if A = 0), [393] (if A > 0,
P < Pag), [310] (if A < 0, p < ps) and [544], {503] (if A > 0, p < pg). Some of these
articles contain also uniqueness results for more general functions (||, ) and for
€} being an annulus.

Uniqueness fails for general bounded domains (see (iii) and (iv) below). On the
other hand if {1 satisfies some convexity and symmetry properties, then uniqueness
(and non-degeneracy) for positive solutions of (6.1) is true, at least for some values
of p and/or A (see [147], [118], [256], for example).

(iii) Nonradial minimizers. Let & = {z : 1 < |z| < 2}, » > 3, A = 0 and
p > 1. Set
fo |Vul? dz
5(9,p) := inf{S{w, 0, p) : u € Wy{€) u 0},
ST(Q,p) :=inf{S(u, N, p):uc W[,1’2(ﬂ) u # 0, u is radial}.

Slu, Q,p) =

b

By Remark 6.3(i), problem (6.1) with A = 0 has a positive radially symmetric
solution  which minimizes S(-, (2, p) in the class of radial functions. Since (0, pg)
is not attained (see Proposition 6.5}, we have S(Q,pg) < 57(f, ps). It is easy to
see that the functions p — S, p) and p — S57(Q}, p) are continuous. Consequently,
S(2,p) < 87(12, p} also for p < pg, p close to ps. Since S(£2, p} is attained in the
subcritical case, the corresponding (positive) minimizer is not radially symmetric.
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(iv) Effect of the topology of domain. Let Q be bounded, n > 3, p = pg
and A = 0. The above considerations show that (6.1} has a positive solution if
is ant annulus but it does not possess positive solutions if {2 is starshaped. It was
proved in [47] that this problem has positive solutions whenever the homology of
dimension d of £ with Z, coefficients is nontrivial for some positive integer d. In
particular, this is true when n = 3 and © is not contractible. On the other hand,
there are several examples showing that positive solutions do exist even if () is
contractible (see [149), for example).

Let © be bounded and let its Ljusternik-Schnirelman category be bigger than
1. If p < pg, then problem (6.1) admits multiple positive solutions whenever p is
close to ps or A < 0 and {}| is large enough (see [68]); the same is true if p = pg,
A > 0is small and n > 4 (see [456], [323]). Again, this topological condition on
(2 is not necessary (see [148], where multiple positive solutions are constructed for
any p < pg, A =0 and  being starshaped, and see [408] for the critical case).

{v) Critical case in the unit ball. Let 2 = B1(0), n > 3, p = ps and consider
radial (classical) solutions of (6.1).

Due to Corollary 5.2, nontrivial solutions do not exist if A < 0. Denote by X the
space of all radial functions in W[}’z(ﬂ) and let A} denote the k-th eigenvalue of —A
in X (AL = k®x? if n = 3). The corresponding radial eigenfunction % (considered
as a function of r := |x|) has (k—1) zeros in (0, 1) and each point (0, \}) € X xR is
a bifurcation point for {6.1) {see [451]). The corresponding bifurcation branch By
of nontrivial solutions is an unbounded continuous curve and « has (k — 1) zeros
for any (u, A) € By. Moreover, there exists pp := lim{A : (u, A) € By, [Jullx — o},
k=1,2,..., and we have uy = (k—%)zwz fn=3, m=0in>4, upyp, = AL if
n=4,5 ppr1 € (0,AL) if n =6, pp =0 if n > 7 (see Figure 1 and [40], [41], [42],
39)).

Denote fij = inf{A : (u,A) € Bi}. The results mentioned in (i) and (ii) imply
i1 = = M/4iEn=23, 1 = =0if n> 4. Similarly, [34] and [234] imply
jis = pg if n = 4, ig < po if n = 5 but the relation between fis and po for
n € {3,6} seems to be an open problem.

Denote also A, := inf{fg : £ > 2}. Then A, > 0 provided n < 6 (see [39]).
On the other hand, problem {6.1) with & = B1(}), n > 4, p=pgand A > 0
has infinitely many nontrivial solutions in I/VO1 2(Q) (see [212]). Consequently, if
n € {4,5,6} and A < ), then all these solutions (except for u; where u; denotes
the unique positive solution) have to be nonradial. The existence of (nonradial
sign-changing) solutions for £} = B1(0), n = 3 and X & (0, A1/4] seems to be apen.

Many interesting results on singular radial solutions of {6.1) for £ = B;(0) and
p > 1can be Iound in [73]. O

Remarks 6.10. Supercritical case. Let n > 3, p > pg.

(i) If A = 0, then the analogue of the result of [47] mentioned in Remark 6.9(iv)
does not hold (see [406], [407]).
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n==06 n>7

Figure 1: Bifurcation diagrams for radial solutions of (6.1)
with p = pg and 2 = B:(0).

(ii) Let Q = B1(0). Then the points (0, A}) from Remark 6.9(v) are bifurcation
points for (6.1) also in this case. Let Bg(p) denote the corresponding bifurca-
tion branch and let pg(p). fix(p) have similar meaning as in Remark 6.9(v). If

n > 6, assume also p < pzz = (n+1— v2n—3)/(n — 3 — v/2n — 3). Then



28 I. Model Elliptic Problems

[l

0 A1 0 A/4 A1
p<ps P=ps,n=3
0 A1 0 Al
p=pg,n>3 prps,n<6

Figure 2: Bifurcation diagrams for positive solutions
of (6.1} with £} = B;(0).

0 < ju(p) < pa(p) < M and problem (6.1) has infinitely many radial positive
(classical) solutions if A = p1(p} (see Figure 2 and [546], [104], [365}). It is not
clear whether the condition p < pzz for n > 6 is optimal, but some restrictions on
n or p for this behavior of B;(p) may be expected. In fact, bifurcation diagrams
for positive solutions of the related problem

—Au=Ml+wu)?,  xe€ B0}, } (6.5)

u =, z € 8B1(0),

in the supercritical case are completely different for p < pyr and p > p;r, where
Py is defined in (9.3) (see Figure 3 and [293]).

Note also that the same diagrams as in Figure 3 are true for the problem

—Au=Ae*, z € B(0), } (6.6)

u =0, x € 8B, (0},

and the three cases I, II and IIT correspond ton < 2,3 < n < 9 and n > 10,
respectively. [l
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fleal
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0 A 0 A 0 A
L p<ps IL. ps < p < pyy. IIL. p > psr

Figure 3: Bifurcation diagrams for pesitive solutions of (6.5).

7. Minimax methods

In this section we look for saddle points of the energy functional E defined in
(3.5) by minimax methods. Throughout this section we assume that f satisfies the
growth assumption (3.4) so that F is a C''-functional in the Hilbert space W;'2($2)
and its critical points correspond to (variational) solutions of (2.1).

Even if we considered a finite-dimensional space X = R? and a smooth func-
tional E : X — R, then (looking at the graph of E as the earth’s surface) exis-
tence of a saddle {mountain pass) on a mountain range between two valleys is not
clear, in general. For example, if £ : R2 — R : (z,y) — ® —y%, 4y = (0,-2),
A; = (0,2), then any path from A to Az in R? has to cross the line {y = 0} where
E > 0 > max{E(A1), E(A2}}, but the functional E does not possess critical points
at all. If one looks for a point with a minimal height on the “mountain range” de-
scribed by the graph of E on {{z,y) : ¥ = 0}, then any minimizing sequence has
the form (zg,0), where x5, — —oc. In particular, it is not compact and we cannot
choose a subsequence converging to the desired saddle point. Therefore, dealing
with abstract functionals F in a real Banach space X, we shall need additional
information on ¥ which will prevent the problem mentioned above.

Definition 7.1, A sequence {ux} in X is called a Palais-Smale sequence if the
sequence {F(u;)} is bounded and E'(uz) — 0. We say that F satisfies condition
(PS) if any Palais-Smale sequence is relatively compact. We say that F satisfies
condition (PS)s (Palais-Smale condition at level 8) if any sequence {uy} satisfying
E{ug) — 5, E'{ug) — 0, is relatively compact. A real number 3 is called a critical
value of E if there exists u € X with E'(v) =0 and E(u)=4. O

The following moeuntain pass theorem is due to [23]. Our proofs of this theorem
and Theorems 7.4, 7.8 below closely follow those in [505, Chapter IT].
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Theorem 7.2. Suppose that E € C'{X) satisfies (PS). Let ug,u; € X,

M = max{E(ug), E(u1)},

P:={peC([0,1], X) : p(0) = ug, p{1) = u}, (7.1)
A= inf, max B(p(t)).

If 8 > M, then 8 is a critical value of E.

Given 3 € IR and é > 0, denote
N5 = Ns(B) :=={u € X :|E(u) - 8| <4, |E'(w)lf <6}

and Fg = {u € X : E(u) < g}.
In the proof of Theorem 7.2 we shall need the following deformation lemma.

Lemma 7.3. Suppose that E € C*(X) and let N5(8) = 0 for some § < 1. Choose
£ = 6?/2. Then there exists a continuous mapping ® : X x [0.1] = X such that
(i) ®(u.t) =u whenever t = 0 or |E(u) — 3| > 2¢,

(it) ¢+ E(®(u,t)) is nonincreasing for all u,

(i) ®(Bpser 1) C Epe.

In addition, ®(-,t) is odd if E is even.

Proof. In order to avoid all technicalities we shall assume, in addition, that B <
C?({X) and X is a Hilbert space. Notice that these assumptions are satisfied in our
applications if f has the form (2.2), for example {and see e.g. [505] for the proof
in the general case).

Choose functions , 10 : R — [0, 1] such that ¢ is smooth, p(t) = 1 for [t—8| < ¢,

@(t) =0 for |t — 3] = 2¢, ¥(t) = 1 for ¢t <1 and ¢(¢) = 1/t for t > 1. The vector
field

FiX = X iue —p(B)b(|E @]) VE®)
is bounded and locally Lipschitz. Consequently, the initial value problem
Dy (u,t) = F(B(u, 1)), for t € [0, 1],
O(u,0)=u

has a unique solution for any u € X. The function ® defined in this way is obviously
continuous and satisfies (i). Denoting v := ®{u,t) we have

L B0 1)= 2 B() = B 0)F®) = o BWIEGINIEGIE <o

thus (ii) is true.
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Assertion (iit) will be proved by a contradiction argument. Let u € Fs;. and
assume ®(u,1) ¢ Eg_.. Then (i} implies |E(®(u,t)}-8| < e < § for ¢ € [0,1],
hence N = @ implies ||E’(‘I>(u, t)) | = 4 for t € [0,1]. Using this estimate and the
properties of the functions ¢, ¥ we get

E(®(u,1)) = E(u) + fﬂ %E((I)(u,t)) dt

= Bu) = [ ) BB (B 0)|

=1 >42
<PBH+e—8<B—g¢,

a contradiction. O

Proof of Theorem 7.2. Assume that 3 is not a critical value of E. Then it is easy
to use condition (PS) in order to find 4 > 0 such that N;(3} = #. We may assume
§<1,02<3—-M Lete:= %52 be from Lemma 7.3. By the definition of 3 there
exists p € P such that max;eo 1 E(p(t)) < B4e.Since E(u;) < M < f—62 = f—2¢
for i = 0,1, Lemma 7.3(i} guarantees that p1 : £ — lI’(p(t), 1) is an element of P.
Now Lemma 7.3(iii) implies max.cp 1) & (p1 (t))f 3 — £, which contradicts the

_definition of 3. O

The next theorem is again due to [23]. It represents a symmetric variant of
Theorem 7.2 and we will use it for the proof of existence of infinitely many solutions
of problem (2.1).

Theorem 7.4. Suppose thot E € C1(X) is even and satisfies (PS). Let X+, X~
be closed subspaces of X with dim X~ = codim X+ +1 < co. Let E(0) = 0 and lel
there exist o, p, R > 0 such that E(w) > o for allu € 8= {uc Xt |ju| = p}
and E(u) <0 for allue X, |ju|| = R. Set

T:
B

{he C{X,X): his odd, h(v) =u if E(u} <0},

Jak g £)

I

Then 3 is a critical value of B, 3 > «.

The proof of the above theorem will be almost the same as the proof of Theo-
rem 7.2 provided we prove the following Intersection Lemma.

Lemma 7.5. If p >0 and h € T, then A{(X )N S} £ 0.

Proof of Theorem 7.4. Lemma 7.5 implies # > «. Assume that F is not a
critical value of E. Then N3(8) = @ for some § > 0 and we may assume § < 1,
5 < o Let € := 62/2 and ® be from Lemma 7.3 and choose A € T such that
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E{h(u))< B+ for all w € X~ Set hy(u) := ®(h(u),1}. Then h; € T and
E(h1(u))= E(®(h(u),1))< B —¢, due to Lemma 7.3(iii). But this contradicts the
definition of 5. [l

In the proof of Lemma 7.5 we shall need the notion of Krasnoselskii genus.

Definition 7.6. Let A he the set of all closed subsets of X satlsfymg A=-A
It A € A, then we set y(A) :=0if A =0 and ‘

¥(A) :==inf{m :3h € C(A.R™\ {0}), A odd}
otherwise. O

The following proposition is proved in [505, Propositions I1.5.2 and 11.5.4]:

Proposition 7.7. Suppose that A, Ay, A3 € A end h € C(X, X) is odd. Then the
Jollowing is true:

(1) v(A) = 0, v(A) = 0 #f and only if A= 0,

(2) 4 A1 C A, then (A1) < 7(4),

(3) 7{A1 U Az) < v{A1) +v(42),

() +(4) < A(R(A)),

(5) if A is compact and 0 ¢ A, then y(A) < oo and there erists o symmetric
neighborhood U of A such that U € A and v(A)} = ().

(6) Let D be a bounded symmetric neighborhood of zero in Y, where Y is a subspace
of X with m = dim(Y") < 0o, and let & D denote the boundary of D in Y. Then
v(8y D} =

Proof of Lemma 7.5. Let p > 0 and h € T'. Set R, := max{R, p}, By, =
{fueX i |lu| <Ri} and S, == {u € X : |lul| = p}. Since E(u) < 0 for v €
X7, lul = R, we have ||h{w)]| = |lull > p for all w € X~, ||u|| > Ri, hence
RX~}N S, = h{Bg, )NS, is compact. In particular, A := h(X YO S fulfills the
assumptions of Proposition 7.7(5), thus there exists its symmetric neighborhood
U with v(T) = y(A). By (2) and (3) in Proposition 7.7 we obtain

7(A) =3(U) 2 v (MX7) NS, NT)2 7 (X T) N S, ) —4(B), (7.2)

where S, := {u € X : ||u|]| = p} and B := M{X~)N S, \ U. Let Z be a direct
complement of X+ in X and let 7 : X — Z denote the projection along X . Since
U is a neighborhood of h(X )N SF, we get BN X+ =, hence 0 ¢ 7(B) and the
definition of v implies

¥(B) < dim Z = codim X . (7.3)

Now (2) and (4) in Proposition 7.7 guarantee y(h(X =) S,) = v(h1(S,) nx-).
Since h(0) = 0 and h{u) = u for v € X, {|luf| > R, the set h~1(S,) N X~ contains
the relative boundary of {u € X~ : ||h{u)| < p} which is a symmetric bounded
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neighborhood of zero in X ~. Consequently, using (2) and (6) in Proposition 7.7
we arrive al
+(MX7)N8,)> dim X~ = codim X+ + 1. (7.4)
Now (7.2)—(7.4) imply ¥(A) > 1, hence A# 0. O
Theorems 7.2 and 7.4 guarantee the following solvability result.

Theorem 7.8. Assume t bounded. Let f be o Corathéodory function, and let
there exist p < ps, R > 0 and p > 2 such that [f{z, v} < C(1 + |[u|?) for all
e, ueR and flz,wu > pFz,v) >0 for all z € Q and ju| > R.

(i) If there exist ¢ < Ay and p € (0,1) such that f{zx,u)/u < ¢ for allx € Q and
lu| < p, then there exists a positive solution of (2.1).

(i) If f(z, —u) = —f(z,u) for all z € Q and u € R, then there erists o sequence
{ur} of solutions of (2.1) with E{ug) — oo as k — 0.

Proof. The energy functional E associated with (2.1) is C. Let us first verify that
F satisfies condition (PS). Let {ux} be a Palais-Smale sequence. Denote |ul13 1=

(fo [Vul? d:rs)l’l2 and notice that this is an equivalent norm in X := W;>*(€2). Then
o(1 + |ugly2) = —B'(uk)uk = —|uli 5 +f fle, up)uy do
Q

= (3 -1tz + / [ (@, un)us — pF(e, ui)] do — pB(u)
> (g- - 1) uxit 2 — Ch,

where € > 0 is independent of k. Consequently, the sequence {ug} is bounded in
X. We have VE(u) = u+ Fy(u), where F; is compact.? Since {uy} is bounded in
X, we may assume (passing to a subsequence if necessary) Fi(ug) — w in X for
some w € X. Since o{1) = VE(uy) = uy, — F1(ur), we obtain ux — w, hence {u}
is relatively compact.

(i) We will use Theorem 7.2. In order to get a positive solution, let us define
flz,u) = flz.u)if u >0, f(z,%) = 0 otherwise, F(z, 1) := f; f(z,s)ds, BE(u) =
L [, |Vul?dz— [, F(z,u} dz, and notice that ¥ is C! and satisfies condition (PS).
Set ug := 0, then E(up) = 0. The assumption f(z,w)/u < ¢ for |u| < p guarantees
1P, w)| < (¢/2)u? for |u| < p. If jul > p, then the growth assumption |f(z,u)| <
C(1 + |u|?) implies

1F (2, u)] < Clut -+ [ulP*) < (/20 + CalufP*,

2The Nemytskii mapping F : LPH1{2) — LP+D (9} : w — f(-, ) is continuous. The embed-
ding Ip : X — LPH1{Q)} is compact, hence the dual mapping I (Lrt! (Q))’—r X' is compact
as well. Let R : X' — X denote the Riesz isomorphism in the Hilbert space X (thus RE'(u) =
VE(w)) and let J : LFPH (£2) — (LPHL(D)’ be the isumorphism defined by (Jw)u = f,uwdz
for u € LP+1(Q). Then VE(u) = v+ Fi(u), where F1 : X — X :u s RIJTFIp(x) is compact.
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where Cy := C(1 + p~P). Consequently, if C; denotes the norm of the embedding
X e [PHH(Q), then

- 1
E(u)z—f |Vu§2da:—5fu2d:n—6'2f P! da
2 Ja 2 Ja 2
1

c i), [p—1 2
> (5 g5~ CoCp Pl Yl s 2 o> 0
provided |uf;,2 = & is small enough. Now the assumption f(z,u)u > pF(zx,u) > 0
implies & (u=#F(z,u))> 0 for v > R, hence F(z,u) > b(z)u* for u > R, where
b(x) := R™#F(z, R} > 0. Hence, fixing u € X, u > 0 in {, denoting

1
Aln) = 5/. |Vu|? de, B(u) := / b(zyut dx > 0, (7.5)
Q o
and taking ¢t > 0, we ohtain
E(tu) = E(tu) < t?A(u) —t*B{u) + C3 — —00  as t — oo,

where we used the estimate
f [blz}(tu)? —~ F(z,tu)] dz < Cy
O<tu<R

with C3 independent of ¢ and u. Hence, choosing u; := tu with ¢ large enough
we have E{ui) < 0. Let $ be the number defined in Theorem 7.2. Since any
path joining 1p and u; has to intersect the sphere S5 := {u : |u|; o, = &}, we
have 3 > o > 0 and Theorem 7.2 guarantees the existence of a solution u with
E‘(u) > a. Since f{z,u) = 0 for v < 0, the maximum principle implies © > 0. Now
E(u) = E(u) > 0, hence u # 0 and using the maximum principle again we obtain
u > 0in 2.

(i) Choose a positive integer k. Let X~ denote the linear hull of 1, wo, ..., ¥%,
and X+ be the closure of the linear hull of @, wrr1,.... The growth condition
on f guarantees |F(z,u)] < Cp(l + |u|Pt!) for suitable Cp > 0. Set ¢ := pg if
n > 3 and choose ¢ > p otherwise. Let C4 := C’pC’g““T and Cs := Cr|{}|, where
C, denotes the norm of the embedding I, : Wy ?(€2) < L9*+1(Q), r € (0,p + 1) is
defined by r/2+ (p+1—r)/g = 1 and || denotes the measure of . If v € X+
and [lul| = p = pr == (AY2/(4C2)) ™Y, then

E(u) > l/ |Vu|2da:w6’p/ |u[P*! dz — Cs
2 Ja Q

I

1 1-
Slulds — CrlfulEull il — Cs

IV

1 - _
(5 — Gy, /2|U|?19:21) |’U|i2 -G

1 . .
- (5 — O )R = Gy = CeX Y —
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where Cg = (47C1)~Y =1 Denote o = o = nf{E(u) : v e Xt, |uli 2 = p}.
Since Ar — oo as k — oo, we have ay — c0.

On the other hand, estimates in (i} show E(tu) < t2A{u) — t* B(u) — C3, where
A, B are defined in (7.5). Since A(w) = 1/2 for |u|y2 = 1 and C7 := inf{B{u) :
u& X, |u|i,2 =1} > 0, we have

1
E(u) £ Emlfz —Crlulfs+Cs forallue X,

hence the assumptions of Theorem 7.4 are satisfied for any % large enough and we
obtain a sequence of critical points uy of E satisfying E{ug) > ag. (In fact, a more
careful choice of p above enables one to use Theorem 7.4 for any k.}) [

Remarks 7.9. (i) Linking. Let f be differentiable in «, f(z,0) = 0, f{z, u)/u >
fu(z,0) for all z € Q and w € R. If the assumption f{z,u)/u < ¢ < Ay for u
small in Theorem 7.8(i} fails, then one can use a modification of the mountain
pass theorem, so called “linking”, in order to prove the existence of a nontrivial
solution of (2.1) (see [505, Section IL.8] and the references therein).

(ii) Perturbation results. Consider the problem
—Au = Iulpflu + ¢, z e, (7 6)
U= 0, T e a‘QJ -

where £ C R” is bounded, 1 < p < pg and ¢ € WL3{Q) = (W23(Q)).
Theorem 7.8(ii) guarantees existence of infinitely many solutions of (7.6) provided
¢ = 0. The same result is known to be true for ¢ belonging to a residual set in
W=12(Q) (see [45]) and for all ¢ € W~L2(2) provided p(n — 2) < n (see [300,
Théoréme V.4.6.}; see also [506), [46], [452] and [48]). On the other hand, if n > 2,
P € [psg,ps) and ¢ is a general (smooth) function, then even the solvahility of
{7.6) seems to be open.

(iii) Unbounded domains. If } = R™, then the existence of infinitely many
solutions of (2.1) is known in many cases as well. We refer to [76], [140], [139], [9]
and the references therein.

(iv) Critical case. Let @ C B™ be bounded, p = ps and A > 0. If n > 7,
then problem (6.1) possesses infinitely many solutions, see [162]. Such a result is
known for any n > 4 if the domain Q exhibits suitable symmetries {see [212])
but not for general domains (cf. also the results for © being a ball mentioned in
Remark 6.9(v)). If n = 6 and A € (0, )\;), then (6.1) has at least two (pairs of)
solutions for any bounded €2, see [117]. Recall also that if A <.0, p > pg and
{1 is starshaped, then (6.1) does not possess nontrivial classical solutions due to
Corollary 5.2. O
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8. Liouville-type results
In order to prove a priori bounds for positive solutions of {2.1) with f(z,u) ~ u?

as u — 400, 1 < p < pg (see the rescaling method in Section 12), it will be
important to know that the problems

—Ay=yP, reR" {8.1)
and
—Ay =P, zeRY,
u=0, zcdRY, } (8:2)

do not possess positive bounded (classical) solutions. Here R’ denotes the half-
space {z € R® : x, > 0}. In fact, we shall see in Chapter II that these Liouville-
type results have important applications for parabolic problems as well. In this
section we even prove that these problems do not possess any positive classical so-
lution. The following two results are due to [240], [241], except for Theorem 8.1(ii)
which was proved in [108].

Theorem 8.1. Let @ =R" and p > 1.
(1) If p < pg, then equation (8.1) does not possess any positive classical solution.

(i) If p = pg, then any positive classicol solution of (8.1) is radially symmetric
with respect to some point.

Theorem 8.2, Let 1 < p < pg. Then problem (8.2) does not possess any positive
classical solution.

We will see in the next section that the condition p < pg is optimal for nonex-
istence in R™. However, in the case of a half-space and if we consider only bounded
positive solutions, nonexistence is known for a larger range of exponents, namely
p < pg = (n+1)/(n — 3)+ (note that pl is the Sobolev exponent in (n — 1)
dimensions). This result is due to [150].

Theorem B8.3. Let 1 < p < ply, where

;oo ifn <3,
ps'_{(n+1)/(nw3) ifn > 3.

Then problem (8.2) does not possess any positive, bounded classical solution.
On the other hand, under a stronger assumption on p, one can extend the

nonexistence result in R™ to elliptic inequalities. The following result is due to
[238].
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Theorem 8.4. Let 1 < p < pyy. Then the inequality
—Au > P, re R (8.3)

does not possess any positive classical solution.

Remarks 8.5. (i} It seems unknown if the condition p < pg is optimal for the
nonexistence of positive solutions of (8.2). In the case of positive bounded solutions,
the results recently announced in [178] indicate that the condition p < pi can be
improved, but the optimal exponent seems to remain unknown.

(ii) The condition p < psg in Theorem 8.4 is optimal, as shown by the explicit
example u(z) = k(L + [z|*)~ 1) with n > 3, p > ps, and k > 0 small enough.

(iii) Consider the inequality —Au > «? in the half-space R} (no boundary
conditions required). Then nonexistence of positive solutions holds whenever p <
(n+1)/{n—1) (see {74]).

(iv) Consider “quasi-solutions” of (8.1), i.e. (nonnegative) functions satisfying
the double inequality

au? < —Au <uP, z R, (8.4)

for some @ & (0,1). Tt is shown in [509] that if 1 < p < pg and a € (0,1)
is close enough to 1, then (8.4) has no positive solution u € C%{R") (see also
Remark 8.8(ii}). On the other hand, if p > py, and a € (0,1} is small enough,
then (8.4) possesses positive solutions u € C2(R"). Note that a simple example is
provided by the function u(z) = k(1 + |z|*)~1/ =1 with k > 0 large enough. [

We start by proving Theorem 8.4, which is much easier than Theorems 8.1 and
8.2, The following proof {(cf. [74], [501]. [372]) is based on a rescaled test-function
argument, and it is different and simpler than the original proof of [238].

Proof of Theorem 8.4, Take £ € D(B4), 0 £ £ <1, with { =1 for |z| £ 1/2,
and let m = 2p/(p—1). Fix R > 0 and define pp(r} = £™(z/R). We observe that

App =mR2[E™ AL + (m — 1)E™ 2 VEP] (z/R)

hence
. —3 51
|Apg| < CR™26™ X2/ R)X{ja|>r/2) = CR 2R X{je|> 172}

Multiplying (8.3) by g, integrating by parts, and using Hélder’s inequality, we
obtain

/ upp < —f ulpp < CR_2] wi”
n n Rfz2<|z|<i

< CRprp—1)/p-2 (/

R/2<|z|<R

'/p (8.5)
up(,oR) .
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In particular, it follows that

/HPWR < CRP2/(p-1) (8.6)

I p < psg, ie. n— 2p/(p—1) < 0, then this implies © = 0 upon letting R — oo. If
P = Psg, then (8.6) implies [, u” < co. Therefore, the RHS of {(8.5) goes to ( as
R — oc and we again conclude that u =0. [

Theorem 8.1 is much more delicate. Note that, in view of Theorem 8.4, we may
restrict ourselves to 7 > 3. We will give a first proof of Theorem 8.1(i) which,
like the original proof of [240], is based on integral estimates for (local) positive
solutions (cf. Proposition 8.6 below). Here we essentially follow the (simplified)
treatment of [83). Next, we will prove Theorem 8.2 by using moving plane argu-
ments, following {241]. We will then give a second, completely different proof of
Theorem 8.1(i), also based on moving planes arguments, which is due to [123], [78]
and allows us to prove Theorem 8.1(ii) at the same time. We point out that the
techniques of both proofs of Theorem 8.1(i) are important and can be extended
to some other problems (see e.g. Section 21 and [123], [78], respectively). Finally,
we will prove Theorem 8.3 following [150]. Note that, although the proofs of both
Theorems 8.2 and 8.3 are based on moving planes arguments, they use differ-
ent ideas: reduction to the one-dimensional problem on a half-line for the former,
monotonicity and reduction to the (n— 1}-dimensional problem in the whole space
for the latter.

Proposition 8.6. Let 1 < p < pg and let By be the unit ball in R™. There exists
r =r(n,p) > max(n(p — 1)/2,p) such that if 0 < u € C?(B) is a solution of

—Au=v" (8.7)

n Bl, then
[ w<con. (.8)
|lx|<1/2

Let us assume for the moment that Proposition 8.6 is proved and deduce some
consequences of it. To prove Theorem 8.1{1) it suffices to apply a simple homo-
geneity argument.

Proof of Theorem 8.1(i). Assume that u is a positive solution of (8.1). Then,
for each R > 0, v(z) := R¥P~Vu(Rx) solves (8.7) in B,. It follows from Propo-
sition 8.6 that

/ u” (y)dy = R"‘f u"(Rx) dx
lyl<h/2 |z|<1/2

— Rn—?r/(p— 1) /
|lz|<1/2

v (z)dz < C(n, p) R/ (p—1),

m‘l[ﬂ‘t" B
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By letting R — co, we conclude that fR" u"{y) dy = 0, a contradiction. [

As another important consequence of Proposition 8.6, we have the following
result (cf. [151]) concerning singularities of local solutions to (8.7) in arbitrary
domains. Note that when p,;, < p < pg, the upper estimate in Theorem 4.1
concerning isolated singularities follows as a special case.

Theorem 8.7. Let 1 < p < pg and let ) be an arbitrary domain in R™. There
erists O = C(n,p) > 0 such that if 0 <u € C%(Q) is a solution of

—Au =uP, z €9, (8.9)

then
u(z) < Cn, p){dist(z, HQ)~2/ -1, (8.10)

Proof. It relies on Proposition 8.6 and a hootstrap argument. Let
r > max(n(p —1)/2,p)

be given by Proposition 8.6. We may fix p > 1 such that

1 2
p——- <. (8.11)
o mn
Assume that v is a solution of
—Av=v" mB:={rcR":|z| <1} {8.12)

Let ¢ be a nonnegative integer and assume that, for all w C< B, there exists a
constant C;(n,p,w) > 0 (independent of v} such that

”'U”Lrp"(w) < Ci(n, p,w). (8.13)

Note that (8.13) is true for ¢ = 0 by Proposition 8.6. Since rp!/p > 1 and

P T 1 ( _1)<2
rpt  rpitl T ppi p 7

due to (8.12), we may apply Proposition 47.6(ii) to deduce that (8.13) is true with
i replaced by i+ 1. After a finite number of steps, we obtain [[v|| Lx .y < C(n,p,w)
for some k > n/2. We may then apply Proposition 47.6(ii) once more to deduce
that

v{0) < C(n,p). . (8.14)

Now assume that v is a solution of (8.9), fix xp € Q and let R := dist(zg, 8Q).
Then v(z) = R¥P~Vy(zy + Rz) solves (8.12) and the conclusion follows from
(8.14). O

i
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Remarks 8.8. (i) More general nonlinearities. Results similar to Theorem 8.7
for more general nonlinearities can be found in [240), [83], [473], [424]. In particular,
universal singularity estimates of the type of {8.10) are established in [424] when
the nonlinearity «® is replaced by any f{x,u) such that f(z,u) ~ u?, as u — o0,
with 1 < p < pg. The method of proof is different: The estimate is directly deduced
from the Liouville-type Theorem 8.1(i) by using rescaling and doubling arguments
{see Theorem 26.8 and Lemma 26.11 below for a similar approach in the parabolic
case).

(ii) Singularities of quasi-solutions. For “quasi-solutions” of (8.1} (cf. Re-
mark 8.5(iv}), the local behavior near an isolated singularity was studied in [509].
Let @ = B(0, 1)\ {0}. If psy < p < pg and @ € (0,1) is close enough to 1, then any
positive classical solution of

auf < —Au <P, x e, (8.15)

satisfies lim sup,_q |2[* "~ Yu(z} < co. On the contrary, if p > p,y and a € (0,1)
is small enough, then there exist solutions of (8.15) with arbitrarily large growth
rates as x — 0.

On the other hand, by a straightforward modification of the proof of [424,
Theorem 2.1], one can show the following uniform and global property: For each
p € (1,pg), there exist a = a{n,p) € (0,1) and C(n,p) > 0 such that, for any
domain © C R", estimate (8.10) is true for any positive solution u € C%(Q) of
(8.15). Note that, as a consequence of this estimate, one recovers the nonexistence
result in Remark 8.5(iv).

(iii} Radial supercritical case. When p > pg, 8 = Bg and u is a radial
positive classical solution of (8.9), a similar argument as in Remark 4.3(iii) shows
that u(r) < C(R—7)2/-1 0 < r < R, for some C' > 0. However the constant
cannot depend only on n, p, since otherwise this would imply nonexistence of radial
positive classical solutions of (8.9) for £ = RB® and p > pg, hence contradicting
Theorem 9.1 below. [0

We now turn to the proof of Proposition 8.6. It is based on a key gradient
estimate for local solutions of (8.7) (see (8.22) below). To establish this estimate,
we prepare the following lemma, which provides a family of integral estimates
relating any C*-function with its gradient and its Laplacian. The proof relies on
the Bochner identity (8.18), on the change of variable v = w**!, and on test-
functions of the form wv™.

In the rest of this section, we use the notation [ = f, for simplicity.

Lemma 8.9. Let Q be an arbitrary domain in R?, 0 < p e D(Q), and 0 < u €
C%(Q). Fir g € R and denole

I= /cpu“'_2|Vu|‘1, J= /(puq_l|VuI2&u, K=/(puq(Au)2.
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Then, for any k € R with k # —1, there holds
1
al +BJ++K < 5/ uq|Vu|2Azp+/uq[Au—I—(q—k)u'1|Vu|2]Vu-Vga, (8.16)

where

n—1 _qlg—1)

3q n—1
= ———kQ - 1 e — -

:'n+2k__7 y=—
7 2 n

Proof. Step 1. We first claim that for all v € C2(Q), » > 0 and any m € R, there
holds

1
< 5ft,r”r”|"7v|2Agc>+ /[vav +mu™ V] Ve - V.

(8.17)

First note that, by density, it suffices to prove (8.17) for v € C*(Q). To prove
the claim, we start from the identity

1
5.A|vq,=|2 = V(Av) - Vv + | D)%, (8.18)

where |D?u|? = Z (2, )°. Multiplying by ¢ v™ and integrating over (2, we
1<i,j<n
obtain

1
T +Te = /gavmV(Av) -Vv+/wvm|D2v[2 =3 /gova|Vv|2 =:T3. (8.19)

Integrating by parts and using ¢ € D({1), we can rewrite the first and third terms
as follows:

T = —[(Av)v (v V)
= —/wm(Av) Vv - Vgofm-/govm‘IIVvPAv— /apv’“(Afu)z
and

1
T3 = /|V"v|2 [§'UmA(p +mv™ IV Vg + %Lp(vm'l,&v + (m— l)vm’2|Vv|2)jI

1
= §/vm|Vv|2Agp+m/vm'l|Vv|2Vu-th

+ %/g@vm_ﬂ‘?vl?:ﬁu-f- w /{pvm_QiV'vﬁ.
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Moving the first term of T3 to the right of (8.19) and the last two terms of T3 to
the left, it follows that

— 3
M/lpvm—ngﬁ — Tm/(,pvm_1|VU|2AU+/.‘P"—’mID2U|2

= /(pvm(Au)g + % /Um|VU|2Acp+/[vaU+-mvm_l|VU|2] V- Ve

(8.20)
By Cauchy-Schwarz’ inequality (applied with the inner product (A, B) = tr(AB*)
on matrices), we have

(Av)* = (tr(DQ'u))2 < tr [(Dzv)(D2?))*] tr (I,,) = n| D)2, {(8.21)

Due to ¢ > {, Claim (8.17) follows by combining (8.20) and (8.21).

Step 2. We set v = u*t1 m = (k+ 1)1 (g — 2k), that is ¢ = (k + 1)m + 2k, and
we compute

/wvm‘2IVv|4 = (k+ 1)4/sou“°“)(“‘“2)*‘“°lvul“ = (k+ 1)L,

fﬁ.fwm_llvvFAv = (k+ 1)3‘/(‘ou(k+1)(m71)+3k|vu|2(Au_|_ ku=tVul?)
= (k+ 12 (kI + J),
/(,p'um(ﬁm)z
= (k+1)° f cpu(k"'l)m"'%[(fku)z + 26{Au)u Y Vul? + £*uTE | Vult]
= (k+1)*(k*I +2kJ + K),
/vm(Av)Vv Vo=(k+ 1)2./.'LL("’Jfl)erz"G [Au+ ku™ ' Vul*] Vu - Ve,

and
fvm—1|vv|2w Vo= (k+ I)S/U(k+1)m+2k_l|VU|27u Ve

Substituting in (8.17) and dividing by (k£ + 1)%, we get

m(l —m) 2 _ 3m nolpe _im n-l
[k + 102 = ok + 1) - k| T+ -+ 1) - 22
_ n—; LK < %/uﬂwlzmp + fuq {Au+ (k4 m(k + D) [Vul’] Vu - Ve,

which readily implies the lemma. O
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Lemma 8.10. (1) Lel Q be an arbitrary domain in R™, and 0 < p € D(N). Let
0 < u € C%(Q) be a solution of (8.7) in Q. Fiz q,k € R with ¢ > —p, k # —1 and

denote
I~ [ow v, K= [pune
Then there holds
af + 6K < %fuq|Vu|2A<p + cf[up+q + u Y Vul?]|Vu - Ve, (8.22)
where C = C(n,p,q,k) >0 and

n—1 qlg—1) 1 /3¢ n+2 n—1
Cnl FE PP VR LU St S S S ¢ U P Dl S 7S
o n +Ha-1) 2 d p+q(2 n ) n (8.23)

(i) Assume that 1 < p < pg. Then there exist g,k € R, with ¢ # —p, k # -1,
such that the constants «,d defined in (8.23) satisfy

a8 >0, 2p+ g >n(p—1)/2. (8.24)

Proof. (i) Since —Au = uP, we have
(p+a) =- f o (p+ Ut TVl = - / pVu- V()

B /  (Aujur™ 4 f (Voo - Vuul*,

where J is defined in Lemma 8.9, hence

(p+q)J = —/cpuz’”'q -i—](Vzp-Vu)up"'q.

Substituting in {8.16), we obtain (8.22).

(ii) A simple computation shows that § > 0 and 2p+q > n(p—1)/2 is equivalent
to

-1 —4)p—
k<%(@)1=%*%—2)—p and Q>%(P)izw-

For k = ka(g), we have

a = a(k(q)) = %1 (_‘1_2 (n-pg _ (n- 1)2p2)

n+2 (n+2)2
ro-n(g- Bl -3
n—1 2

—nl( g oot (no 1Pt iy
n \ 4 n+2  n+r2? n+2
¢  pg  nmn+2)p—(n— 1)2p2)

4 n4+2 (n+2)2 )

[:%]
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The discriminant of the above polynomial in g is given by

_ PP tnn+2p— (-1 _ nplin+2) - (n~ Ay >0,

b (n+2) (nt2)°

Therefore we have alko{(g)) > 0 for g € (—ng—fz -2v/D, w% + 2+/D). Moreover,

— 285 > qo(p) is equivalent to n(n + 2) > (n* — 2n — 4)p, which is true due to

p < pg. Choosing

1= -2 and k=ko(g) = (-2

13 —— (with k # —1),

we see that (8.24) is fulfilled. O

Proof of Proposition 8.6. Take g, k as in Lemma 8.10(ii) and Q@ = B;. We shall
estimate the terms on the RHS of (8.22). Let £ € D{{?}, be such that £ = 1 for
|z <1/2and 0 € £ < 1. Put @ = (3p+ 1 4+ 2q)/2(2p+ ¢) € (0,1). By taking
@ = &M with m = 2/(1 — #), we have
Vel < O™ <O, 1Ap| < CE™2 < Cy. (8.25)
Fix £ > 0. Using Young’s inequality under the form
zyz < ex® + ey’ + Cle)=°, a P+ et =1,

and (8.25), we obtain
/ wI|Vu2Ag = f (@1/2u(q—2)/2|vu|2) ((p(q+2)/2(2p+q)u(q+2)/2)

« (W—(p+1+q)/(2p+Q)A[p) < g/¢uq_2]Vu|4 +E/§0H2p+q +C(e),

C/u""’ﬂ?u V| < f((’oiﬂu{qv?)/tiivul) (('0(4p+3q+2)/4(2p+q) u(4p+3q+2)/4)

x (W—(3p+1+2q)/2(2p+q}|v‘,p|) < E/(p’uzq72|V'u,|4 +E/(‘0u2p+q +C(E),
and

c / WY Vul?| V- V| < f (@3/4u3(q—2)/4|vq£|3) (@(q+2)/4(2p+q) u(q+2)/4)
% (w—(3p+1+2q)/2(2p+q)|V(’9l) < sf<pu"‘21Vul4 +€/Wuq+2p + C(e).

Combining this with (8.22), we obtain

ol + 3K < Cln,p,q,k)e(I + K) -+ C(e).

T
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Since o, & > 0, by choosing ¢ sufficiently small, we conclude that I, K < C, hence
(8.8) with 7 = 2p + ¢ > max(n(p — 1)/2,p). O
Proof of Theorem 8.2. Let u be a positive solution of {8.2).

Assume n > 2 and denote ' = (z1,...,2n_1). Choose ¢, & € R} with T, = Z,.
We will show u(Z) = u(Z) so that v depends only on x,,.

Choose the origin to be the point ((%5’)’, 0)_ Given € @’ set

u{z)

|z|n—2'

5= T+ en
T el

v(2) = |z + en|  Pulz) =

The function v is the Kelvin transform of u. It solves the problem

Av+|z["wP =0  in D,
(8.26)

v=10 on 8D\ {0},

where D := Bjy(e,/2) and v := {n — 2)p — (n 4+ 2) < 0. We want to show that
v is axisymmetric about the z, axis, i.e. v = v(|2|, 2n). Choose any direction e
perpendicular to the z,-axis. Without loss of generality we may assume e =eg;.

i
Zn

/R0

A z

Figure 4: Moving planes.

We shall apply the moving planes method to problem (8.26). Given A €
[0,1/2), set Z(X) :={z € D: 2 > A}, 2* := (2% — 21, 22,..., 2,). The point z* is
the reflection of z with respect to the hyperplane {z; = A} and 2(}) is called a
cap. We next define

w(z; A) 1= v(z*) — v(z) for z € T(A)
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(the parameter A will be omitted in w when no risk of confusion arises). Then
Aw = Av(z?) — Av(z) = ~ |22 P () + |27 (2)

= {l2” = [2A[)o(2?) — 21 (P (2*) = v (2)).

Since v (2*) — vP(z) = p&€P~Mw(z; A) for some & = £(z, A) lying between v(z*) and
v(z), we obtain

Aw + |2["pE w = (|2]" — |22M)vP(2*) =0 in D(X) .

The maximum principle (see Proposition 52.1) implies v > 0 in D and 8v/dv < 0
on 9D\ {0}, hence w > 0 on Z{A) for X close to 1/2.

Set
fe=inf{p > 0:w > 0in Z(X) for all A > u}

and assume g > 0. Then w > 0 on ¥(Z) and there exist A; € (0,a), A; —
f, such that inf{w(z;A;) : z € B(A)} < 0. Since w(; X)) > 0 on 95(};), this
infimum is attained at some g; € Z{};) and Vw(g, \;) = 0. Since w(; ;) > 0
in an e-neighborhood of 4D M L(A;} (with £ being independent of #), we may
assume q; — § € %() \ 8D, Continuity arguments and w > 0 on Z(R) guarantee
w(q@; E) = 0 and Vw(d;z) = 0, hence w(-; i) = 0 by the maximum principle.
This contradicts w > 0 on {# € 5(E) : z1 > p}. Consequently, i = 0 and
w(-;0) = 0 on £(0). A symmetric argument shows w(-;0) < 0 on (0}, hence v
is symmetric with respect to the hyperplane {¢; = 0}. Since this holds for any
hyperplane containing the z,-axis, v is axially symmetric. Hence, 1 = w(|z'[, zn)
and, consequently, u{T) = u(E).

Thus we have reduced the problem to the case n = 1. Assume that u is a positive
solution of

uw(t) +vP(t) = 0, t>0,
u(0) = 0.

Since v is concave and positive for ¢ > 0, it must fulfill ' > 0. Fix ¢; > 0 and
consider t > #;. Then

ult) = u(ty) + (t —t)u'(t1) + /:(t — s)u”"(s) ds.
Since u”(s) = —uP(s) < —uP(f1), we obtain
0 < ult) <ul(ty)+ (¢t —t)u' () — %(t —#1)%uP(ty),
hence

2u(ty) 2u'(11)

uP(t) <
(t) (t—t)2 " t—ty

—0 as t — +00,

e
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a contradiction. [
‘We now turn to the proof of Theorem 8.1 based on moving planes.

Proof of Theorem 8.1. Due to Theorem 8.4, we may assume n > 3. Let p < pg
and let u be a positive classical solution of (8.1). Set

v(z) == M%u(#) .

(v is the Kelvin transform of u). We have v € C(R" \ {0}), v > 0,

z € R™\ {0}

v(z) <Oz as |z| — oo, (8.27)
and v solves the equation
Av+|z"F =0 in R™Y {0}, {8.28)

where v := (n — 2)p — (n 4+ 2) < 0. Due to (8.28) and n > 3, we infer from
Lemma 4.4 that Av < 0 in ¥(R7?). It follows from the maximum principle in
Proposition 52.3(ii) that, for each R >0,

vz n(R) = ﬁ:ﬁ’f}qv >0 in Br(0)\ {0} (8.29)

Given A < 0, set 2 == (2A — z1.20,...,20), B(A) == {2 € BR™ : z; < A},
() =B\ \ {0*} and

w(z;A) == o(z") —w(z), z €D\ {07}

{the parameter A will be omitted in w when no risk of confusion arises). As in the
preceding theorem we obtain

Aw+ |z["ptP~lw <0 in ZV(X), (8.30)

where £ = £(z, A) lies between v(z*) and v(z). Set o := (n — 2)/2 and wW(z; ) =
|z|*w(z; A). Then

n—2

A = e Vi ez B S0 in X0, (8.31)
where 02
n— - _
ol 3) o= g P e, )

Let us first show that

w>0 in B'(A), for A -1 (8.32)
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We shall argue by contradiction. Assume that A; — —oc and infyra,) (5 A) < 0.
By (8.27) and (8.29) with R = 1, we have w(z;A;) > 01if |z — 0% < 1 and i is
large enough. Since also, for each i,

w(z; A:) =0 on dX(A;)  and  w(z; A) — 0, |2] — oo, {8.33)

we see that the infimum of @(:; A;) over '(};) is attained at some ¢; € & ()\ )
and lg; — 0%| > 1. We have |g;| — oo, thus v(g;) — 0. If the sequence {g}
were bounded, then (8.29) would imply v(g}*) > e > 0, hence w(g) > 0 for
¢ large, a contradiction. Therefore |q,f‘ [ — co. Now the definition of © implies

v(2)|z[""% — w(0) if |2| — oo, so that we cannot have lg}%|/]a:] — O (otherwise
w(g;) > 0 for large 7). Thus both v(g;) and v(g}*) can be estimated above by
Cg?>™ for some fixed C > 0 and the same is true for &(g:, A:). Hence,

n—2%
elgs, Ai) < —% + qf <0  for i large enough. (8.34)
5 i

Since W = w(;A;) attains an interior minimum at g;, we have Aw(g) > 0,
Vii(q:) = 0 and @(g;) < 0 so that (8.31) and (8.34) yield a contradiction. This
proves (8.32).

Now denote
Aeo=sup{u < 0:4@(;A) > 0in Z'(A) for all A < u}

and assume i < 0. Then @(:,7) > 0 in ¥'(f) by continuity, and there exist
Ai > i, Ai — B, such that inf{w(z; A;) © 2 € Z'(A)} < 0. Assume that (-, z)
is not identically zero. Since Aw(-, 1) < 0 in X'(f), the maximum principle (see
Proposition 52.1) implies w(-, 3} > 0 in T'{f). Arguing similarly as for (8.29), we
deduce that w(:, i) > ¢z > 0 in I := B0 (0%) \ {0#}. Due to the continuity of v
in U7 and

w(z; M) = w(z —2(A — We; pYy+v(z — 2(N — fBer)—v(z),

we obtain w(-; A} > 0 (hence @(-; A;) > 0) in Bjya(0%) \ {0} for i large. Conse-
quently, in view of (8.33), the infimum of @(-; A;) over £’'();) has to be attained at
some ¢; € £'(A;), with |g; —0M] > /4. Assume |gi] = co. Then |g;¥|/|g;| — 1 and
we obtain a contradiction as above {cf. (8.34)). Therefore we may assume that {g;}
is bounded and ¢; — ¢ € X(g) \ {0”}. By continuity and 4@(-, i) > 0, we obtain
w(q, ft) = 0 and Vi(g, &) = 0, hence w(g, ) = 0 and Vw(g, i) = 0. Applying the
maximum principle in Proposition 52.1(ii) and (iii) to equation (8.30), it follows
that w(-, i) = 0, hence w(-, i} = 0, a contradiction. Consequently, (-, i) = 0,
which means that v is symmetric with respect to {z; = }. Now using (8.28) we
see that (~Av)/v? = |z]Y has the same symmetry, which is not possible unless
P = ps-

Fep
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If p < pg, then we get i1 = 0, so that w(-,0) > 0 and v(z°) > w(z) provided
z; < 0. Considering the function #{z) ;= v{z") instead of v we obtain the reversed
inequality, hence v(z;, 29,...,2,) = ¥(—21,29,..., %,). Repeating this procedure
with any given direction instead of e; we see that v, hence wu, are radially symmetric
(about zero). If we repeat this procedure with @(z) = u{z — xq) for a given g # 0
instead of u, we show that u is radially symmetric about the point zg. Since this is
true for any zg, the function u has to be constant. But the only constant solution
of (8.1) is the trivial solution.

If p = pg and g < 0, then v is symmetric with respect to {z; = g} If g = 0,
then we can repeat the procedure with @(2) := v(z%) and in any case we obtain
the symmetry of v with respect to {z; = ji} for suitable fi. Now we can repeat the
above proof with directions ez, ea. ..., e, Instead of e; and we obtain the existence
of 2 € R™ such that » is symmetric with respect to {z = Z} for k =1,2,...,n,
hence v{Z + z) = w(Z — z) for all z. Rotating the coordinate system and repeating
the procedure we find # € R™ such that v(5+2) = v(Z —z) for all z. Assume z # Z.
Without loss of generality, we may assume Z # (. The symmetry relations for »
imply

vZ)=w(22—2)=v(3z— 2%) =w(di-35) = = 0,
hence v{z} = 0, a contradiction. Consequently, Z = # and we obtain the rotational
symmetry of v (hence of u) about z. O

Proof of Theorem 8.3. Assume that (8.2) admits a positive, bounded classical
solution ». As a special case of Theorem 21.10 below {which we shall prove by
using moving planes arguments), it follows that « is nondecreasing in x,,:

O u{z) >0, z e RY.
Therefore, for each ©’ € R*1,

Ulz') = lim u(z’,z,)

Tp—00

is well defined and is a bounded positive function. Take now ¢ € D(R™1) and
¥ € D(R), with suppe C (0,1) and ful = 1. Let & > 0. Testing the equation
with @(z")¢(z, — k), we have

‘/n_ /uﬁ (@' Vap(my — k) day, do’ —/}Rn 1/ oV (zn — k) Au day de'

= / / uA(p(z') O(zn — k) don do’,
]Rnul B
hence

—/ fup(m',sqL!c)go(x’)?,b(s) ds dz’
n—1 R
=/ fu(m’,s+k)a(go(m’)¢(s)) dsdz.
Er—1JE
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By dominated convergence, letting & — oc, it follows that
1
_/ UP(z' Yy plz") dz' = —/ UP(z") oz / ¥(s) dsdx’
En—-1 Ra—1 o
= f / U(z") Alp(z") (s)) dsda’,
k=t JR

But the RHS is equal to

fk U@ Aarpla’) /0 C(s) ds + /m UGl /0 L (s) ds

= Ul{z") Aoz’ de'.
'Rn—l

1t follows that I/ solves (8.1) in R"~! in the distribution sense, hence in the classical
sense (this is a consequence of the boundedness of U and of Remark 47.4). The
result is then a consequence of Theorem 8.1(i). O

9. Positive radial solutions of Au + v = 0 in R"

In this section we study positive radial classical solutions of the equation
—Au =P, xeR”. (9.1
Since this problem does not possess positive classical solutions if 1 < p < pg due

to Theorem 8.1, we restrict ourselves to the case p > pg. Consequently, n > 3.

Positive radial classical solutions of (9.1} can be written in the form u(x) = U(r),
where r = |#| and U € C?([0, oc)) is a positive classical solution of

v+ B0 P =0, re(Om),  U0)=0 (9.2)

It is easily seen that prescribing initial values U(0) = e > 0, U’(0) = 0, the
equation in (9.2) has a unique solution for » small enough. In fact, this equation
can be written in the form (r?~1U’) = —r~1U? and, by integration we obtain
the equivalent integral equation

U(r) = a— /0 /:(S)HU"P@) dt ds,

which can he solved by the Banach fixed point theorem.
Let Uy () = ¢,r~%/=1) be the singular solution defined in (3.9) and set

{ +00 if n < 10, ©3)
PiL = n—4+2/n—-i .
1+ 47t i g > 10,

The main result of this section is the following theorem.
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Theorem 9.1. Letp > pg. Given o > 0, problem (9.2) possesses a unique positive
solution U, € C*([0,00)) satisfying Ua(0) = . This solution is decreasing and we
have

Ug(r) = aliy (a®~1/%p), (9.4)

Ifp > ps, then r2/®=0U,(r) = ¢, asr — co. If p = pg, then

Ui(r) = (

nin — 2) )(11—2)/2. (9.5)

mn —2) +r?

Let oy > ag > 0. If p = pyr. then UL(r) > Uy, (r) > Usp(r) for all v > 0.
Ifps < p < pjr, then Uy, and U,, intersect infinitely many times and U,,, U,
intersect infinitely many times as well. If p = pg, then U,,, U,, intersect once and
Uy . Uy intersect twice.

Proof. Using the transformation
w(s) = v¥ Ny (), s =logr, (9.6)
problem (9.2) becomes
w'’ + Bw +wf —qyw =0, s €R, {9.7)

where

1

ﬁ:mp_l((n—Q)p——(n-i-Q))zO: yi=ch”

1_ (p——21)2 ((n—2)p—n)>0,

and we are looking for solutions w satisfying w{s),w'(s) — 0 as s — —oo. Set

1 1
E(w) = E(w,w) = /[ - %wg + mwpﬂ.

Then £ is a Lyapunov functional for {(9.7); more precisely,

4 g (w(s)= ~B(w ()< 0. (0:8)

Denoting x := w and y := w’, problem (9.7) can be written in the form

(m)l = ( 4 ) =: F(xz,y) 9.9

Y —By—aP +z

where z > O and (z,y) — (0,0) as s — —co. Problem (9.9) possesses two equilibria,
(0,0) and (cp, 0) lying in the half-space {(z,7) : z > 0}. Denote

A= VF(0,0)z(S _1,@) Ay ::VF(cp,O):(_,)r(}?_l) —1,3)'
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for infinitely many s, hence Uy, and U, intersect infinitely many times.

¥ - - e Next consider the case p > pyr. On the halfline y = —g(m — &), T < ¢, We
I ~ e TR have for suitable zg € (x,¢p):
- T ] -
. — / p—1 _ p-1
—_ [ T, . _ 2a(x &
, < Ve -l m) =
\ T P T y Blz — cp)
1' ~Cp | 2 p—2 2 .8
5 | N— I =B+ gelp— 1)z < —f+ E(pfl)'wska
S, /
\ ., y 'y B _
— - - Y= vaT
y.’ - 0 - / ~
— _ B _
s ———— i y= 2 (.’B CP)
Figure 5: The flow generated by (9.9) for ps < p < psL. \ / f T > |
0 | cp ' z
.

First consider the case p > pg. Then # > 0 and the matrix A; has two real
eigenvalues 13 == —3(F + /B2 +47) with vy < 0 < 1y = 2/(p - 1). The
corresponding eigenvectors (x;, ;) satisty ¥ = 142, ¢ = 1,2. The eigenvalues ‘—0
D2 = —3(B £ /B - 4y(p— 1)) of Ay are real iff 5% > 4vy(p — 1), that is iff ¥ =
P = pIL.

Assume pg < p < pyr. In this case, the eigenvalues i, iy are complex and their Figure 6: The flow generated by (9.9) for p > piz.
real parts are negative so that the critical point (c,,0) is a stable spiral. The flow
for the planar system (9.9) is ilustrated in Figure 5.

We are interested in the trajectory T emanating from the origin to the right Consequently, the trajectory 7 ends up at (c,,0) again but the z-coordinate
half-space, since it represents the graph of any positive solution of (9.7) in the w-w’ is increasing along 7 (see Figure 6}. Hence, the solutions I/ of (9.2} are ordered
plane. This trajectory cannot hit the axis £ = () again since the energy functional according to their values at r =0, U, > Uy, > Uy, f 0n > ao.
£ is nonnegati\.re on thijs axis, & (0’ 0} =0, 8> 0 and (9.8} ’is true: Moreover, Finally consider the case p = ps. Then 8 = 0 and the energy functional £ is
the corresponding solutions w exists for all § € R and w,w’ remain bounded constant along any solution. Since £(c,,0) < 0 and £(0,y) > 0 for y 5 0, the

for all s € R due to (9.8). Consequently, 7 has to converge to the critical point
(cp,0) which corresponds to the singular solution w.(s) = r2/P-DU () = ¢,
Thus, if U, is the unique local solution of (9.2} such that U,(0) = a > 0, then
its transform we(s) = r2/P=DU,(r) exists globally and satisfies wq(s) — ¢, as
s — oo0. Consequently, U, exists globally and ¥/~ (r) — cpas T — o0 It

trajectory T is a homoclinic orbit (see Figure 7).

Let w,, s, have the same meaning as above. Given oy # oo, there exists a
unique s € R such that wi(s — 5,,) = w1(8 — 54,). Hence, the corresponding
solutions Uy, U,, of (9.2) intersect exactly once. Similarly, given a > 0, we have
We (8) = ¢p for two values of s, so that U, and U, intersect twice. One can easily

is easily verified that the function Ua(r) := aly(?" /%) is a solution of (9.2) check that the function U defined by (9.5) is a solution of (9.2) satisfying the
satisfying U, (0) = «, hence U, = U, by uniqueness. The graphs of w, and initial condition U1(0) = 1. [

in the w-w’ plane are identical, so that there exists 5, € R such that U,{e®) =

we(s) = wi(s — s4) for all s € R. Hence, given a1 > ay > 0, Uy, (1) = Uy, (v) Remarks 9.2. (i) The exponent py; appeared for the first time in [293] where
for some r > 0 iff wi(s — sq,) = w1(5 — Sa,) for some s € R. This happens for the authors studied mainly problems with the nonlinearities f(u) = A(1 + au)?
infinitely many ¢ since 7 spirals around the point (¢, 0). Similarly, wa, (s) = ¢, and f(u) = Ae®*, Aa > 0.
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AN

Figure 7: The flow generated by (9.9) for p = ps.

(if} The intersection properties of the solutions 7 in Theorem 9.1 play an im-
portant role in the study of stability and asymptotic behavior of solutions of the
corresponding parabolic problem, see Sections 22, 23. 0O

Remark 9.3. Let p = pg and @ > 0. For all ¢ > My(a) with Mg(a) > 0 large
enough, if V' is a positive classical solution of

-1
V"+n V'+Vp=0, D<r<a,
T
such that V(a) = Ua(a) and lim,_o V{(r) = oo, then V has to intersect U, in
(0,a).
In fact, denoting w(s) := r2/®=DU, (s}, s = logr, the rescaled function from
the last proof, it suffices to chose My(a) such that

Wiy (loga) <0 (9.10)

(hence w/,(loga) < 0 for all @ > My(a)). Indeed the trajectory of Wi(s) =
r2/ =DV (r), s € (—o0,loga), has to be a subset of a periodic orbit lying in-
side the trajectory 7 (see Figure 7). Due to (9.10} there exists s € (—oo0, loga)
such that w, (59} = W{sg), hence U, (e*0) = V{e®e).

Note also that there exist infinitely many periodic orbits of (9.7) for p = pg,
corresponding to positive singular solutions of u"” + ”T*lu’ +uwf =0forr>0. O

Remark 9.4. Let p > pyr. Since the trajectory 7 approaches the limit point
(cp, ) below the dotted line with slope —3/2 and 7y < —f3/2 < 7 < 0, it has to
converge along the eigenvector (1, 14) corresponding to the eigenvalue 7, hence

'ﬂ—u"zl as s — 00,

z(s) —cp

10. A priori bounds via the methad of Hardy-Sobaolev inequalities 35

Returning to the original variables and denoting V() := U(r) — U.(r) we obtain

where m := 2/(p — 1}. Assuming that V(r) = er™® + h.o.t. for some ¢ # 0 and
a0 > m, (9.11) guarantees ¢ < 0 and & = m + A_, where

(B— /B2 4v(p—1))

(n—2-2m-+/(n—2-2m)2-8(n—2—m)).

e
|
i
|
=
S

DO = bS] =

This expansion is indeed true: In fact, a more precise asymnptotic expansion of V
was established in [260] and [334]. O

10. A priori bounds via the method of
Hardy-Sobolev inequalities

A priori estimates of solutions can be used for the proof of existence and multi-
plicity results. Unlike the variational methods in sections 6 and 7, this approach
does not require any variational structure of the problem and enables cne to prove
the existence of continuous branches of solutions.

Due to Theorem 7.8(ii) one cannot hope for a priori estimates of all solutions.
The bifurcation diagrams in Figure 2 suggest that there is some hope for such
estimates if we restrict curselves to positive solutions and to the suberitical case.®

In the present and the following three sections we introduce four different meth-
ods which are often used in the proofs of a priori bounds for positive solutions of
superlinear elliptic problems. We will study mainly the scalar problem

~Au= f(z,u,Vu), e, } (10.1)

u =1, z € 08,

where £ i bounded and f is a sufficiently smooth function with superlinear growth
in the u-variable. Some of the possible generalizations and modifications will be
mentioned as remarks, others can he found in the subsequent chapters.

This section is devoted to the method of [99], which is based on a Hardy-
type inequality and enables one to treat rather general nonlinearities f. On the

31n fact, in the subcritical case one can get a priori estimates of all solutions with bounded
Morse indices (without the positivity assumption), see [49], [539], [32].
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other hand, it requires an upper growth restriction corresponding to the limiting

expornent
. { 00 ifn=1,
PEE= a4 1)/(n—1) ifn>1,
which is stronger than what is imposed by the methods in Sections 12 and 13 (for
instance, in the particular case f(z,u, Vu) = uP, we have to assume p < pgr).

However, the exponent ppr is not technical and its role will be clarified in the
next section.

Theorem 10.1. Let 2 C R* be bounded, n > 3, 8 :=pgr. Let f : G xRy xR —
Ry be continuous and bounded on ! x M x R™ for M C B, bounded. Let

liminfM > X, lim ACATD))

57— =0, uniformly for (z,s) € Q xR
U OO i U—60 U

(10.2)
Then there exists C > 0 with the following property: If t > 0 and v € H} N L>®(Q)
is o positive variational solution of

—Au = fz,u, Vu) + i, x e,
f( )+t } 103)

% =0, z € d9,

then
flulloe +t < C. (10.4)

Proof. We shall denote by C various positive constants which may vary from
step to step but which are independent of » and . Let £ > 0 and u be a positive
solution of (10.3}. The proof of (10.4) will consist of the following three steps:

1. foudde <C,t <Cand [, f(z,u, Vu)dde < C,
2. ]|Vu||2 S C,
3. ulle < C.

Step 1. Due to {10.2) there exist € > M and C > 0 such that f{z,u,s) >
Chu — Cy for all (z,u, s). Multiplying the equation in (10.3) by 1 yields

Al/ﬂﬂfpldfﬂ=/Q“(—A‘Pl)dmzfn(—&“)% d$=/ﬂ(f901+t@%)d$

Zleugold:c—C'g/gold$+t/rpfdm,
0 0 Q

where [ = f(z,u(z), Vu(z)). This estimate can be written in the form

(10.5)

(01'—A1)fup1d$+t/ prdr < C,
Q 194

R
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=T

(]}

hence
f wpde < C  and <O (10.6)
Q

Now (10.5) and § < Cip gnarantee
/ fide <C | forde=Cx / wipy dx — Ct/ Y dr < C. (10.7)
o o o y
Step 2. Multiplying the equation in (10.3) by u yields

||Vu||%=f |Vu|2dz:/ fud:c-%—t/gomdzﬁ/fudm-{—(}'. (10.8)
Q ) Q o

Denoting o :=2/(n+ 1) € (0,1) we have S+ 1/{1 —a}) =2/(1 — «). Given £ > 0
there exists C. > 1 such that

flz,u,8) <euf + C.. (10.9)

Using Holder’s inequality, Step 1, (10.9) and Lemma 50.4 we obtain

[y rute= [weon () ae < (f g00s)" ([ s oe)

ﬁ+1/<1—a) 1o W@ | l-a
laf f W 77 v
s et o Faraa) d) o+ /Q a7=) )

— e

il < pl-a 2
52l 0, < oCUVull +CCNTu.

§a/2 ||‘2/(1—a) +Ce
This estimate and (10.8} guarantee
[Vul2 < C. (10.10)
Step 3. Choose p € (n/2,n). Then
W2P(Q) — L=(0) and W) — LPP-1}(Q)

due to n(F — 1) < 2*. These embeddings, LP-estimates (see Appendix A), (10.9),
Step 1 and (10.10) imply

l[ulleo < Cllulzp < CIIS +terlly < el|w’|l, + C(Ce +1)
< elfullpamy lullso + Ce < el Tullf " flulloo + Co < eCllullon + e

Now choosing £ >> 0 small enough yields ||u||e < C. 0O
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Remarks 10.2. (i) The proof of Theorem 10.1 can be easily modified for more
general second-order elliptic differential operators. In the case of a nonsymmetric
operator one has to work with the first eigenfunction of the adjoint operator, of
course. One could also allow more general nonlinearities (nonlocal, for example).
The boundedness assumption on f could be relaxed as well.

(i1} The term tyy in (10.3) is needed for the proof of existence of a positive
solution of (10.3) with ¢t = ¢ (see Corollary 10.3 below). This lower order term does
not play any significant role in a priori estimates in the following sections provided
t < C. Since this bound for ¢ was proved in Step 1 of the proof of Theorem 10.1
by using only the lower bound for f in {10.2), in the following sections we shall
restrict ourselves to the case { = 0 only.

(iit) A priori estimates of solutions of problems like (10.3) appeared first in {400]
and {517]. The assumptions on the growth of f or the dimension n in these articles
are more restrictive than those in Theorem 10.1 which is due to [99]. O

Corollary 10.3. Let 2 and f be as in Theorem 10.1 and let

lim sup w <M uniformly for (x,s) € O x R™. (10.11)
u—0+

Then problem (10.3) with t = 0 possesses al least one positive solution u, with
uw € WHIN Co(Q) for all finite q.

Proof. Set X := C'(Q). Given u € X and t > 0, let F;(u) = w be the unique
solution of the linear problem

—Aw = f(x,u, Vu) + tw1, e, }

w =0, z e a0 (10.12)

(cf. Theorem 47.3(i)). Note that, since f(-,u, Vu) € L(Q), we have u € W29
Co() for all finite g. Then F; : X — X is compact and we are looking for a
positive fixed point of Fy.

Let ||ullx =» < 1, 7 € [0, 1] and assume 7Fp(u) = u. Multiplying the equation
in (10.12) by © and applying (10.11) yield

/{Vu|2daz='r-/fud:c§ (Al—s)/u2dﬂ:,
Q o Q

which contradicts (1.3). Hence 7Fo(u) # » and the homotopy invariance of the
topological degree implies

deg (I — Fp,0, Br)=deg (1,0, B;)=1, {10.13)

where I denotes the identity and B, := {uw € X : ||ullx < r}.

~10. A priori bounds via the method of Hardy-Sobolev inequalities a9

Let ||u||x = R. If R is large enough, then Theorem 10.1 and LP-estimates (see
Appendix A) imply Fi(u) # u for any ¢ > 0. The same theorem implies also
Fr(u) # u provided T is large enough. Consequently,

deg (I — Fy,0, Br)=deg (I — Fr,0,Bg)=10. (10.14)

Now (10.13) and (10.14) guarantee deg (I — F3,0,Bg \ B;)= —1, hence there
exists © € Bg \ By such that Fy(u) = u. The positivity of u is a consequence of
the maximum principle. O

In what follows we present an alternative proof of Theorem 10.1 in the special
case f(z,u,5) = |[u[P7lu, 1 < p < ppr, n > 1. Instead of Hardy’s inequality we
shall use the following lemma. (see [89], [450], and cf. also [143] and the references
in (450, Remark 4.1]). It provides a useful singular test-function and will also be
used later in Section 26.

Lemma 10.4. Assume Q bounded and ) < a < 1. Then the problem

—Af =%, zef }

=0, o e a0 (10.15)

admits a unique classical solution £ € C(Q) N C?(Q). Moreover, we have p7* €
N9, € € HY(Q), nd

E(x) < C(Q,a)d(x), ze. (10.16)

Proof. Define h(s) = 3s—s?~%, 5 > 0. The function k € C([0, 00)) NC2((0,00))
satisfies

B=3-(2-a)s', b =02-0){1-a)s"®, s5>0

and
h(s) <3s, K'(s)>1, forallsc]|0,1]

Let ¢ = |1l ate1, and set v(z) = h(p(z)). Simple computation yields
—Av =~k )|Vl — H'(9) A
= CLe™ Vol + MK (p)e
> Cre™ Vel + A
Now, for §(x) < e small enough, we have |Vy|? > 5 > 0, hence —Av > Cinpp <.

On the other hand, for §(z} > ¢, we have ¢ > ¢ > 0, hence —Av > Me > Cop™c.
We conclude that for some ¢ > 0, w = cv satisfies

—Aw > ™ and wz) < C3é(z), forallze . (10.17)
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Next, for all € > 0, let £ be the (classical) solution of —AL = (1 +2) “ in Q,
with & = 0 on 8. By (10.17) and the maximum principle, we have

E(ry <w(x) <Ckd(z) <Cy, zefd {10.18)

and &, is increasing as ¢ decreases to 0. Denote by £ the (pointwise) limit of &..
Elliptic estimates along with {10.18) imply that £ € C(2) NC?(€), that ¢ satisfies
(10.16) and is a classical solution of (10.15). The uniqueness follows immediately
from the maximum principle.

The fact that @7 € L'(£2) can be easily deduced from the inequality 1 > ¢4,
by flattening the boundary and using a partition of unity (see e.g. [485] for details}.
Finally, to show that £ € H3({), it suffices to note that, since a < 1,

/lesgl"’=—/Q£EA§E—/Q£E(W+5)-“sa;/;@;a coo O

Alternative proof of Theorem 10.1 for f = 4P, t = 0. Let ¢ > 0 be small
and o := 1’ /r, where r is defined by 1/r = 1/2 — £/(p — 1). Let £ be the solution
of (10.15). As in Step 1 of the proof of Theorem 10.1 we obtain [, uPédz < C.
Testing the equation with £, we obtain

/ugol_adﬂc:/Vu-VEda::/(—Au)§d$=/up§dﬂ:gc
0 Q 0

Q

(where we used 7® € L1(Q) and £ € H(2)). Denoting p. := (p+ 1)/2 — &, we
get

/upfdm=/ (u”/rga}/r)(ul/rfgol_ur) dx
Q Q

< ( /n Wi d:c)m( /g wpl® dm)w <c

Define ## € (0,p+1) by 8/p. + (p+1—6)/2*=1. Thenp + 1 — # < 2 provided ¢
is small enough and the interpolation ineguality yields

P8 < o vulgte,

1 g
/ﬂ Vul? de = /Q W dz = [l < [u)?,

which guarantees a bound for u in W12(2). The rest of the proof is the same as
in the proof of Theorem 10.1 (Step 3). O
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11. A priori bounds via bootstrap in I{-spaces

This section is devoted to the L bootstrap method, which, in the scalar case,
was developed independently in [85], [449]. It applies to problem (10.1) under
essentially the same assumptions on the nonlinearities f as in the method of the
previous section, with a growth restriction still given by the exponent pgr of
Section 10. However, unlike that method (and those in the next two sections), it
applies to very weak solutions. The optimality of the L{ bootstrap method was
studied in [489] and it turns out that the exponent ppr is optimal for the regularity
of very weak solutions, thus showing the critical role played by this exponent for
problems of the form (10.1).

Let us point out that in the case of systems, studied in [449], the growth restric-
tions of the LY bootstrap method become much weaker than those imposed by the
{generalization of the) method of Hardy-Sobolev inequalities (see Section 31).

In this section, by a solution » of (10.1), we understand a very weak {or L3-)
solution, cf. Definition 3.1. Namely, if f does not depend on Vu, this means that

we LY (Q), f(,u) € L), (11.1)

and

—f whip = / S u)p,  forall p e C2(T), pon = 0. (11.2)
Q Q

If f depends on Vu, we assume in addition that Vi is a function, i.e. Vu € L (©2)
and we replace f(-,«) by f(-,u, Vu) in (11.1)-(11.2).

Remark 11.1. If v € L'(Q) and Au € L}(2) (where Au is understood in the

distribution sense), we say that . = 0 on 90 in the weak sense if

/ uAp = f pAu  for all p € CHQY), jan = 0.
Q Q

If {11.1} is satisfied (and Vu € L, () in case f depends on Vu), then u is a very
weak solution of (10.1) if and only if it solves the differential equations in (10.1)
in the distribution sense and the boundary conditions in the weak sense. O

Theorem 11.2. Assume Q bounded and 1 < p < pgr. Let f: xRy xR® = R,
be continuous. Assume

flz,u, 8} < C1(1 + uP), zeQ, u>0, sk (11.3)
and

flr.u,s) = du—Ch, refl, u>0 scR”? for some A > Ap. (11.4)
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There exists C > ( such that if u is a nonnegative very weak solution of (10.1),
then u € L™(f?) and
)l < C.

Condition (11.4) can be weakened or replaced by other conditions of different
form. For instance, by applying the same method, we obtain regularity and a priori
estimates for the following simple equation:

—Au = a{z)u?, z € £},
} (11.5)
u =10, z € 90,

Theorem 11.3. Assume §t bounded and e € L), 0> 0, a Z 0 and 1 < p <
per. Then the conclusions of Theorem 11.2 remain valid for problem (11.5).

Remarks 11.4. (i) The growth condition (11.3) in Theorem 11.2 is slightly
stronger than that in Theorem 10.1 (where (10.2) allows some “almost critical®
Is).

(ii) Under the assumptions of Theorems 11.2 and 11.3, as a consequence of
standard regularity results for linear elliptic equations, we moreover obtain v €
CoMW?29(€2) for all finite g {argue similarly as in the proof of Corollary 3.4, using
the uniqueness part of Theorem 49.1 instead of Proposition 52.3). U

The optimality of the exponent pgy in Theorems 11.2 and 11.3 is shown by the
following result from [489].

Theorem 11.5. Assume (¢ bounded and p > ppr. Then there exists o function
a € L=, a = 0, a £ 0, such that problem (11.5) admils a positive very weak
solution u such that

u & L),

The method of proof of Theorems 11.2-11.3 is based on bootstrap and uses the
L% regularity theory of the Laplacian (cf. Theorem 49.2 and Proposition 49.5 in
Appendix C).

Proof of Theorem 11.2. Step !. Initialization. By (10.6), (10.7} in the proof of
Theorem 10.1, we know that
lulhs<C RfCou Vu)lls < C. (11.6)

Since p < pgr, we may fix p > 1 and ky such that

n+1 1 n+41
max(p, "L (p— 1)) <y < 2L
p n—1

By (11.8) and Proposition 49.5, it follows that ||u||g,s < C.

1§
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Step 2. Bootstrap. Put k; = kop®, i = 1,2, .. .. Assume that there holds
lelr.s < CE) (11.7)
for some ¢ > 0 (this is true for i = 0 by Step 1). Since

p 1 1 1 2
ki ki " kopt (p p) < n+l’

by using Theorem 49.2(1) and (11.3), we obtain

”’LL Riy1,8 < C”Aul|ki/P15 = Cnf”ki/]ﬂ:ﬁ

< O+ o7k o) = CA+ vl 5) < C.

By induction, it follows that (11.7) is true for all integers 4. Taking i large enough,
we thus have (11.7) for some k; > (n-+1)p/2. Applying Theorem 49.2(i) and (11.3)
once more, and Remark 1.1, we obtain |fu)lee < C. [J

Proof of Theorem 11.3. We only need to modify Step 1, the bootstrap step
being then unchanged.

Assume that u is a nonnegative (very weak) solution of (11.5). It follows from
the quantitative version of Hopf’s lemma {see Remark 49.12(i) in Appendix C)

that
w > c(/g; aupédy) >0 (f auPipy dy) ©1,
0

for some constant ¢; > 0 depending only on ©2. We deduce that

/ auPy dx > crl’(] aufo, dm)pf ady™ de > 2/ aufip dr — C,
Q Q Q Q

hence

Alfugoldz=/aup<p1dm§(?. O
0 Q

We now turn to the proof of Theorem 11.5. It is based on Lemma 49.13 from
Appendix C, where a singular solution of the linear Laplace equation with an
appropriate right-hand side belonging to L}; is congtructed. The right-hand side
has to possess suitable boundary singularities, supported in a conical subdomain
of £2. In order to re-construct a posteriori the coeflicient a(x), the key point is the
lower estimate (11.8) for the solution in the same cone.

Proof of Theorem 11.5. Assume that 0 € 9§ without loss of generality. Let
a = 2/(p— 1). By assumption, we have a < n — 1. By Lemma 49.13, there exist
R > 0 and a revolution cone ¥ of vertex 0, with 3 := X1 N Beg C £, such that
the function

¢ = |o| " Dyy




64 1. Model Elliptic Problems

belongs to L} and such that the (very weak) solution u > 0 of

—AU=¢, :EEQ,
u =0, z € ) }

satisfies
u > Clz| % xs. (11.8)

Therefore, we have u & L™ and
W > Cla|™*Pxz = Cla|~“txz = C4.

Setting a(z) = ¢/u? > 0, we get —Au = ¢ = a{z)u® and a(z) < 1/C, hence
a € L. The proof is complete. O

Remarks 11.6. Localization of singularities. (a) In Theorem 11.5, it is to be
noted that, in spite of the imposed homogeneous Dirichlet boundary condition,
the singularity of the solution occurs at a boundary point, actually a single point.
The boundary conditions continue to be satisfied not only in the weak sense but
also in the sense of traces (see Remark 49.4(¢) in Appendix C).

(b} If we assume that p < ps, and that a given weak solution of (11.5) is bounded
near the boundary, then one can use usual Lebesgue spaces instead of LE-spaces in
the proof of Theorem 11.2, to show that the solution is bounded in Q. Therefore,
the occurrence of boundary singularities is necessary if ppr < p < psg. On the
other hand, when p > pgg, the situation is different and much easier, since it is
then not difficult to construct examples of similar equations with only an interior
singularity (see Remarks 3.6).

(¢) The support of a in Theorem 11.5 can be localized in an arbitrarily small
neighborhood of a boundary point. However, it is also possible to construct an
example where the function a is positive in £, uniformly away from 9% (see [489]
for details). O

Remarks 11.7. {(a} The cases f(u) = «# and p = ppr. Similar counter-
examples as in Theorem 11.5 have been constructed recently in [155] for the model
problem (3.10) (a{z} = 1) when p > pgr is close to per. Moreover the critical
case p = ppr was shown to belong to the singular case. Related results have also
been announced in [31].

{b) Variable critical exponents in nonsmooth domains. The notion of
very weak solution has been recently extended in [362] to the case of some non-
smooth domains, namely Lipschitz domains, and generalizations of Theorems 11.2
and 11.5 have been obtained. For suitable cone-shaped domains, the analogue of
the exponent ppr was computed. Interestingly, it was found to depend on the
domain and to be smaller than (n +1)/(n—1). O
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12. A priori bounds via the rescaling method

In this section we present a priori estimates of solutions of {10.3) based on rescaling
and Liouville-type theoretns. In this context, this method was first used in [241].
In comparison to the method of Section 10, it requires a rather precise asymptotic
behavior for f as ¥ — oo (f has to behave like «? for u large) but the growth
condition on f is optimal {p < pg). The methad also works for general second-arder
elliptic operators but for simplicity we restrict ourselves to the Laplace operator.
As explained in Remark 10.2(ii) we consider the case t = 0 only.

Theorem 12.1. Assume Q bounded, 1 < p < ps, a € C(SY), a(z) > ag > 0 for
alz e}, ge C(O2 xR xB”), and

2
lg(z,u, )| < C(1+|ul?+ is]"), where g <p, r < ;% {12.1)

Then there exists C > O such that any positive strong solution u € C1(Q) of

—Au = a(az)up + g(ﬂ?, U, vu’) ze n’ } (122)

u =, z € a8

satisfies [fulleo < C.

Remark 12.2. Here, w being a strong solution means that u € I’Vticl (1) and

u satisfies the differential equation a.e. in Q. Since we also assume u € C*(Q),
Remarks 47.4(i) and (iii), actually imply © € W24(£2) for all finite g. O

Proof of Theorem 12.1. Assume the contrary. Then there exist positive solu-
tions wu; of (12.2) such that ||u;]lcc — o0 as § — 00. Let x; € €2 be such that

g (15) + [Vuy (a7) /D = Sl(lzp(uj + |[Vuy [0+ D)=: 0

and let d; = dist (z;, 98). Since ) is compact, we may assume xj — To for some
zo € . Set K = Mj_(p_l)/?. The sequence d;/«; is either unbounded or bounded.
In the former case we may assume d; /k; — oo, in the latter d;/k; — ¢ > 0.

Cuse 1. Let d;/x; — co. Set

1 -
vj(y) := ﬁ“j(iﬂ), ¥= —_J,

j Ky
and £; = {y e R": |y| < d;/x;}. Then

v + [V [ D < (0) 4+ |V (0)F D = 1 (12.3)
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and
—Av(y) = alrjy + ) (¥) + gi(y), v €y, (12.4)
where
9i{y) = RQP/(P 1) (fijy-i—a:j,n;z/( Yo i) & (;P+1)/(P I)ij(y))
satisfies

lgs| € Ck5,  e:=min(2(p—q),2p— (p+ 1)r)/{p - 1). (12.5)

Interior elliptic LP-estimates (see Appendix A) guarantee that v; are locally bound-
ed in W27 for any z > 1 (uniformly with respect to j). Let & € (0,1), R > 0 and
r = {y € R" : ly| < R} There exists z = z{a) > 1 such that W»*(Bg) is
compactly embedded into BUCt*(Bp). Consequently, we may assume v; — v in
C'*e. Passing to the limit in (12.4) and (12.3) we see that v is a positive (classical)
golution of
—Ay = afzg)? in R",

which contradicts Theorem 8.1.

Case 2. Let d;/k; — ¢ > 0. Let &; € 09 be such that d; = |z;—Z;|. For any j we
can choose a local coordinate z = 2(;) = (z1,2%,...,2™) in an e-neighborhood U;
of %; such that the image of the boundary 9 will be contained in the hyperplane
z' =0, Z; becomes 0, z; becomes z; := (d;,0,0,...,0), and the image of U; will
contain the set {z : |z| < £’} for some &' > (. We may assume that ¢,&’ are
independent of j and the local charts are uniformly bounded in G2. In these new

coordinates, the equation for w = w;(z) = u;{z) becomes

- a( ou Zb‘i()@—(())u*(z) lz| <&, 2t >0
Za Bzzé‘zk é zazi—amz w glz), g, % s

(12.6)

w=0, |z| <e, 2' =0,

where §(z) := g{z(z), ( ) D(Z)V w(z)), D = Dy = (821 /02%);4, b = b(j) =
Az, o = ah) T, Bmg 89:“ hence A = Ag;) = (a(j)),;,k =D .tD, and thg Ay
are uniformly elliptic. Also, since 9§ is uniformly C?, it follows that the a,“(g?) are
uniformly bounded in ¢ and the bf 4 in L*°. Moreover, since D(0) is a Euclidean
transformation, it follows that Ag;(0) = D(0) - *D(0} = Id. Set

i
vy, 8) := ﬁwj(njy + z;),

where , 4
. s £ .

-eﬂ-::{ :|—-—3~I<—, 1>ﬁ~i}.
Y J] ¥y e K Y Py
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Then »; is a solution of

v
_ “" b
%a (K39 + 25) aya ik JZ (59 + 25) 5= oy

= a{z(x;y + Zj))vp +g; in £y,
v=10 On{yEan!ylz_j/ﬂj}:

where
—1 - - _ _
gi(y) = £ T Vg (ks + 27), 57 P Vu(y), 6, TV D Dy 42 Vo))

satisfies (12.5). Interior-boundary L”-estimates (see Appendix A) and the bounds
on the coefficients a‘(?), b’(j) again yield a subsequence of {v;} converging to a
positive {classical) solution v of

Av = alzg)v®, Y > —¢,
v =0, Y = —¢,

which contradicts Theorem 8.2. O

Remarks 12.3. (i) If ¢ is independent of the gradient variable, then it is sufficient
to choose My, = supuy in the proof of Theorem 12.1.

(ii) Indefinite coefficients. Assume that the function @ in problem (12.2)
changes sign. Under suitable assumptions on a, g and p one can still use the method
of [241] in order to get a priori bounds for positive solutions (see [74], [19] and [167],
for example). In addition to the limiting problems in the proof of Theorem 12.1
one has to deal with problems of the form

~Au = hiyh®, y € R”,

where typically h(y) = |m1|*y for some a > 0. In some cases, a combination of
the above approach with other arguments (moving planes, energy, ... ) vields the
a priori bounds, see [124], 1453}, [237] and the references therein. Of course, if the
problem has variational structure, then the existence of nontrivial solutions can
often be proved by variational or dynamical methods, see [8], [75], [7], [257], [121],
(3] and the references therein.

(iii) The rescaling method is sometimes referred to as the “blow-up method”,
because one performs a zoom of the microscopic scales of the solution. Here we shall
not use this terminology, in order to avoid confusion with the blow-up phenomenon
in the parabolic problem. [
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13. A priori bounds via moving planes and
Pohozaev’s identity

In this section we describe the method of a priori estimates of solutions of (2.1) due
to [183]. Similarly as in the preceding section, the growth condition for function
f will be optimal. The advantage of this method consists in the fact that it does
neither require precise asymptotic behavior of f for w large nor Liouville-type
theorems. On the other hand, the symmetry of the Laplace operator plays an
important role, f cannot depend on Vu in a general way and we also have to
assume that either 2 is convex or f satisfies a restrictive monotoniecity condition,
see (13.3) below. The assumptions for a general function f = f(x,u) are rather
complicated (see [183, Remark 1.5]) and therefore we restrict ourselves to the case
f = f(u). Hence, we shall study positive solutions of the problem

—Au = f(u), z €42,
w=0, x € Jf. } (13.1)

Theorem 13.1. Assume n > 2 and Q bounded. Let f : Ry — R be locally
Lipschilz continuous and assume
f(u) f(u)

liminf —= > A4, lim =10,
UAU— 00 U u—co  Ue

where ¢ = pg if n = 3, 0 < oo s arbitrary if n = 2. Let one of the following
assumptions be satisfied:

(i) © is convez and
) wf(u) — 8F(u)
lim sup ———————= <0, 8 e[0,2%), 13.2
e R S 0.2 2
where k = 2/n.
(ii) Condition (13.2) is satisfled with £ = 2/n and, in the case n > 3,
the function u — f(u)u™PS is nonincreasing on (0, 00). (13.3)
(iii) Condition (13.2) is satisfied with k = 2/(n+1), n > 3, 00 = 'y UT, where
I'1, Ty are closed and satisfy

(1) at every point of I'1, all sectional curvatures of 'y are bounded away
Jrom 0 by a positive constant a;

(2) there exists zg € R™ such that (x — zg,v(x)) <0 for all z € I's.

Then there exists C > 0 such that ||u|lee < C for any positive classical solution
u of (13.1).

In view of the proof we set some notation. For each £ > 0, let

Q. ={ze0:4(z) <e}.
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For y € 82 and A > 0, we define

T(y: A) = {:B eR": (y - "Cy(y)) = }‘}1
Ty, A) = {z € Q= (y —z,0(y)) < AL,

we denote by R(y, A) the reflection with respect to the hyperplane T'(y, A) and we
set 'y, A) 1= R(y, \)E(y, A). We need the following lemma.

Lemma 13.2. Assume ) bounded and conver, Ay > 0, and 0 < u € C{Q)NCH{Q).
Assume that

(Vulz),v(y)) <0, y € 9§}, z € By, Ao). {13.4)
Then

supu < C‘/ uip) dx,
Qe Q

where £,C > 0 depend only on 2 and Ag.

Proof. Let us first recall that
p(oQ) = st (13.5)

This follows from a standard degree argument. We give the proof for completeness.
Assume without loss of generality that 0 € £2 and select 7, a continuous extension
of v to Q. The homotopy Hi(t,z) := ti*(z) + (1 — t)x has no zero on 9N, since
{(z,v(z)) = 0 on 0 due to the convexity of £2. Therefore d{i?, 0,2} = d(id,0,2) =
1, where d denotes the Brouwer degree. Assume for contradiction that 7 ¢ v(0%Q2)
for some i € S"~!. Then the homotopy Ha(t,z) = ti{x) — (1 — t)n has no zero
on 8. Consequently d(#,0,Q) = d(—n,0,02) = 0, a contradiction which proves
(13.5).

Next, by decreasing g if necessary, we may assume that
{y—d(y) e R" : A€ {0, A]} C O, y & 0. (13.6)
Let £ € (0,A/4], = € O, and let € 9 satisfy |z — #| = 4(z). Notice that & is
uniquely determined and (Z — z)/|Z — x| = {Z) if ¢ is small. Let o € (0,1) and

let n € 57! be such that (%, »(Z)) > a. Using the fact that (2 is contained in the
half-space {z € B™: (z —z, (%)} < |Z — z|} (due to the convexity of Q), we obtain

(y(m—=,1) < (yn) -2, v(E)+]y(n)-=lln-v(Z)| < et+diam{)/2(1 — a) < Ao/2,

provided « is close to 1 and ¢ is small enough, say 1 —a+£ < g9 = €p(£2, Ag). This
along with (13.6) implies

{z—ApeR™: A e [0, A} C Ey(n), do).
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It then follows from (13.4) that [0,£] 3 A — u(z — An) is nondecreasing for any
n € §%! satisfying (n,v(£)) > . This property guarantees the existence of
7 =7v(£Y, Ap) > 0 such that

for all = € €2 there exists a measurable set I C 2\ £,
satisfying meas I > v and u(£) > u(z) forall £ € I, (13.7)

Indeed (decreasing the value of ¢ if necessary), it is sufficient to take a conical
piece
L=0n{z—2A:nesS, (nuE)>a, Ae|0,l}.

Since 1 > C, on O\ £, for some C; > 0, we deduce from (13.7) that

Coyulz) < C. f} w(E) dt < /I w(€)pr (£) dE < /g w(€)pr (€) de

and the lemma is proved. O

Proof of Theorem 13.1. First assume (i). The proof will consist of the following
four steps:

1. Jouddz < C, [, |f(u)|ddz < C, where (x) = dist (z, 802),
2. u+ |Vu| < C in a neighborhood of 952,

3. IVullz = C,

4 Julleo < C.

Step 1. This step is almost the same as Step 1 in the proof of Theorem 10.1 and
we leave the detailed proof to the reader.

Step 2. Since §2 is convex and smooth, we can find Ag, ¢y > 0 such that
iy CQ, A<A and  (v(x),v(y)) > o, T € E(y, Ao) NN
We shall now apply the moving planes method (cf. [239], [183]) to show that
w( Ry, A)z) = u(z), yedd, x e Z(y, ), A< M. (13.8)
Without loss of generality, we may assume that y = 0 and that v{0) = —e; (in
particular, (2 lies entirely in the upper half-space {z; > 0}). For each z = (z;,2'},
we denote z* = R(0,N)z = (24 — z1,2"), 5 = X(0,A) = Qn {z; < A}, and
4 = E'(0, ). Define
w(z) = u(z?) — ulz), forx € 5, 0 <A < Ay,

and set

E:={pec(0 ] :w(z)20forallz€ I and A€ (0,1}
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Since 5‘?;‘1 (0) > 0 by Hopf’s lemma, we have A € E for A > 0 small. Assume for

contradiction that A := sup F' < Ag. We have

w* >0, for all z € £, and A € (0, A], (13.9)

and there exists a sequence A; — A, with A < M < Ag, such that g@w** < 0.
Since w* =0 on {z; = A} NQ and B

w >0 on {z; <A} NN, for all A < Ag, {13.10)

it follows that this minimum is attained at a point ¢; € £5,. Therefore Vi (g) =
0. On the other hand, since g—; = (e v) g—:j Ze>0on {o < A}Naand
A i ’ du
w(z) = u(2A — z1,2") —ul{z, 2"} = 2(A ~ 21) . (&(2)),
1

with |&(z) — x| < 2(X — z1), we see that w*(x) > 0 for z in an e-neighborhood of
{z1 = A} NON, with € > 0 independent of A € (0, Ap]. Therefore, we may assume
that ¢; — § € X5, § ¢ {z1 = A} N 90, and by continuity we get

wM@ =0 and Vu(g)=0. (13.11)
But (13.9) implies
—Auwr(z) = f(u(z™) - flu(z) = —cwz) and wi(z) >0, =z€T;,

for some constant ¢ > 0 {(depending on u). By Hop(’s lemma (cf. Proposition 52.1
and Remark 52.2), this along with (13.11) implies w* = 0 in £5, contradicting
(13.10). Consequently, A = Ao, which proves {13.8). This guarantees that u satisfies
{13.4). By Lemma 13.2 and Step 1, we deduce that w < € on (. for some &,C > 0
depending only on (2. Now the bound for Vu in Q_ /, follows from interior-boundary
elliptic LP-estimates (see Appendix A) and the embedding WP «— C! for p > n.
In particular, we have shown that

du
—| < . .
|3U <C, zedn (13.12)
Step 3. Notice that Steps 1 and 2 imply
17l < €. (13.13)

First consider the case n > 3. The Hélder and Sobolev inequalities and (13.13)
guarantee

fg W2 fw)/ da < %) F @™ < O Vull2
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Pohozaev’s identity (5.1) and (13.12) yield

U |Vu|2d$—2*f F(u)d$| < C.
Q kY]

Since [, |Vul|*dz = f,uf(u)dz, the last two estimates and (13.2) imply

* wYdz wfu W2 f(w)[2" dx
9 /QF( Vd gfn 1 )dz+6'§9/QF( )dcc-i—s/ ()™ dz+ C.
§(6+EC)/F(u)dm+C’€.
0

Choosing ¢ < {2* — 8)/C we obtain [, F(u)dz < C, hence |Vull; < C.

Next let n = 2. Set y:=1—1/c. Given £ > 0, the assumption lim,,_,, f{u}/u”
= {} guarantees the existence of C. > 0 such that

uf(u) < ew?flu)” +Ce.

Similarly as above we obtain

(Vull2 = / wf(w)dz < e/ W) do + C.
0 Q
< ellullz /-l F @] € eClIVullz + Ce.

which proves the assertion.

Step 4. If
fluw) £C(1+wP) for some p < pg (13.14)

(which is always true if n = 2), then one can use standard bootstrap estimates
based on L%-estimates (see Appendix A) to show that the W12-bound from Step 3
guarantees an L°°-bound. If n > 3 and (13.14) is not true, then we use the following
estimates (see [96] and cf. the proof of Proposition 3.3).

Let p> 1, ap:=(p+1)?/4 and ¢ := (p+ 1)n/(n — 2}. Then

(n—2)/

(/ u? d:r:) T ||u(”+1)/2||z, < C’/ |‘Tf'u(“’+1)/2|2 dz = Ca,p/ |Vu|*uP dz

) ) o

-l f fluw? dz < s/ wPte dg + O,
P Jo 0

where o = (n + 2)/(n — 2). Next Hélder’s inequality and Step 3 yield

/Qupw o = /ﬂuq{nw-E)/n+4/(n2) dr < (/ﬁ ud dm) (n—2)/n (/Q .2 dm)z/"
< C(/Q ud da:) (R_Q)/n.

i
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These estimates imply ||uf; < C, hence || f(u)]l,/e < C. Since ¢ can be made

arbitrarily large, the LP-estimates (see Appendix A) conclude the proof in case
(i)

Next consider assumption (ii). Instead of 2 being convex we now assume (13.3).
Since the convexity assumption was used only in the proof of Step 2, it is sufficient
to modify the proof of this step. Choose xy € #Q. Then there exists a ball B, <
R™\ (2 of radius r such that zg € 8B,. The radius r can be chosen independent of xq
and, without loss of generality, we may assume r = 1. Choose a coordinate system
such that B, is centered at the origin and zg = (1,0,...,0). Set y = J(z) := /||
and w(y) = |z[®"2u(z). Then

—-Aw(y) = g(y,w) in O = J(),

where g(y,w) := f(|ly[*~%w)/|y|**? is nonincreasing in y due to (13.3). Since
O C B, is smooth and zp € 80 N 0B, we can use the moving planes method
in order to get the existence of £;,,72, > 0 with the following property: for any
y € O, ly—zo| < €z, there exists a set K, C {z € O : dist (2,00) > &, } satisfying
meas Ky > 7, and w(€) > w(y) for all £ € K,,. Going back to the original variables
and using the compactness of 0§ we get the existence of £, 7, ¢ > 0 such that (13.7)
is true, with u(£) > u(z) replaced by w(&) > eu(z). The rest of the proof of Step 2
is the same as in case (i).

Finally consider case (iii). Then Steps 1 and 4 can be proved in the same way as
in case (i). Repeating the arguments in the proof of Step 2 of case (i} we obtain a
uniform bound for v and |Vu| in a neighborhood of T'y. Without loss of generality
we may assuine xp = 0, hence z-»(z) < 0 for all z € I';. These facts and Pohozaev’s
identity (5.1) imply

Q*LF(u)dm—Luf(u)da:SC. (13.15)

Next using Lemma 50.4 with 7 := 1/(n-+1) and ¢ := 2(n+1)/{n— 1}, Step 1 and
Hoélder’s inequality, we obiain
[ utwyda = 1vulf 2 c1|

2
| g npalie

a7
> 1 2/0 _ 2 2/(n+1)

o [ () = ea [ s+

Now (13.2) with & = 2/(n + 1), (13.15) and the last estimate imply
f uf{u)dr < 6‘/ F(u) da:+£/ w?| fla) ¥ dz 4
a Q Q
< (8/2" +£C)f uf(w)dr+ C;
0

and the choice of £ small enough concludes the proof. O

The following corollary can be proved in the same way as Corollary 10.3.
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Corollary 13.3. Let [ : Ry — Ry satisfy the assumptions in Theorem 13.1
and limsup,, o, f(u)/u < A1, Then problem (2.1) possesses at least one positive
classical solution.

Remark 13.4. If one is interested only in the existence of positive solutions of
(2.1) without knowing their a priori bounds, then the technical assumption (13.2)
can be omitted, see [183]. The proof is based on an approximation of the function
f, on the mountain pass theorem {including uniform bounds for the energy of
approximating solutions) and Pohozaev’s identity. D

Chap-ter I1
Model Parabolic Problems

14. Introduction

In Chapter II, we mainly consider semilinear parabolic problems of the form

u — Au = flu), e t>0,
w =0, red t>0, (14.1)
u(z,0) = up(z), ref,

where f is a C'-function with a superlinear growth. For simplicity, we formulate
most of our assertions for the model case f(u) = |u[P~lu with p > 1, but the
methods of our proofs can be applied to more general parabolic problems {not
necessarily of the form (14.1)). Some of possible generalizations and modifications
will be mentioned as remarks, other can be found in the subsequent chapters.

15. Well-posedness in Lebesgue spaces

Definition 15.1. Given a Banach space X of functions defined in &, ug € X and
T € (0, 00|, we say that the function « € C([0,7), X) is a solution (more precisely,
a classical X-solution) of (14.1) in [0, T} if u € C*1(Q x (0, T))NC(Q x (0, T)),
u(0) = ug and w is a classical solution of (14.1) for ¢ € (0, 7). If Q is unbounded,
then we also require w € L2 {(0,T), L= (1)).

loc
If X = L*(£2), then, instead of the condition v € C([0,T), X), we require
w € C((0,T),X) and [[u(t) — e”*Yaug)l oo — 0 as t — 0, where e~ % is the Dirichlet
heat semigroup in  (cf. Appendix B).

We say that (14.1) is well-posed in X if, given ug € X, there exist 7 > 0 and
a unique classical X-solution of (14.1) in [0,7]. O

It is well known that (14.1) is well-posed in X = W,4(§2) for any ¢ > n if © is
bounded, or in X = L>() for any 2 (see Example 51.9 and Remark 51.11). In
this section we study the well-posedness of the model problem

e — Au = [uff zefl, t>0,
% = 0, e il t>0, (15.1)
u(z, 0) = ug(x), x € (1,



