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a b s t r a c t

We prove BMO estimates of the inhomogeneous p-Laplace system given by −div (|∇u|p−2

∇u) = div f . We show that f ∈ BMO implies |∇u|p−2
∇u ∈ BMO, which is the limiting

case of the nonlinear Calderón–Zygmund theory. This extends thework of DiBenedetto and
Manfredi (1993) [2], whichwas restricted to the super-quadratic case p ≥ 2, to the full case
1 < p < ∞ and even more general growth. Moreover, we prove that A(∇u) inherits the
Campanato and VMO regularity of f .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We study solutions of an inhomogeneous elliptic system
− div(A(∇u)) = − div f (1.1)

on a domain Ω ⊂ Rn, where u : Ω → RN and f : Ω → RN×n. We assume that f ∈ BMO, where BMO is the space of
functions with bounded mean oscillation, and A is given by

A(∇u) = ϕ′(|∇u|)
∇u
|∇u|

for a suitable N-function ϕ. Throughout the paper we will assume ϕ satisfies the following assumption.

Assumption 1.1. Let ϕ be a convex function on [0,∞) such that ϕ is C1 on [0,∞) and C2 on (0,∞). Moreover, let
ϕ′(0) = 0, limt→∞ ϕ

′(t) = ∞ and

ϕ′(t) ∼ tϕ′′(t) (1.2)

uniformly in t > 0. The implicit constants in (1.2) are called the characteristics of ϕ.

The assumptions on ϕ are such that the induced operator − div(A(∇u)) is strictly monotone. If we define the energy

J(v) :=

∫
ϕ(|∇v|) dx −

∫
f · ∇v dx,

then the system (1.1) is its Euler–Lagrange system and solutions of (1.1) are local minimizers of J.
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A significant example of the considered model is the p-Laplacian system, for which p ∈ (1,∞), ϕ(t) =
1
p t

p, A(∇u) =

|∇u|p−2
∇u, and the system (1.1) has the form

− div(|∇u|p−2
∇u) = − div f .

Note thatϕ(t) =
1
p t

p satisfies1 Assumption 1.1. In the rest of this introductionwe restrict ourselves to this case. If f ∈ Lp
′

(Ω),

where 1
p +

1
p′ = 1, then naturally |∇u| ∈ Lp or equivalently A(∇u) ∈ Lp

′

. The question of the nonlinear Calderón–Zygmund
theory (originated by Iwaniec in [1]) is, whether higher integrability of f transfers to higher integrability of ∇u and A(∇u).
Iwaniec showed that f ∈ Lq(Rn) implies A(∇u) ∈ Lq(Rn), whenever q ∈ [p′,∞).

This raises the question of what happens in the limiting case q = ∞. We know from the linear theory of the Laplace
equation (corresponding to p = 2) that f ∈ L∞ cannot imply ∇u ∈ L∞. This is related to the fact that the mapping f → ∇u
is (in the linear case) given by a singular integral operator. It is well known that such operators are in general not bounded
from L∞ to L∞. However, it is possible to replace L∞ by the space BMO, since singular integral operators map BMO to BMO.
Therefore, the natural question arises if f ∈ BMO implies A(∇u) ∈ BMO. The first BMO result was done by DiBenedetto and
Manfredi in [2]. Their result, however, only treated the super-quadratic case p ≥ 2. Our inequalities are more precise and
therefore valid for all p ∈ (1,∞) and even for more general growth.

Theorem 1.2. Let B ⊂ Rn be a ball. Let u be a solution of (1.1) on 2B, with ϕ satisfying Assumption 1.1.
If f ∈ BMO(2B), then A(∇u) ∈ BMO(B). Moreover,

‖A(∇u)‖BMO(B) ≤ c−
∫
2B

|(A(∇u))− ⟨A(∇u)⟩2B| dx + c‖f ‖BMO(2B).

The constant c depends only on the characteristics of ϕ.

This theorem is a special case of our main result in Theorem 5.3. The technique used in the proof, is in the spirit of the
pioneering work of Iwaniec and is based on comparison arguments with p-harmonic functions.

Additionally to Theorem 1.2, we are able to transfer any modulus of continuity of the mean oscillation from f to A(∇u).
This includes the case of VMO, see Corollary 5.4. Moreover, f ∈ C0,β(2B) implies A(∇u) ∈ C0,β(B)with corresponding local
estimates, see Corollary 5.5. The β is restricted by the regularity of the p-harmonic functions.

Our results also hold in the context of differential forms on Ω ⊂ Rn, where we get the corresponding estimates, see
Remark 5.9. By conjugation we can also treat solutions of systems of the form d∗(A(dv + g)) = 0.

The special case f = 0 in Corollary 5.5 allows us to derive new decay estimates for ϕ-harmonic functions. On the one
handwe get decay estimates for A(∇u), see Remark 5.6. On the other hand by conjugation, see Remark 5.9 we also get decay
estimates for ∇u, see (5.7).

We study systems, where the right-hand side is given in divergence form, since it simplifies the presentation. The results
can also be applied to the situation, where the right-hand side div f of (1.1) is replaced by a function g . Note that any
functional from (W 1,ϕ

0 (Ω))∗ can be represented in such a divergence form.Whenever, such g can be represented as g = div f
with f ∈ BMOω (a refinement of BMO, see Section 5), then our results immediately provide corresponding inequalities. For
examplewe show in Remark 5.7 that g ∈ Ln implies locallyA(∇u) ∈ VMO. This complements the results of [3,4], who proved
A(∇u) ∈ L∞ for g ∈ Ln,1 (Lorentz space; subspace of Ln), where the result of [3] is for equations only but up to the boundary.

2. Notation and preliminary results

We use c as a generic constant, which may change from line to line, but does not depend on the crucial quantities.
Moreover we write f ∼ g if and only if there exist constants c, C > 0 such that cf ≤ g ≤ Cf . Note that we do not point out
the dependencies of the constants on the fixed dimensions n and N . For v ∈ L1loc(R

n) and a ball B ⊂ Rn we define

⟨v⟩B := −

∫
B
v(x)dx :=

1
|B|

∫
B
v(x)dx, (2.1)

where |B| is the n-dimensional Lebesgue measure of B. For λ > 0 we denote by λB the ball with the same center as B but
λ times the radius.

A real function ψ : R≥0
→ R≥0 is said to be an N-function if it satisfies the following conditions: ψ(0) = 0 and there

exists the derivative ψ ′, which is right continuous, non-decreasing and satisfies ψ ′(0) = 0, ψ ′(t) > 0 for t > 0, and
limt→∞ ψ

′(t) = ∞. Especially, ϕ is convex. Assumption 1.1 assures that ϕ is an N-function. The complementary function
ϕ∗ is given by

ϕ∗(u) := sup
t≥0


ut − ϕ(t)


and satisfies (ϕ∗)′(t) = (ϕ′)−1(t). Moreover, for any t ≥ 0 there holds

ϕ(t) ≤ ϕ′(t)t ≤ ϕ(2t), ϕ∗(ϕ′(t)) ≤ ϕ(2t). (2.2)

1 Also ϕ(t) =
1
p

 t
0 (µ+ s)p−2s ds and ϕ(t) =

1
p

 t
0 (µ

2
+ s2)

p−2
2 s ds with µ ≥ 0 satisfy Assumption 1.1.
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It follows from the Assumption 1.1 (see for example [5]) that ϕ and ϕ∗ satisfy the ∆2-condition, i.e. ϕ(2t) ≤ cϕ(t) and
ϕ∗(2t) ≤ cϕ∗(t) uniformly in t ≥ 0, where the constants only depend on the characteristics of ϕ. For further properties of
the N-function we refer to [6].

As a further consequence of Assumption 1.1 there exists 1 < p ≤ q < ∞ and K1 > 0 such that

ϕ(st) ≤ K1 max{sp, sq}ϕ(t) (2.3)

for all s, t ≥ 0. The exponents p and q are called the lower and upper indices of ϕ, respectively. We say that ϕ is of type
T (p, q, K1) if it satisfies (2.3), where we allow 1 ≤ p ≤ q < ∞ in this definition. Note that (2.3) implies

min{sp, sq}ϕ(t) ≤ K1ϕ(st) (2.4)

for all a, t ≥ 0. Every ϕ ∈ T (p, q, K1) satisfies the∆2-condition; indeed ϕ(2t) ≤ K12qϕ(t).

Lemma 2.1. Let ϕ be of type T (p, q, K1), then ϕ∗
∈ T (q′, p′, K2) for some K2 = K2(p, q, K1).

This lemma is well known. However, for the sake of completeness, we include the proof in the Appendix. In particular, if
ϕ ∈ T (p, q, K) with 1 < p ≤ q < ∞, then also ϕ∗ satisfies the ∆2-condition. Under the assumption of Lemma 2.1 we also
get the following versions of Young’s inequality. For all δ ∈ (0, 1] and all t, s ≥ 0 it holds

ts ≤ K1K
q−1
2 δ1−qϕ(t)+ δϕ∗(s),

ts ≤ δϕ(t)+ K2K
p′

−1
1 δ1−p′

ϕ∗(s).
(2.5)

For an N-function ϕ we introduce the family of shifted N-functions {ϕa}a≥0 by ϕ′
a(t)/t := ϕ′(a+ t)/(a+ t). If ϕ satisfies

Assumption 1.1 then ϕ′′
a (t) ∼ ϕ′′(a+ t) uniformly in a, t ≥ 0. The following lemmas show important invariants in terms of

shifts.

Lemma 2.2 (Lemma 22, [7]). Let ϕ hold Assumption 1.1. Then (ϕ|P|)
∗(t) ∼ (ϕ∗)|A(P)|(t) holds uniformly in t ≥ 0 and P ∈ RN×n.

The implicit constants depend on p, q and K only.

We define

p := min{p, 2} and q := max{q, 2}. (2.6)

Lemma 2.3. Let ϕ be of type T (p, q, K1) and P ∈ RN×n, then ϕ|P| is of type T (p, q, K) and (ϕ|P|)
∗ and (ϕ∗)|A(P)| are of type

T (q′, p′, K).

The proof of this lemma is postponed to the Appendix.
We define V : RN×n

→ RN×n by

|V (Q )|2 = A(Q ) · Q and
V (Q )
|V (Q )|

=
A(Q )
|A(Q )|

=
Q
|Q |

,

in particular we have

V (Q ) =


ϕ′(|Q |)|Q |

Q
|Q |

.

In the case of the p-Laplacian, we have ϕ(t) =
1
p t

p, A(Q ) = |Q |
p−2Q and V (Q ) = |Q |

p−2
2 Q .

The connection between A, V , and the shifted N-functions is best reflected in the following lemma, which is a summary
of Lemmas 3, 21, and 26 of [8].

Lemma 2.4. Let ϕ satisfy Assumption 1.1. Then
A(P)− A(Q )


·

P − Q


∼ |V (P)− V (Q )|2 (2.7a)

∼ ϕ|Q |


|P − Q |


(2.7b)

∼

ϕ∗

|A(Q )|


|A(P)− A(Q )|


(2.7c)

uniformly in P,Q ∈ RN×n. Moreover,

A(Q ) · Q = |V (Q )|2 ∼ ϕ(|Q |), (2.7d)

and

|A(P)− A(Q )| ∼

ϕ|Q |

′
|P − Q |


, (2.7e)

uniformly in P,Q ∈ RN×n.
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The following lemma is a simple modification of Lemma 35 and Corollary 26 of [7] by use of Young’s inequality in the form
(2.5) and Lemma 2.2.

Lemma 2.5 (Shift Change). For every ε ∈ (0, 1], it holds that

ϕ|P|(t) ≤ cε1−p′

ϕ|Q |(t)+ ε|V (P)− V (Q )|2,

(ϕ|P|)
∗(t) ≤ cε1−q(ϕ|Q |)

∗(t)+ ε|V (P)− V (Q )|2,

(ϕ∗)|A(P)|(t) ≤ cε1−q(ϕ∗)|A(Q )|(t)+ ε|V (P)− V (Q )|2,

for all P,Q ∈ RN×n and all t ≥ 0. The constants only depend on the characteristics of ϕ.

By Lϕ and W 1,ϕ we denote the classical Orlicz and Sobolev–Orlicz spaces, i.e. f ∈ Lϕ if and only if

ϕ(|f |) dx < ∞ and

f ∈ W 1,ϕ if and only if f ,∇f ∈ Lϕ . ByW 1,ϕ
0 (Ω)we denote the closure of C∞

0 (Ω) in W 1,ϕ(Ω).
We define for B a ball and f ∈ L1loc(R

n)

M♯

B f = −

∫
B
|f − ⟨f ⟩B|dx,

(M♯f )(x) = sup
B∋x

M♯

B f .

The space BMO of bounded mean oscillations is defined via the following semi-norm (forΩ open)

‖v‖BMO(Ω) := sup
B⊂Ω

−

∫
B
|f − ⟨f ⟩B| dx = sup

B⊂Ω
M♯

B f ;

saying that v ∈ BMO(B), whenever its semi-norm is bounded. Therefore f ∈ BMO(Rn) if and only ifM♯f ∈ L∞(Rn).
We need also the following refinements of BMO, see [9]. For a non-decreasing function ω : (0,∞) → (0,∞)we define

M♯

ω,Bf =
1

ω(RB)
−

∫
B
|f − ⟨f ⟩B|dx,

where RB is the radius of B. We define the semi-norm

‖v‖BMOω(Ω) := sup
B⊂Ω

M♯

ω,Bf .

The choice ω(r) = 1 gives the usual BMO semi-norm, while ω(r) = rα with 0 < α ≤ 1 induces the Campanato space
(which are equivalent to the Hölder spaces C0,α).

3. Reverse Hölder estimate

In this section we refine the reverse Hölder estimate of Lemma 3.4 [10], where the case f = 0 was considered. For this
we need the following version of Sobolev–Poincaré from [8, Lemma 7].

Theorem 3.1 (Sobolev–Poincaré). Let ϕ be an N-function such that ϕ and ϕ∗ satisfies the ∆2-condition. Then there exists
0 < θ0 < 1 and c > 0 such that the following holds. If B ⊂ Rn is some ball with radius R and v ∈ W 1,ϕ(B,RN), then

−

∫
B
ϕ


|v − ⟨v⟩B|

R


dx ≤ c


−

∫
B
ϕθ0(|∇v|) dx

 1
θ0

. (3.1)

For gradients of solutions of (1.1) we can deduce the following reverse Hölder inequality.

Lemma 3.2. Let u be a solution of (1.1). There exists θ ∈ (0, 1) such that for all P, f0 ∈ RN×n and all balls B satisfying 2B ⊂ Ω

−

∫
B
|V (∇u)− V (P)|2 dx ≤ c


−

∫
2B

|V (∇u)− V (P)|2θ dx

 1
θ

+ c−
∫
2B
(ϕ∗)|A(P)|(|f − f0|) dx

holds. The constants c and θ only depend on the characteristics of ϕ.
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Proof. Let η ∈ C∞

0 (2B) with χB ≤ η ≤ χ2B and |∇η| ≤ c/R, where R is the radius of B. Let α ≥ q, then (α − 1)p′
≥ α. We

define ξ := ηα(u − z), where z is a linear function such that ⟨u − z⟩2B = 0 and ∇z = P . Using ξ as a test function in the
weak formulation of (1.1) we get for all f0 ∈ RN×n

(I) := |B|−1
⟨A(∇u)− A(P), ηα(∇u − P)⟩

= |B|−1
⟨f − f0, ηα(∇u − P)⟩ + |B|−1

⟨f − f0, αηα−1(u − z)⊗ ∇η⟩

− |B|−1
⟨A(∇u)− A(P), αηα−1(u − z)⊗ ∇η⟩

=: (II)+ (III)+ (IV).

With the help of Lemma 2.4 we get

(I) ∼ −

∫
B
ηα|V (∇u)− V (P)|2 dx.

By (2.5) for ϕ|P| and δ ∈ (0, 1), by (ϕ|P|)
∗

∼ (ϕ∗)|A(P)| due to Lemma 2.2, (α − 1)p′
≥ α and by Lemma 2.4 we estimate

(II) ≤ cδ1−p′

−

∫
2B
(ϕ∗)|A(P)|(|f − f0|) dx + δ−

∫
2B
ηαϕ|P|(|∇u − P|) dx

≤ cδ1−p′

−

∫
2B
(ϕ∗)|A(P)|(|f − f0|) dx + δc−

∫
2B
ηα|V (∇u)− V (P)|2 dx.

Similarly, we estimate with Lemma 2.4

(III) ≤ c−
∫
2B
(ϕ∗)|A(P)|(|f − f0|) dx + c−

∫
2B
ϕ|P|


|u − z|

R


dx.

With Lemma 2.4, Young’s inequality with ϕ|P|, (α − 1)q ≥ α and (2.2) (second part) in combination with Lemma 2.4 we
deduce analogously

(IV) ≤ c−
∫
2B
ϕ′

|P|
(|A(∇u)− P|)ηα−1 |u − z|

R
dx

≤ δ−

∫
2B
ηα(ϕ|P|)

∗

ϕ′

|P|
(|∇u − P|)


dx + cδ1−q

−

∫
2B
ϕ|P|


|u − z|

R


dx

≤ δ−

∫
2B
ηα|V (∇u)− V (P)|2 dx + cδ1−q

−

∫
2B
ϕ|P|


|u − z|

R


dx.

Moreover, it follows from Theorem 3.1 for ϕ|P| for some θ ∈ (0, 1), Lemma 2.4 and the facts that ⟨u − z⟩2B = 0 and ∇z = P
that

−

∫
2B
ϕ|P|


|u − z|

R


dx ≤ c


−

∫
2B


ϕ|P|(|∇u − P|)

θ
dx

 1
θ

≤ c


−

∫
2B

|V (∇u)− V (P)|2θ dx

 1
θ

.

For small δ we can absorb corresponding terms into (I) such that the claim follows. �

Our aim is to give estimates in terms of A(∇u). We will give estimates exploiting reverse Hölder inequalities as well as
BMO properties. These will enable us to replace the right hand side of Lemma 3.2 with adequate quantities. At first we need
the following lemma for improving reverse Hölder estimates. The lemma is a minor modification of the [11, Remark 6.12]
and [12, Lemma 3.2].

Lemma 3.3. Let B ⊂ Rn be a ball, let g, h : Ω → R be integrable functions and θ ∈ (0, 1) such that

−

∫
B
|g| dx ≤ c0


−

∫
2B

|g|θ dx

 1
θ

+ −

∫
2B

|h| dx

for all balls B with 2B ⊂ Ω . Then for every γ ∈ (0, 1) there exists c1 = c1(c0, γ ) such that

−

∫
B
|g| dx ≤ c1


−

∫
2B

|g|γ dx

 1
γ

+ c1−
∫
2B

|h| dx.
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We will use this result to prove the following inverse Jensen inequality.

Corollary 3.4. Let Ω ⊂ Rn and ψ be an N-function of type T (1, q, K), g ∈ Lψ (Ω) and h ∈ L1loc(Ω). If there exists θ ∈ (0, 1)
such that

−

∫
B
ψ(|g|) dx ≤ c0


−

∫
2B
ψ(|g|)θ dx

 1
θ

+ −

∫
2B

|h| dx,

for all balls B with 2B ⊂ Ω , then there exists c1 = c1(c0, K , q) such that

−

∫
B
ψ(|g|) dx ≤ c1ψ


−

∫
2B

|g| dx


+ c1−

∫
2B

|h| dx.

Proof. By Lemma 3.3 we gain for a fixed γ < 1
q

−

∫
B
ψ(|g|) dx ≤ c1


−

∫
2B
ψ(|g|)γ dx

 1
γ

+ c1−
∫
2B

|h| dx.

Due to Lemma A.3, which can be found in the Appendix, the function ((ψ(t))γ )−1 is quasi-convex; i.e. it is uniformly
proportional to a convex function. Therefore, the result follows by Jensen’s inequality. �

The estimate of Lemma 3.2 can be improved in the following way.

Corollary 3.5. Let u be a solution of (1.1). For all P ∈ RN×n and all balls B such that 2B ⊂ Ω

−

∫
B
|V (∇u)− V (P)|2 dx ≤ c(ϕ∗)|A(P)|


−

∫
2B

|A(∇u)− A(P)| dx


+ c(ϕ∗)|A(P)|(‖f ‖BMO(2B))

holds. The constants only depend on the characteristics of ϕ.

Proof. If follows from Lemma 2.4 that

|V (∇u)− V (P)|2 ∼ (ϕ∗)|A(P)|(|A(∇u)− A(P)|).

Therefore, we can apply Corollary 3.4 on the inequality proven in Lemma 3.2 to gain

−

∫
B
|V (∇u)− V (P)|2 dx ≤ c(ϕ∗)|A(P)|


−

∫
2B

|A(∇u)− A(P)| dx


+ c−
∫
2B
(ϕ∗)|A(P)|(|f − f0|) dx,

for any f0 ∈ RN×n. The result follows by using Lemma A.1 to the last integral

−

∫
2B
(ϕ∗)|A(Q )|(|f − f0|) dx ≤ c(ϕ∗)|A(Q )|(‖f ‖BMO(2B)).

This inequality reflects the reverse Jensen property of the BMO norm. �

4. Comparison

The key idea in the proof of our main result is to compare the solution uwith a suitable ϕ-harmonic function h. Later we
transfer the goodproperties of h to u. Regularity ofϕ-harmonic functions iswell known in the case of a p-Laplace systemwith
ϕ(t) = tp for p ∈ (1,∞). Recently, the result was extended in [10, Theorem 6.4] for general ϕ satisfying Assumption 1.1:

Theorem 4.1 (Decay Estimate for ϕ-harmonic Maps). Let Ω ⊂ Rn be an open set, let ϕ satisfy Assumption 1.1, and let
h ∈ W 1,ϕ(Ω,RN) be ϕ-harmonic onΩ . Then there exists α > 0 and c > 0 such that for every ball B ⊂ Ω and every λ ∈ (0, 1)
there holds

−

∫
λB

|V (∇h)− ⟨V (∇h)⟩λB|2 dx ≤ cλ2α−
∫
B
|V (∇h)− ⟨V (∇h)⟩B|2 dx.

Note that c and α depend only on the characteristics of ϕ.
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For a given solution u of (1.1) let h ∈ W 1,ϕ(B) be the unique solution of

− div A(∇h)= 0 in B,
h = u on ∂B.

(4.1)

The next lemma estimates the distance of h from u.

Lemma 4.2. Let u be a solution of (1.1). Further let h solve (4.1). Then for every δ > 0 there exists cδ ≥ 1 such that

−

∫
B
|V (∇u)− V (∇h)|2 dx ≤ δ(ϕ∗)|⟨A(∇u)⟩2B|


−

∫
2B

|A(∇u)− ⟨A(∇u)⟩2B| dx


+ cδ1−q (ϕ∗)|⟨A(∇u)⟩2B|(‖f ‖BMO(2B))

holds.

Proof. We have for any f0 ∈ RN×n

(I) := |B|−1
⟨A(∇u)− A(∇h),∇u − ∇h⟩ = |B|−1

⟨f − f0,∇u − ∇h⟩ =: (II).

Firstly, by Lemma 2.4

(I) ∼ −

∫
B
|V (∇u)− V (∇h)|2 dx.

Secondly, by Young’s inequality (2.5) with ϕ|∇u| and Lemma 2.4 we get

(II) ≤ ε(I)+ cε1−p′

−

∫
B
(ϕ|∇u|)

∗(|f − f0|) dx.

We absorb the first term of the right hand side for some small ε > 0 and apply Lemma 2.2

(I) ≤ c−
∫
B
(ϕ∗)|A(∇u)|(|f − f0|) dx.

With the shift change of Lemma 2.5 with A(Q ) := ⟨A(∇u)⟩2B we get for γ > 0

(II) ≤ cγ 1−q
−

∫
B
(ϕ∗)|A(Q )|(|f − f0|) dx + γ−

∫
B
|V (∇u)− V (Q )|2 dx.

We set f0 = ⟨f ⟩2B and estimate the first integral by LemmaA.1. The second integral is estimated by Corollary 3.5with P := Q .
The claim follows by choosing γ > 0 conveniently. �

5. Proof of the main result

We need the following calculation:

|⟨g⟩ 1
2 B

− ⟨g⟩B| ≤ −

∫
1
2 B

|g − ⟨g⟩B|dx ≤ 2nM♯

Bg.

Bym iterations of the previous we find

|⟨g⟩2−mB − ⟨g⟩B| ≤ 2n
m−1−
i=0

M♯

2−iBg ≤ m2n max
0≤i≤m−1

M♯

2−iBg. (5.1)

Proposition 5.1. Let B ⊂ Rn be a ball. Let α be the decay exponent for ϕ-harmonic functions as in Theorem 4.1. Then for every
m ∈ N there exists cm ≥ 1 such that

M♯

2−mB(A(∇u)) ≤ c2
−m 2α

p′
−

0≤i≤m

M♯

21−iB(A(∇u))+ cm‖f ‖BMO(2B)

≤ c2
−m 2α

p′ m max
0≤i≤m

M♯

21−iB
(A(∇u))+ cm‖f ‖BMO(2B).

The constant cm is dependent only on the characteristics of ϕ and α. The constant c is independent of m and α.
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Proof. Define A(Q ) := ⟨A(∇u)⟩2B and A(Qm) := ⟨A(∇u)⟩2−mB. With Lemma 2.3 we find (ϕ∗)|A(P)| is of type T (q′, p′, K) for
some K independent of P .

Let h be the ϕ-harmonic function on Bwith u = h on the boundary ∂B as defined by (4.1). Then V (∇h) satisfies the decay
estimate of Theorem 4.1 and we can get

(I) := −

∫
2−mB

|V (∇u)− ⟨V (∇u)⟩2−mB|
2 dx

≤ c−
∫
2−mB

|V (∇h)− ⟨V (∇h)⟩2−mB|
2 dx + c−

∫
2−mB

|V (∇u)− V (∇h)|2 dx

≤ c2−m2α
−

∫
B
|V (∇h)− ⟨V (∇h)⟩B|2 dx + c2mn

−

∫
B
|V (∇u)− V (∇h)|2 dx

≤ c2−m2α
−

∫
B
|V (∇u)− ⟨V (∇u)⟩B|2 dx + c2mn

−

∫
B
|V (∇u)− V (∇h)|2 dx

≤ c2−m2α
−

∫
B
|V (∇u)− V (Q )|2 dx + c2mn

−

∫
B
|V (∇u)− V (∇h)|2 dx.

Now using Corollary 3.5 and Lemma 4.2 we get

(I) ≤ c(2−m2α
+ δ2mn)(ϕ∗)|A(Q )|


−

∫
2B

|A(∇u)− A(Q )| dx


+ c2mnδ1−q(ϕ∗)|A(Q )|(‖f ‖BMO(2B)). (5.2)

We use Lemma 2.5 to change the shift A(Q ) to A(Qm) (for the first integral with ε = 1 and for the second integral with
ε = γ ).

(I) ≤ c(2−m2α
+ δ2mn)(ϕ∗)|A(Qm)|


M♯

2B(A(∇u))

+ c2mnδ1−qγ 1−q(ϕ∗)|A(Qm)|(‖f ‖BMO(2B))

+ c(2−m2α
+ δ2mn

+ γ ) |V (Q )− V (Qm)|
2.

From Lemma 2.4 we know that

|V (Q )− V (Qm)|
2

≤ c(ϕ∗)|A(Qm)|(|A(Q )− A(Qm)|)

and from (5.1) that

|A(Q )− A(Qm)| ≤ 2n
−

0≤i≤m−1

M♯

2−iB(A(∇u)).

The previous two estimates and (ϕ∗)|A(Qm)| ∈ T (q′, p′, K) imply

|V (Q )− V (Qm)|
2

≤ c(ϕ∗)|A(Qm)|

 −
0≤i≤m−1

M♯

2−iB(A(∇u))


.

Overall, we get

(I) ≤ c(2−m2α
+ δ2mn

+ γ )(ϕ∗)|A(Qm)|

 −
0≤i≤m

M♯

21−iB
(A(∇u))


+ c2mnδ1−qγ 1−q(ϕ∗)|A(Qm)|(‖f ‖BMO(2B)).

We fix γ := 2−m2α and δ := 2−m2α−mn to get

(I) ≤ c2−m2α(ϕ∗)|A(Qm)|

 −
0≤i≤m

M♯

21−iB(A(∇u))


+ c2mn+(m4α+mn)(q−1)(ϕ∗)|A(Qm)|(‖f ‖BMO(2B)).

Note that for all b ∈ [0, 1/K ] and t ≥ 0 we have by (2.4)

b(ϕ∗)|A(Qm)|(t) =
1
K
(bK)(ϕ∗)|A(Qm)|(t) ≤ (ϕ∗)|A(Qm)|


(bK)

1
p′ t

.

Without loss of generality we can assume in the following thatm is so large that c2−m2α
≤ 1/K . Therefore

(I) ≤ (ϕ∗)|A(Qm)|


c2

−m 2α
p′
−

0≤i≤m

M♯

21−iB
(A(∇u))


+ (ϕ∗)|A(Qm)|(cm‖f ‖BMO(2B))

≤ (ϕ∗)|A(Qm)|


c2

−m 2α
p′
−

0≤i≤m

M♯

21−iB(A(∇u))+ cm‖f ‖BMO(2B)


. (5.3)
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On the other hand

−

∫
2−mB

(ϕ∗)|A(Qm)|(|A(∇u)− A(Qm)|) dx ≤ c−
∫
2−mB

(A(∇u)− A(Qm)) · (∇u − Qm) dx

≤ c−
∫
2−mB

|V (∇u)− V (⟨∇u⟩2−mB)|
2 dx

by Lemma 2.4 and ⟨A(∇u)− A(Qm)⟩2−mB = ⟨∇u − ⟨∇u⟩2−mB⟩2−mB = 0.
Consequently we get using Lemma 2.1, Jensen’s inequality and Lemma A.2

(ϕ∗)|A(Qm)|


cM♯

2−mB(A(∇u))


≤ c(ϕ∗)|A(Qm)|


−

∫
2−mB

|A(∇u)− A(Qm)| dx



≤ c−
∫
2−mB

(ϕ∗)|A(Qm)|(|A(∇u)− A(Qm)|) dx ≤ (I). (5.4)

If we apply the inverse of (ϕ∗)|A(Qm)| to the combination of (5.3) and (5.4) we get the claim. �

Remark 5.2. Let u be such that it satisfies (1.1) on Rn and M♯(A(∇u)) < ∞ almost everywhere (for example A(∇u) ∈

Lp
′

(Rn)). Then for suitable large m (such that c2
−m 2α

q′ ≤
1
2 ), we deduce from Proposition 5.1 by taking the supremum over

all balls containing x

M♯(A(∇u))(x) ≤ c‖f ‖BMO(Rn).

In particular, ‖A(∇u)‖BMO(Rn) ≤ c‖f ‖BMO(Rn).

We can now prove our main result that the BMOω-regularity of f transfers to A(∇u). Note that the case ω = 1 is just
Theorem 1.2.

Theorem 5.3. Let B ⊂ Rn be a ball. Let u be a solution of (1.1) on2B,withϕ satisfying Assumption1.1. Let ω : (0,∞) → (0,∞)

be non-decreasing such that for some β ∈


0, 2α

p′


the function ω(r)r−β is almost decreasing in the sense that there is c0 > 0

that ω(r)r−β
≤ c0 ω(s)s−β for all r > s. Then

max
i≥0

M♯

ω,2−mB(A(∇u)) ≤ cM♯

ω,2B(A(∇u))+ c‖f ‖BMOω(2B).

Moreover,

‖A(∇u)‖BMOω(B) ≤ cM♯

ω,2B(A(∇u))+ c‖f ‖BMOω(2B).

The constants depend on the characteristics of ϕ, β and c0.

Proof. Let σ :=
2α
p′ , then 0 ≤ β < σ . We divide the estimate of Proposition 5.1 by ω(2−mR), where R is the radius of B.

M♯

ω,2−mB(A(∇u)) ≤ c2−mσm max
0≤i≤m

ω(21−iR)
ω(2−mR)

M♯

ω,21−iB
(A(∇u))+ cm

1
ω(2−mR)

‖f ‖BMO(2B)

≤ c2−mσm max
0≤i≤m

(21−iR)β

(2−mR)β
M♯

ω,21−iB
(A(∇u))+ cm

ω(2R)
ω(2−mR)

‖f ‖BMOω(2B)

≤ c2−m(σ−β)m max
0≤i≤m

M♯

ω,21−iB
(A(∇u))+ cm2(1+m)β

‖f ‖BMOω(2B).

Since σ > β , we findm0 such that c2−m(σ−β)m ≤
1
2 for allm ≥ m0. This implies

M♯

ω,2−mB(A(∇u)) ≤
1
2

max
0≤i≤m

M♯

ω,21−iB(A(∇u))+ cm2(1+m)β
‖f ‖BMOω(2B).

Applying this to allm ∈ [m0, 2m0] we get

max
m0≤m≤2m0

M♯

ω,2−mB(A(∇u)) ≤
1
2

max
0≤i≤2m0

M♯

ω,21−iB
(A(∇u))+ cm0‖f ‖BMOω(2B).

Using this estimate repeatedly with B replaced by 2−m0(l−2)B with l ∈ {2, 3, . . .} and using ‖f ‖BMOω(2−lm02B) ≤ ‖f ‖BMOω(2B)
we get

max
m0≤m≤lm0

M♯

ω,2−mB(A(∇u)) ≤
1
2

max
0≤i≤lm0

M♯

ω,21−iB
(A(∇u))+ cm0‖f ‖BMOω(2B).
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This estimate implies by induction

max
m0≤m≤lm0

M♯

ω,2−mB(A(∇u)) ≤ max
0≤i≤m0

M♯

ω,21−iB
(A(∇u))+ cm0‖f ‖BMOω(2B).

The estimate max0≤i≤m0 M
♯

21−iB
(A(∇u)) ≤ cm0M

♯

2B(A(∇u)) proves the first claim of the theorem. A standard covering
argument proves the second claim. �

Corollary 5.4. Let B be a ball in Rn, u be a solution of (1.1) on 2B and ϕ satisfy Assumption 1.1. If f ∈ VMO(2B), then
A(∇u) ∈ VMO(B).

Proof. Since f ∈ VMO(2B), there exists a non-decreasing function ω̃ : (0,∞) → (0,∞) with limr→0 ω̃(r) = 0, such that
‖f ‖BMO(Br ) ≤ ω̃(r), for all Br ⊂ 2B. The result follows by Theorem 5.3 by defining ω(r) = min


ω̃(r), r

α

p′

. �

The next result is a direct consequence of Theorem 5.3 with the choice of ω(r) = rβ and the equivalence of BMOβ :=

BMOtβ and C0,β .

Corollary 5.5. Let ϕ hold Assumption 1.1. Let u be a solution of (1.1) on a ball 2B ⊂ Rn. Let α be the Hölder coefficient (defined
in Theorem 4.1) for ϕ-harmonic gradients.

If f ∈ C0,β(2B) for β < 2α
p′ , then A(∇u) ∈ C0,β(B). Moreover,

‖A(∇u)‖BMOβ (B) ≤ c‖f ‖BMOβ (2B) + cR−β
−

∫
2B

|A(∇u)− ⟨A(∇u)⟩2B|.

The constant depends on β and the characteristics of ϕ.

Let us remark that the result in Corollary 5.5 is optimal in the sense that any improvement of α in the decay estimate
Theorem 4.1 transfers directly to the inhomogeneous case in the best possible way.

Remark 5.6. If h is ϕ-harmonic on the open setΩ ⊂ Rn, then for any ball B ⊂ Ω we have the following decay estimate for
A(∇h). For any β < 2α

p′ (where α is from Theorem 4.1) and any λ ∈ (0, 1] there holds

−

∫
λB

|A(∇h)− ⟨A(∇h)⟩λB| ≤ cβ(λR)β‖A(∇h)‖BMOβ (B)

≤ cβλβ−
∫
B
|A(∇h)− ⟨A(∇h)⟩B|.

Remark 5.7. Let us consider the system

− div(A(∇u)) = g with A(∇u) = ϕ′(|∇u|)
∇u
|∇u|

,

where the right-hand side function g is not in divergence form. If g ∈ Ln, then there exists locally f ∈ W 1,n with div f = g
by solving the Laplace equation. SinceW 1,n embeds to VMO, it follows by Corollary 5.4 that A(∇u) ∈ VMO locally.

Let us compare this to the situation of [3,4], who studied the case g ∈ Ln,1 (Lorentz space) and proved A(∇u) ∈ L∞. Since
Ln,1 embeds to Ln, we conclude that for such g additionally holds A(∇u) ∈ VMO locally.

Certainly, if g ∈ Ls with s > n, then we find f ∈ W 1,s and therefore f ∈ C0,σ with σ = 1 −
n
s . Hence, by Corollary 5.5 we

get Hölder continuity of A(∇u).

Remark 5.8. Let us explain that our result includes the estimates of [2] in the super-quadratic case p ≥ 2 with ϕ(t) = tp.
Let A(Q ) := ⟨A(∇u)⟩B. Then p ≥ 2 implies ϕ(t) = tp ≤ ϕ|Q |(t) and (ϕ∗)|A(Q )|(t) ≤ ϕ∗(t) = cptp

′

. Hence, with Lemmas 2.2,
A.1 and Theorem 1.2 we estimate

−

∫
B
|∇u − Q |

p dx ≤ −

∫
B
ϕ|Q |(|∇u − Q |) dx

≤ c−
∫
B
(ϕ∗)|A(Q )|(|A(∇u)− A(Q )|) dx

≤ c−
∫
B
(ϕ∗)(|A(∇u)− A(Q )|) dx

≤ c‖A(∇u)‖p′

BMO(B)

≤ c‖f ‖p′

BMO(2B) + c

M♯

2B(A(∇u))
p′

.
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Now, the estimate
−

∫
B
|∇u − ⟨∇u⟩B| dx

p

≤


2−
∫
B
|∇u − Q | dx

p

implies

−

∫
B
|∇u − Q | dx ≤ c‖f ‖

1
p−1
BMO + c


M♯

2B(A(∇u))
 1

p−1 .

This is the same result as that of Manfredi and DiBenedetto [2]. Only the last, lower order term is expressed byManfredi and
DiBenedetto in terms of u rather that ∇u. This is just due to another application of the Caccioppoli estimate.

Remark 5.9. Our result also generalizes to the case of differential forms on Ω ⊂ Rn. In this Euclidean setting, we have
the isometry Λk ∼= R(

n
k ), so the case of differential forms is just a special case of the vectorial situation. In particular, if

g ∈ BMO(Ω;Λk) and d∗A(du) = d∗g , with u ∈ W 1,ϕ(Ω;Λk−1), then Theorem 5.3 (same ω) provides

‖A(du)‖BMOω(B) ≤ c‖g‖BMOω(2B) + cM♯

ω,2B(A(du)). (5.5)

Let us show that a simple conjugation argument (see also [13,14]) provides another interesting result: We start with a
solution v ∈ W 1,ϕ(Ω;Λk−1) of

d∗(A(dv + g)) = 0

which is a local minimizer of

ϕ(|dv + g|) dx. By Hodge theory we findw ∈ W 1,ϕ∗

(Ω,Λk+1) such that

A(dv + g) = d∗w.

Applying A−1 and then d we get the dual equation

dg = d(A−1(d∗w)).

If we define A∗
:= (−1)k(n−k)

∗ A−1
∗, then we can rewrite this equation as

d∗(A∗(dw)) = ±d∗(∗g).

Moreover, we have (see [14]) that A∗(dw) = (ϕ∗)′(|dw|) dw
|dw|

. In particular, we are in the same situation as with u if we
replace ϕ by ϕ∗ and dw by du. Therefore, by (5.5)

‖A∗(dw)‖BMOω(B) ≤ c‖g‖BMOω(2B) + cM♯

ω,2B(A
∗(dw)).

This and A(dv + g) = d∗w implies

‖dv + g‖BMOω(B) ≤ c‖g‖BMOω(2B) + cM♯

ω,2B(dv + g).

The triangle inequality gives

‖dv‖BMOω(B) ≤ c‖g‖BMOω(2B) + cM♯

ω,2B(dv). (5.6)

In particular, we can apply this argument to the ϕ-harmonic function h. Then (5.6) (with g = 0) implies the decay
estimate

−

∫
λB

|∇h − ⟨∇h⟩λB| ≤ cλβ−
∫
2B

|∇h − ⟨∇h⟩B| (5.7)

for all λ ∈ (0, 1] with β =
2α
q .
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Appendix

The classical John–Nirenberg estimate [15] proves the following lemma in the case ψ(t) = tp. We give an extension to
N-functions ψ .

Lemma A.1. If ψ is an N-function, which satisfies the∆2 condition, B ⊂ Rn a ball and g ∈ BMO(B), then

−

∫
B
ψ(|g − ⟨g⟩B|) dx ≤ cψ(‖g‖BMO(B)),

where c only depends on∆2(ψ).

Proof of Lemma A.1. Because ψ ∈ ∆2, there exists q < ∞ only depending on∆2(ϕ) such that

ψ ′(st) ≤ c1 max{1, sq−1
}ψ ′(t),

where c1 only depends on∆2(ψ).
Since g ∈ BMO(B)we find by the classical John–Nirenberg estimate which can be found in [15]:

|{x ∈ B : |g(x)− ⟨g⟩| > λ}|

|B|
≤ exp


−c2λ

‖g‖BMO(B)


,

where c2 ∈ (0, 1] only depends on the dimension. This implies

−

∫
B
ψ(|g − ⟨g⟩|) dx =

∫
∞

0

|{x ∈ B : |g(x)− ⟨g⟩| > λ}|

|B|
ψ ′(λ) dλ

≤

∫
∞

0
exp


−c2λ

‖g‖BMO(B)


ψ ′(λ) dλ

=
‖g‖BMO(B)

c2

∫
∞

0
exp(−s)ψ ′


s‖g‖BMO(B)

c2


ds

≤
‖g‖BMO(B)

c2
ψ ′


‖g‖BMO(B)

c2

∫
∞

0
exp(−s)max{1, sq−1

} ds

≤
‖g‖BMO(B)

c2
ψ ′


‖g‖BMO(B)

c2


(1 + Γ (q))

≤ (1 + Γ (q))ψ


2‖g‖BMO(B)

c2



≤ (1 + Γ (q))


2
c0

q

ψ(‖g‖BMO(B)). �

Proof of Lemma 2.1. It has been shown in [16] that if ϕ ∈ T (p, q, K), then ϕ−1
∈ T (1/q, 1/p, K1), where K1 only depends

on p, q and K . From this, (2.4) and

t ≤ ϕ−1(t)(ϕ∗)−1(t) ≤ 2t

it follows, that (ϕ∗)−1
∈ T (1 − 1/p, 1 − 1/q, 2K1) and as a consequence ϕ∗

∈ T (q′, p′, K2)with K2 = K2(p, q, K). �

Proof of Lemma 2.3. Let ϕ ∈ T (p, q, K). Then ϕa is of type T (p, q, K5), where K5 only depends on K , p, q. Recall that every
N-function ψ satisfies ψ(t) ≤ ψ ′(t) t ≤ ψ(2t), see for example [6]. This and ϕ ∈ T (p, q, K) implies

ϕ′(st) ≤
ϕ(2st)

st
≤ K2q max{sp, sq}

ϕ(t)
st

≤ K2q max{sp−1, sq−1
}ϕ′(t).

We define τ =
a+st
a+t . This implies

ϕ′

a(st) =
ϕ′(τ (a + t))

a + st
st ≤ K2q max{τ p−1, τ q−1

}ϕ′(a + t)
st

a + st
= K2qsmax{τ p−2, τ q−2

}ϕ′

a(t)

≤ K2qsmax{τ p−2, τ q−2
}ϕ′

a(t)
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for all s, t ≥ 0. Now we split the cases s ≥ 1 and s ∈ (0, 1) and apply p ≤ 2 ≤ q. It follows

max{τ p−2, τ q−2
} ≤ max{sp−2, sq−2

}.

This and the previous estimate proves the claim for ϕ|P|. Since ϕ ∈ T (p, q, K), we have ϕ∗(q′, p′, K2) by Lemma 2.1. This
proves the claim for (ϕ∗)|A(P)|. Now, the equivalence (ϕ|P|)

∗(t) ∼ (ϕ∗)|A(P)|(t) of Lemma 2.2 concludes the proof. �

In the following equivalence lemma is used in the proof of Proposition 5.1. It allows us to express the mean oscillation of
V (∇u) in terms of different mean values.

Lemma A.2. Let ϕ satisfy Assumption 1.1. Let B ⊂ Rn be a ball and g ∈ Lϕ(B; RN×n). Define gA ∈ RN×n by A(gA) := ⟨A(g)⟩B.
Then

−

∫
B
|V (g)− ⟨V (g)⟩B|2 dx ∼ −

∫
B
|V (g)− V (⟨g⟩B)|2 dx ∼ −

∫
B
|V (g)− V (gA)|2 dx

holds. The constants are independent of B and g; they only depend on the characteristics of ϕ.

Proof. Define gV ∈ RN×n by V (gV ) := ⟨V (g)⟩B. We denote the three terms by (I), (II) and (III). Note that

(I) = inf
P∈RN×n

−

∫
B
|V (g)− P|

2 dx,

which proves (I) ≤ (II) and (I) ≤ (III).
We calculate with Lemma 2.4 and ⟨A(g)− A(gA)⟩B = 0

(II) ∼ −

∫
B


A(g)− A(gA)


· (g − gA) dx = −

∫
B


A(g)− A(gA)


· (g − gV ) dx.

Again, by Lemma 2.4, Young’s inequality with ϕ|g| in combination with (2.2) (second part) and again Lemma 2.4 we estimate

(II) ≤ c−
∫
B
ϕ′

|g|(|g − gA|)|g − gV | dx

≤ δ−

∫
B
ϕ|g|(|g − gA|) dx + cδ−

∫
B
ϕ|g|(|g − gV |) dx

≤ δ c−
∫
B
|V (g)− V (gA)|2 dx + cδ−

∫
B
|V (g)− V (gV )|2 dx

≤ δ c(II)+ cδ(I).

It follows that (II) ≤ c(I).
On the other hand with Lemma 2.4 and ⟨g − ⟨g⟩B⟩B = 0 there follows

(III) ∼ −

∫
B


A(g)− A(⟨g⟩B)


· (g − ⟨g⟩B) dx = −

∫
B


A(g)− A(gV )


· (g − ⟨g⟩B) dx.

By Young’s inequality with ϕ|g| it follows analogously to the estimates of (II) that (III) ≤ cδ(I) + δ c(III). Now, (III) ≤ c(I)
follows. �

Lemma A.3. Let ψ be of type T (p, q, K) and let γ ∈ (0, 1) such that γ q ≤ 1. Then the function (ψγ )−1 is quasi-convex, i.e.
there exists a convex function κ : [0,∞) → [0,∞) such that (ψγ )−1(t) ∼ κ(t). The implicit constant only depends on q and
K .

Proof. Define ρ(t) := ψγ (t). Since ψ is of type T (p, q, K), there holds ψ(st) ≤ Ksqψ(t) for all t ≥ 0 and s ≥ 1. This
implies sψ−1(u) ≤ ψ−1(Ksqu) for all u ≥ 0 and s ≥ 1. From ρ−1(u) = ψ−1(u1/γ ) and ψ−1(t) = ρ−1(tγ ) we get
sρ−1(u) ≤ ρ−1(K γ sγ qu). In particular, with γ q ≤ 1 there follows

ρ−1(u)
u

≤
ρ−1(K γ sγ q−1su)

su
≤
ρ−1(K γ su)

su

for all u ≥ 0 and s ≥ 1. Therefore, Lemma 1.1.1 of [17] implies that ρ−1 is quasi-convex. �
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