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Abstract. We prove C1,α-regularity for local minimizers of functionals with ϕ-growth,
giving also the decay estimate. In particular, we present a unified approach in the case of
power-type functions.

1. Introduction

Let ϕ be a convex, C1-function and consider the functional:

F(u) =
∫

�

ϕ(|∇u|) dx (1.1)

where � ⊂ R
n is a bounded open set and u : � → R

N .
The standard examples for convex functions ϕ are

ϕ(t) =
t∫

0

(κ + s2)
p−2

2 s ds and ϕ(t) =
t∫

0

(κ + s)p−2 s ds,

where κ ≥ 0.
We say that u is a local minimizer for F if

F(u, spt v) ≤ F(u + v, spt v) ∀v ∈ C1
0(�).

The associated Euler Lagrange system is

− div
(
ϕ′(|∇u|) ∇u

|∇u|
)

= 0 (1.2)
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In a fundamental paper Uhlenbeck [26] proved everywhere C1,α-regularity for
local minimizers of the p-growth functional with p ≥ 2. Later on a large num-
ber of generalizations have been made. The case 1 < p < 2 was considered by
Acerbi and Fusco [1] where also the dependence of the functional from x and u
was investigated, (see [23] for a complete list).

Lieberman [18] generalized the regularity theory of Ladyzhenskaya and
Uraltseva for equations with ϕ-growth. Lipschitz regularity results for systems or
functionals with nonstandard growth conditions have been considered by Marcel-
lini [19–21] and Esposito et al. [10,11]. We refer to a recent book of Bildhauer [3]
for a general treatment.

In a recent paper [22] Marcellini and Papi proved Lipschitz regularity for local
minimizers of functionals with growth conditions general enough to embrace lin-
ear and exponential ones. A general approach in order to get C1,α-regularity for
systems is to prove first Lipschitz continuity and then, using the C1-property of
the operator, conclude with the help of classical results. Another approach is con-
tained in a paper of Esposito and Mingione [12] in which they raised the question
of proving C1,α-regularity of ϕ-growth by comparison with powers.

Unfortunately, this is not enough to get an excess decay estimate out of the
power case.

For this reason, our goal is to prove the C1,α-regularity for functionals with
ϕ-growth giving the decay estimate of the excess functional:

Φ(u, B) = −
∫

B

|V(∇u)− 〈V(∇u)〉B |2 dx (1.3)

where V(Q) = √
ϕ′(|Q|)/|Q| Q and B ⊂ � is a ball. To this aim, we make suit-

able assumptions on the function ϕ in order to ensure the continuity of the second
derivatives of ϕ. In particular, the case of slow growth [13] and fast growth are
ruled out.

Our main theorem is the following:

Theorem 1.1. Let u ∈ W 1,ϕ
loc (�) be a local minimizer of (1.1), where ϕ satisfies

Assumption 2.2. Then V(∇u) and ∇u are locally α-Hölder continuous for some
α > 0.

We present a unified approach to the superquadratic and subquadratic p-growth,
also considering more general functions than the powers.

The results presented here rely on some technical lemmas that have been proved
in a paper of Diening and Ettwein [6], where they get fractional estimates for non-
differentiable elliptic systems with ϕ-growth.

2. Notation and preliminaries

To simplify the notation, the letter c will denote any positive constant, which may
vary throughout the paper. For w ∈ L1

loc(R
n) and a ball B ⊂ R

n we define

〈w〉B := −
∫

B

w(x) dx := 1

|B|
∫

B

w(x) dx, (2.1)
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where |B| is the n-dimensional Lebesgue measure of B. For λ > 0 we denote by
λB the ball with the center as B but λ-times the radius. By e1, . . . , en we denote
the unit vectors of R

n . For U,� ⊂ R
n we write U � � if the closure of U is a

compact subset of �. We define δi, j := 0 for i �= j and δi,i = 1.
The following definitions and results are standard in the context of N-functions.

A real function ϕ : R
≥0 → R

≥0 is said to be an N-function if it satisfies the fol-
lowing conditions: ϕ(0) = 0 and there exists the derivative ϕ′ of ϕ. This derivative
is right continuous, non-decreasing and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0,
and limt→∞ ϕ′(t) = ∞. Especially, ϕ is convex.

We say that ϕ satisfies the �2-condition, if there exists c1 > 0 such that for all
t ≥ 0 holds ϕ(2t) ≤ c1 ϕ(t). By �2(ϕ) we denote the smallest constant c1. Since
ϕ(t) ≤ ϕ(2t) the �2 condition is equivalent to ϕ(2t) ∼ ϕ(t). For a family {ϕλ}λ
of N-functions we define �2({ϕλ}λ) := supλ �2(ϕλ).

By Lϕ and W 1,ϕ we denote the classical Orlicz and Sobolev–Orlicz spaces, i.e.
f ∈ Lϕ iff

∫
ϕ(| f |) dx < ∞ and f ∈ W 1,ϕ iff f,∇ f ∈ Lϕ . By W 1,ϕ

0 (�) we
denote the closure of C∞

0 (�) in W 1,ϕ(�).
By (ϕ′)−1 : R

≥0 → R
≥0 we denote the function

(ϕ′)−1(t) := sup {s ∈ R
≥0 : ϕ′(s) ≤ t}.

If ϕ′ is strictly increasing then (ϕ′)−1 is the inverse function of ϕ′. Then ϕ∗ :
R

≥0 → R
≥0 with

ϕ∗(t) :=
t∫

0

(ϕ′)−1(s) ds

is again an N-function and (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0. It is the complementary
function of ϕ. Note that ϕ∗(t) = sups≥0(st − ϕ(s)) and (ϕ∗)∗ = ϕ. For all δ > 0
there exists cδ (only depending on �2({ϕ, ϕ∗}) such that for all t, s ≥ 0 holds

ts ≤ δϕ(t)+ cδϕ∗(s). (2.2)

For δ = 1 we have cδ = 1. This inequality is called Young ’s inequality. For all
t ≥ 0

t

2
ϕ′( t

2

)
≤ ϕ(t) ≤ t ϕ′(t),

ϕ

(
ϕ∗(t)

t

)
≤ ϕ∗(t) ≤ ϕ

(
2 ϕ∗(t)

t

)
.

(2.3)

Therefore, uniformly in t ≥ 0

ϕ(t) ∼ ϕ′(t)t, ϕ∗(ϕ′(t)
) ∼ ϕ(t), (2.4)

where the constants only depend on �2({ϕ, ϕ∗}). If ρ(t) = aϕ(b t) for some
a, b > 0 and all t ≥ 0, then

ρ∗(t) = a ϕ∗
(

t
a b

)
. (2.5)
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If ϕ and ρ are N-functions with ϕ(t) ≤ ρ(t) for all t ≥ 0, then

ρ∗(t) ≤ ϕ∗(t) (2.6)

for all t ≥ 0.
Throughout the paper we will assume ϕ satisfies the following assumption.

Assumption 2.1. Let ϕ be an N-function such that ϕ is C1 on [0,∞) and C2 on
(0,∞). Further assume that

ϕ′(t) ∼ tϕ′′(t) (2.7)

uniformly in t > 0.

We remark that under these assumptions �2({ϕ, ϕ∗}) < ∞ will be automati-
cally satisfied, where�2({ϕ, ϕ∗}) depends only on the constant in (2.7). In the proof
of the regularity Theorem we will additionally require that ϕ′′ is Hölder continuous
away from zero.

Assumption 2.2. Let ϕ be as in Assumption 2.1 such that there exists β ∈ (0, 1]
and c > 0 such that

∣∣ϕ′′(s + t)− ϕ′′(t)
∣∣ ≤ c ϕ′′(t)

(
|s|
t

)β
(2.8)

for all t > 0 and s ∈ R with |s| < 1
2 t .

Remark 2.3. Let ϕ satisfy Assumption 2.1. Further, let t > 0 and s ∈ R with
|s| < 1

2 t . Then by Taylor’s formula, |s + t | ∼ t and �2(ϕ) < ∞ get

∣∣ϕ′(s + t)− ϕ′(t)
∣∣ ≤ c ϕ′′(s + t) |s| ≤ c ϕ′(s+t)

s+t |s| ≤ c ϕ′(t) |s|
t .

So ϕ′ is Lipschitz continuous away from zero. Compare this with (2.8).

We notice that assumption (2.8) is satisfied for example in all of the following
three cases.

ϕ(t) = t p,

ϕ(t) = t p logβ(e + t), β > 0,

ϕ(t) = t p log log(e + t),

with 1 < p < ∞.
For given ϕ we define the associated N-function ψ by

ψ ′(t) := √
ϕ′(t)t . (2.9)

Note that

ψ ′′(t) = 1

2

(
ϕ′′(t)
ϕ′(t)

t + 1

)√
ϕ′(t)

t
= 1

2

(
ϕ′′(t)
ϕ′(t)

t + 1

)
ψ ′(t)

t
. (2.10)
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It is shown in [6, Lemma 25] that if ϕ satisfies Assumption 2.1, then also ϕ∗, ψ ,
and ψ∗ satisfy this assumption and ψ ′′(t) ∼ √

ϕ′′(t).
Define A,V : R

N×n → R
N×n in the following way:

A(Q) = ϕ′(|Q|) Q
|Q| , (2.11a)

V(Q) = ψ ′(|Q|) Q
|Q| . (2.11b)

For λ ≥ 0 we define the shifted N-function ϕλ by ϕλ(t) = ∫ t
0 ϕ

′
λ(s) ds with

ϕ′
λ(t) := ϕ′(λ+ t)

λ+ t
t (2.12)

for t > 0. The shifted N-functions have been introduced in [6]. In [8] and [7] they
have been used in the a priori and a posteriori analysis of finite element approxi-
mations of (1.1). See [24] for a detailed study of the shifted N-functions.

The connection between A, V, and {ϕλ}λ≥0 is best reflected in the following
lemma.

Lemma 2.4. Let ϕ satisfy Assumption 2.1 and let A and V be defined by (2.11).
Then

(
A(P)− A(Q)

) · (
P − Q

) ∼ ∣∣V(P)− V(Q)
∣∣2 (2.13a)

∼ ϕ|P|(|P − Q|), (2.13b)

∼ |P − Q|2 ϕ′′(|P| + |Q|), (2.13c)

and

∣∣A(P)− A(Q)
∣∣ ∼ ϕ′|P|

(|P − Q|) (2.13d)

∼ ϕ′′(|P| + |Q|) |P − Q| (2.13e)

uniformly in P,Q ∈ R
N×n. Moreover,

A(Q) · Q ∼ |V(Q)|2 ∼ ϕ(|Q|), (2.13f)

|A(Q)| ∼ ϕ′(|Q|) (2.13g)

uniformly in Q ∈ R
N×n.

Note that if ϕ′′(0) does not exists, the expression in (2.13c) and (2.13e) are
continuously extended by zero for |P| = |Q| = 0.

Proof. The lemma is a direct consequence of Lemma 3 and Lemma 21 of [6]. ��
Remark 2.5. By definition of ϕλ if follows directly, that (ϕλ)λ2 = ϕλ+λ2 for
λ, λ2 ≥ 0.

It has been proved in [6] that the functions ϕλ with λ ≥ 0 share the same
properties of ϕ. In particular, we have the following result.
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Lemma 2.6. Let ϕ satisfy Assumption 2.1. Then for all λ ≥ 0 the function ϕλ
satisfies Assumption 2.1 and �2({ϕλ}λ≥0, {(ϕλ)∗}λ≥0) < ∞. Moreover,

ϕ′′
λ(t) ∼ ϕ′′(λ+ t) ∼ ϕ′(λ+ t)

λ+ t
= ϕ′

λ(t)

t
(2.14)

uniformly in λ, t ≥ 0 with λ + t > 0. In particular, ϕλ satisfies Assumption 2.1
with constants independent of λ ≥ 0. Moreover, for t > 0 holds

ϕ′′
λ(t) = ϕ′′(λ+ t) t

λ+ t
+ ϕ′(λ+ t) λ

(λ+ t)2
. (2.15)

If λ > 0, then ϕλ is C2 on [0,∞).
If ϕ satisfies Assumption 2.2, then ϕλ satisfies Assumption 2.2 with β > 0 and

the constant in (2.8) does not depend on λ.

Proof. Let ϕ satisfy Assumption 2.1 The formula for ϕ′′
λ follows directly from the

definition of ϕλ. This implies the C2-property on [0,∞) for λ > 0. The other
claims have been proved in [6, Lemma 24 and 27].

Assume now that ϕ satisfies Assumption 2.2 with β > 0. Then it follows after
a short computation from (2.15), (2.8), and Remark 2.3 that (2.8) holds for all ϕλ
with the same β such that the constant does not depend on λ ≥ 0. ��
We state a generalization of Lemma 2.1 of [1] to the context of convex functions ϕ.

Lemma 2.7. [6, Lemma 20] Let ϕ be an N-function with �2({ϕ, ϕ∗}) < ∞. Then
uniformly for all P0,P1 ∈ R

N×n with |P0| + |P1| > 0 holds

1∫

0

ϕ′(|Pθ |)
|Pθ | dθ ∼ ϕ′(|P0| + |P1|)

|P0| + |P1| , (2.16)

where Pθ := (1 − θ)P0 + θP1. The constants only depend on �2({ϕ, ϕ∗}).
Remark 2.8. Some of the results in this paper are stated under the condition that
�2({ϕ, ϕ∗}) < ∞ or that ϕ satisfies Assumption 2.1. Due to Lemma 2.7 all of
these results remain valid for ϕλ with λ ≥ 0 as well.

The following result is contained in [6, Lemma 31].

Lemma 2.9. Let ϕ be an N-function with �2({ϕ, ϕ∗}) < ∞. Then there exist
q2 > 1, c > 0 which only depend on �2({ϕ, ϕ∗}) such that

ϕλ(θ t) ≤ cθq2ϕλ(t) (2.17)

for all t, λ ≥ 0 and all θ ∈ [0, 1].
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Since (ϕ∗)′ is the inverse of ϕ′, it follows that

A−1(Q) = (ϕ∗)′(|Q|) Q
|Q| (2.18)

for all Q ∈ R
N×n . In particular, A is invertible. The same holds for Aλ and Vλ.

The following result generalizes Lemma 3 of [9] to the context of convex func-
tions.

Lemma 2.10. Let ϕ satisfy Assumption 2.1. Then there exists β > 0, which only
depends on the constant in (2.7), such that ϕ′, (ϕ∗)′, ψ ′, and (ψ∗)′ are β-Hölder
continuous on [0,∞) and A, A−1, V, and V−1 are β-Hölder continuous on R

N×n.

Proof. Let q2 be as in Lemma 2.9, then q2 only depends on �2({ϕ, ϕ∗}). We will
show that ϕ′ is β-Hölder continuous, with β := q2 − 1. Let a, b ∈ [0,∞) with
|a − b| ≤ 1. Then by (2.13d) applied to the case n = 1 we get

|ϕ′(a)− ϕ′(b)| ≤ c ϕ′
b(|a − b|).

Now, with tϕ′(t) ∼ ϕ(t) and (2.17) follows

|ϕ′(a)− ϕ′(b)| ≤ c
ϕb(|a − b|)

|a − b| ≤ c |a − b|q2−1ϕb(1).

This proves that ϕ′ is β-Hölder continous, where β > 0 only depends on
�2({ϕ, ϕ∗}).

Due to [6, Lemma 25] also ϕ∗ and ψ satisfy Assumption 2.1. Thus, we see that
also (ϕ∗)′, ψ ′, and (ψ∗)′ are α-Hölder continuous, where α > 0 only depends on
the constant in (2.7). Now, the definition of A and V and (2.18) imply that A, A−1,
V, and V−1 are α-Hölder continuous. ��

Remark 2.11. Due to Lemma 2.6 it is possible to apply Lemma 2.10 also to the
shifted-versions uniformly in λ ≥ 0. For example there exists β > 0 such that V−1

λ

is β-Hölder continuous for all λ ≥ 0.

Remark 2.12. Letϕ satisfy Assumption 2.1. Then, for all Q,H ∈ R
N×n with Q �= 0

holds

∑
i jαγ

∂αγ Ai j (Q)Hi j Hαγ ∼ ϕ′′(|Q|) |H|2.

This follows easily from

∂αγ Ai j (Q) = ϕ′(|Q|)
|Q| δi, jδα,γ +

(
ϕ′′(|Q|)− ϕ′(|Q|)

|Q|
)

Qi j Qαγ

|Q|2 (2.19)

and (2.7).
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3. Caccioppoli estimates and a Gehring type result

In this paragraph we recall some estimates obtained in the paper [6] for ϕ-systems.
Since they are local estimates, they hold true for local minimizers.

If u is a local minimizer of the functional 1.1, then u = (u1, . . . , uN ) solves

− div
(
A(∇u)

) = 0. (3.1)

In other words for all test function ξ ∈ C∞
0 (�)∫ ∑

j,k

(
A jk(∇u)

)
∂kξ j dx =

∫ ∑
j,k

(
ϕ′(|∇u|)∂ku j

|∇u|
)
∂kξ j dx = 0. (3.2)

Since u ∈ W 1,ϕ
loc (�), it follows that (3.2) also holds for ξ ∈ W 1,ϕ

0 (�).

Theorem 3.1. [6, Theorem 4 and 9]1 Let ϕ satisfy Assumption 2.1 and let u be a
local minimizer of the functional (1.1). Then there exists K1 > 0 such that for all
balls B ⊂ � with 2B � � holds

−
∫

B

ϕ(|∇u|) dx ≤ K1 −
∫

2B

ϕ

( |u − 〈u〉2B |
R

)
dx . (3.3)

Note that K1 only depends on the constant in (2.7).

Note that similar results as Theorem 3.1 regarding higher integrability have
been proved in [5] by Cianchi and Fusco and [4] by Cianchi.

Another important tool in our proof will be the following generalization of the
Poincaré inequality.

Theorem 3.2. [6, Theorem 7] Let ϕ be an N-function with�2({ϕ, ϕ∗}) < ∞. Fur-
ther, let B ⊂ R

n be some ball with diameter R. Then there exist 0 < θ < 1 and
K > 0, which only depend on �2({ϕ, ϕ∗}) and R, such that for all v ∈ W 1,ϕ(B)
holds

−
∫

B

ϕ

( |v − 〈v〉B |
R

)
dx ≤ K

(
−
∫

B

(
ϕ(|∇v|))θ dx

) 1
θ

. (3.4)

We also need the following estimate of Gehring type.

Theorem 3.3. [6, Theorem 9] Let ϕ be an N-function with �2({ϕ, ϕ∗}) < ∞ and
let u be a local minimizer of (1.1). Then there exists q1 > 1 and c > 1 such that
for all balls B with 2B � � and all q ∈ [1, q1] holds

(
−
∫

B

|V(∇u)|2q dx

) 1
q ≤ c −

∫

2B

|V(∇u)|2 dx (3.5)

Especially, we have ϕ(|∇u|) ∈ Lq1
loc(�). The constants c and q1 only depend on

�2({ϕ, ϕ∗}).
1 The original version is stated with 〈u〉B rather than 〈u〉2B . The proof for 〈u〉2B requires

no change.
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In the following we will derive an improved version of this theorem. For this
we start with a reverse Hölder estimate.

Lemma 3.4. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). Then there exist 0 < θ < 1 and K2 > 0 such that for all balls
B ⊂ � with 2B � � and all Q ∈ R

N×n holds

−
∫

B

|V(∇u)− V(Q)|2 dx ≤ K2

(
−
∫

2B

|V(∇u)− V(Q)|2θ dx

) 1
θ

. (3.6)

Note that θ, K2 only depend on the constant in (2.7).

Proof. Let q2 > 1 be as in Lemma 2.9 and let s := q2
q2−1 > 1. Letη ∈ C∞

0 (2B)with
χB ≤ η ≤ χ2B and |∇η|∞ ≤ c/R, where R is the radius of B. Let ξ := ηs(u −q),
where q : � → R

n is a linear function such that ∇q = Q and
∫

2B u − q dx = 0.
We use ξ as a test function for (3.1) and get

0 = −
∫

2B

(
A(∇u)− A(Q)

) : ∇(
ηs(u − q)

)
dx .

Using ∇(ηs(u−q)) = ηs(∇u−Q)+sηs−1∇η⊗(u−q) (2.13d), and |∇η| ≤ c/R
we get

−
∫

2B

ηs(A(∇u)− A(Q)
) : (∇u − Q) dx ≤ c −

∫

2B

ηs−1ϕ′|Q| (|∇u − Q|) |u − q|
R

dx

Using Lemma 2.4 and Young’s inequality (2.2) we deduce

−
∫

2B

ηs |V(∇u)− V(Q)|2 dx ≤ δ −
∫

2B

(ϕ|Q|)∗
(
ηs−1ϕ′|Q|(|∇u − Q|)

)
dx

+ cδ −
∫

2B

ϕ|Q|
( |u − q|

R

)
dx . (3.7)

We estimate the first term on the right-hand side using (2.17), (s − 1)q2 = s (2.4),
and Lemma 2.4 by

δ −
∫

2B

(ϕ|Q|)∗
(
ηs−1ϕ′|Q|(|∇u − Q|)

)
dx ≤ δ c −

∫

2B

ηsϕ|Q|(|∇u − Q|) dx

≤ δ c −
∫

2B

ηs |V(∇u)− V(Q)|2 dx .

So we can absorb this term for small δ > 0 in (3.7) on the left-hand side. The
second term on the right-hand side of (3.7) can be estimated with the help of the
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Poincaré inequality, (see Theorem 3.2), −
∫

2B u − q dx = 0, and Lemma 2.4 by

cδ −
∫

2B

ϕ|Q|
( |u − q|

R

)
dx ≤ cδ c

(
−
∫

2B

(
(ϕ|Q|)(|∇u − Q|))θ dx

) 1
θ

≤ cδ c

(
−
∫

2B

∣∣V(∇u)− V(Q)
∣∣2θ

dx

) 1
θ

where θ ∈ (0, 1) is as in Theorem 3.2. Combining the estimates starting with (3.7)
we have proved (3.6). ��

Note that Lemma 3.4 is an improved version of Theorems 3.1 and 3.2. Indeed,
if we combine Theorems 3.1 and 3.2 with the estimate ϕ(|∇u|) ∼ |V(∇u)|2 from
Lemma 2.4, then we immediately get 3.5 with Q = 0. Lemma 3.4 is an improve-
ment, since we are allow to substract V(Q) in the integrals, providing us with a
reverse Hölder estimate for the oscillation.

Applying the ingenious lemma of Giaquinta and Modica to Lemma 3.4 we
immediately get the following improved version of Theorem 3.3.

Lemma 3.5. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). Then there exists q3 > 1 and c > 1 such that for all balls B with
2B � �, all q ∈ [1, q3], and all Q ∈ R

N×n holds

(
−
∫

B

|V(∇u)− V(Q)|2q dx

) 1
q ≤ c −

∫

2B

|V(∇u)− V(Q)|2 dx (3.8)

Note that c and q3 only depend on the constant in (2.7).

Let us introduce the following notations: For x, s ∈ R
n we define

Ts(x) := x + s, (τs f )(x) := f (x + s)− f (x).

The following result is based on [6, Theorem 11].

Theorem 3.6. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). Then there exists c > 0 such that if B ⊂ � is a ball with 2B � �

and if h ∈ R
n\{0} with |h| ≤ R, where R is the radius of B, then

−
∫

B

|τhV(∇u)|2 dx ≤ c
|h|2
R2 −

∫

2B

|V(∇u)|2 dx . (3.9)

Passing in Theorem 3.6 to h → 0+ we immediately get the following estimate
for the gradients of V(∇u).

Corollary 3.7. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). Then V(∇u) ∈ W 1,2

loc (�) and there exists c > 0 such that if B ⊂ �

is a ball with radius R and 2B � �, then

−
∫

B

∣∣∇(
V(∇u)

)∣∣2
dx ≤ c

R2 −
∫

2B

∣∣V(∇u)
∣∣2

dx . (3.10)
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Corollary 3.8. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). If n ≥ 3, then there exists c > 0 such that if B ⊂ � is a ball with
2B � �, then

(
−
∫

B

∣∣V(∇u)
∣∣ 2n

n−2 dx

) n−2
n ≤ c −

∫

2B

|V(∇u)|2 dx . (3.11)

If n = 2, then the inequality holds if we replace on the left-hand side 2n
n−2 and n−2

2n

by q and 1
q , respectively, where q ∈ [1,∞). In this case c = c(q). If n = 1, then

we can use q = ∞.

Proof. The result follows from the Sobolev embedding W 1,2(�) ↪→ L
2n

n−2 (�) for
n ≥ 3, W 1,2(�) ↪→ Lq(�) for n = 2 and q ∈ [1,∞), and W 1,2(�) ↪→ L∞(�)
for n = 1. ��

4. Approximated system

In order to study system (1.1) it is sometimes more convenient to examine an
approximated version of the system. For the approximation we use the shifted-
N-functions as introduced in (2.12). We will see that ϕλ is a good approximation
of ϕ while it has a better behaviour at zero, see in particular Lemma 2.6. Later we
will pass to the limit λ → 0 to transfer our results to the original system (1.1).

If not stated otherwise we will assume that ϕ satisfies Assumption 2.1. As an
approximation of (1.1) we consider for λ ≥ 0 the functional

Fλ(v) =
∫

�

ϕλ(|∇v|) dx . (4.1)

In analogy to (2.11) we define Aλ,Vλ : R
N×n → R

N×n for λ ≥ 0 by

Aλ(Q) = ϕ′
λ(|Q|) Q

|Q| , (4.2a)

Vλ(Q) = ψ ′
λ(|Q|) Q

|Q| , (4.2b)

where ψλ is the associated N-function (compare (2.9)) given by

ψ ′
λ(t) :=

√
ϕ′
λ(t) t . (4.3)

Since

ψ ′
λ(t) =

√
ϕ′
λ(t) t =

√
ϕ′(λ+ t)

λ+ t
t2 = ψ ′(λ+ t)

λ+ t
t

for λ, t > 0, the function ψλ is just the shifted version of ψ . Therefore, there will
be no confusion in the notation.

Since ϕ0 = ϕ, we recover for λ = 0 in (4.1) our original system (1.1). In
particular, F0 = F , A0 = A, V0 = V, and ψ0 = ψ .
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Remark 4.1. Let ϕ be an N-function with�2({ϕ, ϕ∗}) < ∞. The following version
of Young’s inequality has been shown in [6, Lemma 32]. It holds

ϕ′
λ(t)s ≤ cϕλ(t)+ cϕλ(s) (4.4)

for all λ, s, t ≥ 0, where c does only depend on �2({ϕ, ϕ∗}). It has been shown
in [6, Lemma 30] that

ϕλ(θ λ) ≤ c θ2ϕ(λ), (4.5)

for all λ ≥ 0 and θ ∈ [0, 1], where c does only depend on �2({ϕ, ϕ∗}). Moreover,
it has been shown in [7, Lemma 25 + Corollary 26] that

ϕ|Q|(t) ≤ c ϕ|P|(t)+ c
∣∣V(Q)− V(P)

∣∣2 (4.6)

for all Q,P ∈ R
N×n and all t ≥ 0 and

ϕλ(t) ≤ c
(
ϕ(t)+ ϕ(λ)

)
, (4.7)

for all t, λ ≥ 0, where c does only depend on �2({ϕ, ϕ∗}).
In particular, (4.7) implies that Lϕloc(�) = Lϕλloc(�) and W 1,ϕ

loc (�) = W 1,ϕλ
loc (�)

for all λ ≥ 0. So for all local results we can still work within the scope of the spaces
Lϕ and W 1,ϕ .

Moreover, it has been shown in [6, Lemma 26] that

(ϕλ)
∗(t) ∼ (ϕ∗)ϕ′(λ)(t), (4.8a)(

(ϕλ)
∗)′
(t) ∼ (ϕ∗)′

ϕ′(λ)(t) (4.8b)

uniformly in λ, t ≥ 0.

Lemma 4.2. Let ϕ be an N-function with �2({ϕ, ϕ∗}) < ∞. Then there exists
s0 > 1 such that Lϕ(�) ↪→ Ls0

loc(�). Note that s0 only depends on �2(ϕ, ϕ
∗).

Proof. Since �2(ϕ
∗) < ∞ it follows from [17, Lemma 1.2.2+1.2.3] that ϕθ is

quasiconvex for some 1 − 1
n < θ < 1, i. e. there exists an N-function ρ with

ϕθ ∼ ρ and �2({ρ, ρ∗}) < ∞. It is important to remark that θ and �2({ρ, ρ∗})
only depend on �2({ϕ, ϕ∗}). Let s := 1

θ
, then s > 1. For t ≤ 1 we have t s ≤ 1.

On the other hand for t ≥ 1, we have by the quasiconvexity of ϕθ that ϕ(t) =(
ϕθ (t)

) 1
θ ≥ (

c t ϕθ (1)
) 1
θ = c ts ϕ(1). Overall, we have t s ≤ 1 + c ϕ(t)/ϕ(1) for

all t ≥ 0. This proves the claim. ��
Due to Lemma 2.6 the result above also holds with ϕ replaced by ϕλ, where s0

is independent of λ > 0.

Lemma 4.3. Let ϕ satisfy Assumption 2.1. Then there exists s1 > 1 such that the
following holds. If λ > 0 and uλ is a local minimizer of the functional (4.1) then

uλ ∈ W 2,s1
loc (�).
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Proof. Let B be a ball with radius R and 2B � �. We will show that uλ ∈ W 2,s(B)
for some s > 1, independent of B and λ > 0. Let s∗ > 1 be such that Lϕ(�) ↪→
Ls∗(2B). Choose s ∈ (1, 2) such that s

2−s ≤ s∗. Let h ∈ R
n\{0} with |h| ≤ R. With

Hölder’s inequality with 2
2−s and 2

s we estimate

(|h|−1|τh∇uλ|
)s ≤ (

ϕ′′
λ(|∇uλ| + |τh∇uλ|)

) −s
2−s

+ϕ′′
λ(|∇uλ| + |τh∇uλ|)|h|−2|τh∇uλ|2

=: (I )+ (I I ).

We will show that (I ) and (I I ) are integrable over B with bounds independent of h.
With Lemma 2.4 we estimate (I I ) ≤ c |h|−2|τhVλ(∇uλ)|2. So with Theorem 3.6
we see that (I I ) is integrable over B with bound independent of h. Let us now
consider (I ). For t ≥ 0 we estimate with (2.7)

1

ϕ′′
λ(t)

≤ c
λ+ t

ϕ′(λ+ t)
≤ λ+ t

ϕ′(λ)
.

If we replace t by |∇uλ|+|τh∇uλ|, integrate over B and use Lϕ(�) ↪→ Ls∗(2B) ↪→
L

s
2−s (2B), then we see that (I ) is integrable over B with bound independent of h.

We have shown that ∫

B

(|h|−1|τh∇uλ|
)s

dx ≤ c,

where c depends on λ and uλ but is independent of h. It follows that uλ ∈ W 2,s(B).
��

Lemma 4.4. Let ϕ satisfy Assumption 2.1 and be C2 on [0,∞). Let B ⊂ � be a
ball with radius R and 2B � � and let w ∈ W 2,s(2B) for some s > 1 such that
V(∇w) ∈ W 1,2(2B). Then

ϕ′′(|∇w|)|∂i∇w|2 ∼ |∂i V(∇w)|2

almost everywhere with i = 1, . . . , n. In particular,∫

B

ϕ′′(|∇w|)|∂i∇w|2 dx ∼
∫

B

|∂i V(∇w)|2dx .

Proof. Let r ∈ (0, R). Then by Lemma 2.4 (applied to V and ψ) and ψ ′′(t) ∼√
ϕ′′(t) it follows that

ϕ′′(|∇w| + |τrei ∇w|)r−2|τrei ∇w|2 ∼ r−2|τrei V(∇w)|2. (4.9)

Since V ∈ W 1,2(B), we have r−1τrei V(∇w) → ∂i V(∇w) in L2(B) for r → 0
and r−2|τrei V(∇w)|2 → |∂i V(∇w)|2 in L1(B). So the right hand side of (4.9)
converges in L1(B) to |∂i V(∇w)|2. It remains to prove that

ϕ′′(|∇w| + |τrei ∇w|)r−2|τrei ∇w|2 → ϕ′′(|∇w|)|∂i∇w|2 a.e. in B,

(4.10)
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since then the theorem of dominated convergence proves the claim. Now, w ∈
W 2,s(2B), so for a subsequence rk → 0 we have τrk ei ∇w → 0 and r−1

k τrk ei ∇w →
∂i∇w almost everywhere in B. Now, the continuity of ϕ′′ on [0,∞) proves the
claim. ��
Lemma 4.5. Let ϕ satisfy Assumption 2.1. If λ > 0 and uλ is a local minimizer of
the functional (4.1), B is a ball with radius R and 2B � �, and V(∇uλ) ∈ L2q(2B)

with q ≥ 1, then ϕλ(|∇uλ|) ∈ W 1, 2q
1+q (B), ϕ′

λ(|∇uλ|)|∇2uλ| ∈ L
2q

1+q (B) and

(
−
∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣ 2q

1+q

) 1+q
2q ≤ c

(
−
∫

2B

(
ϕ′
λ(|∇uλ|) |∇2uλ|

) 2q
1+q

) 1+q
2q

≤ c R−1
(

−
∫

2B

|Vλ(∇uλ)|2q dx

) 1
q

.

Moreover,

∂ jϕλ(|∇uλ|) = ϕ′
λ(|∇uλ|)∂ j |∇uλ|

for j = 1, . . . , n.

Proof. Let λ > 0. Then by Lemma 4.3 we have uλ ∈ W 2,s1
loc (2B) and therefore

|∇uλ| ∈ W 1,s1
loc (2B). So |∇uλ| is absolutely continuous on almost every line (par-

allel to the coordinate axes). Since ϕλ is Lipschitz on [0,∞), we get that
∣∣∇ϕλ(|∇uλ|)

∣∣ ≤ ϕ′
λ(|∇uλ|)|∇2uλ| (4.11)

on almost every line. This, Young’s inequality with q + 1 and q+1
q , and (2.7) imply

∣∣∇ϕλ(|∇uλ|)
∣∣ 2q

1+q ≤ (
ϕ′
λ(|∇uλ|)|∇2uλ|

) 2q
1+q

≤ c
(√
ϕλ(|∇uλ|)

√
ϕ′′
λ(|∇uλ|) |∇2uλ|

) 2q
1+q

= c
(

t0
√
ϕλ(|∇uλ|) t−1

0

√
ϕ′′
λ(|∇uλ|) |∇2uλ|

) 2q
1+q

≤ c
(
ϕλ(|∇uλ|)

)q
t2q
0 + c ϕ′′

λ(|∇uλ|)
∣∣∇2uλ

∣∣2
t−2
0

on almost every line, where t0 > 0 will be chosen later. From Lemma 4.3 we know
that uλ ∈ W 2,s1

loc (2B). So with Lemma 4.4 and Corollary 3.7 we deduce that

−
∫

B

ϕ′′
λ(|∇uλ|)|∇2uλ|2 dx ≤ c −

∫

B

∣∣∇Vλ(∇uλ)
∣∣2

dx ≤ cR−2 −
∫

2B

∣∣Vλ(∇uλ)
∣∣2

dx .

On the other hand with Lemma 2.4 we have

−
∫

B

(
ϕλ(|∇uλ|)

)q
dx ≤ c −

∫

B

|Vλ(∇uλ)|2q dx .
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Overall, we have shown that

−
∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣ 2q

1+q

≤ t2q
0 c −

∫

B

|Vλ(∇uλ)|2q dx + c t−2
0 R−2 −

∫

2B

∣∣Vλ(∇uλ)
∣∣2

dx

≤ t2q
0 c −

∫

2B

|Vλ(∇uλ)|2q dx + ct−2
0 R−2

(
−
∫

2B

∣∣Vλ(∇uλ)
∣∣2q

dx

)1/q

.

Minimizing over t0 > 0 proves

−
∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣ 2q

1+q ≤ c R− 2q
1+q

(
−
∫

2B |Vλ(∇uλ)|2q dx

) 2
1+q

.

This proves the claim. ��
Note that Theorem 3.3 and Lemma 2.6 ensures that the requirements of

Lemma 4.5 are always satisfied for some q > 1, where q is independent of λ > 0.

Corollary 4.6. Let ϕ satisfy Assumption 2.1. Let λ > 0, let uλ be a local minimizer
of the functional (4.1), and let B be a ball with radius R and 2B � �. For n ≥ 3
we have ϕλ(|∇uλ|) ∈ W 1, n

n−1 (B) and

(
−
∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣ n

n−1

) n−1
n ≤ c R−1 −

∫

2B

|Vλ(∇uλ)|2 dx . (4.12)

The constant does not depend on λ > 0. If n = 1 or n = 2, then for all s ∈ [1, 2)
holds ϕλ(|∇uλ|) ∈ W 1,s(B) and

(
−
∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣s

) 1
s ≤ c R−1 −

∫

2B

|Vλ(∇uλ)|2 dx .

The constant does not depend on λ > 0.

Proof. The result immediately follows from Lemma 4.5, Corollary 3.7, and
Corollary 3.8. ��

We need the following auxiliary results.

Lemma 4.7. Let ϕ satisfy Assumption 2.1. Further, let a > 0 and U ⊂ [0, a] ×
R

N×n. Then sup(λ,Q)∈U |Q| < ∞ if and only if sup(λ,Q)∈U |Aλ(Q)| < ∞. More-
over, sup(λ,Q)∈U |Q| < ∞ if and only if sup(λ,Q)∈U |Vλ(Q)| < ∞.
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Proof. It suffices to prove the result for Aλ, since the result for Vλ is the same with
ϕ replaced by ψ . Let sup(λ,Q)∈U |Q| < ∞, then by (4.7)

sup
(λ,Q)∈U

|Aλ(Q)| = sup
(λ,Q)∈U

ϕ′
λ(|Q|) ≤ sup

(λ,Q)∈U
c
(
ϕ′(|Q|)+ ϕ′(λ)

)
< ∞.

Assume now that sup(λ,Q)∈U |Aλ(Q)| < ∞. With (A−1
λ )(Q) = ((ϕλ)

∗)′(|Q|) Q
|Q| ,

(4.8), and (4.7) (applied to ϕ∗) it follows that

sup
(λ,Q)∈U

|Q| = sup
(λ,Q)∈U

|A−1
λ (Aλ(Q))| = sup

(λ,Q)∈U
((ϕλ)

∗)′(|Aλ(Q)|)

≤ c sup
(λ,Q)∈U

(ϕ∗)′ϕ′(λ)(|Aλ(Q)|)

≤ c sup
(λ,Q)∈U

(
(ϕ∗)′(|Aλ(Q)|)+ (ϕ∗)′

(
ϕ′(λ)

))

= c sup
(λ,Q)∈U

(
(ϕ∗)′(|Aλ(Q)|)+ λ

)
< ∞.

This proves the assertion. ��
Lemma 4.8. Let ϕ satisfy Assumption 2.1. Then the (λ,Q) �→ Aλ(Q), (λ,Q) �→
A−1
λ (Q), (λ,Q) �→ Vλ(Q), and (λ,Q) �→ V−1

λ (Q) are continuous on [0,∞) ×
R

N×n.

Proof. Let (λk,Qk) → (λ,Q) for k → ∞. If λ+ |Q| > 0, then

Aλk (Qk) = ϕ′(λk + |Qk |)
λk + |Qk | Qk → ϕ′(λ+ |Q|)

λ+ |Q| Q = Aλ(Q).

If λ+ |Q| = 0, then λ = 0, Q = 0, and A0(Q) = 0. Moreover,

∣∣Aλk (Qk)
∣∣ = ϕ′(λk + |Qk |)

λk + |Qk | |Qk | ≤ ϕ′(λk + |Qk |) → 0.

So Aλk (Qk) → Aλ(Q) also in this case. This proves that (λ,Q) �→ Aλ(Q) is
continuous.

We will now show the continuity of (λ,Q) �→ A−1
λ (Q). Let (λk,Qk) →

(λ,Q). We set Pk := A−1
λk
(Qk) and P := A−1

λ (Q). We have to show Pk → P.
By Lemma 4.7 it follows that Pk is bounded. Thus there exists a subsequence Pk j

that convergences to some P ∈ R
N×n . Now the continuity of (λ,Q) �→ Aλ(Q)

implies Qk j = Aλk j
(Pk j ) → Aλ(P) for j → ∞. Since Qk → Q it follows that

Aλ(P) = Q = Aλ(P). This implies P = P and therefore Pk j → P. Since the
argument works for any subsequence of Pk it follows that the whole sequence Pk

converges to P. This proves the assertion.
The claim for Vλ and V−1

λ follows by replacing ϕ by ψ and the remark
after (4.3). ��

In the following we will show how to transfer results for the approximated
system (4.1) back to our original system (1.1). We will do it only for Corollary 4.6.
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Theorem 4.9. Let ϕ satisfy Assumption 2.1 and let u be a local minimizer of the
functional (1.1). Then Corollary 4.6 holds with ϕλ replaced by ϕ.

Proof. We consider the case n ≥ 3. The other case follows analogously. By a sim-
ple covering argument, it suffices to prove the result for balls B with 4B � �. For
λ > 0 let uλ be the minimizer of

Fλ(w) =
∫

4B

ϕλ(|∇w|) dx (4.13)

within the class {w ∈ W 1,ϕ(4B) : w = u on ∂(4B)}. Using the properties of ϕ it
is standard to see that such a minimizer exists and is unique. We will show that uλ
converges for λ → 0 to u. We proceed similarly as in [2].

By (4.7) and Corollary 3.7 we know uλ is equibounded in W 1,ϕ(2B) and
Vλ(∇uλ) is equibounded in W 1,2(2B) for λ → 0. So we have (passing to a subse-
quence)

uλ ⇀ v in W 1,ϕ(2B),

Vλ(∇uλ) ⇀ H in W 1,2(2B),

Vλ(∇uλ) → H in L2(2B)

for some v ∈ W 1,ϕ(2B) and H ∈ W 1,2(2B). Passing to a subsequence we have

Vλ(∇uλ) → H almost everywhere in 2B.

So by Lemma 4.8 we deduce that ∇uλ → V−1(H) almost everywhere in 2B.
Since the weak limit coincides with the pointwise limit, we get V−1(H) = ∇v and
H = V(∇v). Since by Corollary 4.6 ϕλ(|∇uλ)| is equibounded in W 1, n

n−1 (2B),
there holds ϕλ(|∇uλ|) ⇀ g in W 1, n

n−1 (2B) for a subsequence. Since ∇uλ → ∇v
almost everywhere, we get ϕλ(|∇uλ|) ⇀ ϕ(|∇v|) in W 1, n

n−1 (2B). This is enough
to pass in (4.12) (for our subsequence) to the limit λ → 0 and we see that (4.12)
holds with ϕλ and uλ replaced by ϕ and v, respectively. The uniqueness of the
minimizer of (4.13) for λ = 0 implies u = v. ��

5. Subsolution

As in the paper by Uhlenbeck [26] and Acerbi and Fusco [1] we prove that the non-
linear quantity ϕ(|∇u|) is a subsolution of an uniformly elliptic system. As a first
step, we will show this for the approximated system (4.1). We proceed similarly
to [1].

Lemma 5.1. Let ϕ be an N-function with �2(ϕ) < ∞. Then there exists s > 1
such that (

ϕ(t)

t

)s

≤ 2
(
ϕ(1)

)s−1
ϕ(t)+ (

ϕ(1)
)s (5.1)

uniformly for all t > 0. Note that s > 1 only depends on �2(ϕ).
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Proof. Let K ≥ 2 denote the �2-constant of ϕ. Then there exists k ∈ N with
K ≤ 2k . Define s := 1 + 1

k .
If t ∈ (0, 1], then by convexity ϕ(t)/t ≤ ϕ(1), which proves (5.1). Assume

now, that t > 1. Choose m ∈ N such that 2m−1 < t ≤ 2m , then
(
ϕ(t)

)s ≤ (
ϕ(t)

) 1
k ϕ(t) ≤ (

ϕ(2m)
) 1

k ϕ(t) ≤ K
m
k
(
ϕ(1)

) 1
k ϕ(t)

≤ 2m(
ϕ(1)

) 1
k ϕ(t) ≤ 2 t

(
ϕ(1)

) 1
k ϕ(t).

This implies for t > 1 that(
ϕ(t)

t

)s

≤ ϕ(t)2 t1−s
(
ϕ(1)

) 1
k ≤ 2

(
ϕ(1)

)s−1
ϕ(t).

This proves the claim. ��
Using (2.7), the convexity of ϕ, and �2(ϕ) < ∞ we have

ϕ′′
λ(t) ≤ c ϕ′′(λ+ t) ≤ c

ϕ(λ+ t)

(λ+ t)2
≤ c λ−2ϕ(λ+ t) ≤ c λ−2(ϕ(λ)+ ϕ(t)

)
(5.2)

uniformly in λ > 0 and t ≥ 0.

Lemma 5.2. Let ϕ satisfy Assumption 2.1. Then there exists s2 > 1 such that if
λ > 0 and uλ is a local minimizer of the functional (4.1), then Aλ(∇uλ) ∈
W 1,s2

loc (�).

Proof. Choose s > 1 as in Lemma 5.1 and let s2 := 2s/(1 + s) ∈ (1, 2), then
s = s2/(2 − s2) and 1 < s2 < s. Let B ⊂ � be a ball with radius R such that
2B � �. Then uλ ∈ W 1,ϕλ(2B) and Vλ(∇uλ) ∈ W 1,2(2B). With Lemma 2.4 and
Lemma 5.1 we estimate

|Aλ(∇uλ)|s ≤ c
(
ϕ′
λ(|∇uλ|)

)s ≤ c

(
ϕλ(|∇uλ|)

|∇uλ|
)s

≤ 2
(
ϕλ(1)

)s−1
ϕλ(|∇uλ)|)+ c

(
ϕλ(1)

)s
.

Since uλ ∈ W 1,ϕλ(B), it follows from the estimate above that Aλ(∇uλ) ∈ Ls(B).
Since s2 < s, we also get Aλ(∇uλ) ∈ Ls2(B).

Let h ∈ R
n\{0} with |h| < R. Then∫

B

|h|−2
∣∣τhVλ(∇uλ)

∣∣2
dx ≤

∫

2B

∣∣∇(
Vλ(∇uλ)

)∣∣2
dx . (5.3)

With Lemma (2.4) and Young’s inequality, with q = 2/s2 and q ′ = 2/(2 − s2), we
estimate(|h|−1|τhAλ(∇uλ)|

)s2 ≤ c
(
ϕ′′
λ(|∇uλ| + |τh∇uλ|)|h|−1|τh∇uλ|

)s2

≤ (
ϕ′′
λ(|∇uλ| + |τh∇uλ|)

)s

+ϕ′′
λ(|∇uλ| + |τh∇uλ|)|h|−2|τh∇uλ|2

≤ (
ϕ′′
λ(|∇uλ| + |τh∇uλ|)

)s + c |h|−2|τhV(∇uλ)|2
= : (I )+ (I I ).
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Due to (5.3) the term (II) is in L1(B)with bound independently of h. With ϕ′′
λ(t) ∼

ϕ(λ+ t)/(λ+ t)2 we estimate (I) by Lemma 5.1 as follows:

(I ) ≤ c

(
ϕ(λ+ |∇uλ| + |τh∇uλ|)
(λ+ |∇uλ| + |τh∇uλ|)2

)s

≤ c λ−s
(
ϕ(λ+ |∇uλ| + |τh∇uλ|)
(λ+ |∇uλ| + |τh∇uλ|)

)s

≤ c
(
ϕ(1), s

)
λ−sϕ(λ+ |∇uλ| + |τh∇uλ|)+ c(ϕ(1), s)λ−s .

The convexity of ϕ and �2(ϕ) < ∞ imply that

(I ) ≤ c(ϕ(1), s) λ−s
(
ϕ(λ)+ ϕ(|∇uλ|)+ ϕ(|∇uλ(h + ·)|)+ c(ϕ(1), s)λ−s .

Since uλ ∈ W 1,ϕ(2B), we get that (I ) is in L1(B) with bound independently of h.
Overall, we have shown that |h|−1τhAλ(∇uλ) is in Ls(B)with bound indepen-

dent of h. Thus Aλ(∇uλ) ∈ W 1,s(B). ��
Lemma 5.3. Let ϕ satisfy Assumption 2.1 and let λ > 0. Let G : R

n → R
N×n sat-

isfy G ∈ W 1,s(B) and Aλ(G) ∈ W 1,s(B) for some s > 1. Then almost everywhere
on B

∂i A jk
λ (G) = ϕ′

λ(|G|)
|G| ∂i G jk +

(
ϕ′′
λ(|G|)− ϕ′

λ(|G|)
|G|

)
G jk

|G| ∂i |G|. (5.4)

Proof. Since G and Aλ(G) are in W 1,s(B), they are absolutely continuous on
almost every line (parallel to the coordinate axes). Due to Lemma 2.6, we know
that Q �→ Aλ(Q) is C1 on R

N×n . So (5.4) follows immediately on almost every
line. ��

Let ϕ satisfy Assumption 2.1. For λ > 0 and t ≥ 0 we define

ωλ(t) := ϕ′′
λ(t) t − ϕ′

λ(t)

ϕ′
λ(t)

. (5.5)

Then by (2.7) and (2.14) it follows that there exists c0, c1 > 0 such that

c0 − 1 ≤ ωλ(t) ≤ c1. (5.6)

for all t ≥ 0 and all λ > 0. Note that c0 and c1 only depend on the constant in (2.7).
The next lemma shows that ϕλ(|∇uλ|) is a subsolution to a uniformly elliptic

problem, where the constants of ellipticity do no depend on λ > 0.

Lemma 5.4. Let ϕ satisfy Assumption 2.1. Let λ > 0, let uλ be a local mini-
mizer of the functional (4.1), and let B be a ball with 2B � �. Then there exists
Gλ : 2B → R

n×n which is uniformly elliptic and c3 > 0 (which is independent
of λ) such that

∫ ∑
kl

[
Gkl
λ (∇uλ)∂l

(
ϕλ(|∇uλ|)

)]
∂kη dx ≤ −c

∫
η
∣∣∇Vλ(∇uλ)

∣∣2
dx ≤ 0

(5.7)
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holds for all η ∈ C1
0(2B), η ≥ 0. Moreover,

min {c0, 1}|ξ |2 ≤
∑
k,l

Gkl
λ (Q)ξkξl ≤ (c1 + 1)|ξ |2 (5.8)

for all Q ∈ R
n×N and all ξ ∈ R

n, where c0, c1 > 0 are the constants from (5.6),
which depend on the constant in (2.7) but are independent of λ > 0.

Proof. Let η ∈ C1
0(2B). Let B be a ball of radius R and let h ∈ R

n\{0} with |h| ≤
min {dist(supp(η), ∂(2B)), 1}. Define ξ := |h|−2τ−h(ητhuλ), then ξ ∈ W 1,ϕ

0 (2B),
so ξ is an admissible test function for (3.1). This implies

0 =
∫

|h|−2
∑
j,k

τh
(

A jk
λ (∇uλ)

)
∂k(η τhuλ, j ) dx

=
∫

|h|−2
∑
j,k

τh
(

A jk
λ (∇uλ)

)
(∂kη)τhuλ, j dx

+
∫

|h|−2
∑
j,k

τh
(

A jk
λ (∇uλ)

)
η τh∂kuλ, j dx

=: (I )+ (I I ).

By Lemma 2.4 there exists c3 > 0 (independent of λ) such that

(I I ) ≥ c3

∫
η |h|−2

∣∣τhVλ(∇uλ)
∣∣2

dx =: c3 (I I I ). (5.9)

We choose h := rel with l ∈ {1, . . . , n} and 0 < r ≤ dist(supp(η), ∂(2B)). Then
with Corollary 3.7, we have for r → 0

(I I I ) →
∫
η|∂lVλ(∇uλ)|2 dx . (5.10)

We claim that for r → 0

(I ) →
∫ ∑

j,k

∂l
(

A jk
λ (∇uλ)

)
(∂kη)∂luλ, j dx (5.11)

and the integral is well defined in L1. By Lemma 5.2, we have Aλ(∇uλ) ∈
W 1,s2(2B) for some s2 > 1 and certainly we have uλ ∈ W 1,ϕ(2B). So it fol-
lows (for a suitable subsequence) that

(I V ) := |h|−2
∑
j,k

τh
(

A jk
λ (∇uλ)

)
(∂kη)τhuλ, j

→
∑
j,k

∂l
(

A jk
λ (∇uλ)

)
(∂kη)∂luλ, j =: (V ) (5.12)

almost everywhere for r → 0. So it remains to find a majorant for the left hand side
of (5.12) that converges in L1(2B) in order to conclude (5.11) by the dominated
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convergence Theorem. For these calculations we can keep η fixed, so the constants
in the following estimates for (I V ) may depend on η. By Lemma 2.4 we have

∣∣(I V )
∣∣ ≤ c |h|−2|τh

(
Aλ(∇uλ)

)||τhuλ| ≤ c|h|−2(ϕλ)
′|∇uλ|(|τh∇uλ|) |τhuλ|.

Now we proceed exactly as in [6] (see therein the estimate of (I2) in the proof
of Lemma 12). Define Tσel : R

n → R
n by Tσel (x) := x + σel . Then τhuλ =∫ r

0 ∂luλ ◦ Tσel dσ , so we estimate

∣∣(I V )
∣∣ ≤ c |h|−2(ϕλ)

′|∇uλ|(|τh∇uλ|) r

r

−
∫

0

|∇uλ ◦ Tσel | dσ.

With Young’s inequality (4.4) for (ϕλ)|∇uλ| and Jensen’s inequality we get

∣∣(I V )
∣∣ ≤ c |h|−2(ϕλ)|∇uλ|(|τh∇uλ|)+ c |h|−2

r

−
∫

0

(ϕλ)|∇uλ|(r |∇uλ ◦ Tσel |) dσ.

By (4.6), (4.5), and Lemma 2.4 we have

(ϕλ)|∇uλ|(r |∇uλ ◦ Tσel |) ≤ c (ϕλ)|∇uλ◦Tσel |(r |∇uλ ◦ Tσel |)+ c |V|(∇uλ)

− V(∇uλ ◦ Tσel )
2

≤ c r2 (ϕλ)(|∇uλ ◦ Tσel |)+ c |τσel V(∇uλ)|2.
≤ c r2 |Vλ(∇uλ ◦ Tσel )|2 + c |τσel V(∇uλ)|2.

So with the previous estimate and |h| = r we get

∣∣(I V )
∣∣ ≤ c |h|−2|τhV(∇uλ)|2 + c

|h|
−
∫

0

|Vλ(∇uλ ◦ Tσel )|2 dσ

+ c |h|−2

|h|
−
∫

0

|τσel V(∇uλ)|2 dσ

≤ c |h|−2|τhV(∇uλ)|2 + c

|h|
−
∫

0

|Vλ(∇uλ ◦ Tσel )|2 dσ

+ c

|h|
−
∫

0

|σ |−2|τσel V(∇uλ)|2 dσ.

From Corollary 3.7 it follows that |h|−1τhVλ(∇uλ) converges to ∂lVλ(∇uλ) in
L2(2B) for |h| → 0. As a consequence |h|−2|τhV(∇uλ)|2 → |∂lVλ(∇uλ)|2 in
L1(2B) as |h| → 0. We will show now that the second and the third term on the
right-hand side converge to |Vλ(∇uλ)|2 and |∂lVλ(∇uλ)|2 in L1(2B) for |h| → 0,
respectively. First, observe that Vλ(∇uλ ◦ Tσel ) = Vλ(∇uλ) ◦ Tσel → Vλ(∇uλ)
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in L2(2B) for σ → 0. Thus, |Vλ(∇uλ ◦ Tσel )|2 → |Vλ(∇uλ)|2 in L1(2B) for
σ → 0. Second, we have already shown that |σ |−2|τσV(∇uλ)|2 → |∂lVλ(∇uλ)|2
in L1(2B) as σ → 0. So the second and the third term on the right-hand side both
look like −

∫ |h|
0 aσ dσ with some function aσ ∈ L1(2B) with aσ → a in L1(2B).

We claim that −
∫ |h|

0 aσ dσ → a in L1(2B). Indeed, for arbitrary ε > 0 there exists
σ0 > 0 such that ‖aσ − a‖L1(2B) < ε for all σ ∈ (0, σ0). Now, we estimate for
|h| ≤ σ0.

∥∥∥∥
|h|
−
∫

0

aσ dσ − a

∥∥∥∥
L1(2B)

=
∥∥∥∥

|h|
−
∫

0

aσ − a dσ

∥∥∥∥
L1(2B)

≤
|h|
−
∫

0

‖aσ − a‖L1(2B) dσ ≤ ε.

Since ε > 0 was arbitrary, this proves −
∫ |h|

0 aσ dσ → a in L1(2B) for |h| → 0.
As a consequence we have shown the desired convergence of the second and third
term to |Vλ(∇uλ)|2 and |∂lVλ(∇uλ)|2 in L1(2B) for |h| → 0, respectively. In total
we have found a majorant of (I V ) that converges in L1(2B). This and the already
mentioned almost everywhere convergence prove our claim (5.11).

Using (I ) = −(I I ), (5.9), (5.10), and (5.11) we get after summation over
l = 1, . . . , n∫ ∑

l, j,k

∂l
(

A jk
λ (∇uλ)

)
(∂kη)∂luλ, j dx ≤ −c3

∫
η

∣∣∇(
Vλ(∇uλ)

)∣∣2
dx ≤ 0.

(5.13)

Now, with Lemmas 4.3, 5.2 and 5.3, we calculate almost everywhere
∑

jl

(
∂l

(
A jk
λ (∇uλ)

)
∂luλ, j

)

=
∑

jl

[(
ϕ′′
λ(|∇uλ|)
|∇uλ| − ϕ′

λ(|∇uλ|)
|∇uλ|2

)
∂l |∇uλ| ∂kuλ, j ∂luλ, j

+ ϕ′
λ(|∇uλ|)∂l∂kuλ, j

|∇uλ| (∂luλ, j )

]

=
∑

jl

(
∂kuλ, j ∂luλ, j

|∇uλ|2
(
ϕ′′
λ(|∇uλ|) |∇uλ| − ϕ′

λ(|∇uλ|)
)
∂l |∇uλ|

)

+ ϕ′
λ(|∇uλ|)∂k |∇uλ|

=
∑

jl

(
∂kuλ, j ∂luλ, j

|∇uλ|2
ωλ(|∇uλ|) ϕ′

λ(|∇uλ|)∂l |∇uλ|
)

+ ϕ′
λ(|∇uλ|)∂k |∇uλ|

=
∑

jl

(
∂kuλ, j ∂luλ, j

|∇uλ|2
ωλ(|∇uλ|) ∂l

(
ϕλ(|∇uλ|)

)) + ∂k
(
ϕλ(|∇uλ|)

)
,

where ωλ : [0,∞) → R is given by (5.5). Define Gλ : R
N×n → R

n×n by

Gkl
λ (Q) := δk,l +

∑
j (Q jk Q jl)

|Q|2 ωλ(|Q|).
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Then ∑
jl

(
∂l

(
A jk
λ (∇uλ)

)
∂luλ, j

)
=

∑
l

Gkl
λ (∇uλ)∂l

(
ϕλ(|∇uλ|)

)
.

This together with (5.13) implies
∫ ∑

kl

[
Gkl
λ (∇uλ)∂l

(
ϕλ(|∇uλ|)

)]
∂kη dx ≤ −c

∫
η |∇Vλ(∇uλ)|2 dx ≤ 0.

This proves (5.7). For all Q ∈ R
N×n and all ξ ∈ R

n holds
∑
k,l

Gkl
λ (Q)ξkξl = |ξ |2 + |Qξ |2

|Q|2 ωλ(|Q|).

This implies
∑
k,l

Gkl
λ (Q)ξkξl ≤ |ξ |2 + c1 |ξ |2 = (c1 + 1) |ξ |2,

∑
k,l

Gkl
λ (Q)ξkξl ≥ |ξ |2(1 + min {0, c0 − 1}) = min {c0, 1},

where c0 and c1 are the constants from (5.6).

Let us transfer this result to our original system by passing to the limit λ → 0.

Theorem 5.5. Let ϕ satisfy Assumption 2.1, let u be a local minimizer of the func-
tional (1.1), and let B be a ball with 4B � �. Then there exists G : 2B → R

n×n

which is uniformly elliptic, i.e.

min {c0, 1}|ξ |2 ≤
∑
k,l

Gkl(Q)ξkξl ≤ (c1 + 1)|ξ |2

for all Q ∈ R
n×N and all ξ ∈ R

n, where c0, c1 > 0 only depend on the constant
in (2.7), such that

∫ ∑
kl

[
Gkl(∇u)∂l

(
ϕ(|∇u|))

]
∂kη dx ≤ −c

∫
η

∣∣∇V(∇u)
∣∣2

dx ≤ 0

(5.14)

holds for all η ∈ C1
0(2B), η ≥ 0.

Proof. We proceed as in the proof of Theorem 4.9. In particular, let uλ be the
minimizer of Fλ(w) = ∫

4B ϕλ(|∇w|) dx within the class {w ∈ W 1,ϕ(4B) : w =
u on ∂(4B)}. Again we restrict ourselves to the case n ≥ 3. The other case follows
analogously. From the proof of Theorem 4.9 we know that Vλ(∇uλ) ⇀ V(∇u) in
W 1,2(2B) and ∇ϕλ(|∇uλ|) ⇀ ∇ϕ(|∇u|) in L

n
n−1 (2B).

For any λ > 0 there exists by Lemma 5.4 a function Gλ : 2B → R
n×n such

that (5.7) holds for all η ∈ C1
0(4B). These Gλ satisfy (5.8) and are therefore uni-

formly elliptic independent of the choice of λ. In particular, there exists a sequence
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λ j → 0 such that Gλ j converges almost everywhere to some G : 2B → R
n×n

which is also uniformly elliptic and satisfies (5.8). So for η ∈ C1
0(2B) the term

Gkl
λ j
(∇uλ)∂kη in (5.7) converges strongly in Ln(2B) to Gkl∂kη for λ → ∞. This

and ∇ϕλ(|∇uλ|) ⇀ ∇ϕ(|∇u|) in L
n

n−1 (2B) proves the convergence of the first
integral in (5.7) to the first integral in (5.14) for j → ∞. The convergence of the
second integral for j → ∞ follows by the lower semicontinuity of the integral with
respect to weak convergence in L2(2B) and ∇Vλ(∇uλ) ⇀ ∇V(∇u) in L2(2B).
It is obvious that the limit is non-positive. ��

Due to Theorem 5.5 we know that ϕ(|∇u|) is a subsolution of a uniformly ellip-
tic equation. Ifϕ(|∇u|) ∈ W 1,2

loc (�), then we could apply Harnack’s inequality to get

local L∞ estimates. Unfortunately, we only know so far thatϕ(|∇u|) ∈ W
1, n

n−1
loc (�),

see Theorem 4.9. To overcome this difficulty, we need the following result due to
Marcellini and Papi, proved under more general hypotheses.

Proposition 5.6. [22, Theorem A] Let ϕ satisfy Assumption 2.1. Let λ > 0 and let
uλ be a local minimizer of the functional (4.1). Then uλ ∈ W 1,∞

loc (�).

Note that we need Proposition 5.6 only to justify ϕλ(|∇uλ|) ∈ W 1,2
loc (�). We

do not use any qualitative estimates for uλ in W 1,∞
loc (�).

Lemma 5.7. Letϕ satisfy Assumption 2.1. Letλ > 0 and let uλ be a local minimizer
of the functional (4.1). Then uλ ∈ W 2,2

loc (�) and ϕλ(|∇uλ|) ∈ W 1,2
loc (�).

Proof. Let B be a ball with 2B � �. Due to Proposition 5.6 we have uλ ∈
W 1,∞(B). Let M := ‖∇uλ‖L∞(B). Due to Lemma 4.3 and Corollary 4.6 we have

uλ ∈ W 2,s1
loc (�) andϕλ(|∇uλ|) ∈ W 1,s3

loc (�) for some s1, s3 > 1. So by Corollary 3.7
we have Vλ(∇uλ) ∈ W 1,2(B). So with Lemma 4.4 and ϕ′′

λ(t) ∼ ϕ′′(λ + t) ∼
ϕ(λ+ t)/(λ+ t)2 uniformly in λ > 0 and t ≥ 0 we deduce that

∞ >

∫

B

ϕ′′
λ(|∇uλ|)|∇2uλ|2χ{|∇uλ|≤M} dx ≥ c

ϕ(λ)

(λ+ M)2

∫

B

|∇2uλ|2 dx .

This proves ∇uλ ∈ W 2,2(B). With Lemma 4.5 we estimate

∫

B

∣∣∇ϕλ(|∇uλ|)
∣∣2

dx ≤ c
∫

B

(
ϕ′
λ(|∇uλ|)

)2|∇2uλ|2 dx

≤ c
(
ϕ′
λ(M)

)2
∫

B

|∇2uλ|2 dx < ∞.

This proves ϕλ(|∇uλ|) ∈ W 1,2(B). ��
Using the previous lemma we can now provide the desired W 1,2-estimate for

ϕ(|∇u|).
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Lemma 5.8. Let ϕ satisfy Assumption 2.1, let u be a local minimizer of the func-
tional (1.1), and let B be a ball with 2B � �. Then

sup
B
ϕ(|∇u|) ≤ c −

∫

2B

ϕ(|∇u|) dx, (5.15)

−
∫

B

|∇ϕ(|∇u|)|2 dx ≤ c R−2 −
∫

2B

∣∣ϕ(|∇u|)∣∣2
dx . (5.16)

Proof. First, we prove the lemma with ϕ replaced by ϕλ. Due to Lemma 5.7 we
can apply Harnack’s inequality to (5.7) to get (5.15). The estimate (5.16) follows as
usual with the test function η := κ2ϕλ(|∇uλ|) in Lemma 5.4, where κ ∈ C∞

0 (2B)
with χB ≤ κ ≤ χ2B and ‖∇κ‖∞ ≤ c/R. Now, exactly as in the proof of Theo-
rems 4.9 and 5.5 the claim follows by passing to the limit λ → 0. ��

We will now apply the theory of subsolutions to ϕ(|∇u|) to derive the weak
Harnack inequality.

Theorem 5.9. Let ϕ satisfy Assumption 2.1. Let u be a local minimizer of the func-
tional (1.1), and let B be a ball such that 2B � �. Then

Φ
(

u,
1

2
B

)
≤ c

(
sup

B
ϕ(|∇u|)− sup

1
2 B

ϕ(|∇u|)
)

(5.17)

where Φ(u, B) := −
∫

B |V(∇u)− 〈V(∇u)〉B |2 dx is the excess functional.

Proof. Due to Theorem 5.5 we know that ϕ(|∇u|) is a subsolution of the uni-
formly elliptic equation (5.14). Moreover, by Lemma 5.8 we know that ϕ(|∇u|) ∈
W 1,2

loc (�). Therefore, we can proceed exactly as in [1] and [15, Proposition 3.1] and
apply Harnack’s inequality for subsolutions to get (5.17). ��

6. Hölder continuity of the gradients

In this section we will prove that V(∇u) and ∇u are Hölder continuous. For this we
have to strengthen our requirements on ϕ. In particular, we assume that ϕ satisfies
Assumption 2.2, which states that ϕ′′ is Hölder continuous away from zero. We
will use this property of ϕ in form of additional regularity of A, which is expressed
in the following lemma.

Lemma 6.1. Let ϕ satisfy Assumption 2.2 and let β > 0 be as Assumption 2.2.
Then there exists c > 0 such that for all H,Q ∈ R

N×n with |H| < 1
2 |Q| holds

∣∣∇N×nA(Q + H)− ∇N×nA(Q)
∣∣ds ≤ c ϕ′′(|Q|)

(
|H|
|Q|

)β
,

where c depends on ϕ only via the constants in (2.7) and (2.8).

Proof. The claim follows immediately from (2.19), (2.8), and Remark 2.3. ��
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Following the ideas of Lemma 2.10 in [1] we prove the following excess decay
estimate.

Lemma 6.2. Let ϕ satisfy Assumption 2.2 and let u be a local minimizer of the
functional (1.1). Then there exists c > 1 such that for every τ ∈ (0, 1) there exists
ε0 > 0 such that for every ball B � � holds

Φ(u, B) ≤ ε0 sup
1
2 B

ϕ(|∇u|) �⇒ Φ(u, τ B) ≤ c τ 2Φ(u, B).

Note that c and ε0 depend on ϕ only via the constant in (2.7).

Proof. We fix τ ∈ (0, 1) and will choose ε0 > 0 later. Without loss of generality
we can assume τ ≤ 1

2 . Let B � � be a ball such thatΦ(u, B) ≤ ε0 sup 1
2 B ϕ(|∇u|).

Let Q ∈ R
N×n be such that

V(Q) = 〈V(∇u)〉B

From the Lemma 5.8, Lemma 2.4, and the definition of Φ(u, B) we get

sup
1
2 B

ϕ(|∇u|) ≤ c −
∫

B

ϕ(|∇u|) dx ≤ c −
∫

B

|V(∇u)|2 dx ≤ c
(
Φ(u, B)+ |V(Q)|2).

So if ε0 <
1
2 c we can conclude

sup
1
2 B

ϕ(|∇u|) ≤ c|V(Q)|2 ≤ cϕ(|Q|), (6.1)

where we have also used Lemma 2.4.
If Q = 0, then we get by (6.1) that ∇u = 0 on 1

2 B and the conclusion of the
lemma is immediate. So in the following we can assume that Q �= 0.

Since ϕ is strictly increasing, we deduce from (6.1) that

sup
1
2 B

|∇u| ≤ c |Q|, (6.2)

where we have also used that �2(ϕ) < ∞. This proves |∇u| + |Q| ∼ |Q| on 1
2 B,

so with Lemma 2.4, ϕ(t) ∼ ϕ′′(t) t2, and �2(ϕ) < ∞, we get

Φ
(

u,
1

2
B

)
∼ −

∫

1
2 B

|V(∇u)− V(Q)|2 dx

∼ −
∫

1
2 B

ϕ′′(|Q| + |∇u|)|∇u − Q|2 dx

∼ −
∫

1
2 B

ϕ′′(|Q|)|∇u − Q|2 dx . (6.3)
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We define w := u − q, where q : � → R
n is a linear function such that ∇q = Q

and
∫
τ B u − q dx = 0. Note that (6.2) implies that

|∇w| = |∇u − Q| ≤ c |Q| on
1

2
B. (6.4)

Let v be the unique solution in w + W 1,2
0 ( 1

4 B,RN ) satisfying

∑
i jαγ

∫

1
4 B

∂ jγ Aiα(Q)∂γ v j∂αzi dx = 0 (6.5)

for all z ∈ W 1,2
0 ( 1

4 B,RN ). Then by Remark 2.12 the system (6.5) is uniformly
elliptic with lower and upper constants of ellipticity proportional to ϕ′′(|Q|). Thus
by the theory of elliptic systems we have (with constants independent of Q)

−
∫

τ B

|∇v − 〈∇v〉τ B |2 dx ≤ c τ 2 −
∫

1
4 B

|∇v − 〈∇v〉 1
4 B |2 dx (6.6)

for all τ ∈ (0, 1
4 ]. From (3.2), ∇u = w + Q, and Taylor’s formula we get

0 =
∑
iα

−
∫

1
4 B

(
Aiα(∇u)− Aiα(Q)

)
∂αzi dx

=
∑
i jαγ

−
∫

1
4 B

1∫

0

∂ jγ Aiα(Q + s∇w(x)) ds ∂γw j∂αzi dx

for all z ∈ W 1,2
0 ( 1

4 B). In combination with (6.5) this implies

∑
i jαγ

−
∫

1
4 B

∂ jγ Aiα(Q)(∂γ v j − ∂γw j )∂αzi dx

=
∑
i jαγ

−
∫

1
4 B

1∫

0

[
∂ jγ Aiα(Q + s∇w(x))− ∂ jγ Aiα(Q)

]
ds ∂γw j∂αzi dx .

(6.7)

Our goal is to estimate the right-hand side of (6.7). For fixed x ∈ 1
4 B

(I ) :=
∑
i jαγ

1∫

0

∣∣∂ jγ Aiα(Q + s∇w(x))− ∂ jγ Aiα(Q)
∣∣ds.
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Let β > 0 be as in Assumption 2.2 and q3 > 1 as in Lemma 3.5. Define β2 :=
min {β, q3 − 1}. We claim that

(I ) ≤ c ϕ′′(|Q|)
( |∇w(x)|

|Q|
)β2

. (6.8)

Case |∇w(x)| < 1
2 |Q|: Then s|∇w(x)| < 1

2 |Q| for all s ∈ [0, 1]. So with
Lemma 6.1 we estimate

(I ) ≤ c

1∫

0

ϕ′′(|Q|)
( |∇w(x)|

|Q|
)β2

ds ≤ c ϕ′′(|Q|)
( |∇w(x)|

|Q|
)β2

.

Case |∇w(x)| ≥ 1
2 |Q|: Then (6.4) implies |∇w(x)| ∼ |Q|. We estimate

(I ) ≤
∑
i jαγ

1∫

0

∣∣∂ jγ Aiα(Q + s∇w(x))
∣∣ + ∣∣∂ jγ Aiα(Q)

∣∣ds.

So with (2.19), Lemma 2.7, (2.7), �2(ϕ) < ∞, and |∇w(x)| ∼ |Q| we get

(I ) ≤ c
(
ϕ′′(|Q| + |∇w|)+ ϕ′′(|Q|)) ≤ ϕ′′(|Q|) ≤ c ϕ′′(|Q|)

( |∇w|
|Q|

)β
.

So we have proved our claim (6.8) in both cases.
We choose z = v − w in (6.7) and with (6.8) we estimate

−
∫

1
4 B

ϕ′′(|Q|) |∇v − ∇w|2 dx ≤ c −
∫

1
4 B

ϕ′′(|Q|) |Q|−β2 |∇w|1+β2 |∇v − ∇w| dx,

where we have used again that (6.5) is uniformly elliptic with lower and upper
constants of ellipticity proportional to ϕ′′(|Q|). It follows that

−
∫

1
4 B

ϕ′′(|Q|) |∇v − ∇w|2 dx ≤ c ϕ′′(|Q|) |Q|−2β2 −
∫

1
4 B

|∇w|2+2β2 dx .

Note that due to (6.2), ∇w = ∇u − Q on 1
2 B, and Lemma 2.4 we have

ϕ′′(|Q|)|∇w|2 ∼ ϕ′′(|Q| + |∇u|)|∇u − Q|2 ∼ |V(∇u)− V(Q)|2. (6.9)

So with the previous estimate and ϕ(t) ∼ ϕ′′(t)t2 (see (2.4) and (2.7)) we get

−
∫

1
4 B

ϕ′′(|Q|) |∇v − ∇w|2 dx ≤ c
(
ϕ(|Q|))−β2 −

∫

1
4 B

|V(∇u)− V(Q)|2(1+β2) dx .
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Now with Jensen’s inequality and Lemma 3.5 (using 1 ≤ 1 + β2 ≤ q3) we deduce

−
∫

1
4 B

ϕ′′(|Q|) |∇v − ∇w|2 dx ≤ c
(
ϕ(|Q|))−β2 −

∫

1
4 B

|V(∇u)− V(Q)|2(1+β2) dx

≤ c
(
ϕ(|Q|))−β2

(
−
∫

1
2 B

|V(∇u)− V(Q)|2 dx

)1+β2

.

(6.10)

We will use this estimate later in our calculations. Let us now start to estimate
Φ(u, τ B). Using Lemma 2.4 we estimate

Φ(u, τ B) = −
∫

τ B

|V(∇u)− 〈V(∇u)〉τ B |2 dx

= inf
H∈RN×N

−
∫

τ B

|V(∇u)− H|2 dx

≤ −
∫

τ B

|V(∇u)− V(〈∇u〉τ B)|2 dx

≤ c −
∫

τ B

ϕ′′(|∇u| + |〈∇u〉τ B |) |∇u − 〈∇u〉τ B |2 dx

= c −
∫

τ B

ϕ′′(|∇u| + |〈∇u〉τ B |) |∇w − 〈∇w〉τ B |2 dx . (6.11)

We claim that

|∇u| + |〈∇u〉τ B | ∼ |Q|. (6.12)

From (6.2) it is clear that |∇u| + |〈∇u〉τ B | ≤ c |Q| on τ B (using τ ≤ 1
2 ). To show

the converse, we will show that |〈∇u〉τ B | ≥ c |Q|.
ϕ(|Q|) ≤ c ϕ′′(|Q|)|Q|2

≤ cϕ′′(|Q|) (|〈∇u〉τ R − Q|2 + |〈∇u〉τ R |2)

≤ c ϕ′′(|Q|)
(

−
∫

τ B

|∇u − Q|2 dx + |〈∇u〉τ B |2
)

≤ c ϕ′′(|Q|)
(
τ−n −

∫

B

|∇u − Q|2 dx + |〈∇u〉τ B |2
)
.

Now, (6.3), our assumption Φ(u, B) ≤ ε0 sup 1
2 B ϕ(|∇u|), and (6.1) imply

ϕ(|Q|) ≤ c
(
τ−nε0 sup

1
2 B

ϕ(|∇u)| + ϕ′′(|Q|)|〈∇u〉τ B |2)

≤ c
(
τ−nε0 ϕ(|Q|)+ ϕ′′(|Q|)|〈∇u〉τ B |2).
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Now, this is the first of two places where we need to choose ε0 > 0 small (depending
on τ ). If τ−nε0 <

1
2c , then we obtain (using ϕ′′(|Q|) |Q|2 ∼ ϕ(|Q|)) that

|Q|2 ≤ c |〈∇u〉τ R |2.
This was the missing step to prove (6.12). Now, combining (6.12) with (6.11) (using
also ϕ′′(t) t2 ∼ ϕ(t) and �2(ϕ) < ∞) we get

Φ(u, τ B) ≤ c −
∫

τ B

ϕ′′(|Q|) |∇w − 〈∇w〉τ B |2 dx . (6.13)

We estimate

−
∫

τ B

|∇w − 〈∇w〉τ B |2 dx

≤ 2 −
∫

τ B

[|∇v − 〈∇v〉τ B |2 + |∇v − ∇w|2] dx

≤ c

(
τ 2 −

∫

1
4 B

|∇v − 〈∇v〉 1
4 B |2 dx + τ−n −

∫

1
4 B

|∇v − ∇w|2 dx

)

≤ c

(
τ 2 −

∫

1
4 B

|∇w − 〈∇w〉 1
4 B |2 dx + τ−n −

∫

1
4 B

|∇v − ∇w|2 dx

)
.

Now, combining (6.13), the previous estimate, ∇w = ∇u − Q, (6.10), and (6.3)
we get

Φ(u, τ B) ≤ c τ 2ϕ′′(|Q|) −
∫

1
2 B

|∇u − Q|2 dx + cτ−nc
(
ϕ(|Q|))−β2

×
(

−
∫

1
2 B

|V(∇u)− V(Q)|2 dx

)1+β2

≤ c τ 2Φ(u, B)+ c τ−n(
ϕ(|Q|))−β2

(
Φ(u, B)

)1+β2 .

Using Φ(u, B) ≤ ε0 sup 1
2 B ϕ(|∇u|) and (6.1) we estimate

Φ(u, τ B) ≤ c
(
τ 2 + τ−nε

β2
0

)
Φ(u, B).

Now, this is the second place where we need to choose ε0 > 0 small (depending

on τ ). If we additionally assume ε0 ≤ τ
2+n
β2 , then

Φ(u, τ B) ≤ c2 τ
2Φ(u, B) (6.14)

for some c2 > 0. Note that c2 does not depend on τ . ��
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Exactly as in [15, Proposition 3.2], we can remove the hypotheses in Lemma
6.2 by proving the following lemma.

Lemma 6.3. Let ϕ satisfy Assumption 2.2 and let u be a local minimizer of the
functional (1.1). Then there exists c > 1 such that for every τ ∈ (0, 1) there
exists ε0 > 0 and δ ∈ (0, 1) such that for every ball B � � one of the following
alternatives holds:
(a) Φ(u, τ B) ≤ c τ 2Φ(u, B),
(b) Φ(u, B) > ε0 sup 1

2 B ϕ(|∇u|) and sup 1
4 B ϕ(|∇u|) ≤ δ sup 1

2 B ϕ(|∇u|).

Proof. Fix τ ∈ (0, 1). Without loss of generality we can assume τ < 1
4 . Choose

ε0 > 0 as in Lemma 6.2. We will choose δ > 0 later.
If the second alternative (b) is not true, then

Φ(u, B) ≤ ε0 sup
1
2 B

ϕ(|∇u|) (6.15)

or

Φ(u, B) > ε0 sup
1
2 B

ϕ(|∇u|) and sup
1
4 B

ϕ(|∇u|) > δ sup
1
2 B

ϕ(|∇u|). (6.16)

In the case of (6.15) we deduce from Lemma 6.2 that (a) holds. So in the following
assume that (6.16) holds. The Harnack inequality (5.17) then yields

Φ
(

u,
1

4
B

)
≤ c

(
sup
1
2 B

ϕ(|∇u|)− sup
1
4 B

ϕ(|∇u|)
)

≤ c (1 − δ) sup
1
2 B

ϕ(|∇u|) ≤ c
1 − δ

ε0
Φ(u, B)

and therefore

Φ(u, τ B) ≤ c τ−nΦ
(

u,
1

4
B

)
≤ cτ−n 1 − δ

ε0
Φ(u, B)

So choosing δ close to 1 in such a way that cτ−n 1−δ
ε0

< τ 2, we conclude again that

Φ(u, τ B) ≤ τ 2Φ(u, B)

We notice that δ depends on τ , but not on B. ��
Now, based on Lemma 6.3 the standard iteration technique (see the proof of

Theorem 3.1 in [15]) allows us to conclude with the following theorem.

Theorem 6.4. Let ϕ satisfy Assumption 2.2 and let u be a local minimizer of the
functional (1.1). Then there exists σ > 0 such that for all balls B � � and all
λ ∈ (0, 1) holds

Φ(u, λB) ≤ cλσΦ(u, B).
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From Campanato’s characterization of Hölder continuous functions, see chap-
ter III of [14], we immediately conclude the local σ -Hölder continuity of V(∇u).
So together with Lemma 2.10 we get the following result.

Theorem 6.5. Let ϕ satisfy Assumption 2.2 and let u be a local minimizer of the
functional (1.1). Then there exists σ > 0 such that V(∇u), ∇u, and A(∇u) are
locally σ -Hölder continuous.

Acknowledgments. We would like to thank the referee for many helpful comments, which
improved the quality of the paper significantly.
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