Forum Mathematicum manuscript No.
(will be inserted by the editor)

Lars Diening - Frank Ettwein

Fractional Estimates for Non-Differentiable
Elliptic Systems with general Growth

Reviewed: ???

Abstract In this paper we study the regularity of weak solutions of thiptadl
system—div(A(x,0u)) = b(x,0Ou) with non-standarag-growth condition. Here

¢ is a given Orlicz function. We are interested in the case wiheandb are

not differentiable with respect tobut only Holder continuous with exponent.

We show that the natural quanti4(Cu) is locally in the Nikolski space # 92,

From this it follows that the set of singularities\éfCu) has Hausdorff dimension
less or equah — 2a, wheren is the dimension of the domaif2. One of the
main features of our technique is that it handles the case op-begplacian for

1< p< «in a unified way. There is no need to use different approaches for the
casep < 2andp > 2.

Keywords Elliptic Systems; Singular set; Hausdorff dimension; Orkemction;
non-differentiable

Mathematics Subject Classification (2000)35J60; 35D10

1 Introduction

In this paper we are concerned with fractional estimates for weaki@as of the
system

—div(A(x,0u)) =b(x,0u) inQ (1.2)
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whereQ c R" is a bounded, open domain. We assume that the elliptic operato
satisfies non-standau-growth andg-monotonicity conditions, i. e.

(AxP)~A(x.Q)) (P-Q) > co"(|P|+|Q]) P~ Q%
IA(xP)—A(x Q)| < c¢"(IP|+Q|)IP-Q,
A(x,0) =0.

whereg is a given Orlicz function. Moreover, we assume that the veattadiA :
Q xRN L RNXN gndb @ Q — RN*" — RN*N satisfy the following continuity
and growth assumptions with respeckto

IA(X,Q) —A(x, Q)| < c[x—xo| " '(|Ql),
b(x.Q)l < c(¢'(IQ)+9(¥),
[b(x,Q) —b(%0,Q)| < c|x—x0|™ (¢ (IQ) +g2(X) + G2(%0)).,

04P) b0 Q) < c0'(Pl+ ) )
’ T Pl +]Q
with ay, a2, a3 € (0,1] and suitabley;, gy : Q — [0, ).
The standard examples for the Orlicz functiprare

‘Pl(t):/ot(u%z)&?sds ¢2(t)=/ot(/~l+s)szsds

whereu > 0. The p-Laplacian corresponds to the choijge= 0. Systems which
such a type of growth conditions have been studied by manyestbr special
situations.

The first partial regularity results for non-linear elliptic systewere achieved
by Morrey [21], followed by Giusti and Mirandal5] and Giusti [L3]. The work
has been continued for example by Evafis Giaquinta [L0], Carozza, Fusco,
Mingione [6], and by Duzaar and GrotowsI&]f

Suppose thati is a weak solution to1(1) and let> denote the set of sin-
gularities of(Ju, see Sectiorb for precise definition. In this situation we try to
show that> is reasonable small, i. e. that the Hausdorff dimensiah isfsmall. If
a1 =1 then we speak of a differentiable elliptic system. For difféedie systems
and minimizers withp = 2 it is shown, e.g. in10] and [14] that the Hausdorff
dimension is strictly less tham— 2.

The nonlinear, differentiable case wiphgrowth (the case;) has for example
been considered by Acerbi and Fusth They show that the Hausdorff dimension
of Z is strictly less or equal ta— pfor 1 < p < 2. Forp > 2 it can seen by9],
[11], and ] that the Hausdorff dimension is less or equahte 2. Let us point
up here that the cases<1p < 2 andp > 2 required different techniques in the
mentioned papers. It is one of the main advantages of our agptbat such
distinction is not necessary anymore.

For non-differentiable systems for a long time it has only beewkiiat> has
Lebesgue measure zero. So the question arose if it is possiblengae control
of X for non-differentiable systems. In particular, Giaquinta and Madsked
in their paper 12] and also in the bookl[0], pg. 191, wether the Hausdorff di-
mension of the singular set could be estimated. In his twolestité9] and [20]
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Mingione gave the answer to this question in the cpse 2, i. e. that the di-
mension is always less than— 2a if u is Holder continuous and is allowed

to depend also on. Further he could show that this result is still true in lower
dimension § < 4) if one drops the a priori Blder continuity assumption. For
higher dimensions he showed that the dimension is alwagslesn which was
not known even for the Lipschitz casg = 1. Our main motivation was to transfer
these results to the case of arbitrary Orlicz function, thus inctuthe full case

1 < p < . Hereby, it was of great importance to us that the used technitle
not distinguish the casesd p < 2 andp > 2. By the difference quotient method

2
Mingione shows thaflu is in the SoboIev—SIobodedl«'NTB"p foranyp < a. In
Mingione’s papers the estimates are actually carried out inIskkiospaces and
then at the end translated to fractional Sobolev spaces. Ratdreestimating the
Ou we prefer to estimate the natural quanttyCu), which in the case o, is

given byV(Ou) = (u+ |Du\2)pT2Du. Additionally, we choose to be the set of
singularities ofV (Ou) instead ofJu. We will see that this is much more natural
for the non-linear systeml(1). We show thal/ (Cu) is locally in the Nikolski
space# @2, This will be proven by the difference quotient method. Theneste
for the Hausdorff measure &f(V(Ou)) is then a consequence of this regularity
information. We will show that the Hausdorff dimensiondis less or equal to
n—2a.

Since our approach works for arbitrary Orlicz functions, it espgciabrks
for the full range 1< p < . Therefore, our technique is new even in the case of
differentiableA with no x-dependence &.

Additionally, we derive estimates of Cacciopoli and GehriyyetforV (Ou).
The result is based on a new, generalized Potuegquality for arbitrary Orlicz
functions. This inequality might be of independent interest.

Under similar assumption partial regularity can be proved,V.@lu) is Holder
continuous on the complement of the singular set. This vélthe content of a
forthcoming paper.

2 Notation and Basic Properties

Let Q C R" be an bounded, open domain. Bywe will always denote a cube in
R" with sides parallel to the axis. We wri@ € Q if the closure ofQ is contained
in Q. Let|Q| denote the volume and lend@) the side length o®. For f € L(Q)

we define
1
][Q f(x)dx:= Q /Q f(x)dx

By kQ, with k > 0, we denote the cube with the same center latighes the
side length. For function$, g on Q we define(f,g) := [, f(x)g(x)dx Fora,b e
R" we denote bya, b] the straight line segment fromto b. If a # b we define
th. -~ dsto be the mean average integral over the [ad]. ForU,W c R" we
defineU +W :={u+w: ueU,weW}. We write f ~ giff there exist constants
Co,C1 > 0, such that

cof <g<cf,
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where we always indicate on what the constants may depentdrfombre, we use
¢ (no index) as a generic constant, i. e. its value my change fragrtdidine but
does not depend on the important variables.

The following definitions and results are standard in the comtedt-function
(see e.g.72)). A real functiong : RZ% — R=C is said to be amN-function if it
satisfies the following conditions: There exists the derieait/of ¢. This deriva-
tive is right continuous, non-decreasing and satisfi€d) = 0 and¢’(t) > 0 for
t > 0. Especiallyg is convex.

We say thatp satisfies theé\,—condition, if there exists; > 0 such that for all
t > 0 holds¢(2t) < c1¢(t). By A2(¢) we denote the smallest constant Since
(1) < ¢(2t) the A, condition is equivalent t@ (2t) ~ ¢ (t). For a family¢, of
N-functions we definé,({¢, }) := sup, A2(¢, ).

By L? andW™-¢ we denote the classical Orlicz and Sobolev-Orlicz spaces, i. e.
fcLOiff [¢(|f])dx< o andf e WL iff f,Of cL?.

By (¢)~1 : R=% — R=% we denote the function

(#)7H(t) :==sup{ue R=° : ¢’(u) <t}.

If ¢’ is strictly increasing theri¢’) ! is the inverse function o§’. Theng¢* :
R=0 — R=0 with

00 = [ (9 (o)

is again aN—function and ¢*)'(t) = (¢’)~1(t) for t > 0. Itis the complementary
function of ¢. Note that(¢*)* = ¢. For all d > 0 there existgs (only depending
onlz({¢,9*}) such that for alt,u > 0 holds

tu<op(t)+csd*(u). (2.1)
This inequality is called Young'’s inequality. For &l 0

%rb’(%) <P(t) <t¢'(t),

X X (2.2)
o(F) com=o(2Y).
Therefore, uniformly irt >0
() ~9'(Ot, 7 (d'(1) ~ (1), (2.3)

where the constants only depend&yi{¢,¢*}). If p(t) =a¢(bt) for somea,b >
0 and allt > 0, then

) =as (). (2.4)
If ¢ andp areN—functions withg (t) < p(t) for allt > 0, then
pi(t) < 9 (1) (2.5)

forallt > 0.
In most parts of the paper we will assume tipasatisfies the following as-
sumptions:
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Assumption 1 Let ¢ be an N-function such thaiy({¢,¢*}) < . Further as-
sume thatp is C? on (0, ) and uniformly in t> 0

¢'(t) ~ 1" (1), (2.6)
As already mentioned in the introduction we will assume thatthctor field
A : Q x RN*N _, RNXN gatisfies the non-standagdgrowth condition, i. e.
(A(XP)=A(xQ))- (P-Q) >c¢"(IP|+ Q) [P— QP
[A(X,P) —A(x,Q)| < c¢”(IP|+|Q[)IP-Q]

and the continuity and growth condition

|A(X7Q)7A<X07Q)| Sclexo‘al(p/('Ql)v (28)

where 0< a1 < 1 and¢ satisfies Assumptiof.

It is interesting to know that for everg as in Assumptionl there exists
A : Q — RN*" that satisfies4.7). The construction of such can be found
in Lemma?21 in the appendix. It is possible to multiplix by some function
H : Q — (0,0) which is uniformly a1-Holder continuous and is bounded from
above and below. The2(7) and @.8) still hold.

Remark 10ur standard examples férand¢ are

A(x.Q) = u(x)|QP*Q, ¢'(t) :=tP1

2.7)

and

A(x,Q) := pu(x) (1+]Q))P*Q, ¢'(t) == (1+1)P2t,

where 1< p< o, 0< a1 <1, andu : Q — (0,) is a;-Holder continuous and
bounded from above and below.

For giveng we define theN-function ¢ by

Yo . <¢'(t)>%_ (2.9)

t t

It is shown in Lemma25 that ¢ also satisfies Assumptioh and uniformly in
t > 0 holdsy” (t) ~ \/¢”(t). As in Lemma21 we define® : RN*" — R=0 py
Y(Q) := ¢(|Q|) and letV(Q) := (Onxn¥)(Q) = l,U/(|Q\)%. From the same
lemma it follows that 2.7) holds withA, ¢ replaced by, (.

Remark 2The examples given in Rematkcorrespond to

V(Q:=1Q|7 Q. W)

p
2

t

and

p—2 p=2

V(Q):=(1+|Q))z Q, Yt =(1+1) 2t

where 1< p < oo,
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We introduce a family oiN-function {¢a},-o by @i(t)/t := ¢'(a+1)/(a+t)
which basically state@/ (t) ~ ¢ (a-+t) uniformly ina,t > 0. The basic properties
of ¢4 are given in the appendix, see Definitid® and thereafter. The connection
betweerA, V, and{¢a} .. is best reflected in the following lemma.

Lemma 3 LetA, ¢ satisfy Assumptiohand(2.7). Lety,V be defined as i2.9).
Then

(A(XP)~A(xQ))- (P—Q) ~ [V(P) = V(Q)|? (2.10a)
~ ¢ (IP-Q), (2.10b)
~[P—QF¢"(IP|+1Q]). (2.10c)

uniformly inP,Q € RN*" and xe Q. Moreover,

A(x,Q)-Q~|V(Q)*~ ¢(IQl) (2.10d)

uniformly inQ € RN*" and xe Q.
Note that if¢”(0) does not exists, the expression(t1109 is continuously
extended by zero fgP| = |Q| = 0.

The lemma will be proven in the appendix. The different represientof .10
will be useful at different stages of our proofs. The one witappears when we
test the differential operator div(A(Cu)) by a suitable test function. The one
with V is useful to write down information, since most of the informationuo
will be expressed in information ovi(Cu). The representation witf, simplifies
the proofs. The functiol also appears in the study of minimizers of the form
J ¢ (|0uf)ydx

For the right hand side of the systerh.1) we assume that the vector field
b : Q — RN*"_, RN*N satisfies the following continuity and growth assumptions
with respect tox:

Ib(x,Q)| <c(¢'(|Q]) +91(x)), (2.11a)
b(6,Q) — b(x0.Q)| < clx—x0]% (#'(1Q) + &2 + Golx0),  (2.11b)
Ib(x P) — b(x,Q)| < c4'(|P| +Q]) (; +|%') 3 (2.11¢)

with a2, a3 € (0,1], 91,02 : Q — R=%, and¢*(|ga|), ¢*(|gz|) € LY for someq > 1.
Again, it will be useful to introduce a suitable family Nf-functions{¢a ., } ,-.o t0
clarify the natural choice of the growth conditich {19. Especially, lets(t) :=
1/(az+1)t9+1 i e. wh(t) =t then @.119 can be rewritten as

|b(X, P)_b(X>Q)‘ §C¢(p‘7%(|P—Q|)7 (2-12)

whereg, , is given in Definition22. We will see later in the proof of Theorefrl
and Lemmal 2 that this form of continuity condition is the natural one.
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3 Cacciopoli Estimates and a Gehring Type Result

In the following assume thatis a weak solution of system (1) in the sense that
u satisfies {.1) in the distributional sense and that € L? (Q). In view of (2.109
this is equivalent t&/ (Cu) € L2(Q). We start with a lemma of Cacciopoli type. At
this point we would like to mention that in order to keep to iiotas short we will
often skip the explicit dependence rnFor example we will rather writé (Ou)
instead ofA(x, (du)(x)). NeverthelessA will still depend onx.

Theorem 4 Letu be a weak solution of systgfh 1). Then there existse 1 such
that for all cubes Q witl2Q € Q holds

fooupaxsefo( M= axre forqanae @
Q 2Q 2Q

where R is the side length of the cube Q. The constant c ongndism, ({ @, ¢*})
and the constants i(2.6), (2.7), (2.8), and(2.112).

Proof For fixedQ andR:= length Q) let n € C5(2Q) be a cut-off function with

Xo < n < X20 and|dn| < ¢/R We pick the test functiod := n%u— (u)g) and
obtain

(A(Du),n90u) = —(A(Du),qn%*(u—(u)o) ® (On))
+(b(0u), nH(u = (u)q))-

The exponend) will be chosen as follows. By Lemntl there exisk, ¢, > 0 with
(A1) < oA EP(t) uniformly int > 0 andA < [0,1]. We fixq > 1 large enough
such thaf{1+¢) (q—1) > q. In particular, uniformly int > 0

$(nI ) <cano(t). (3.2)
The monotonicity and growth conditions @dnandb imply

1 gy U= (Wl
[ ne(muhdxsc [ ntg'(mu) E e dx

+e [ n%(9'(10ul) + 1) lu— (ol dx
According to Young’s inequalityq.26) we derive fore > 0
[ nio(ouhax<e [ ¢*(nT'(0u))dxe [ n%(0u))dx
J2Q J2Q 2Q

. /2Q¢(“‘F<;‘>Q) o [ ¢ () dx

where we have used thBt< ¢(Q), sinceQ is bounded. (This is the only place in
the paper where we use the boundednes2.pNote that by 8.2) and .3

¢*(n91¢’(|0ul)) <cné*(¢’(|0ul)) ~n9¢(|0u)).
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Thus for smalle > 0 we deduce

[etouaxse [ o(M=8 ) dxre [ ov(aa

where we have usegl® > xq. This the Theorem.

Remark 51t is easy to see that Theorefnand the results below remain valid if
we use balls instead of cubes.

From Theorem4 we want to derive an estimate of Gehring type, i.e. some re-
verse Hlder estimate. It is standard to use the ingenious lemma afu@ita and
Modica:

Proposition 6 (Giaquinta-Modica) Let @ C R" be a cube, G= L1(Qp), and
H € L%(Qp) for some g > 1. Suppose that for sontee (0,1), c; > 0, and all
cubes Q with2Q € Qo

1

9
][|G\dx§ cl(][|Gedx> +][|H\dx
Q 2Q

2Q

Then there existg> 1 and @ > 1 such that Ge L (Q) and for all ¢ € [1,q4]

1 1
(][GWde) ® < c2][|e|dx+c2 <7[ H|q2dx) .
Q 2Q 2Q

Another important tool in our proof will be the following generation of the
Poincagé’s inequality.

Theorem 7 (Poincae type)Let¢ be an N—function witl,({¢, $*}) < co. Fur-
ther, let QC R" be some cube with side length R andiet L*(Q) with w > 0and
Jow(x)dx= 1. Then there exis®8 < 6 < 1, which only depends of({¢,¢"}),

and there exists K> 0, which only depends of>({¢,¢*}) and R'||w||,,, such
that for all v € W-¢(Q) holds

1

]£¢<|V_é">‘*’|> dng(]é(cp(Dv))edx)y, (3.3a)

where(v), = / V(X) w(X) dx.
JQ
Note that for the special choiae := |Q| * xo we have(v), = (V)o.
Proof SinceAx(¢*) < o it follows from [17] (Lemma 1.2.2+1.2.3) thap? is

guasiconvex for some—l% < 6 < 1,i.e. there exists aN—functionp with ¢ ~
p andAy({p,p*}) < co. It is important to remark tha and A,({p,p*}) only

depend oM, ({¢,$*}). We deduce thap(p~1(t)) ~t7. LetL := Fop(Ov)dx
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If L =0 thenv is constant orQ and there is nothing to show. So we assume that
L > 0. From L8] (Lemma 1.50) we know that for almost alke Q holds

v — (ol <c | Xm_vy%)'ldy, (3.9)

where the constant only depends®H| w||,-
With (3.4) andAx(¢) < o we estimate

][¢< )dx J[¢</<3R||XDV§|”|1 E)

Sinceq RYx— £|1’”dx§ cindependent of andx € Q, we can apply Jensen’s

inequality to the convex functiop and the measur@ 1 |x — E|l’ddf. This im-
plies

(<o popto( [ p(OVEN) RHx- &"de ) ax
Q

O Rx—&*"d >9d
gc]i(./qu V(&) R x— [+ de ) dx
<cRVO fLYoRYo (][ L1p (/v (E) ) x— E|1‘“ds> ®dx
Q Q

where we have usedy({p,p*}) < . Now Jensen’s inequality applied to the
convex functiort — t/¢ and the measure 1p(|0v(&)|) d& gives

(1) < cRMY/0 L L10 f13p(|ov(E)]) (- &) P dg ox
Q Q

< CR(n—l)/G Ll/e—l][p(“jv(f)') dé R(l—n)/@

which is possible sincé;" > —n. By definition ofL

W <C<][p(|DV(E)|)dE)% <C<][¢9(|Dv(£))d,§>%
© Q

This proves the theorem.

Remark 8 Theorem? is probably well-known among experts, but we could not
find a reference. A proof of the simplified caBe= 1 andw = |Q|’1XQ can be
found in [4]. Nevertheless, we need the sharper version @ith 1 in Theoren®

in order to apply Propositio. Moreover, we will need the version with general
w in a forthcoming article.
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We are now able to prove the reverséléter estimate.

Theorem 9 Letu be a weak solution of systgfh 1). Then there exists,g> 1 and
¢ > 1such that for all cubes Q witBQ € Q and all q< [1,q;] holds

(][ V(Du)|2qu> : < c][ |V(Du)|2dx+c<][ (¢*(g1))qu) %, (3.5a)
Q 2Q 2Q

Especially, by(2.109 we haveg (|0u|) € L% (Q). The constants ¢ and;enly

loc

depend o, ({ ¢, ¢*}) and the constants i2.6), (2.7), (2.8), and(2.11).
Proof Due to Theorend we have

Jouupaxse f o( M= axic [ (@ ax

Q 2Q 2Q

By Theorem? there exist® € (0,1) only depending od\z({¢,¢*}) such that

Jotounaxso( f <¢<|Du|>)9dx)é+cf¢*<gl>dx
Q 2Q

2Q

From Propositiord we deduce that there exigig > 1 such that for al € [1, 1]

<][(¢(|Du|))qu)é < C][¢(|DU|)dx+c<][ (¢*(g1))qu)é'
Q 20

2Q
This and 2.109 proves the theorem.

Remark 10Note that similar results regarding higher integrability hagerbproved
in [7] by A. Chianchi and N. Fusco.

4 Modified Difference Quotient Method

In this section we derive higher regularity of the solutinrespecially we show

thatV (Ou) is locally in the Nikolski space 4 -2, To prove this we use a modified
version of the difference quotient method. Instead of plain difiees we will at a

certain stage consider averages of differences. Let us intradaa®tations: For

X,s € R" we define

Ts(X) :=xX+5, (1sF)(X) := f(x+5) — f(X).

The main theorem is the following.
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Theorem 11 Let u be a weak solution of systefh.1). Then there existszc> 0
such that the following holds: If @ Q is a cube witl20Q € Q and if he R™\ {0}
with |h| < R then

JrvEuPaxscp® i (f VOwPdc [ 0'@dx). @
Q 20Q 20Q

where(R, |h|) := |h‘ + ‘h|R + |h|f“3 +|h[?% 4 |h|**92, The constantgonly
depend omz({(p,(p }) and the constants i(2.6), (2.7), (2.8), and(2.11).

We split the proof in two parts and begin with the following lemma

Lemma 12 Letu be a weak solution of systefh.1). Then for eveny > 0 there
exists g > 0 such that the following holds: If @ Q is a cube with4Q € Q and
if h,se R"\ {0} with |s| < |h| <R then

][|TSV(|:|U Pdx< & “S1||][][TAV (Ou)|*dxdA
Q (4.2)

+esB(RIN) £ IV (0u)Pdcr el £ ¢ (gz) dx
and

h
1T, V(Ou)>dxdA < & 17, V(Ou)|? dx dA
1 I
+csB(R In) £ 1V(0u)Pax-+clnf* £ ¢* (g2) dx

wheref(R, |h|) is defined as in Theorefi.

Proof As in the classical approach we first appyto our system1.1). LetQ, R,
andsbe as required anél € C3(Q). Then

(ts(A(Ou)), 0¢) = (1s(b(DU)), &)

(Recall that(f,g) := [, f(X)g(x)dx) As before we skipped the explicit depen-
dence orx in order to keep the notations short, Buandb nevertheless depend
onx. As in the proof of Theorer® we can choose with the help .25 some

g > 1 andc, > 0 such that

$a(n91t) < can9ealt). (4.4)

uniformly int,a > 0. Letn € C3 be a cut off function withxg < n < x20 and
|0n| < ¢/R. Then we use the test functidn= n9tsu. We get

(ts(A(Ou)), 0(n%7su)) = (15(b(0u)), nTsu). (4.5)
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Everything will be derived from this equation. We define

As(X) := A(x,0u(x+5)) —A(x,0u(x)),
Bs(x) 1= A(x+s,0u(x+9)) —A(x,Ou(x+s)),
%s(x) :=b(x,0u(x+s)) —b(x,0u(x)),
Zs(x) :=b(x+s,0u(x+s)) —b(x,Ou(x+9)),
then
(ts(A (D)) (x) = (x) + Bs(x),
(ts(b(B))) (x) = Cs(x) + Zs(x).
Now (4.5) reads
(s + Ps,0(NTsU)) = (s + Zs,nITsU). (4.6)

Let (1), (1), (111), and (IV) be the four summands i ©). Let us collect the
fundamental estimates fors, A5, €s, andZs:

s T ~ @y (|Ts0u]) ~ [TV (Ou) 2, (4.72)
|| < €[y (TsLu)), (4.7b)
| Bs| < c|s|*¢’(|OuoTy|), (4.7c)
|Gs| < €|y 5 (170U, (4.7d)
|Z¢ < cls|®2(¢'(|OuoTs|) +g2+G20Ts), (4.7e)

wherew; is defined bywj(t) := t?. These inequalities follow directly from the
assumptions.7) and @.8) on A, the assumption®(11) and @.12 onb, and the
fundamental lemma which provides the connection &, V, ¢, and{¢a},-o. As
an example we will derive4(7g and @.7b) in detail: B

5(X) - (Ts0u) (%)
= (A(x, Ou(x+s)) —A(X, Du)(x))) - (1s0u)(x)

~ ¢"(|0u(x+s)|+|0Ou(x)|) \(rsDu)(x)\2 by (2.7)
~ ¢oup((TsLU) (X)) by Lemma24

~|(tV(Ow) (0> by (.10,
| A(X)] = |A (% (Ou)(x+8)) —A(x, (Ou)(¥))]

< 09"(|0u(x-+9)|+0u()) [(LEWK| by .7
~ S0uge (W) by Lemma24

We split0€ into 0& = n9ts0u+qn% 1 (tsu) ® On. Then
(1) = (s, nTs0U) + (%, qn It (Ts0) @ 0ON) =: (1) + (I2).
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Analogously, we splitll ) into (111) + (112). By (4.79
(I1) = (o, nTs0u) ~ /anq|TsV(Du)|2dx (4.8)

This term is the good term while all other terms have to be coetlolWsing ¢.7b
and the estimates din we estimate|ly).

|TsU|

(I12) <c/ A TG AT (4.9)

Since our good terrfl1) only carries information oflu we have to find a way to
estimatersu in terms oflfJu: The representation

(Tsu)( /zau Y(X+A) |d)\

provides the estimates
S
[(Tsu) (X)| < \Sl][I(DuoTA)(X)IdA- (4.10)
0

From @.9) and @.10 we get

S

(1) < c/ N9/ (1s0ul) 7[ %mu@md)\ dx (4.11)
2Q :
0
Let us define

, h
(9) = 1 gl (0 [ u o Ty
Please notice thi|/Rinstead ofis| /R. We will need the remaining factdg|/|h|

later. From Lemma&9 (with a= Ou, b=OuoTs, w(t) = %tz, ande={uoT,)
we deduce

_ h
() <60 (e ([T 2 DU T ) + By (11000 ) 1Y 000 T
Now, Young’s inequality §.27), (4.4), (6.22), and .109 imply

(3) < 8 (e, )" (17 oo (T A DuoTa )
+ 6 (@muem, )" (1% 9o, (T2 Cu))
+C5 $|0uoT, | (':,||DUOTA |>
< 20N Pnyer, | (|Ts A DU Ty |) + 20N e, (T2 D)

+Cs u(l)(\DUoT )

Bt AV(0U) Ty P+ 80 3V o5 L v (Tue T2
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Let us combine this with4.11) then

S
() <& /2Qr7q|'§'| It V() 0Ty P+ 1V (0w 2dA dx
0

(4.12)
* V(OuoTy)[?d
+Céﬁ Q| (BuoTy)[“dx,
Note that in general fois| < |h| <R
S
/][|(foTA)(x)|d)\dx§c/ I (%) dx (4.13)
2Q0 4Q

S S
/ ][\(TS_AfoT,\)(x)|d)\ dx < c/ ][|rAf(x)|d/\ dx  (4.14)
2Q 4Q
0 0
This, @.12), and|s| < |h| imply
s 2
als 2 1h* 2
)<s [ n IV (Ou)PdAdx+cs o [ [V(OwPdx  (4.15)
JaQ |h|.O R Jag

We estimate|ll,) with (4.79 andxo < n < X290
(I11) = (%5, ns00) SC/ n9s“ ' (|OuoTg))|tsOuldx.
2Q

Note that by Young'’s inequality6(27)

|8 ¢"(|0u o Ts|) 70|
< & oty (| Ts0U) + €5 ($ouory)* (I8¢ (|DU o Ts|))
~ 8|tV (0Ou)|?+c5|?1¢(|OucTs) by (2.10, (6.23.

In particular, with 2.109
(1) g6/anq\rsV(Du)|2dx+c5|h|2"1/3Q|V(Du)|2dx (4.16)
We estimaté|ll,) with (4.7¢ and @.10
(I12) = (%s.an% *(tsu) @ On)

S
gc/ |s\“1¢’(|DuOTS|)§][|DuOTA|d)\dx
2Q R .
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By Young’s inequality 6.261, (4.13, and .109

1+a; S,
(1) <c | . <¢(|DUOTS|)+][¢(|DuOTA|)d)\>dx
° 0 (4.17)

‘S| 140y

<c

/|VDu|dx

We now come tc(III ). By (4.7d and @.10
(1) = (%5, n1su)

S
< C/Zan¢\/Du\,a)3(|TsDUD‘S|]Z OuoT,|dA dx
0

Analogously to the terniJ) above we estimate witt6(19
(J2) == @|ou)e,(ITsEU]) N[ [Buo Ty |

< (Bt Ly (ToA TUOTA ) + Bl oy (ITA DU ) ] DU 0T, |

a3
Define theN-functions o and K by d'(t) :=t%9, k'(t) :=t. Thenk’(1) =

0'(1) =wi(1)=1,0(t) ~tZ “3 g (t) ~t“3 ando*(awh(t)) ~t2 ~ Kk(t). Par-
ticularly, o, k, w3 satisfy the assumptlons of Lemn3d. By Young's inequality

(6.3, pax = ¢aand .10
(J2) < 0@ jtuoty | (I Ts-a DU Ti|) + & @ juoT, | (I Ta L)
+¢5 9000, .o (N [Duo Ty )
~ &[T A V(Ou) o Ty 2+ 8|13 V(Ou) P+ cs o (Jh)) ¢ (|Ouo Ty ).
< 5|15 yV(OU) o Ty [2+ 8|13 V(O 2+ c5 |25 [V(TuoTy )
Therefore

() <5/ ][|h|mv Ou)[2dA dx+ ¢ |h| as/ V(Ou)2dx  (4.18)

where we have used (13 and @.14) once more. We finally get to last terftV/ ).
With (4.79, (4.10), (4.13, and @.109

(IV) = (Zs,n%su)
S
< c/2Q|s|1+“2(¢'(|DuoTs|) +02+020Ts) ][IDuoTAld)\ dx
0

s (4.19)
<clst2 | 6(0u]0Ts) +4"(6) + ¢ (G20 Ts) oA ox
0

sc|s|1+“2( [ VEwEaxs | Q¢*<gz>dx).
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If we combine all estimates4(8), (4.15, (4.16, (4.17), (4.18, and @.19, ap-
ply (4.13 to all terms involvingTs, and divide by|Q| we get @.2). Note that for
any integrable functiok : R" — R by Fubini holds

S

][ﬁ][k )|dA ds= ][/ |h|d5|k |dA<][|k )l dA. (4.20)

0
Thus @.3) follow from (4.2) by application offg ds This proves the Lemma.

We are able to get rid of the first term on the right hand sidedid) (with a
Giaquinta-Modica type lemma.

Lemma 13 Lety,..., ¥ : (0,00) x (0,00) — [0, oo) be such thaym(R, |h|)
1,...,M, is non-decreasing in R anth|. Letv € L2.(Q), wy,...,Wy € L|OC(Q)
be such that the following holds: For evedy> O there existsg> 0 such that for
every cube @ Q with side length R andQ € Q and every he R"\ {0} with

|h| <R holds
h h
][][ |Tev|? dxds< 6][][ |Tev|*dxds
0Q

0 2Q (4.21)

tcs Z V(R D) ][|Wm|dx
4Q

Then there existsN= N»(n) and€ > 0 such that for every cubed™ Q with side
length R and5Qg € Q and for every € R"\ {0} with |hg| < 1% holds

M
][|Th0v|2dx & 3 ¥i(NoRo.Ne ) ][ V] A
Q m=1 5Qo

Proof LetQo, Ry, andhg be as specified and 1€y := 5Qp. We construct a family
{Wi} ., of cubes in the following way:

(a) Split the set §q into 5" equivalent cubes. Take thes&d&ibes as our initial
family of cubes. In particula) is contained in this family.

(b) Replace any cub® of the family which does not satisfyQtc Qg into 2"
equivalent cubes. Repeat this step recursively.

Then we obtain a family of cubes which we denote{l#y } ., with the following
properties:

(i) Qo=UW,; up to a set of measure zero.
(i) Qo=U4W.
(i) TheW;, j > 1, are pairwise disjoint.
(V) Qoe {W}.
(v) There existdN; = Ni(n) € N such that4'(j) < N for all j € N, where
N (]) =8k IMNW,; # 0}
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(vi) There existsN, = Np(n) € N such thatleRk < Rj < NzR for everyk €
A (j), whereR; is the side length dfV;.
._ R . (Ri)? ially hi — ho
Seth;j := %ho andwj := (%) . Espeually,aj =R We apply 4.21) for every
W, andhj, multiply the result byW;| w; and sum up. We obtain

hj hj
ij][/ |TSV|2dXdS§62(A)j][/ |Tev|?dxds
T T M

M (4.22)
+¢5 Y (R, |hy[) wj/ [Win| dX
mzl ; AW
= (I)+ ().
Note that by triangle inequality
hj hj N
SR CRam
][/MJ Itov[2dxds< MN2121|TS/N2VOTKJES| dxds
0 0
hi
SNz][/ |Ts/n, V| “dXds
AW
hj /Ny
=N7? ][ / |Tsv|?dxds
4Wj
0
This and #Vj C Uyc_y(j)Wk implies
hj /N2
(1) < 3N2 w, ][ / ITv[2dxds
Zke;u‘) o Tk
From (i) we deducé; < Npohy andw; < N2ay, SO
hy
(I)géN?Z > wk][/ I7v/2dxds
kem(j) vk
(4.23)

hy
<OCcNINS'S @ Tev|?dxds
>
0 W

Analogously, we have

M
(1)< coNNE 5 (MR e Y [ Iomlce (420
m=1 W
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If we combine 4.22), (4.23, and @.24) and absorb () for smald > 0 on the
left-hand side then witlkh = €(N1 N)

h;

M
ij][/ |rsv\2dxds§6 2 ym(Nsz,Nzhk)Zm(/ |Win| dx
] o Wj m=1 Wk

M
<& 3 ym(NeRoNeh) [ il
m=1 6Qo

where we have usem) < 1 and (i). SinceQp € {W;} by (iv) andwp = 1 we get

ho "
][/ |rsv|2dxds§6 Z ym(Nsz,Nzhk)/ |Win| dX.
o Qo =1 6Qo

This proves the lemma.

We are now prepared to prove Theoréfn

Proof (Proof of Theoreml) Let Q, R, h be as specified. From (3) we know that
the requirements of LemniB are satisfied with

ya(R,[h[) := B(R,|h[), wy i= ¢ (|0u]),
ViR [h[) := B(R,|h]), w2 1= ¢"(2)-
Thus Lemmal3 andy;(N2R,Nz|h|) < cy;(R, |h|) implies
h
][][|T5V(|:Ju)|2dxd8
0Q (4.25)
< cB(RIh)) f V(D) Pt el  ¢*(g2) dx
6Q 6Q

We use 4.25 to estimate the first term on the right-hand side/b®), We get
F v (OwPdx< cBR D f V(Ow)Pdx+cls™ f ¢*(g2) dx
Q 20Q ile)

This proves Theorerhl.

5 Dimension of the Singular Set

For a functiorf € L} (Q) with Q C R" open we define the singular sets

S1(f) = {er:th\lgf ][ = (F)e, 0l dy > o},

o (%)

5(f)i={xeQ: ﬂLiTo<f>Bp(x)} U{xeQ: Iirp\sglp| (Fe,00] =},
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whereB, (x) is a ball centered at with radiusp. Further, define (f) := 21 (f) U

>,(f). By »#P) we denote th@-dimensional Hausdorff measure. To estimate the
Hausdorff dimension oE (f) we will need the following theorem.

Theorem 14 Let Q C R" be open and le0 < a. Assume that £ 4P9(Q).
Especially, f¢ LP(Q) and there exists ¢ 0 such that for anyQ? € Q and all
0 < h<dist(Q,0Q) holds

IThfllLe) < clh®.

Then for any3 > n— pa with 8 > 0we have#’ ) (Z(f)) = 0. As a consequence
the Hausdorff dimension & (f) is less or equal to r- pa.

Proof It has been shown in Theorem 1 dff] under the restriction & a < %
that () (25(f)) = 0. The restrictiona < I however was only used to ensure

that the casg8 < 0 cannot occur and# () is well defined. In our formulation
this condition is replaced bg > 0. The proof in L6] remains true without any
changes. Horihata construct a functign to which he applies the fundamental
lemma of Giusti 4], i.e. #F)(Eg) = 0 where

Egi={xcQ: Iimsupp‘B/ @ (y)|dy > 0}.
p\0 Bp(¥)

For anyxo ¢ Eg Horihata shows on p. 202 that forOr < R< 5/2 with & :=
dist(x,0Q) holds

|<f>Br (x0) — <f>BR(XQ)| < C(n737 g, p) Rg/p
But considering p. 203, second line of (19), and p. 204, secoedli (24), it can
easily be seen that as a byproduct he shows

][ It — (Fgy x| Ay -+ ][ [t — (P, )| dy < S, B, &, p) RE/P.
By (%) Br(x0)

The limit R\, 0 directly implies that anyo ¢ Ep satisfiesx ¢ 21 (f). Therefore,
' P)(Eg) = 0 gives.#’(P)(2,(f)) = 0. This proves the Theorem.

Remark 15Forf € L} (RY) let us define

loc

25(f) = {er:Iimsup fdy:oo}.
pN\0
Bo (X)

Then from

F idy= £ 1= Da,ldy+ Dy
Bo(X) Bp(X)

it follows that Z3(f) C Z1(f) U Zx(f) = Z(f).
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Remark 16Please note that it would also be possible to prove Thedréioy

embeddings from# %9 the to Bessel potential spack$ ¢< with £ > 0 and
use the classical capacity estimates for these spaces.niiie - 0 provides an
alternative proof of Theorerid. See P] for further references.

Remark 17Note that Theoreri4 and RemarKk.5 can easily be generalized in the
following sense: In the construction &f and>, the ballsB,(x) can be replaced
by cubesQ,(x) (sides parallel to the axis). It is even possible to use lBjlsr
cubesQ, (with sides parallel to the axis) which are not centerexitatt only con-
tainx. This follows easily from the fact that for a/with x € B the expressions

][\f—<f>5|dy and ][|f|dx.
B B
with B 3 x can be estimated from above by the same expressionBwéhlaced

by some larger baB, (x) centered ax.

We will now estimate the singularities ®f(Cu).

Theorem 18 Letu be a weak solution of systegih.1). Define

. 1+a
a::mm{z_—lag,al, +22}§1.

Then for any > n—2a with 3 > 0 holds
2P (2(V(Ou))) = 0.

Especially, the singular seX(V(Ou)) has Hausdorff dimension less or equal to
n—2a.

Proof Let Q;j be a countable sequence of cubes Wttt |J; Qj and 2@ € Q.

Then from Theoren 1 we know thatv (COu) € .#29(Q;). Hence, it follows from
Theoreml4 that

AP(Z(V)NQ)) =0.

This immediately implies#’(B) (3(V)) = 0 which proves the Theorem.

6 Appendix

For Pg,P; € RN*", @ < [0,1] we definePg := (1— 8)Py + 6P;. The following
fact is standard and can e. g. be foundlh [

Lemma 19 Let a > —1 then uniformly inPg,P; € RN*" with |Pg| 4 |P1| > 0
holds

1
(IPol + [P1)® ~ /0 IPg|% d6. 6.1)
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Lemma 20 Let¢ be an N-function witilz({¢,$*}) < . Then uniformly for all
Po,P1 € RN*M with |Pg| + |P1| > 0 holds

o' ( Pel ¢’ (|Po| + |P1])
/ Pol Pol - Py (6.2)

where the constants only depend&y{{¢,¢*}).

Proof From¢(t) ~t¢’(t) and the convexity of we derive

L /(Pg) L $(Pel) b(J2|Pol o)
) B> | (Pol - P20 2 S (R £ P2

Since by Lemmd.9 fol |Pg|d6 ~ |Pg|+ |P1] there follows
[FE0PoD) gg , SUPoL+IP) , 9P P
Po (IPol+[P1)2 =~ [Po| + P4

This proves the first part. Sindg(¢*) < o, there exists (as in the proof of Theo-
rem?7) somed < (0,1) and anN—functionp with ¢ ~ p andA,({p,p*}) < oo.
Note thaté andA({p,p*}) depend only omAx({¢,¢*}). From ¢ (t) ~t ¢’(t),

d(t) ~ (p(t))%, andp(t) ~tp'(t) we deduce

¢ |P9’ / |P9| y|P9|6 2d6

Using the monotonicity op’ and Lemmal9with a :=1/6 — 2 we get

P 1 1 1_
/ ¢|F',6|9' 40 <c | (/(IPol+ Pa))  [Pol? ?d

1 1
< c(p'(|Po|+P1)))® (|Pol +|Pu[)®

8P +IP1)
|Pol + |P1]
This proves the lemma.

Lemma 21 Let ¢ be as in Assumptiof. Let @ : RN*" — R=0 pe given by
?(Q) := ¢(|Q[) and letA(Q) := (Unxn®)(Q). ThenA(Q) = ¢/(|Q|)\8\ for
Q #0,A(0) = 0, andA satisfieg2.7).

Proof Note that¢’(0) = 0, since¢ is anN—function. Observe that for ald €
Ran \ {0}

(01m®)(Q) = ¢'(1Q]) (G5r 232 ) 1 97(1QI) T %

Especially, with 2.6)

¢'(1QI)

¢'(1QI)
Q| '

[(Okdm®)(Q)| < 1)

+eg’(lQl) <c (6.3)
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Moreover,
Aik(P) —Aj(Q) = (9 ®@)(P) — (9 @) (Q)

= Z/Ol(ﬁjkdmfb)([Q,P]s)(Hm_le)ds (6.4)

where[Q, Pls := (1—5s)Q +sP. So by 6.3, Lemma20, and @.6)

L'(I[Q,Plsh)
AP)-AQ) =c | 0. ds|P—Q
(\PIHQI) _ " _
SRl IP—Q[<co™([PI+[Q))IP-Ql.

On the other hand due t@.¢) there exists > 0 with ¢'(t)/t > €¢”(t). So by
(6.4) for G,B € RN*"with G + 0 holds

/ 2 2
5 Bi(0xn®)(@)Bin — 10 (18- B2 ) + 0700 2,

G 6]

2 2
ze¢”(Gl)( E‘;z)w’%en'ﬁl
>€¢"(|G|)|BJ.

This, 6.4), and Lemma&0imply

(A(P)~AQ).P-Q) 2 ¢ [ "([Q.PlIP—Qfds
> £c”(PI+]QN)P- QP

This proves the lemma.

We will now introduce some auxiliar¥-functions and prove some of their fun-
damental properties.

Definition 22 Let ¢, w beN-functions withA>({¢, ¢*, w, w*}) < . Further as-
sume thato'(1) = 1. Then fora > 0 we definep; ,,(t) : R>0 _, R0 by

0= a0 (S ). 65

Further we definga, e : RZ0 — R=% by ¢ (t) := f§ ¢4 () ds
By ¢a(t) we denote the functiofa «,, with wy(t) =t, i.e.

$a(t) == ¢'(a+t) —— (6.6)

a+t’
We remark that the requirement (1) = 1 is symmetric with respect to) <
w*, sincew' (1) = 1 implies (w*)'(1) = («/)~1(1) = 1. Thus¢, w satisfy the be
requirements of Definitio@2 if and only if ¢*, w* satisfy the requirements.
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Lemma 23 Let ¢, w be as in Definitior22. Then for all a> 0 the functionga ¢,
is an N-function ancﬂz({¢aw}a>0) < oo, i.e. the family¢, «, satisfies the,-
condition uniformly in & 0.

Proof The assertion is obvious far= 0, sinceg, , = ¢’. If a> 0 theng’(a+
t) and &/(t/(t + a)) are strictly in increasing, s@, ,(t) is strictly increasing.
Moreover,$}, ,,(0) = ¢'(a) &/ (0) = 0. Thusga . is anN-function.

Due to €.3) and Ax({¢,w}) < = there holds¢’(t) ~ ¢'(2t) and w/(t) ~
o' (2t) uniformly in t > 0. Moreover, for alla,t > 0 holdsa+ 2t ~ a+t and
2t/(a+2t) ~t/(a+t). Thus

0ru(@) = ¢t 2w (25 )~ #arn e (L) = b

uniformly in a,t > 0. Again @.3) implies that¢a o (2t) ~ @aw(t) uniformly in

a,t > 0. This proves the assertion.

Lemma 24 Let ¢ satisfy Assumptioft. Then uniformly in g € R", |s| + |t| > 0
¢" (sl +[th [s—t] ~ ¢ (Is—t]),
9" (sl + [t]) Is—t* ~ ¢ (Is—t]).

Proof Due to @.3) andA,(¢) < « there holdsgp’(r) ~ ¢’(2r) uniformly inr > 0.
Moreover,|s| + [t| ~ |5 +|s—t| uniformly in s,t € R". Thus

(6.7)

'(Isl+1t) _ ¢'(Isl+[s—t]) _ Hs(ls—tD
|s| + [t] s +|s—t| s—t|
This proves the first inequality ir(7). The second follows from2(3).

" (sl +1t]) ~

Lemma 25 Let¢ be as in Assumptioh Then alsap* satisfies the Assumptidn
If we define the N-functiog for t > O by

Y'(t) ==Vt

theny and y* satisfy the Assumptidh Moreover,y” (t) ~ /¢”(t) uniformly in
t>0.

Proof From (¢*)'(t) = (¢")~1(t), (2.6), and @.3) (with ¢ replaced by$*) we

deduce fot >0
2, SRR SR (.0 45) N (CIO U0
¢"((0)(®)  o((¢*)M)  (¢9)(1) 2
This proves thap* satisfies Assumptioh. FromA;(¢) < « we deducep’(2t) ~

¢'(t), P'(2t) ~ ' (t), andy(2t) ~ (). EspeciallyAy (') < . LetK > 64 then
with repetitive use 0fZ.2) and the monotonicity o’ we estimate for all > 0

K(p<2Kt><2tw ,/ £ —<2t1/
8

fR“”(t) K
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Due to €.4) and @.5) this is equivalent t& *(t/2) > (*(t) for all t > 0. This
provesA;((*) < . Moreover, fort > 0 we deduce from2.6)

W) =3(te'®) A (te" (1) +9' () ~ VoI (M),

Overall, we have shown thaj satisfies Assumptioti. Thus by the first part of
the Lemmayy* also satisfies Assumptidh

We are now able to prove Lemn3a

Proof (Proof of Lemma3) LetA, ¢, y,V be as in Lemm&. Due to @.7) holds
uniformly inP,Q € RN*" andx € Q

(AP)=AXQ)) - (P—Q) ~ [P—QI*¢"(IP|+Q]). (6.8)
On the other hand by Lemn#a holds uniformly inP,Q € RN*"

P—Q*¢"(IPI+Ql) ~ ¢ip((IP—Ql)- (6.9)

Moreover, by Lemma&5 and Lemma21 the estimates?7) holds withA and ¢
replaced by andy. This and Lemma&5 implies

V(P =V(Q)|* ~ (IP—Qly" (P +]Ql)* (6.10)

~IP—QI?¢"(IP| +IQl) (6.12)

uniformly in P,Q € RN*". The combination of §.8), (6.9, and 6.10 prove

(2.103, (2.10b, and @.109, whereas Z.109 is just the special case = 0 us-

ing A(0) = V(0) = 0. This proves the Lemma.

Lemma 26 Let¢, w be as in Definitior22. Then

(¢a,w)*(t) ~ (d’*)q&’(a),w* (t) (6.12)
uniformly in gt > 0. Especially, we have uniformly irct O
(¢a)"(t) ~ (07)g/(a) (1)- (6.13)

Proof Due to @.3) andA,({¢, w}) < o there holdsp’(t) ~ ¢’(2t) and o/ (t) ~
«'(2t) uniformly int > 0. If0<t <athena+t ~aandifa<t < thena+t ~t.
Therefore

, Y 0t ¢'(a) o (%) foro0<t<a,
Pault) = ¢ @thw <a+t> - {tp’(t)w’(l) fort > a

uniformly ina,t > 0. Thus byw/(1) =1

, ¢'(@) /(L) for0<t<a,
baw(t) ~ {¢’(t) fort > a. (6.14)
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Letu:= ¢} ,(t) then 6.14) implies

a(w')_l(q)/?a)) for 0< U< 6a(),

(¢)H(u) foru> ¢; ()

uniformly ina,t > 0. Therefore

((Paw)?) (W) =t~ {

a(w*)’(,ﬁflfa)) forO<u< ¢é1,w(a)’

(97 (u) foru> ¢3 ().

Because ofp, () = ¢'(2a) o/ (3) ~ ¢'(a) it is possible in .19 to shift the
border fort from ¢ .,(a) to ¢’(a). Especially,

(($aw)?) () ~ { (6.15)

a(a)*)’(‘p}(’a)) foro<u<¢/(a),

(¢*) (u) foru> ¢’(a).

On the other hand we replace B.14 ¢ by ¢*, aby ¢’(a), w by w*, andt by u
then

(6.16)

((¢a,w)*)/(u) ~ {

(0" (¢'(@) (@) (5y)  forO<u<¢'(a),
(¢*) (u) foru> ¢'(a).

Note that(w*)'(1) = («/)~(1) = 1 and(¢*)'(¢'(a)) = &, so

a(w*)/(wlfa)) foro<u<¢’(a),

(@) pr@) 0 (W) ~ {( ) foru> ¢'(a) (6.17)

uniformly ina,t > 0. From 6.16) and 6.17) follows

/

((Paw)’) (u) ~ (‘P*):p/(a),w*(u)

uniformly in a,u > 0. This and 2.3) prove 6.12. Inequality 6.13 follows from
(6.12) with the special choice(t) =t.

Lemma 27 Let ¢, w be as in Definitior22. Then the familiega , and (¢a.)*
satisfy thed,-condition uniformly in a> 0, i. e. it holdsAz({§a w},-0) < * and

L22({($aw) tazg) <

Proof From Lemma23 follows A2({$aw},-q) < . By the same lemma we get
D({(97) ¢/ (a), 0 } 4o ) < - Due to Lemma6this impliesAz({($aw)* }550) < -
This proves the assertion.

Lemma 28 Let ¢, w be as in Definitior22. The uniformly in ab € R"

Plal,w([2—D]) ~ 5| o(|a—Db]). (6.18)
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Proof The proof is obvious foa = b, so let us assume thgt— b| > 0. From @.3)
and|a| + |a—b| ~ |b| + |a—b| we deduce

aw(la—b la —b -
Pallab)  Hale >:q>’<|a+|aby>w’<a & >

la—bf? [a—b| |a +[a—b]
_ o a—b
~o(bl+a-b)e (5 ) - 'b’f;('_m D
_ Bplw(la—bl)
la—b|*

This proves the assertion.

Lemma 29 Let ¢, w be as in Definitior22. Then there exists c> 0 such that for
alla,b,ec R"

¢\/a|,w(‘b_ a|) =C ¢\/e|,w(‘b_ e|) TG ¢|/e\,w(|a_ e|) (6-19)
Proof If |b—¢| < |a—e¢| thenja—b| <2]a—¢| and
Plaw(lD—al) < ¢y o(2]a—€)
~ ¢y o(la—e)  byLemma23 (6.20)
~$yo(la—e)  by6.18

This proves the assertion in the cabe- | < |a— €. Assume now thajia— g <
|b—¢|. From @.3) and 6.18 we know¢|’a"w(|a— b|) ~ ¢|’b"w(|a—b|). The rest
follows from (6.20) with a andb interchanged. '

Lemma 30 Let¢, w be as in Definitior22. Then uniformly im € [0,1] and a> 0
holds

baw(Aa) ~ w(A)¢(a). (6.21)

Especially,
fa(Aa) ~A%¢(a), (6.22)
(6a) (A ¢'(8) ~ A2 (a). (6.23)

Proof Because 0fZ.3) and 6.14) holds
Paw(Aa) ~Aap; ,(Aa) ~Aag'(@w'(A) ~d(@)w(r).

This proves§.21) while (6.22) is a special case 06(21) with «/(t) =t. Moreover,
(6.13, (6.22, and @.3) imply

(92)"(A9'(@) ~ (§")pr(a) (A9 (@) ~ A%9*(9'(2)) ~ A% (a).
So, 6.23 is proven.
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Lemma 31 Let¢ be an N-function witt\({¢, $*}) < . Then there exist > 0,
C2 > O which only depend oAx({¢, ¢*}) such that for allt> 0and allA € [0,1]

D) <A™ E (1), (6.24)
In particular, there existg > 0 and & > 0 such that
a(At) < C2A M alt) (6.25)
uniformly inat > 0andA € [0,1].
Proof Sincelz({¢,9*}) < o there exists, as in TheorefpanN-functionp and
6 € (0,1) with ¢® ~ p. This implies uniformly int > 0 andA < [0, 1]
B ~ (PAD)T < (Ap(V) T ~ A% p(1),

where we have used the convexity @fand p(0) = 0. Inequality 6.24) follows
with € := % — 1. Now, (6.25) follows from Lemma27.

Lemma 32 (Young type inequality) Let ¢ be an N-function which fulfills
Ay({¢,9*}) < 0. Then for alld > 0 there exists g which only depends od
andAx({¢,¢*}) such that for alltu >0

tu<dg(t)+csd*(u), (6.26a)
to'(u)+d'tHu<dd(t)+cs¢(u). (6.26Db)

Let¢,w be as in Definitior22. Then for alld > 0 there exists g such that for all
t,ua>0

U< & haw(t) +Cs (Paw) (U), (6.27)
tdh oo (U) + P4 oo(1) U < 8 Paeo(t) + C5 Paeo(U). (6.28)

Proof Inequality 6.269 is well known, see 4.1). Now (6.261 follows from
(6.269 and @.3). Because of Lemma7 we can apply §.263 and 6.26h to
the family {¢a e}, (- This proves§.27) and 6.29.

Remark 33Note that Lemma&2 together with Lemm& generalize many known
estimates. One example are the quasi-norms estimates of BatetiLain [3].

Lemma 34 Let ¢,0,k,w be N-function witha’(1) = k’(1) = /(1) = 1 and
L({9,9%,0,0" K,K*, w,w*}) < . Moreover, let

K(t) ~ o (a (1)) (6.29)
uniformly int> 0. Then uniformly ina >0
($a0)" ($an(t)) ~ Pax(t). (6.30)
Moreover, for every) > 0 there exists g > 0 such that uniformly in &,u>0

$2.0(t) U< O dax(t) +CsPao(u). (6.31)
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Proof Let us remark that itr = k = wthen 6.29 and €.30 follow immediately

from (2.3).
From 6.14) and 6.17) we deduce
, p'(@aw/(y) forO<t<a,
Pa0(t) ~ {¢,<t) fort>a (6.32)

a(0")(5t5) foro<u<¢’(a),

(($a.0)") (U) ~ (@ )gr(a). 0+ (U) ~ {(¢*)/(u) for u> ¢'(a)

(6.33)

Because ofp} ,(a) = ¢'(2a) 0 ()~ ¢ (a) it is possible in 6.15 to shift the
border foru from ¢’(a) to ¢ ,,(a), i.

a(0") (gg)  for0<u<gy,(a),

(($a0)*) (u) ~ {(¢*)/(u> foru> ¢ ,(a)

Repeatedly use o2(3) implies

. ua(o*) (5ty)  for0<u<dy,(a),
(¢a,0) (u) ~ {4)*(“ for u 2 ¢éw(a)
' (6.34)
N ¢>(a) U*(¢/L(la)) for0<u< ¢é,w(a>a
¢*(u) foru>¢;,(@)

Now the composition of§.32 and 6.34) gives

(@o ( (g)) foro<t<a,
(¢a,a) <¢aw( )) {¢ (¢/( )) fort >a

@k (L) for0<t<a,

d(t) fort>a

~ Qax(t) by (6.14) and @.3).

Now (6.14) concludes

(¢a,0)*(¢é,w(t)) ~ ¢a.K(t)
This proves §.30. Now (6.3]) is a direct implication of §.30) and Young’s in-

equality 6.29).
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