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1 Introduction

In this paper we are concerned with fractional estimates for weak solutions of the
system

−div(A(x,∇u)) = b(x,∇u) in Ω (1.1)
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whereΩ ⊂ Rn is a bounded, open domain. We assume that the elliptic operator
satisfies non-standardϕ-growth andϕ-monotonicity conditions, i. e.

(

A(x,P)−A(x,Q)
)

·
(

P−Q
)

≥ cϕ ′′(|P|+ |Q|) |P−Q|2,
|A(x,P)−A(x,Q)| ≤ cϕ ′′(|P|+ |Q|) |P−Q|,

A(x,0) = 0.

whereϕ is a given Orlicz function. Moreover, we assume that the vector fieldsA :
Ω ×RN×n → RN×n andb : Ω → RN×n → RN×n satisfy the following continuity
and growth assumptions with respect tox:

|A(x,Q)−A(x0,Q)| ≤ c|x−x0|α1ϕ ′(|Q|),
|b(x,Q)| ≤ c

(

ϕ ′(|Q|)+g1(x)
)

,

|b(x,Q)−b(x0,Q)| ≤ c|x−x0|α2
(

ϕ ′(|Q|)+g2(x)+g2(x0)
)

,

|b(x,P)−b(x,Q)| ≤ cϕ ′(|P|+ |Q|)
( |P−Q|
|P|+ |Q|

)α3

with α1,α2,α3 ∈ (0,1] and suitableg1,g2 : Ω → [0,∞).
The standard examples for the Orlicz functionϕ are

ϕ1(t) =
∫ t

0
(µ +s2)

p−2
2 sds, ϕ2(t) =

∫ t

0
(µ +s)p−2sds,

whereµ ≥ 0. Thep-Laplacian corresponds to the choiceµ = 0. Systems which
such a type of growth conditions have been studied by many authors for special
situations.

The first partial regularity results for non-linear elliptic systems were achieved
by Morrey [21], followed by Giusti and Miranda [15] and Giusti [13]. The work
has been continued for example by Evans [9], Giaquinta [10], Carozza, Fusco,
Mingione [6], and by Duzaar and Grotowski [8].

Suppose thatu is a weak solution to (1.1) and letΣ denote the set of sin-
gularities of∇u, see Section5 for precise definition. In this situation we try to
show thatΣ is reasonable small, i. e. that the Hausdorff dimension ofΣ is small. If
α1 = 1 then we speak of a differentiable elliptic system. For differentiable systems
and minimizers withp = 2 it is shown, e. g. in [10] and [14] that the Hausdorff
dimension is strictly less thann−2.

The nonlinear, differentiable case withp-growth (the caseϕ1) has for example
been considered by Acerbi and Fusco [1]. They show that the Hausdorff dimension
of Σ is strictly less or equal ton− p for 1 < p < 2. For p≥ 2 it can seen by [9],
[11], and [5] that the Hausdorff dimension is less or equal ton−2. Let us point
up here that the cases 1< p ≤ 2 andp ≥ 2 required different techniques in the
mentioned papers. It is one of the main advantages of our approach that such
distinction is not necessary anymore.

For non-differentiable systems for a long time it has only been know thatΣ has
Lebesgue measure zero. So the question arose if it is possible gain more control
of Σ for non-differentiable systems. In particular, Giaquinta and Modica asked
in their paper [12] and also in the book [10], pg. 191, wether the Hausdorff di-
mension of the singular set could be estimated. In his two articles [19] and [20]
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Mingione gave the answer to this question in the casep ≥ 2, i. e. that the di-
mension is always less thann− 2α if u is Hölder continuous andA is allowed
to depend also onu. Further he could show that this result is still true in lower
dimension (n ≤ 4) if one drops the a priori Ḧolder continuity assumption. For
higher dimensions he showed that the dimension is always less thann which was
not known even for the Lipschitz caseα1 = 1. Our main motivation was to transfer
these results to the case of arbitrary Orlicz function, thus including the full case
1 < p < ∞. Hereby, it was of great importance to us that the used techniquewill
not distinguish the cases 1< p≤ 2 andp≥ 2. By the difference quotient method

Mingione shows that∇u is in the Sobolev-Slobodeckiı̆ W
2β
p ,p for anyβ < α. In

Mingione’s papers the estimates are actually carried out in Nikolskiı̆ spaces and
then at the end translated to fractional Sobolev spaces. Ratherthan estimating the
∇u we prefer to estimate the natural quantityV(∇u), which in the case ofϕ1 is

given byV(∇u) = (µ + |∇u|2) p−2
4 ∇u. Additionally, we chooseΣ to be the set of

singularities ofV(∇u) instead of∇u. We will see that this is much more natural
for the non-linear system (1.1). We show thatV(∇u) is locally in the Nikolskĭı
spaceN α,2. This will be proven by the difference quotient method. The estimate
for the Hausdorff measure ofΣ(V(∇u)) is then a consequence of this regularity
information. We will show that the Hausdorff dimension ofΣ is less or equal to
n−2α.

Since our approach works for arbitrary Orlicz functions, it especially works
for the full range 1< p < ∞. Therefore, our technique is new even in the case of
differentiableA with nox-dependence ofA.

Additionally, we derive estimates of Cacciopoli and Gehring type forV(∇u).
The result is based on a new, generalized Poincaré inequality for arbitrary Orlicz
functions. This inequality might be of independent interest.

Under similar assumption partial regularity can be proved, i. e.V(∇u) is Hölder
continuous on the complement of the singular set. This will be the content of a
forthcoming paper.

2 Notation and Basic Properties

Let Ω ⊂ Rn be an bounded, open domain. ByQ we will always denote a cube in
Rn with sides parallel to the axis. We writeQ ⋐ Ω if the closure ofQ is contained
in Ω . Let |Q| denote the volume and length(Q) the side length ofQ. For f ∈ L1(Q)
we define

−
∫

Q

f (x)dx :=
1
|Q|

∫

Q
f (x)dx.

By kQ, with k > 0, we denote the cube with the same center andk times the
side length. For functionsf ,g onΩ we define〈 f ,g〉 :=

∫

Ω f (x)g(x)dx. Fora,b∈
Rn we denote by[a,b] the straight line segment froma to b. If a 6= b we define
−
∫ b

a · · · ds to be the mean average integral over the line[a,b]. For U,W ⊂ Rn we
defineU +W := {u+w : u∈U,w∈W}. We write f ∼ g iff there exist constants
c0,c1 > 0, such that

c0 f ≤ g≤ c1 f ,
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where we always indicate on what the constants may depend. Furthermore, we use
c (no index) as a generic constant, i. e. its value my change from line to line but
does not depend on the important variables.

The following definitions and results are standard in the contextof N–function
(see e. g. [22]). A real functionϕ : R≥0 → R≥0 is said to be anN-function if it
satisfies the following conditions: There exists the derivativeϕ ′ of ϕ . This deriva-
tive is right continuous, non-decreasing and satisfiesϕ ′(0) = 0 andϕ ′(t) > 0 for
t > 0. Especially,ϕ is convex.

We say thatϕ satisfies the∆2–condition, if there existsc1 > 0 such that for all
t ≥ 0 holdsϕ(2t) ≤ c1 ϕ(t). By ∆2(ϕ) we denote the smallest constantc1. Since
ϕ(t) ≤ ϕ(2t) the∆2 condition is equivalent toϕ(2t) ∼ ϕ(t). For a familyϕλ of
N-functions we define∆2({ϕλ}) := supλ ∆2(ϕλ ).

By Lϕ andW1,ϕ we denote the classical Orlicz and Sobolev-Orlicz spaces, i. e.
f ∈ Lϕ iff

∫

ϕ(| f |)dx< ∞ and f ∈W1,ϕ iff f ,∇ f ∈ Lϕ .
By (ϕ ′)−1 : R≥0 → R≥0 we denote the function

(ϕ ′)−1(t) := sup{u∈ R≥0 : ϕ ′(u) ≤ t}.

If ϕ ′ is strictly increasing then(ϕ ′)−1 is the inverse function ofϕ ′. Thenϕ∗ :
R≥0 → R≥0 with

ϕ∗(t) :=
∫ t

0
(ϕ ′)−1(s)ds

is again anN–function and(ϕ∗)′(t) = (ϕ ′)−1(t) for t > 0. It is the complementary
function ofϕ . Note that(ϕ∗)∗ = ϕ. For allδ > 0 there existscδ (only depending
on ∆2({ϕ,ϕ∗}) such that for allt,u≥ 0 holds

t u≤ δ ϕ(t)+cδ ϕ∗(u). (2.1)

This inequality is called Young’s inequality. For allt ≥ 0

t
2

ϕ ′
( t

2

)

≤ ϕ(t) ≤ t ϕ ′(t),

ϕ
(

ϕ∗(t)
t

)

≤ ϕ∗(t) ≤ ϕ
(

2ϕ∗(t)
t

)

.
(2.2)

Therefore, uniformly int ≥ 0

ϕ(t) ∼ ϕ ′(t) t, ϕ∗(ϕ ′(t)
)

∼ ϕ(t), (2.3)

where the constants only depend on∆2({ϕ,ϕ∗}). If ρ(t)= aϕ(bt) for somea,b>
0 and allt ≥ 0, then

ρ∗(t) = aϕ∗
( t

ab

)

. (2.4)

If ϕ andρ areN–functions withϕ(t) ≤ ρ(t) for all t ≥ 0, then

ρ∗(t) ≤ ϕ∗(t) (2.5)

for all t ≥ 0.
In most parts of the paper we will assume thatϕ satisfies the following as-

sumptions:
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Assumption 1 Let ϕ be an N-function such that∆2({ϕ,ϕ∗}) < ∞. Further as-
sume thatϕ is C2 on (0,∞) and uniformly in t≥ 0

ϕ ′(t) ∼ t ϕ ′′(t), (2.6)

As already mentioned in the introduction we will assume that the vector field
A : Ω ×RN×n → RN×n satisfies the non-standardϕ-growth condition, i. e.

(

A(x,P)−A(x,Q)
)

·
(

P−Q
)

≥ cϕ ′′(|P|+ |Q|) |P−Q|2,
|A(x,P)−A(x,Q)| ≤ cϕ ′′(|P|+ |Q|) |P−Q|

(2.7)

and the continuity and growth condition

|A(x,Q)−A(x0,Q)| ≤ c|x−x0|α1ϕ ′(|Q|), (2.8)

where 0< α1 ≤ 1 andϕ satisfies Assumption1.
It is interesting to know that for everyϕ as in Assumption1 there exists

A : Ω → RN×n that satisfies (2.7). The construction of suchA can be found
in Lemma 21 in the appendix. It is possible to multiplyA by some function
µ : Ω → (0,∞) which is uniformlyα1-Hölder continuous and is bounded from
above and below. Then (2.7) and (2.8) still hold.

Remark 1Our standard examples forA andϕ are

A(x,Q) := µ(x) |Q|p−2Q, ϕ ′(t) := t p−1

and

A(x,Q) := µ(x)(1+ |Q|)p−2Q, ϕ ′(t) := (1+ t)p−2 t,

where 1< p < ∞, 0 < α1 ≤ 1, andµ : Ω → (0,∞) is α1-Hölder continuous and
bounded from above and below.

For givenϕ we define theN-functionψ by

ψ ′(t)
t

:=

(

ϕ ′(t)
t

)
1
2

. (2.9)

It is shown in Lemma25 that ψ also satisfies Assumption1 and uniformly in
t > 0 holdsψ ′′(t) ∼

√

ϕ ′′(t). As in Lemma21 we defineΨ : RN×n → R≥0 by
Ψ(Q) := ψ(|Q|) and letV(Q) := (∇N×nΨ)(Q) = ψ ′(|Q|) Q

|Q| . From the same
lemma it follows that (2.7) holds withA,ϕ replaced byV,ψ .

Remark 2The examples given in Remark1 correspond to

V(Q) := |Q|
p−2

2 Q, ψ ′(t) := t
p
2

and

V(Q) := (1+ |Q|)
p−2

2 Q, ψ ′(t) := (1+ t)
p−2

2 t,

where 1< p < ∞.
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We introduce a family ofN-function {ϕa}a≥0 by ϕ ′
a(t)/t := ϕ ′(a+ t)/(a+ t)

which basically statesϕ ′′
a (t)∼ϕ ′′(a+t) uniformly in a, t ≥ 0. The basic properties

of ϕa are given in the appendix, see Definition22 and thereafter. The connection
betweenA, V, and{ϕa}a≥0 is best reflected in the following lemma.

Lemma 3 LetA,ϕ satisfy Assumption1 and(2.7). Letψ ,V be defined as in(2.9).
Then

(

A(x,P)−A(x,Q)
)

·
(

P−Q
)

∼
∣

∣V(P)−V(Q)
∣

∣

2
(2.10a)

∼ ϕ|P|(|P−Q|), (2.10b)

∼ |P−Q|2 ϕ ′′(|P|+ |Q|
)

, (2.10c)

uniformly inP,Q ∈ RN×n and x∈ Ω . Moreover,

A(x,Q) ·Q ∼ |V(Q)|2 ∼ ϕ(|Q|) (2.10d)

uniformly inQ ∈ RN×n and x∈ Ω .
Note that ifϕ ′′(0) does not exists, the expression in(2.10c) is continuously

extended by zero for|P| = |Q| = 0.

The lemma will be proven in the appendix. The different representations of (2.10)
will be useful at different stages of our proofs. The one withA appears when we
test the differential operator−div(A(∇u)) by a suitable test function. The one
with V is useful to write down information, since most of the information on u
will be expressed in information onV(∇u). The representation withϕa simplifies
the proofs. The functionV also appears in the study of minimizers of the form
∫

ϕ(|∇u|)dx.
For the right hand side of the system (1.1) we assume that the vector field

b : Ω →RN×n →RN×n satisfies the following continuity and growth assumptions
with respect tox:

|b(x,Q)| ≤ c
(

ϕ ′(|Q|)+g1(x)
)

, (2.11a)

|b(x,Q)−b(x0,Q)| ≤ c|x−x0|α2
(

ϕ ′(|Q|)+g2(x)+g2(x0)
)

, (2.11b)

|b(x,P)−b(x,Q)| ≤ cϕ ′(|P|+ |Q|)
( |P−Q|
|P|+ |Q|

)α3

(2.11c)

with α2,α3 ∈ (0,1], g1,g2 : Ω →R≥0, andϕ∗(|g1|),ϕ∗(|g2|)∈ Lq for someq> 1.
Again, it will be useful to introduce a suitable family ofN−functions{ϕa,ω}a≥0 to
clarify the natural choice of the growth condition (2.11c). Especially, letω3(t) :=
1/(α3 +1) tα3+1, i. e.ω ′

3(t) = tα3 then (2.11c) can be rewritten as

|b(x,P)−b(x,Q)| ≤ cϕ ′
|P|,ω3

(|P−Q|), (2.12)

whereϕa,ω is given in Definition22. We will see later in the proof of Theorem11
and Lemma12 that this form of continuity condition is the natural one.
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3 Cacciopoli Estimates and a Gehring Type Result

In the following assume thatu is a weak solution of system (1.1) in the sense that
u satisfies (1.1) in the distributional sense and that∇u∈ Lϕ(Ω). In view of (2.10d)
this is equivalent toV(∇u)∈ L2(Ω). We start with a lemma of Cacciopoli type. At
this point we would like to mention that in order to keep to notations short we will
often skip the explicit dependence onx. For example we will rather writeA(∇u)
instead ofA(x,(∇u)(x)). Nevertheless,A will still depend onx.

Theorem 4 Letu be a weak solution of system(1.1). Then there exists c> 1 such
that for all cubes Q with2Q ⋐ Ω holds

−
∫

Q

ϕ(|∇u|)dx≤ c −
∫

2Q

ϕ
( |u−〈u〉Q|

R

)

dx+c −
∫

2Q

ϕ∗(|g1|)dx, (3.1)

where R is the side length of the cube Q. The constant c only depends on∆2({φ ,φ ∗})
and the constants in(2.6), (2.7), (2.8), and(2.11).

Proof For fixedQ andR := length(Q) let η ∈C∞
0 (2Q) be a cut-off function with

χQ ≤ η ≤ χ2Q and|∇η| ≤ c/R. We pick the test functionξ := ηq(u−〈u〉Q) and
obtain

〈A(∇u),ηq ∇u〉 = −〈A(∇u),qηq−1(u−〈u〉Q)⊗ (∇η)〉
+ 〈b(∇u),ηq(u−〈u〉Q)〉.

The exponentq will be chosen as follows. By Lemma31there existε ,c2 > 0 with
ϕ(λ t)≤ c2 λ 1+ε ϕ(t) uniformly in t ≥ 0 andλ ∈ [0,1]. We fix q> 1 large enough
such that(1+ ε)(q−1) ≥ q. In particular, uniformly int ≥ 0

ϕ(ηq−1 t) ≤ c2 ηq ϕ(t). (3.2)

The monotonicity and growth conditions onA andb imply
∫

2Q
ηqϕ(|∇u|)dx≤ c

∫

2Q
ηq−1 ϕ ′(|∇u|) |u−〈u〉Q|

R
dx

+c
∫

2Q
ηq(

ϕ ′(|∇u|)+g1
)

|u−〈u〉Q|dx.

According to Young’s inequality (6.26) we derive forε > 0
∫

2Q
ηq ϕ(|∇u|)dx≤ ε

∫

2Q
ϕ∗(ηq−1ϕ ′(|∇u|)

)

dx+ ε
∫

2Q
ηqϕ(|∇u|)dx

+cε

∫

2Q
ϕ

( |u−〈u〉Q|
R

)

dx+cε

∫

2Q
ϕ∗(|g1|)dx,

where we have used thatR≤ c(Ω), sinceΩ is bounded. (This is the only place in
the paper where we use the boundedness ofΩ .) Note that by (3.2) and (2.3)

ϕ∗(ηq−1ϕ ′(|∇u|)
)

≤ cηq ϕ∗(ϕ ′(|∇u|)
)

∼ ηq ϕ(|∇u|).
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Thus for smallε > 0 we deduce
∫

Q
ϕ(|∇u|)dx≤ c

∫

2Q
ϕ

( |u−〈u〉Q|
R

)

dx+c
∫

2Q
ϕ∗(|g1|)dx,

where we have usedηq ≥ χQ. This the Theorem.

Remark 5It is easy to see that Theorem4 and the results below remain valid if
we use balls instead of cubes.

From Theorem4 we want to derive an estimate of Gehring type, i. e. some re-
verse Ḧolder estimate. It is standard to use the ingenious lemma of Giaquinta and
Modica:

Proposition 6 (Giaquinta-Modica) Let Q0 ⊂ Rn be a cube, G∈ L1(Q0), and
H ∈ Lq0(Q0) for some q0 > 1. Suppose that for someθ ∈ (0,1), c1 > 0, and all
cubes Q with2Q⊂ Q0

−
∫

Q

|G|dx≤ c1

(

−
∫

2Q

|G|θ dx

)
1
θ

+−
∫

2Q

|H|dx.

Then there exist q1 > 1 and c2 > 1 such that G∈ Lq1
loc(Q) and for all q2 ∈ [1,q1]

(

−
∫

Q

|G|q2 dx

)
1

q2 ≤ c2−
∫

2Q

|G|dx+c2

(

−
∫

2Q

|H|q2 dx

)
1

q2
.

Another important tool in our proof will be the following generalization of the
Poincaŕe’s inequality.

Theorem 7 (Poincaŕe type)Letϕ be an N–function with∆2({ϕ,ϕ∗}) < ∞. Fur-
ther, let Q⊂Rn be some cube with side length R and letω ∈ L∞(Q) with ω ≥ 0 and
∫

Q ω(x)dx= 1. Then there exists0 < θ < 1, which only depends on∆2({ϕ,ϕ∗}),
and there exists K> 0, which only depends on∆2({ϕ,ϕ∗}) and Rn‖ω‖∞, such
that for all v ∈W1,ϕ(Q) holds

−
∫

Q

ϕ
( |v−〈v〉ω |

R

)

dx≤ K

(

−
∫

Q

(

ϕ(|∇v|)
)θ

dx

)
1
θ
, (3.3a)

where〈v〉ω :=
∫

Q
v(x)ω(x)dx.

Note that for the special choiceω := |Q|−1 χQ we have〈v〉ω = 〈v〉Q.

Proof Since∆2(ϕ∗) < ∞ it follows from [17] (Lemma 1.2.2+1.2.3) thatϕθ is
quasiconvex for some 1− 1

n < θ < 1, i. e. there exists anN–functionρ with ϕθ ∼
ρ and∆2({ρ,ρ∗}) < ∞. It is important to remark thatθ and∆2({ρ,ρ∗}) only

depend on∆2({ϕ,ϕ∗}). We deduce thatϕ(ρ−1(t)) ∼ t
1
θ . Let L := −

∫

Q ρ(∇v)dx.
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If L = 0 thenv is constant onQ and there is nothing to show. So we assume that
L > 0. From [18] (Lemma 1.50) we know that for almost allx∈ Q holds

|v(x)−〈v〉ω | ≤ c
∫

Q

|∇v(y)|
|x−y|n−1 dy, (3.4)

where the constant only depends onRn‖ω‖∞.
With (3.4) and∆2(ϕ) < ∞ we estimate

(I) := −
∫

Q

ϕ
(∣

∣

∣

∣

v−〈v〉ω
R

∣

∣

∣

∣

)

dx≤ c−
∫

Q

ϕ
(

∫

Q

|∇v(ξ )|
R|x−ξ |n−1 dξ

)

dx.

Since
∫

QR−1 |x−ξ |1−ndx≤ c independent ofQ andx∈ Q, we can apply Jensen’s

inequality to the convex functionρ and the measureR−1 |x−ξ |1−d dξ . This im-
plies

(I) ≤ c−
∫

Q

ϕ ◦ρ−1◦
(

∫

Q
ρ
(

|∇v(ξ )|
)

R−1 |x−ξ |1−ndξ
)

dx,

≤ c−
∫

Q

(

∫

Q
ρ
(

|∇v(ξ )|
)

R−1 |x−ξ |1−ndξ
)

1
θ

dx

≤ cR−1/θ −
∫

Q

L1/θ Rn/θ
(

−
∫

Q

L−1ρ
(

|∇v(ξ )|
)

|x−ξ |1−ndξ
)

1
θ

dx,

where we have used∆2({ρ,ρ∗}) < ∞. Now Jensen’s inequality applied to the
convex functiont 7→ t1/θ and the measureL−1ρ(|∇v(ξ )|)dξ gives

(I) ≤ cR(n−1)/θ −
∫

Q

L1/θ −
∫

Q

L−1ρ
(

|∇v(ξ )|
)(

|x−ξ |1−n) 1
θ dξ dx

≤ cR(n−1)/θ L1/θ−1 −
∫

Q

ρ
(

|∇v(ξ )|
)

dξ R(1−n)/θ ,

which is possible since1−n
θ > −n. By definition ofL

(I) ≤ c

(

−
∫

Q

ρ
(

|∇v(ξ )|
)

dξ
)

1
θ
≤ c

(

−
∫

Q

ϕθ (

|∇v(ξ )|
)

dξ
)

1
θ
.

This proves the theorem.

Remark 8Theorem7 is probably well-known among experts, but we could not
find a reference. A proof of the simplified caseθ = 1 andω = |Q|−1 χQ can be
found in [4]. Nevertheless, we need the sharper version withθ < 1 in Theorem9
in order to apply Proposition6. Moreover, we will need the version with general
ω in a forthcoming article.
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We are now able to prove the reverse Hölder estimate.

Theorem 9 Letu be a weak solution of system(1.1). Then there exists q2 > 1 and
c > 1 such that for all cubes Q with2Q ⋐ Ω and all q∈ [1,q1] holds

(

−
∫

Q

|V(∇u)|2qdx

)
1
q

≤ c −
∫

2Q

|V(∇u)|2dx+c

(

−
∫

2Q

(

ϕ∗(g1)
)q

dx

)
1
q

, (3.5a)

Especially, by(2.10d) we haveϕ(|∇u|) ∈ Lq1
loc(Ω). The constants c and q1 only

depend on∆2({φ ,φ ∗}) and the constants in(2.6), (2.7), (2.8), and(2.11).

Proof Due to Theorem4 we have

−
∫

Q

ϕ(|∇u|)dx≤ c −
∫

2Q

ϕ
( |u−〈u〉Q|

R

)

dx+c −
∫

2Q

ϕ∗(g1)dx.

By Theorem7 there existsθ ∈ (0,1) only depending on∆2({ϕ,ϕ∗}) such that

−
∫

Q

ϕ(|∇u|)dx≤ c

(

−
∫

2Q

(

ϕ(|∇u|)
)θ

dx

)
1
θ

+c −
∫

2Q

ϕ∗(g1)dx.

From Proposition6 we deduce that there existsq1 > 1 such that for allq∈ [1,q1]

(

−
∫

Q

(

ϕ(|∇u|)
)q

dx

)
1
q

≤ c −
∫

2Q

ϕ(|∇u|)dx+c

(

−
∫

2Q

(

ϕ∗(g1)
)q

dx

)
1
q

.

This and (2.10d) proves the theorem.

Remark 10Note that similar results regarding higher integrability have been proved
in [7] by A. Chianchi and N. Fusco.

4 Modified Difference Quotient Method

In this section we derive higher regularity of the solutionu, especially we show
thatV(∇u) is locally in the Nikolskĭı spaceN α,2. To prove this we use a modified
version of the difference quotient method. Instead of plain differences we will at a
certain stage consider averages of differences. Let us introducethe notations: For
x,s∈ Rn we define

Ts(x) := x+s, (τs f )(x) := f (x+s)− f (x).

The main theorem is the following.
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Theorem 11 Let u be a weak solution of system(1.1). Then there exists c3 > 0
such that the following holds: If Q⊂Ω is a cube with20Q⋐ Ω and if h∈Rn\{0}
with |h| ≤ R then

−
∫

Q

|τhV(∇u)|2dx≤ c3 β (R, |h|)
(

−
∫

20Q

|V(∇u)|2dx+ −
∫

20Q

ϕ∗(g2)dx

)

, (4.1)

whereβ (R, |h|) := |h|2
R2 + |h|1+α1

R + |h|
2

2−α3 + |h|2α1 + |h|1+α2. The constant c3 only
depend on∆2({φ ,φ ∗}) and the constants in(2.6), (2.7), (2.8), and(2.11).

We split the proof in two parts and begin with the following lemma.

Lemma 12 Let u be a weak solution of system(1.1). Then for everyδ > 0 there
exists cδ > 0 such that the following holds: If Q⊂ Ω is a cube with4Q ⋐ Ω and
if h,s∈ Rn\{0} with |s| ≤ |h| ≤ R then

−
∫

Q

|τsV(∇u)|2dx≤ δ
|s|
|h|

s

−
∫

0

−
∫

2Q

|τλ V(∇u)|2dxdλ

+cδ β (R, |h|)−
∫

4Q

|V(∇u)|2dx+c|s|1+α2 −
∫

4Q

ϕ∗(g2)dx

(4.2)

and

h

−
∫

0

−
∫

Q

|τλ V(∇u)|2dxdλ ≤ δ
h

−
∫

0

−
∫

2Q

|τλ V(∇u)|2dxdλ

+cδ β (R, |h|)−
∫

4Q

|V(∇u)|2dx+c|h|1+α2 −
∫

4Q

ϕ∗(g2)dx,

(4.3)

whereβ (R, |h|) is defined as in Theorem11.

Proof As in the classical approach we first applyτs to our system (1.1). Let Q, R,
andsbe as required andξ ∈C∞

0 (Q). Then

〈τs(A(∇u)),∇ξ 〉 = 〈τs(b(∇u)),ξ 〉.

(Recall that〈 f ,g〉 :=
∫

Ω f (x)g(x)dx.) As before we skipped the explicit depen-
dence onx in order to keep the notations short, butA andb nevertheless depend
on x. As in the proof of Theorem9 we can choose with the help of (6.25) some
q > 1 andc2 > 0 such that

ϕa(ηq−1 t) ≤ c2 ηq ϕa(t). (4.4)

uniformly in t,a ≥ 0. Let η ∈ C∞
0 be a cut off function withχQ ≤ η ≤ χ2Q and

|∇η | ≤ c/R. Then we use the test functionξ := ηq τsu. We get
〈

τs(A(∇u)),∇(ηqτsu)
〉

=
〈

τs(b(∇u)),ηqτsu
〉

. (4.5)
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Everything will be derived from this equation. We define

As(x) := A
(

x,∇u(x+s)
)

−A
(

x,∇u(x)
)

,

Bs(x) := A
(

x+s,∇u(x+s)
)

−A
(

x,∇u(x+s)
)

,

Cs(x) := b
(

x,∇u(x+s)
)

−b
(

x,∇u(x)
)

,

Ds(x) := b
(

x+s,∇u(x+s)
)

−b
(

x,∇u(x+s)
)

,

then
(

τs(A(∇u))
)

(x) = As(x)+Bs(x),
(

τs(b(∇u))
)

(x) = Cs(x)+Ds(x).

Now (4.5) reads

〈As+Bs,∇(ηqτsu)〉 = 〈Cs+Ds,ηqτsu〉. (4.6)

Let (I), (II ), (III ), and(IV ) be the four summands in (4.6). Let us collect the
fundamental estimates forAs, Bs, Cs, andDs:

As · τs∇u ∼ ϕ|∇u|(|τs∇u|) ∼ |τsV(∇u)|2, (4.7a)

|As| ≤ cϕ ′
|∇u|(|τs∇u|), (4.7b)

|Bs| ≤ c|s|α1ϕ ′(|∇u◦Ts|), (4.7c)

|Cs| ≤ cϕ ′
|∇u|,ω3

(|τs∇u|), (4.7d)

|Ds| ≤ c|s|α2
(

ϕ ′(|∇u◦Ts|)+g2 +g2◦Ts
)

, (4.7e)

whereω3 is defined byω ′
3(t) := tα3. These inequalities follow directly from the

assumptions (2.7) and (2.8) onA, the assumptions (2.11) and (2.12) onb, and the
fundamental lemma3 which provides the connection ofA, V, ϕ, and{ϕa}a≥0. As
an example we will derive (4.7a) and (4.7b) in detail:

As(x) · (τs∇u)(x)

=
(

A
(

x,∇u(x+s)
)

−A
(

x,∇u)(x)
)

)

· (τs∇u)(x)

∼ ϕ ′′(|∇u(x+s)|+ |∇u(x)|) |(τs∇u)(x)|2 by (2.7)

∼ ϕ|∇u(x)|(|(τs∇u)(x)|) by Lemma24

∼
∣

∣

(

τsV(∇u)
)

(x)
∣

∣

2
by (2.10),

|As(x)| =
∣

∣A
(

x,(∇u)(x+s)
)

−A
(

x,(∇u)(x)
)∣

∣

≤ cϕ ′′(|∇u(x+s)|+ |∇u(x)|) |(τs∇u)(x)| by (2.7)

∼ cϕ ′
|∇u(x)|(|(τs∇u)(x)|) by Lemma24

We split∇ξ into ∇ξ = ηqτs∇u+qηq−1(τsu)⊗∇η . Then

(I) = 〈As,ηqτs∇u〉+ 〈As,qηq−1(τsu)⊗∇η〉 =: (I1)+(I2).
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Analogously, we split(II ) into (II1)+(II2). By (4.7a)

(I1) =
〈

As,ηqτs∇u
〉

∼
∫

2Q
ηq|τsV(∇u)|2dx. (4.8)

This term is the good term while all other terms have to be controlled. Using (4.7b)
and the estimates on∇η we estimate(I2).

(I2) ≤ c
∫

2Q
ηq−1 ϕ ′

|∇u|(|τs∇u|) |τsu|
R

dx. (4.9)

Since our good term(I1) only carries information on∇u we have to find a way to
estimateτsu in terms of∇u: The representation

(τsu)(x) =
∫ s

0
∑
i
(∂iu)(x+λ )

si

|s|dλ

provides the estimates

|(τsu)(x)| ≤ |s|
s

−
∫

0

|(∇u◦Tλ )(x)|dλ . (4.10)

From (4.9) and (4.10) we get

(I2) ≤ c
∫

2Q
ηq−1ϕ ′

|∇u|(|τs∇u|)
s

−
∫

0

|s|
R
|∇u◦Tλ |dλ dx. (4.11)

Let us define

(J) := ηq−1 ϕ ′
|∇u|(|τs∇u|) |h|

R
|∇u◦Tλ |

Please notice the|h|/R instead of|s|/R. We will need the remaining factor|s|/|h|
later. From Lemma29 (with a = ∇u, b = ∇u ◦Ts, ω(t) = 1

2t2, ande= ∇u ◦Tλ )
we deduce

(J) ≤ cηq−1
(

ϕ ′
|∇u◦Tλ |(|τs−λ ∇u◦Tλ |)+ϕ ′

|∇u◦Tλ |(|τλ ∇u|)
) |h|

R
|∇u◦Tλ |.

Now, Young’s inequality (6.27), (4.4), (6.22), and (2.10d) imply

(J) ≤ δ (ϕ|∇u◦Tλ |)
∗
(

ηq−1ϕ ′
|∇u◦Tλ |(|τs−λ ∇u◦Tλ |)

)

+δ (ϕ|∇u◦Tλ |)
∗
(

ηq−1ϕ ′
|∇u◦Tλ |(|τλ ∇u|)

)

+cδ ϕ|∇u◦Tλ |

( |h|
R
|∇u◦Tλ |

)

≤ c2 δ ηq ϕ|∇u◦Tλ |(|τs−λ ∇u◦Tλ |)+c2 δ ηq ϕ|∇u◦Tλ |(|τλ ∇u|)

+cδ
|h|2
R2 ϕ(|∇u◦Tλ |)

∼ δ ηq |τs−λ V(∇u)◦Tλ |2 +δ ηq |τλ V(∇u)|2 +cδ
|h|2
R2 |V(∇u◦Tλ )|2.
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Let us combine this with (4.11) then

(I2) ≤ δ
∫

2Q
ηq |s|

|h|

s

−
∫

0

|τs−λ V(∇u)◦Tλ |2 + |τλ V(∇u)|2dλ dx

+cδ
|h|2
R2

∫

2Q
|V(∇u◦Tλ )|2dx,

(4.12)

Note that in general for|s| ≤ |h| ≤ R

∫

2Q

s

−
∫

0

|( f ◦Tλ )(x)|dλ dx≤ c
∫

4Q
| f (x)|dx, (4.13)

∫

2Q

s

−
∫

0

|(τs−λ f ◦Tλ )(x)|dλ dx≤ c
∫

4Q

s

−
∫

0

|τλ f (x)|dλ dx. (4.14)

This, (4.12), and|s| ≤ |h| imply

(I2) ≤ δ
∫

4Q
ηq |s|

|h|

s

−
∫

0

|τλ V(∇u)|2dλ dx+cδ
|h|2
R2

∫

4Q
|V(∇u)|2dx, (4.15)

We estimate(II1) with (4.7c) andχQ ≤ η ≤ χ2Q

(II1) = 〈Bs,ηqτs∇u〉 ≤ c
∫

2Q
ηq|s|α1ϕ ′(|∇u◦Ts|)|τs∇u|dx.

Note that by Young’s inequality (6.27)

|s|α1 ϕ ′(|∇u◦Ts|)|τs∇u|
≤ δ ϕ|∇u◦Ts|(|τs∇u|)+cδ (ϕ|∇u◦Ts|)

∗(|s|α1ϕ ′(|∇u◦Ts|)
)

∼ δ |τsV(∇u)|2 +cδ |s|2α1ϕ(|∇u◦Ts|) by (2.10), (6.23).

In particular, with (2.10d)

(II1) ≤ δ
∫

2Q
ηq|τsV(∇u)|2dx+cδ |h|2α1

∫

3Q
|V(∇u)|2dx. (4.16)

We estimate(II2) with (4.7c) and (4.10)

(II2) = 〈Bs,qηq−1(τsu)⊗∇η〉

≤ c
∫

2Q
|s|α1ϕ ′(|∇u◦Ts|)

|s|
R

s

−
∫

0

|∇u◦Tλ |dλ dx.
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By Young’s inequality (6.26b), (4.13), and (2.10d)

(II2) ≤ c
∫

2Q

|s|1+α1

R

(

ϕ(|∇u◦Ts|)+

s

−
∫

0

ϕ(|∇u◦Tλ |)dλ
)

dx

≤ c
|s|1+α1

R

∫

4Q
|V(∇u)|2dx.

(4.17)

We now come to(III ). By (4.7d) and (4.10)

(III ) = 〈Cs,ηqτsu〉

≤ c
∫

2Q
ηqϕ ′

|∇u|,ω3
(|τs∇u|) |s|

s

−
∫

0

|∇u◦Tλ |dλ dx.

Analogously to the term(J) above we estimate with (6.19)

(J2) := ϕ ′
|∇u|,ω3

(|τs∇u|) |h| |∇u◦Tλ |

≤
(

ϕ ′
|∇u◦Tλ |,ω3

(|τs−λ ∇u◦Tλ |)+ϕ ′
|∇u◦Tλ |,ω3

(|τλ ∇u|)
)

|h| |∇u◦Tλ |.

Define theN-functions σ and κ by σ ′(t) := t
α3

2−α3 , κ ′(t) := t. Then κ ′(1) =

σ ′(1) = ω ′
3(1) = 1, σ(t) ∼ t

2
2−α3 , σ∗(t) ∼ t

2
α3 , andσ∗(ω ′

3(t)) ∼ t2 ∼ κ(t). Par-
ticularly, σ ,κ,ω3 satisfy the assumptions of Lemma34. By Young’s inequality
(6.31), ϕa,κ = ϕa and (2.10)

(J2) ≤ δ ϕ|∇u◦Tλ |(|τs−λ ∇u◦Tλ |)+δ ϕ|∇u◦Tλ |(|τλ ∇u|)
+cδ ϕ|∇u◦Tλ |,σ

(

|h| |∇u◦Tλ |
)

∼ δ |τs−λ V(∇u)◦Tλ |2 +δ |τλ V(∇u)|2 +cδ σ(|h|)ϕ
(

|∇u◦Tλ |
)

.

≤ cδ |τs−λ V(∇u)◦Tλ |2 +δ |τλ V(∇u)|2 +cδ |h|
2

2−α3 |V(∇u◦Tλ )|2.
Therefore

(III ) ≤ δ
∫

2Q
ηq

s

−
∫

0

|s|
|h| |τλ V(∇u)|2dλ dx+cδ |h|

2
2−α3

∫

4Q
|V(∇u)|2dx, (4.18)

where we have used (4.13) and (4.14) once more. We finally get to last term(IV ).
With (4.7e), (4.10), (4.13), and (2.10d)

(IV ) = 〈Ds,ηqτsu〉

≤ c
∫

2Q
|s|1+α2

(

ϕ ′(|∇u◦Ts|)+g2 +g2◦Ts
)

s

−
∫

0

|∇u◦Tλ |dλ dx

≤ c|s|1+α2

∫

2Q

s

−
∫

0

ϕ(|∇u| ◦Ts)+ϕ∗(g2)+ϕ∗(g2◦Ts)dλ dx

≤ c|s|1+α2

(

∫

4Q
|V(∇u)|2dx+

∫

4Q
ϕ∗(g2)dx

)

.

(4.19)
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If we combine all estimates (4.8), (4.15), (4.16), (4.17), (4.18), and (4.19), ap-
ply (4.13) to all terms involvingTs, and divide by|Q| we get (4.2). Note that for
any integrable functionk : Rn → R by Fubini holds

h

−
∫

0

|s|
|h|

s

−
∫

0

|k(λ )|dλ ds=

h

−
∫

0

∫ h

λ

1
|h| ds|k(λ )|dλ ≤

h

−
∫

0

|k(λ )|dλ . (4.20)

Thus (4.3) follow from (4.2) by application of−
∫ h

0 ds. This proves the Lemma.

We are able to get rid of the first term on the right hand side in (4.3) with a
Giaquinta-Modica type lemma.

Lemma 13 Let γ1, . . . ,γM : (0,∞)× (0,∞) → [0,∞) be such thatγm(R, |h|), m=
1, . . . ,M, is non-decreasing in R and|h|. Let v ∈ L2

loc(Ω), w1, . . . ,wM ∈ L1
loc(Ω)

be such that the following holds: For everyδ > 0 there exists cδ > 0 such that for
every cube Q⊂ Ω with side length R and4Q ⋐ Ω and every h∈ Rn \ {0} with
|h| ≤ R holds

h

−
∫

0

−
∫

Q

|τsv|2dxds≤ δ
h

−
∫

0

−
∫

2Q

|τsv|2dxds

+cδ

M

∑
m=1

γm(R,h)−
∫

4Q

|wm|dx.

(4.21)

Then there exists N2 = N2(n) andc̃> 0 such that for every cube Q0 ⊂ Ω with side
length R0 and5Q0 ⋐ Ω and for every h0 ∈ Rn\{0} with |h0| ≤ R

10 holds

−
∫

Q0

|τh0v|2dx≤ c̃
M

∑
m=1

γm(N2R0,N2 |h0|) −
∫

5Q0

|wm|dx.

Proof Let Q0, R0, andh0 be as specified and letΩ0 := 5Q0. We construct a family
{Wj} j≥1 of cubes in the following way:

(a) Split the set 5Q0 into 5n equivalent cubes. Take these 5n cubes as our initial
family of cubes. In particular,Q0 is contained in this family.

(b) Replace any cubeQ of the family which does not satisfy 4Q ⊂ Ω0 into 2n

equivalent cubes. Repeat this step recursively.

Then we obtain a family of cubes which we denote by{Wj} j≥1 with the following
properties:

(i) Ω0 =
⋃

Wj up to a set of measure zero.
(ii) Ω0 =

⋃

4Wj .
(iii) The Wj , j ≥ 1, are pairwise disjoint.
(iv) Q0 ∈ {Wj}.
(v) There existsN1 = N1(n) ∈ N such thatN ( j) ≤ N1 for all j ∈ N, where

N ( j) := #{k : 4Wk∩Wj 6= /0}.
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(vi) There existsN2 = N2(n) ∈ N such that 1
N2

Rk ≤ Rj ≤ N2Rk for every k ∈
N ( j), whereRj is the side length ofWj .

Seth j :=
Rj
R0

h0 andω j :=
(

Rj
R0

)2
. Especially,

h j
Rj

= h0
R0

. We apply (4.21) for every

Wj andh j , multiply the result by|Wj |ω j and sum up. We obtain

∑
j

ω j

h j

−
∫

0

∫

Wj

|τsv|2dxds≤ δ ∑
j

ω j

h j

−
∫

0

∫

2Wj

|τsv|2dxds

+cδ

M

∑
m=1

γm(Rj , |h j |)∑
j

ω j

∫

4Wj

|wm|dx

=: (I)+(II ).

(4.22)

Note that by triangle inequality

h j

−
∫

0

∫

2Wj

|τsv|2dxds≤
h j

−
∫

0

∫

2Wj

N2

N2

∑
j=1

|τs/N2
v◦T j

N2
s|

2dxds

≤ N2
2

h j

−
∫

0

∫

4Wj

|τs/N2
v|2dxds

= N2
2

h j/N2

−
∫

0

∫

4Wj

|τsv|2dxds.

This and 4Wj ⊂ ∪k∈N ( j)Wk implies

(I) ≤ δ N2
2 ∑

k
∑

k∈N ( j)

ω j

h j/N2

−
∫

0

∫

Wk

|τsv|2dxds.

From (vi) we deduceh j ≤ N2hk andω j ≤ N2
2ωk, so

(I) ≤ δ N5
2 ∑

k
∑

k∈N ( j)

ωk

hk

−
∫

0

∫

Wk

|τsv|2dxds

≤ δ cN1N5
2 ∑

k

ωk

hk

−
∫

0

∫

Wk

|τsv|2dxds.

(4.23)

Analogously, we have

(II ) ≤ cδ cN1N2
2

M

∑
m=1

γm(N2Rk,N2hk)∑
k

ωk

∫

Wk

|wm|dx. (4.24)
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If we combine (4.22), (4.23), and (4.24) and absorb (I) for smallδ > 0 on the
left-hand side then with ˜c = c̃(N1N2)

∑
j

ω j

h j

−
∫

0

∫

Wj

|τsv|2dxds≤ c̃
M

∑
m=1

γm(N2Rk,N2hk)∑
k

ωk

∫

Wk

|wm|dx

≤ c̃
M

∑
m=1

γm(N2Rk,N2hk)
∫

6Q0

|wm|dx,

where we have usedωk ≤ 1 and (ii ). SinceQ0 ∈ {Wj} by (iv) andω0 = 1 we get

h0

−
∫

0

∫

Q0

|τsv|2dxds≤ c̃
M

∑
m=1

γm(N2Rk,N2hk)
∫

6Q0

|wm|dx.

This proves the lemma.

We are now prepared to prove Theorem11.

Proof (Proof of Theorem11) Let Q,R,h be as specified. From (4.3) we know that
the requirements of Lemma13are satisfied with

γ1(R, |h|) := β (R, |h|), w1 := ϕ(|∇u|),
γ1(R, |h|) := β (R, |h|), w2 := ϕ∗(g2).

Thus Lemma13andγ j(N2R,N2|h|) ≤ cγ j(R, |h|) implies

h

−
∫

0

−
∫

Q

|τsV(∇u)|2dxds

≤ cβ (R, |h|)−
∫

6Q

|V(∇u)|2dx+c|h|1+α2 −
∫

6Q

ϕ∗(g2)dx,

(4.25)

We use (4.25) to estimate the first term on the right-hand side of (4.2). We get

−
∫

Q

|τsV(∇u)|2dx≤ cβ (R, |h|) −
∫

20Q

|V(∇u)|2dx+c|s|1+α2 −
∫

4Q

ϕ∗(g2)dx.

This proves Theorem11.

5 Dimension of the Singular Set

For a functionf ∈ L1
loc(Ω) with Ω ⊂ Rn open we define the singular sets

Σ1(f) :=

{

x∈ Ω : liminf
ρց0

−
∫

Bρ (x)

|f−〈f〉Bρ (x)|dy> 0

}

,

Σ2(f) :=
{

x∈ Ω : ∄ lim
ρց0

〈f〉Bρ (x)

}

∪
{

x∈ Ω : limsup
ρց0

|〈f〉Bρ (x)| = ∞
}

,
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whereBρ(x) is a ball centered atx with radiusρ . Further, defineΣ(f) := Σ1(f)∪
Σ2(f). By H (β ) we denote theβ -dimensional Hausdorff measure. To estimate the
Hausdorff dimension ofΣ(f) we will need the following theorem.

Theorem 14 Let Ω ⊂ Rn be open and let0 < α. Assume that f∈ N p,α(Ω).
Especially, f∈ Lp(Ω) and there exists c> 0 such that for anyΩ̃ ⋐ Ω and all
0 < h < dist(Ω̃ ,∂Ω) holds

‖τh f‖Lp(Ω̃) ≤ c|h|α .

Then for anyβ > n− pα with β ≥ 0 we haveH (β )(Σ( f )) = 0. As a consequence
the Hausdorff dimension ofΣ( f ) is less or equal to n− pα.

Proof It has been shown in Theorem 1 of [16] under the restriction 0< α < n
p

that H (β )(Σ2( f )) = 0. The restrictionα < n
p however was only used to ensure

that the caseβ < 0 cannot occur andH (β ) is well defined. In our formulation
this condition is replaced byβ ≥ 0. The proof in [16] remains true without any
changes. Horihata construct a functionφ∞ to which he applies the fundamental
lemma of Giusti [14], i. e. H (β )(Eβ ) = 0 where

Eβ :=
{

x∈ Ω : limsup
ρց0

ρ−β
∫

Bρ (x)
|φ∞(y)|dy> 0

}

.

For anyx0 6∈ Eβ Horihata shows on p. 202 that for 0< r < R< δ̃/2 with δ̃ :=
dist(x,∂Ω) holds

∣

∣〈f〉Br (x0) −〈f〉BR(x0)

∣

∣ ≤ c(n,β ,ε , p)Rε/p.

But considering p. 203, second line of (19), and p. 204, second line of (24), it can
easily be seen that as a byproduct he shows

−
∫

Br (x0)

∣

∣f−〈f〉Br (x0)

∣

∣dy+ −
∫

BR(x0)

∣

∣f−〈f〉Br (x0)

∣

∣dy≤ c(n,β ,ε , p)Rε/p.

The limit Rց 0 directly implies that anyx0 6∈ Eβ satisfiesx0 6∈ Σ1(f). Therefore,
H (β )(Eβ ) = 0 givesH (β )(Σ1(f)) = 0. This proves the Theorem.

Remark 15For f ∈ L1
loc(R

d) let us define

Σ3(f) :=

{

x∈ Ω : limsup
ρց0

−
∫

Bρ (x)

|f|dy= ∞
}

.

Then from

−
∫

Bρ (x)

|f|dy≤ −
∫

Bρ (x)

|f−〈f〉Bρ (x)|dy+ |〈f〉Bρ (x)|

it follows thatΣ3(f) ⊂ Σ1(f)∪Σ2(f) = Σ(f).
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Remark 16Please note that it would also be possible to prove Theorem14 by
embeddings fromN 2,α the to Bessel potential spacesLα−ε,2 with ε > 0 and
use the classical capacity estimates for these spaces. The limit ε → 0 provides an
alternative proof of Theorem14. See [2] for further references.

Remark 17Note that Theorem14and Remark15can easily be generalized in the
following sense: In the construction ofΣ1 andΣ2 the ballsBρ(x) can be replaced
by cubesQρ(x) (sides parallel to the axis). It is even possible to use ballsBρ or
cubesQρ (with sides parallel to the axis) which are not centered atx but only con-
tainx. This follows easily from the fact that for anyB with x∈ B the expressions

−
∫

B

| f −〈 f 〉B|dy and −
∫

B

| f |dx.

with B∋ x can be estimated from above by the same expressions withB replaced
by some larger ballBρ(x) centered atx.

We will now estimate the singularities ofV(∇u).

Theorem 18 Letu be a weak solution of system(1.1). Define

α := min
{

1
2−α3

,α1,
1+α2

2

}

≤ 1.

Then for anyβ > n−2α with β ≥ 0 holds

H
(β )

(

Σ(V(∇u))
)

= 0.

Especially, the singular setΣ(V(∇u)) has Hausdorff dimension less or equal to
n−2α.

Proof Let Q j be a countable sequence of cubes withΩ ⊂ ⋃

j Q j and 20Q j ⋐ Ω .
Then from Theorem11we know thatV(∇u)∈N 2,α(Q j). Hence, it follows from
Theorem14 that

H
(β )(Σ(V)∩Q j) = 0.

This immediately impliesH (β )(Σ(V)) = 0 which proves the Theorem.

6 Appendix

For P0,P1 ∈ RN×n, θ ∈ [0,1] we definePθ := (1− θ)P0 + θP1. The following
fact is standard and can e. g. be found in [1].

Lemma 19 Let α > −1 then uniformly inP0,P1 ∈ RN×n with |P0|+ |P1| > 0
holds

(

|P0|+ |P1|
)α ∼

∫ 1

0
|Pθ |α dθ . (6.1)
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Lemma 20 Letϕ be an N-function with∆2({ϕ,ϕ∗}) < ∞. Then uniformly for all
P0,P1 ∈ RN×n with |P0|+ |P1| > 0 holds

∫ 1

0

ϕ ′(|Pθ |)
|Pθ |

dθ ∼ ϕ ′(|P0|+ |P1|)
|P0|+ |P1|

, (6.2)

where the constants only depend on∆2({ϕ,ϕ∗}).

Proof Fromϕ(t) ∼ t ϕ ′(t) and the convexity ofϕ we derive

∫ 1

0

ϕ ′(|Pθ |)
|Pθ |

dθ ≥ c
∫ 1

0

ϕ(|Pθ |)
(

|P0|+ |P1|)2
dθ ≥ c

ϕ(
∫ 1

0 |Pθ |dθ)

(|P0|+ |P1|)2

Since by Lemma19
∫ 1

0 |Pθ |dθ ∼ |P0|+ |P1| there follows
∫ 1

0

ϕ ′(|Pθ |)
|Pθ |

dθ ≥ c
ϕ(|P0|+ |P1|)
(|P0|+ |P1|)2 ≥ c

ϕ ′(|P0|+ |P1|)
|P0|+ |P1|

.

This proves the first part. Since∆2(ϕ∗) < ∞, there exists (as in the proof of Theo-
rem7) someθ ∈ (0,1) and anN–functionρ with ϕθ ∼ ρ and∆2({ρ,ρ∗}) < ∞.
Note thatθ and∆2({ρ,ρ∗}) depend only on∆2({ϕ,ϕ∗}). Fromϕ(t) ∼ t ϕ ′(t),

ϕ(t) ∼ (ρ(t))
1
θ , andρ(t) ∼ tρ ′(t) we deduce

∫ 1

0

ϕ ′(|Pθ |)
|Pθ |

dθ ∼
∫ 1

0

(

ρ ′(|Pθ |)
)

1
θ |Pθ |

1
θ −2dθ .

Using the monotonicity ofρ ′ and Lemma19with α := 1/θ −2 we get
∫ 1

0

ϕ ′(|Pθ |)
|Pθ |

dθ ≤ c
∫ 1

0

(

ρ ′(|P0|+ |P1|)
)

1
θ |Pθ |

1
θ −2dθ

≤ c
(

ρ ′(|P0|+ |P1|)
)

1
θ
(

|P0|+ |P1|
)

1
θ −2

∼ ϕ ′(|P0|+ |P1|)
|P0|+ |P1|

.

This proves the lemma.

Lemma 21 Let ϕ be as in Assumption1. Let Φ : RN×n → R≥0 be given by
Φ(Q) := ϕ(|Q|) and let A(Q) := (∇N×nΦ)(Q). ThenA(Q) = ϕ ′(|Q|) Q

|Q| for

Q 6= 0, A(0) = 0, andA satisfies(2.7).

Proof Note thatϕ ′(0) = 0, sinceϕ is anN−function. Observe that for allQ ∈
RN×n\{0}

(∂ jk∂lmΦ)(Q) = ϕ ′(|Q|)
(

δ jk,lm
|Q| −Q jkQlm

|Q|3
)

+ϕ ′′(|Q|)Q jk
|Q|

Qlm
|Q| .

Especially, with (2.6)

|(∂ jk∂lmΦ)(Q)| ≤ c
ϕ ′(|Q|)
|Q| +cϕ ′′(|Q|) ≤ c

ϕ ′(|Q|)
|Q| . (6.3)
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Moreover,

A jk(P)−A jk(Q) = (∂ jkΦ)(P)− (∂ jkΦ)(Q)

= ∑
lm

∫ 1

0
(∂ jk∂lmΦ)([Q,P]s)(Plm−Qlm)ds,

(6.4)

where[Q,P]s := (1−s)Q+sP. So by (6.3), Lemma20, and (2.6)

|A(P)−A(Q)| ≤ c
∫ 1

0

ϕ ′(|[Q,P]s|)
|[Q,P]s|

ds|P−Q|

≤ c
ϕ ′(|P|+ |Q|)
|P|+ |Q| |P−Q| ≤ cϕ ′′(|P|+ |Q|) |P−Q|.

On the other hand due to (2.6) there existsε > 0 with ϕ ′(t)/t > ε ϕ ′′(t). So by
(6.4) for G,B ∈ RN×n with G 6= 0 holds

∑
lm

B jk(∂ jk∂lmΦ)(G)Blm =
ϕ ′(|G|)
|G|

(

|B|2− |BG|2

|G|2
)

+ϕ ′′(|G|) |BG|2

|G|2

≥ ε ϕ ′′(|G|)
(

|B|2− |BG|2

|G|2
)

+ϕ ′′(|G|) |BG|2

|G|2

≥ ε ϕ ′′(|G|)|B|2.

This, (6.4), and Lemma20 imply

〈A(P)−A(Q),P−Q〉 ≥ ε
∫ 1

0
ϕ ′′(([Q,P]s)|P−Q|2ds

≥ ε cϕ ′′(|P|+ |Q|) |P−Q|2.

This proves the lemma.

We will now introduce some auxiliaryN-functions and prove some of their fun-
damental properties.

Definition 22 Let ϕ,ω beN-functions with∆2({ϕ,ϕ∗,ω ,ω∗}) < ∞. Further as-
sume thatω ′(1) = 1. Then fora≥ 0 we defineϕ ′

a,ω(t) : R≥0 → R≥0 by

ϕ ′
a,ω(t) := ϕ ′(a+ t)ω ′

(

t
a+ t

)

. (6.5)

Further we defineϕa,ω : R≥0 → R≥0 by ϕa,ω(t) :=
∫ t

0 ϕ ′
a,ω(s)ds.

By ϕa(t) we denote the functionϕa,ω0 with ω ′
0(t) = t, i. e.

ϕ ′
a(t) := ϕ ′(a+ t)

t
a+ t

. (6.6)

We remark that the requirementω ′(1) = 1 is symmetric with respect toω ↔
ω∗, sinceω ′(1) = 1 implies(ω∗)′(1) = (ω ′)−1(1) = 1. Thusϕ,ω satisfy the be
requirements of Definition22 if and only if ϕ∗,ω∗ satisfy the requirements.
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Lemma 23 Let ϕ,ω be as in Definition22. Then for all a≥ 0 the functionϕa,ω
is an N-function and∆2({ϕa,ω}a≥0) < ∞, i. e. the familyϕa,ω satisfies the∆2-
condition uniformly in a≥ 0.

Proof The assertion is obvious fora = 0, sinceϕ ′
0,ω = ϕ ′. If a > 0 thenϕ ′(a+

t) and ω ′(t/(t + a)) are strictly in increasing, soϕ ′
a,ω(t) is strictly increasing.

Moreover,ϕ ′
a,ω(0) = ϕ ′(a)ω ′(0) = 0. Thusϕa,ω is anN-function.

Due to (2.3) and ∆2({ϕ,ω}) < ∞ there holdsϕ ′(t) ∼ ϕ ′(2t) and ω ′(t) ∼
ω ′(2t) uniformly in t ≥ 0. Moreover, for alla, t ≥ 0 holdsa+ 2t ∼ a+ t and
2t/(a+2t) ∼ t/(a+ t). Thus

ϕ ′
a,ω(2t) = ϕ ′(a+2t)ω ′

(

2t
a+2t

)

∼ ϕ ′(a+ t)ω ′
(

t
a+ t

)

= ϕ ′
a,ω(t)

uniformly in a, t ≥ 0. Again (2.3) implies thatϕa,ω(2t) ∼ ϕa,ω(t) uniformly in
a, t ≥ 0. This proves the assertion.

Lemma 24 Let ϕ satisfy Assumption1. Then uniformly in s, t ∈ Rn, |s|+ |t| > 0

ϕ ′′(|s|+ |t|) |s− t| ∼ ϕ ′
|s|(|s− t|),

ϕ ′′(|s|+ |t|) |s− t|2 ∼ ϕ|s|(|s− t|).
(6.7)

Proof Due to (2.3) and∆2(ϕ) < ∞ there holdsϕ ′(r)∼ ϕ ′(2r) uniformly in r ≥ 0.
Moreover,|s|+ |t| ∼ |s|+ |s− t| uniformly in s, t ∈ Rn. Thus

ϕ ′′(|s|+ |t|) ∼ ϕ ′(|s|+ |t|)
|s|+ |t| ∼ ϕ ′(|s|+ |s− t|)

|s|+ |s− t| =
ϕ ′
|s|(|s− t|)
|s− t| .

This proves the first inequality in (6.7). The second follows from (2.3).

Lemma 25 Letϕ be as in Assumption1. Then alsoϕ∗ satisfies the Assumption1.
If we define the N-functionψ for t > 0 by

ψ ′(t) :=
√

φ ′(t) t

thenψ andψ∗ satisfy the Assumption1. Moreover,ψ ′′(t) ∼
√

ϕ ′′(t) uniformly in
t > 0.

Proof From (ϕ∗)′(t) = (ϕ ′)−1(t), (2.6), and (2.3) (with ϕ replaced byϕ∗) we
deduce fort > 0

(ϕ∗)′′(t) =
1

ϕ ′′((ϕ∗)′(t))
∼ ((ϕ∗)′(t))2

ϕ((ϕ∗)′(t))
∼ ((ϕ∗)′(t))2

(ϕ∗)(t)
∼ ϕ∗(t)

t2 .

This proves thatϕ∗ satisfies Assumption1. From∆2(ϕ) < ∞ we deduceϕ ′(2t) ∼
ϕ ′(t), ψ ′(2t)∼ ψ ′(t), andψ(2t)∼ ψ(t). Especially,∆2(ψ ′) < ∞. LetK ≥ 64 then
with repetitive use of (2.2) and the monotonicity ofϕ ′ we estimate for allt ≥ 0

K ψ
(

2t
K

)

≤ 2t ψ ′
(

2t
K

)

= 2t

√

ϕ ′
(

2t
K

)

· 2t
K

≤ 2t

√

ϕ ′
(

t
2

)

· 2t
K

=
4√
K

t ψ ′
(

t
2

)

≤ 8√
K

ψ(t) ≤ ψ(t).
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Due to (2.4) and (2.5) this is equivalent toK ψ∗(t/2) ≥ ψ∗(t) for all t ≥ 0. This
proves∆2(ψ∗) < ∞. Moreover, fort > 0 we deduce from (2.6)

ψ ′′(t) = 1
2

(

t ϕ ′(t)
)−1/2(

t ϕ ′′(t)+ϕ ′(t)
)

∼
√

ϕ ′′(t).

Overall, we have shown thatψ satisfies Assumption1. Thus by the first part of
the Lemmaψ∗ also satisfies Assumption1.

We are now able to prove Lemma3:

Proof (Proof of Lemma 3) Let A,ϕ,ψ ,V be as in Lemma3. Due to (2.7) holds
uniformly in P,Q ∈ RN×n andx∈ Ω

(

A(x,P)−A(x,Q)
)

·
(

P−Q
)

∼ |P−Q|2 ϕ ′′(|P|+ |Q|
)

. (6.8)

On the other hand by Lemma24holds uniformly inP,Q ∈ RN×n

|P−Q|2 ϕ ′′(|P|+ |Q|
)

∼ ϕ|P|(|P−Q|). (6.9)

Moreover, by Lemma25 and Lemma21 the estimates (2.7) holds withA andϕ
replaced byV andψ . This and Lemma25 implies

∣

∣V(P)−V(Q)
∣

∣

2 ∼
(

|P−Q|ψ ′′(|P|+ |Q|)
)2

(6.10)

∼ |P−Q|2 ϕ ′′(|P|+ |Q|
)

(6.11)

uniformly in P,Q ∈ RN×n. The combination of (6.8), (6.9), and (6.10) prove
(2.10a), (2.10b), and (2.10c), whereas (2.10d) is just the special caseP = 0 us-
ing A(0) = V(0) = 0. This proves the Lemma.

Lemma 26 Let ϕ,ω be as in Definition22. Then

(ϕa,ω)∗(t) ∼ (ϕ∗)ϕ ′(a),ω∗(t) (6.12)

uniformly in a, t ≥ 0. Especially, we have uniformly in t≥ 0

(ϕa)
∗(t) ∼ (ϕ∗)ϕ ′(a)(t). (6.13)

Proof Due to (2.3) and∆2({ϕ,ω}) < ∞ there holdsϕ ′(t) ∼ ϕ ′(2t) andω ′(t) ∼
ω ′(2t) uniformly in t ≥ 0. If 0≤ t ≤ a thena+t ∼ a and ifa≤ t < ∞ thena+t ∼ t.
Therefore

ϕ ′
a,ω(t) = ϕ ′(a+ t)ω ′

(

t
a+ t

)

∼
{

ϕ ′(a)ω ′( t
a

)

for 0≤ t ≤ a,

ϕ ′(t)ω ′(1) for t ≥ a

uniformly in a, t ≥ 0. Thus byω ′(1) = 1

ϕ ′
a,ω(t) ∼

{

ϕ ′(a)ω ′( t
a

)

for 0≤ t ≤ a,

ϕ ′(t) for t ≥ a.
(6.14)
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Let u := ϕ ′
a,ω(t) then (6.14) implies

(

(ϕa,ω)∗
)′

(u) = t ∼
{

a(ω ′)−1
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′
a,ω(a),

(ϕ ′)−1(u) for u≥ ϕ ′
a,ω(a)

uniformly in a, t ≥ 0. Therefore

(

(ϕa,ω)∗
)′

(u) ∼
{

a(ω∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′
a,ω(a),

(ϕ∗)′(u) for u≥ ϕ ′
a,ω(a).

(6.15)

Because ofϕ ′
a,ω(a) = ϕ ′(2a)ω ′(1

2) ∼ ϕ ′(a) it is possible in (6.15) to shift the
border fort from ϕ ′

a,ω(a) to ϕ ′(a). Especially,

(

(ϕa,ω)∗
)′

(u) ∼
{

a(ω∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′(a),

(ϕ∗)′(u) for u≥ ϕ ′(a).
(6.16)

On the other hand we replace in (6.14) ϕ by ϕ∗, a by ϕ ′(a), ω by ω∗, andt by u
then

(ϕ∗)′ϕ ′(a),ω∗(u) ∼
{

(ϕ∗)′(ϕ ′(a))(ω∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′(a),

(ϕ∗)′(u) for u≥ ϕ ′(a).

Note that(ω∗)′(1) = (ω ′)−1(1) = 1 and(ϕ∗)′(ϕ ′(a)) = a, so

(ϕ∗)′ϕ ′(a),ω∗(u) ∼
{

a(ω∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′(a),

(ϕ∗)′(u) for u≥ ϕ ′(a)
(6.17)

uniformly in a, t ≥ 0. From (6.16) and (6.17) follows

(

(ϕa,ω)∗
)′

(u) ∼ (ϕ∗)′ϕ ′(a),ω∗(u)

uniformly in a,u≥ 0. This and (2.3) prove (6.12). Inequality (6.13) follows from
(6.12) with the special choiceω ′(t) = t.

Lemma 27 Let ϕ,ω be as in Definition22. Then the familiesϕa,ω and (ϕa,ω)∗

satisfy the∆2-condition uniformly in a≥ 0, i. e. it holds∆2({ϕa,ω}a≥0) < ∞ and
∆2({(ϕa,ω)∗}a≥0) < ∞.

Proof From Lemma23 follows ∆2({ϕa,ω}a≥0) < ∞. By the same lemma we get
∆2({(ϕ∗)ϕ ′(a),ω∗}

a≥0
) < ∞. Due to Lemma26this implies∆2({(ϕa,ω)∗}a≥0) < ∞.

This proves the assertion.

Lemma 28 Let ϕ,ω be as in Definition22. The uniformly in a,b∈ Rn

ϕ|a|,ω(|a−b|) ∼ ϕ|b|,ω(|a−b|). (6.18)
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Proof The proof is obvious fora= b, so let us assume that|a−b|> 0. From (2.3)
and|a|+ |a−b| ∼ |b|+ |a−b| we deduce

ϕ|a|,ω(|a−b|)
|a−b|2

∼
ϕ ′
|a|(|a−b|)
|a−b| = ϕ ′(|a|+ |a−b|)ω ′

( |a−b|
|a|+ |a−b|

)

∼ ϕ ′(|b|+ |a−b|)ω ′
( |a−b|
|b|+ |a−b|

)

=
ϕ ′
|b|,ω(|a−b|)
|a−b|

∼
ϕ|b|,ω(|a−b|)

|a−b|2

This proves the assertion.

Lemma 29 Let ϕ,ω be as in Definition22. Then there exists c1 > 0 such that for
all a,b,e∈ Rn

ϕ ′
|a|,ω(|b−a|) ≤ c1 ϕ ′

|e|,ω(|b−e|)+c1 ϕ ′
|e|,ω(|a−e|). (6.19)

Proof If |b−e| ≤ |a−e| then|a−b| ≤ 2|a−e| and

ϕ ′
|a|,ω(|b−a|) ≤ ϕ ′

|a|,ω(2|a−e|)
∼ ϕ ′

|a|,ω( |a−e|) by Lemma23

∼ ϕ ′
|e|,ω( |a−e|) by (6.18)

(6.20)

This proves the assertion in the case|b−e| ≤ |a−e|. Assume now that|a−e| ≤
|b−e|. From (2.3) and (6.18) we knowϕ ′

|a|,ω(|a−b|) ∼ ϕ ′
|b|,ω(|a−b|). The rest

follows from (6.20) with a andb interchanged.

Lemma 30 Letϕ,ω be as in Definition22. Then uniformly inλ ∈ [0,1] and a≥ 0
holds

ϕa,ω(λ a) ∼ ω(λ )ϕ(a). (6.21)

Especially,

ϕa(λ a) ∼ λ 2 ϕ(a), (6.22)

(ϕa)
∗(λ ϕ ′(a)

)

∼ λ 2 ϕ(a). (6.23)

Proof Because of (2.3) and (6.14) holds

ϕa,ω(λ a) ∼ λ aϕ ′
a,ω(λ a) ∼ λ aϕ ′(a)ω ′(λ ) ∼ ϕ(a)ω(λ ).

This proves (6.21) while (6.22) is a special case of (6.21) with ω ′(t) = t. Moreover,
(6.13), (6.22), and (2.3) imply

(ϕa)
∗(λϕ ′(a)

)

∼ (ϕ∗)ϕ ′(a)

(

λϕ ′(a)
)

∼ λ 2ϕ∗(ϕ ′(a)) ∼ λ 2 ϕ(a).

So, (6.23) is proven.
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Lemma 31 Letϕ be an N-function with∆2({ϕ,ϕ∗}) < ∞. Then there existε > 0,
c2 > 0 which only depend on∆2({ϕ,ϕ∗}) such that for all t≥ 0 and allλ ∈ [0,1]

ϕ(λ t) ≤ c2 λ 1+ε ϕ(t). (6.24)

In particular, there existsε > 0 and c2 > 0 such that

ϕa(λ t) ≤ c2 λ 1+ε ϕa(t) (6.25)

uniformly in a, t ≥ 0 andλ ∈ [0,1].

Proof Since∆2({ϕ,ϕ∗}) < ∞ there exists, as in Theorem7, anN-functionρ and
θ ∈ (0,1) with ϕθ ∼ ρ . This implies uniformly int ≥ 0 andλ ∈ [0,1]

ϕ(λ t) ∼
(

ρ(λ t)
)

1
θ ≤

(

λ ρ(t)
)

1
θ ∼ λ

1
θ ϕ(t),

where we have used the convexity ofρ andρ(0) = 0. Inequality (6.24) follows
with ε := 1

θ −1. Now, (6.25) follows from Lemma27.

Lemma 32 (Young type inequality) Let ϕ be an N-function which fulfills
∆2({ϕ,ϕ∗}) < ∞. Then for allδ > 0 there exists cδ which only depends onδ
and∆2({ϕ,ϕ∗}) such that for all t,u≥ 0

t u≤ δ ϕ(t)+cδ ϕ∗(u), (6.26a)

t ϕ ′(u)+ϕ ′(t)u≤ δ ϕ(t)+cδ ϕ(u). (6.26b)

Let ϕ,ω be as in Definition22. Then for allδ > 0 there exists cδ such that for all
t,u,a≥ 0

t u≤ δ ϕa,ω(t)+cδ (ϕa,ω)∗(u), (6.27)

t ϕ ′
a,ω(u)+ϕ ′

a,ω(t)u≤ δ ϕa,ω(t)+cδ ϕa,ω(u). (6.28)

Proof Inequality (6.26a) is well known, see (2.1). Now (6.26b) follows from
(6.26a) and (2.3). Because of Lemma27 we can apply (6.26a) and (6.26b) to
the family{ϕa,ω}a≥0. This proves (6.27) and (6.28).

Remark 33Note that Lemma32 together with Lemma3 generalize many known
estimates. One example are the quasi-norms estimates of Barrett and Liu in [3].

Lemma 34 Let ϕ,σ ,κ,ω be N-function withσ ′(1) = κ ′(1) = ω ′(1) = 1 and
∆2({ϕ,ϕ∗,σ ,σ∗,κ,κ∗,ω ,ω∗}) < ∞. Moreover, let

κ(t) ∼ σ∗(ω ′(t)
)

(6.29)

uniformly in t≥ 0. Then uniformly in a, t ≥ 0

(ϕa,σ )∗
(

ϕ ′
a,ω(t)

)

∼ ϕa,κ(t). (6.30)

Moreover, for everyδ > 0 there exists cδ > 0 such that uniformly in a, t,u≥ 0

ϕ ′
a,ω(t)u≤ δ ϕa,κ(t)+cδ ϕa,σ (u). (6.31)
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Proof Let us remark that ifσ = κ = ω then (6.29) and (6.30) follow immediately
from (2.3).

From (6.14) and (6.17) we deduce

ϕ ′
a,ω(t) ∼

{

ϕ ′(a)ω ′( t
a

)

for 0≤ t ≤ a,

ϕ ′(t) for t ≥ a.
(6.32)

(

(ϕa,σ )∗
)′

(u) ∼ (ϕ∗)′ϕ ′(a),σ∗(u) ∼
{

a(σ∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′(a),

(ϕ∗)′(u) for u≥ ϕ ′(a)

(6.33)

Because ofϕ ′
a,ω(a) = ϕ ′(2a)σ(1

2) ∼ ϕ ′(a) it is possible in (6.15) to shift the
border foru from ϕ ′(a) to ϕ ′

a,ω(a), i. e.

(

(ϕa,σ )∗
)′

(u) ∼
{

a(σ∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′
a,ω(a),

(ϕ∗)′(u) for u≥ ϕ ′
a,ω(a)

.

Repeatedly use of (2.3) implies

(ϕa,σ )∗(u) ∼
{

ua(σ∗)′
(

u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′
a,ω(a),

ϕ∗(u) for u≥ ϕ ′
a,ω(a)

∼
{

ϕ(a)σ∗( u
ϕ ′(a)

)

for 0≤ u≤ ϕ ′
a,ω(a),

ϕ∗(u) for u≥ ϕ ′
a,ω(a)

.

(6.34)

Now the composition of (6.32) and (6.34) gives

(ϕa,σ )∗
(

ϕ ′
a,ω(t)

)

∼
{

ϕ(a)σ∗
(

ω ′( t
a

)

)

for 0≤ t ≤ a,

ϕ∗(ϕ ′(t)
)

for t ≥ a

∼
{

ϕ(a)κ
(

t
a

)

for 0≤ t ≤ a,

ϕ(t) for t ≥ a

∼ ϕa,κ(t) by (6.14) and (2.3).

Now (6.14) concludes

(ϕa,σ )∗
(

ϕ ′
a,ω(t)

)

∼ ϕa,κ(t)

This proves (6.30). Now (6.31) is a direct implication of (6.30) and Young’s in-
equality (6.28).
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