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On Functions of Bounded Mean Oscillation®

F. JOHN and L. NIRENBERG

§ 1. We prove an inequality (Lemmas 1.1') which has been applied
by one of the authors and by J. Moser in their papers in this issue. The
inequality expresses that a function, which in every subcube C of a cube C,
can be approximated in the L! mean by a constant a, with an error independ-
ent of C, differs then also in the L? mean from g in C by an error of the
same order of magnitude. More precisely, the measure of the set of points in
C, where the function differs from ay by more than an amount ¢ decreases
exponentially as o increases.

In Section 2 we apply Lemma 1’ to derive a result of Weiss and Zyg-
mund [3], and in Section 3 we present an extension of Lemma 1’.

LEMMA 1. Let u(x) be an inlegrable function defined in a finite cube C,
in n-dimensional space; x = (x,, * + -, x,). Assume that there is a constant K
such that for every parallel subcube C, and some constant ag, the inequality

1 ! dr < K
(1) mfc |4 —agldz =

holds. Here dx denotes element of volume and m(C) s the Lebesgue measure
of C. Then, if u(o) is the measure of the set of poinis where (u—ag | > o,
we have

(2) w(e) < Be*™Em(Cy) for o> 0,

where B, b are constants depending only on n.
Since for every continuously differentiable function f(s), vanishing at
the origin,

[, Hu—ac,)az = [ " u()af (),

inequality (2) implies that # belongs to L? for every finite p = 1, and, in
fact for ¥’ < K-1b the function e?l*~¢, is integrable and

BY
3 dluoc dp < (1 et
3) fc ¢ ) i K-1p—-0b

L]

)m(CO).

*This paper represents results obtained under Contract Nonr-285(46), with the Office
of Naval Research, United States Navy. Reproduction in whole or in part is permitted for
any purpose of the United States Government.
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A function satisfying (1) for every subcube C of C, for come constant
ap, will be said to have “mean oscillation < K in C,”. Taking for a. the
average of # in C we always have

1 = 1
= 3(m(C))2 | dx [ , dylu(e) —u(y) 2

In particular # has mean oscillation =< K, if # is bounded and its oscillation
[#(x) —u(y)| does not exceed the value /2K in C,.

Boundedness of « is not necessary for boundedness of its mean oscilla-
tion. Let indeed u(z) be any integrable function in C, with the property
that we can associate with every subcube C a value a, such that the subset
S, of C, where

lu—ac| = o,
has measure
u(o) £ Be*m(C) for o> 0.
Then

L B
fo [#—aglde =J; u(o)do = i m(C)

so that the mean oscillation of % does not exceed Bfb. Take now for u the
function log|z—y|, where ¥ is fixed. Let C be any cube of side 4, and let
& and # be points of C for which

|E—y] = Max |z—yl, |n—y| = Min |[x—yl|.

zeC zeC
Take ay = log|é—y|. Then for z in C
=yl
z—yl
S, is the subset of C lying in the sphere

() —aq| = log

loe—yl = [E—yle™.
If S, is not empty, it must contain 7, so that
|E—yle” = In—yl = [§—y|—I&—nl Z [—y|—v/n k.
Thus
VR h

1—e’

[§—y] =
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It follows that S, is contained in the sphere

x—y| =
le—yl & =—

and that its measure u(o) does not exceed

(L) mec),

e’ —1

where the volume of the unit sphere in n-space is denoted by (w,)”. Since
also u(o) < m(C) for all ¢ = 0, we find that

pulo) = (1+4/10,)"e " m(C) = Be*"m(C) for ¢ >0,

where B and & do not depend on C. This proves that loglz—y| is of bounded
mean oscillation in every cube C,. The same holds then for any function
u(z) of the form

u(w) = [(y) logle—yldy with [ |Z(y)ldy < oo.
Lemma 1 will be derived from

LEMMA 1’. Let u(x) be integrable in a cube Cy and assume that there is a
constant k such that for every parvallel subcube C we have

1
(1) WL lu—uclde = k,

where ug is the mean value of u in C. Then if S, is the set of points where
|u—uwg | > o, its measure m(S,) satisfies

A
(2) m(S,) = —f |u—ug [d - e~ for il = .
Kde, K
Stnce m(S,) = m(C,) 4t follows that
(2" m(S,) = e*e2*"m(Cy) for o> 0.

Here A <1, «, a are positive numbers depending only on the dimension n.
By a standard type of argument we can derive, as consequences of
(2)’, the following inequalities: for 0 < f < «,

(3)" f gﬂx_llu*uCul dx é (L _.}_gﬁa) m(co),
C

x—f

0
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efr—1 A «

B~ Yu—ucol 1) dp <= { 2 ﬂ(ﬂfrz)]f - d
fc (e Jdz = Ba —}—Ka“ﬁe C|u ug |dx

0 0

(3)" — JJC | —ic |d

< Mjc |u¢| dzx.

The inequality (3)” is of interest since, in case u(w) is integrable in an
infinite cube €y and satisfies (1)’ in every finite subcube, we can conclude
from (3)” that

(3)"" JC‘ (gﬁx"liu[_l)da: = 2/1’]6 || dex.
0 0

If one wishes to prove (2)" directly, without proving (2)’, then the proof
given below can be simplified slightly.

Lemma 1 follows easily from Lemma 1’; for (1) implies that jug—ac| =K
so that

! dr = 2K
7;’«_(_(:5-[0 | —uclde < 2K.

By Lemma 1’, (2)” holds, with x = 2K, and (2) then follows easily.

The proof of Lemma 1’ is based on a decomposition of integrable func-
tions which, in one dimension, is due to F. Riesz, and which has been used
extensively by Calderon and Zygmund [1] and Hérmander [2]. For com-
pleteness we include the proof of this decomposition, in a form suitable for
application to Lemma 1'.

DECOMPOSITION. Let # be an integrable function defined in a cube C,
and let s be a positive number such that

1
S 2 m(ce)jcu log|da.

There exists a denumerable number of open disjoint cubes I in C, such that

(4)

i) 4| =s ae. in Co—Uply,
ii) the average value #, of « in I, is bounded in absolute value by 2%s,

i) Ym(l,) < s—lj |u| d.
k C

0

Proof: Divide C, (by halving each edge) into 2" equal cubes and let
I, 1,5, * - be those open cubes over which the average value of |u| 19 == 5
Then

sm (1) ng |ulde = 2"s m(1y)
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by (4). Next subdivide each remaining cube, over which the average of
lu| is < s, into 2" equal cubes, and denote by Iy, 5, ... those cubes thus
obtained over which the average of |#| is =s. Again subdivide the
remaining cubes, etc. In this way we obtain a sequence of cubes I,,, which
we rename [I,, such that

sm(I,) < frk uldx < 27sm ().

Clearly property ii) is satisfied. Furthermore, summing the left inequality
over k we obtain iii). We observe finally that a point of C; which does not
belong to any of the I, belongs to arbitrarily small cubes over which the
average of |#| is < s. Hence |#| = s a.e. outside all the I, verifying i).

Proof of Lemma 1: We may assume without loss of generality that
#o, = 0 and that « = 1, by replacing u by (u—uc )/«

Denote by F(o) the smallest number, depending only on ¢ and # (and
independent of the particular function # or cube C,) such that

m(Sy) = F(o) [, ulda;

obviously F(o) = 1Jo. We now prove that, for ¢ = 27,

1
(5) Flo) - F(o—2"s) for 2"g=s=1.
5

To this end we apply the above decomposition to the function # in C, with

1
2 rg=zs=12= f || d,
m(Co) J¢

the last inequality following from (1)’. Because of i) we see that if
|#(x)| > o, then  belongs to one of the I, (except for a set of measure zero).
Hence, since the average u, of % in I, is bounded by 2"s in absolute value,
we see that

m(S,) = mizllu(z)] > o} <> m{x“u(a:)—uk[ > g—2% in I}
k
Now in the cube I, the function #—u, satisfies the hypotheses of Lemma

1’, in particular it satisfies (1)’ for every cube in I,. Hence, using the
definition of F(c), we have

m{m[]u(m)—ukj >¢g—2"s in I} = F(a—2”s)L |2t — 24, | dax

= F(o—2"s)m(l,).

Thus we find
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m(S,) < Flo—2ns) S m(l,) <

k

;F(a—-2"s) f |u|dx

Cq
by iii), proving (5).

Setting s = ¢ in (5) we see that if F(o) < Ae27, & = 1/(2"¢) for some
o, then

1 n
Fo4-2me) < - Ae™47 = fe—o+2’e),
e

From this it follows that if on some interval of length 2”¢ the inequality
F(o) = Ae holds, then it holds for all larger ¢. But a calculation shows

that

12 2ne 2ne
< —2-%¢g%%  for =0 =

2ne,
10 e—1 e—1 a

Flo) <

Q|

(This interval is the one of length 2”¢ on which the maximum of ¢**/s is as
small as possible.) Thus we conclude that

12 1 )
m(Se) = z_ﬂg_wf lulde for oo =-—r, a=_—,
10 69 ' e—1 2ng
that is, we have proved (2)’ with
12 1 2ng
(6) Az_z_n: m:—, a = w
10 2% p e—1

We have made no attempt here to obtain the best constants. The
exponent « can be considerably improved, i.e. increased, by using the
hypothesis (1)" again to sharpen the estimate |u,] < 275 that was provided
by ii). We mention only that we have proved (2)’ with a constant « which
for large » behaves like (1/e log 2) (log n/n).

§ 2. A recent paper by M. Weiss and A. Zygmund [3] contains the
following

THEOREM. If F(x) is periodic and for some § > § satisfies

h
7 F(e4-h)+F(x—h)—2F(z) = 0 | ———

(7 (R +Fle—h) —2F ) = 0 ()
uniformly in x, then F 1s the indefinite integral of an ]‘ belonging to every L.

They also give an example showing that the result does not hold for
f=1

The proof of the theorem in [3] is rather short but it relies on a theorem
of Littlewood and Paley, and it seems of interest to us to show how it may
be derived from our Lemma 1’: we prove
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LEMMA 2. Let u(x) be an integrable function defined in a finite cube C,
in n-space. Assume that theve is a constant K and a constant f > L such that
if Cy and Cy, are any two equal subcubes having a full (n—1)-dvmensional face
in common, then

— 0 o o
(8) I%CI %Cs[ = l—l—llog k[ﬁ ’

here uc_, g, are the mean values of u in the cubes Cy and C,, and h 1s the
COMMON, side length. Then w satisfies the conditions of Lemma 1" with some
constant « depending on K, B and n so that, consequently, u satisfies (2)" and
(3)".

The preceding theorem follows easily from this lemma. By convolution
of F with a smooth peaked kernel we may suppose that F is infinitely differ-
entiable. It suffices merely to estimate the L, norm of the derivative f of F.
Hypothesis (7) asserts simply that f satisfies (8) for n=1. Applying Lemma 2
we obtain from (2)" or (3)"" an estimate for the L, norm of f depending
only on K and g, proving the theorem. From (3)" we find, furthermore,
that el is integrable for some o' > 0.

Proof of Lemma 2: Consider a subcube C, of side length % subdivided
into 2"V equal cubes C,, # = 1, - - -, 2", obtained by dividing each edge
into 2% equal parts, and let %, denote the mean value of % in C,. Then |

1
— | —ugldr = im 2="NY |u,—u

Thus to prove (1) it suffices to show that 27"¥ 3 |u,—ug| = &, with «
depending only on K, f and =.
By Schwarz inequality,

27N 3 fu,—ugl = (273 ey —uplP = ay.

We shall prove that the ay are uniformly bounded by showing that

nK [)2 k

(9) ayy = ay+ (W = s

Since a, = 0, it follows that

Ayeq < n2K2 Y (14]jlog 2—log AJF)7% =< «*
i=1
for some constant « independent of %, convergence being guaranteed by the
fact that g > 4. '
Thus to complete the proof we shall establish (9). We observe first that
2"V S u, = ue so that using the general identity
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i

k Z baz' = (zbr)z—f"% E (br_'bs)z
) T8
for real &,, we find

(10) 22N gy = 2N 3 1y r— el =1 3 lu,—u|2.

s

Now, on the next subdivision of C into 2"+ cubes each C,is d1v1ded

into 2" equal cubes oo & == T, ", of side length % = k/2N+1 If
the mean value of u IIl C,, we have

(11) %7‘ = z_nzuri'

Furthermore, since any two C ., C,; can be connected by a chain of at most

n+1 cubes each having a full face In common with the succeedmg one, we
find from (8) that

T 1+ log A)?
where M is so defined. This together with (11) implies

[, — =M,

'uri—ur[ =M,
According to formula (10)
2220V gy g = 2> (10— 28,2
?',Séan
i s 2%

= z [ £i+%fz)—2u 'uw]
= 3 [(ttre— 4,2+ (4, — 10,02 4201 1,
+ 20050 —u? — e 2u,,1,]

= z [(%m‘ = %r)2+ (%sj ﬁ“s)2]

1

+ 2 [2.227(y? —f—uf)%.‘z%(%f;f-uf)—2.22”u,,ua}
7,8

by (11),
g 2[[4’222131\7—]-2?2_5_22912 (urﬁus)z
T8
= 2.22“(N+1)M2+2.22”(N+”6ZN,
by (10), or

ANy = ay+ M2

This is the desired inequality (9) and the proof is complete.

¥ R n—————




FUNCTIONS OF BOUNDED MEAN OSCILLATION 423

§ 3. In this section we present briefly a generalization of Lemma 1'.

LEMMA 3. Lel u be integrable ina finite cube C, and consider a subdivision
of C, into a denumerable number of cubes C,, no two having a common interior
point. Assume that for fived p, 1 < p < o0, the expression

p\1/p
f lu—ue |da }
e, *

is finite. Denote by K, the lim sup of such expressions for all possible subdivi-
sions of C, of this kind: in general K, = co. If K, < o, the measure m(S,) of
the set S,, where |u—ug | > o, satisfies

K,l?

——‘ for o >0,
a

[smcy-

i

m(S,) = A

for some constant A depending only on n and p.
The result implies that the function » belongs to L? for every p’ < p.
For p = oo the hypothesis of Lemma 3 agrees with that of Lemma 1".
Proof: We shall not attempt to obtain the best constants. Let
g = p/(p—1) be the conjugate exponent to p. We may assume that o = 0.
Using induction with respect to the integer j we shall prove that if

2="g Ky
s =—— ,
pl@—1)+1— m(Co)/?

p(1-1/¢"*"y £ q 1/d’
(e
Ku C

0

(12)

1\

then

2np(1—g 1)K,
a

(13) m(SU) =S 2~ngl,’q+2/02+.__+jl,q,

Since

1
m(S,) g—f |o¢| dex,
gJc

(13) holds for j = 0. Suppose then it is true for j—1, we wish to prove it for j.
Since

(14) f ulde < ———,

m(Co)J c, m(Co)/?

we may apply the decomposition of § 1 to u, with s equal to its value in (12).
Let u, denote the mean value of % in I, and set v, = u—u, in [;,. From the
definition of K, we may assert that

(15) S K, < K.
k
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Setting a, :L |vg|dx we note further (as in (14)) that

(16) m(l) Pay = Ky,

so that by Hélder’s inequality

Z ak = z I.?c)l DaD 1,:'1:', z II,’Q
gzmwz(wa |

1/a

(17) Sa, = —lfoo Jut)daz

by (15) and iii).
As in the derivation of (5), we have

m(S,) < X mfx e I||v,| > o—2"s}.
k

Applying the induction hypothesis (13), for j—1, to the functions v, in [,

we find
p(1-1/d’ ):|

5 1 1/¢71
- Dl (K_f lvk|d33)
k

v Iy

27 p(l—g~)

g—2%s

m (Sﬂ.) = [2—11 gl.ch-' ot (i—1) /g2

_—— o

—ql=7 i—1
= [ 1K
k

<[] (Sa)e™ (3 Koy
by Holder’s inequality, ' |
K::*pql—f ]

1/q?

LLIES

51 fcu |%[dacL

by (17) and (15), so that

y (1 ue
m(S,) = [1/3# p(1~ ~1/gi+1) (I_{_J‘ |%|dx) .
uv C,

A slightly tedious calculation shows that this inequality is identical

with the desired result (13).
Having established (13) we may now express it in a more convenient
form: if (12) holds, then, in virtue of (14), there is a constant % depending

only on # and $ such that

K (1 ll"qi+1)
m(s) = k(=) o (Co e
ag
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or
pjgitt

om(Co)t?
B,

a

m(S,,).gk(Ii‘)p-

If now 2-7¢ = K,m(C,)~/* and we choose the largest integer § = 0 so
that (12) is satisfied, we have the opposite inequality for 7+1:
om (Cy)'/?
K,

IA

9n (15(9"'+1—1)+1) < gn?qa‘ﬂ_
Inserting into the previous inequality we find

K D
m(S,) < & (—) [2n pg[piet
g

A

K \?
A (—“) for o = 2°K,m(C,)77,
o

for some constant A depending only on # and . Since m(S,) = m(C,), the
same inequality holds for all ¢ > 0, with some other constant 4, and the
proof of the lemma is complete.

§ 4. Inequality (2)” in Lemma 1’ can be replaced by the more
general inequality

@) m(Sgnia,) = A7 m(S,) for o >0

with 4, B depending only on #.

Proof: Let « = 1, g, = 0. For a fixed positive s the cubes I, shall be
defined as in the proof of Lemma 1’. Put

(o) = m(x| |u(x)] > o in I).
By definition, u,(s) is non-increasing and does not exceed m(Z;). By (2)”
applied to Iy,
pr(0) = m (@ |u(@)—u| > 0—2"s in I)
é Pl 6-a(a'—2"s) m (Ik) )

Then

sm(l) < [, julde = [ pe(0)do
/! ng oo
= [ po)io+ [ wlo)do + [ m(o)do

1
gg m () + (2"8 — —;*) i (%) e -~ e**m(ly).

It follows for s > o~127+2¢%¢ that
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S 1 1 n
M () = ——m(ly) 2 gn+l ™ e? (27 s ).

Then also

§

m(sslz) = z J25% (5) = 9—n—1 g—aa 2 as %Mk(2n+ls)
k A

1
= 2-n-1 8‘““52“0!3%(52:;1-18) for s > — gn+2 gaa
o

Inequality (2)”" is an immediate consequence.
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