On Functions of Bounded Mean Oscillation*

F. JOHN and L. NIRENBERG

§ 1. We prove an inequality (Lemmas 1.1') which has been applied by one of the authors and by J. Moser in their papers in this issue. The inequality expresses that a function, which in every subcube C of a cube C_0 can be approximated in the L^1 mean by a constant a_C with an error independent of C, differs then also in the L^p mean from a_C in C by an error of the same order of magnitude. More precisely, the measure of the set of points in C, where the function differs from a_C by more than an amount σ decreases exponentially as σ increases.

In Section 2 we apply Lemma 1' to derive a result of Weiss and Zygmund [3], and in Section 3 we present an extension of Lemma 1'.

LEMMA 1. Let u(x) be an integrable function defined in a finite cube C_0 in n-dimensional space; $x=(x_1,\cdots,x_n)$. Assume that there is a constant K such that for every parallel subcube C, and some constant a_C , the inequality

(1)
$$\frac{1}{m(C)} \int_{C} |u - a_{C}| dx \leq K$$

holds. Here dx denotes element of volume and m(C) is the Lebesgue measure of C. Then, if $\mu(\sigma)$ is the measure of the set of points where $|u-a_{C_0}| > \sigma$, we have

(2)
$$\mu(\sigma) \leq Be^{-b\sigma/K} m(C_0) \quad \text{for} \quad \sigma > 0,$$

where B, b are constants depending only on n.

Since for every continuously differentiable function f(s), vanishing at the origin,

$$\int_{C_{\bf 0}} f(|u-a_{C_{\bf 0}}|) dx = \int_{\bf 0}^{\infty} \mu(s) df(s),$$

inequality (2) implies that u belongs to L^p for every finite $p \ge 1$, and, in fact for $b' < K^{-1}b$ the function $e^{b'|u-a}c_0|$ is integrable and

$$\int_{C_{\bf 0}} e^{b'|u-a} c_{\bf 0}| \, dx \leq \left(1 + \frac{Bb'}{K^{-1}b-b'}\right) m(C_{\bf 0}).$$

^{*}This paper represents results obtained under Contract Nonr-285(46), with the Office of Naval Research, United States Navy. Reproduction in whole or in part is permitted for any purpose of the United States Government.

A function satisfying (1) for every subcube C of C_0 , for come constant a_C , will be said to have "mean oscillation $\leq K$ in C_0 ". Taking for a_C the average of u in C we always have

$$\begin{split} \left(\frac{1}{m(C)} \int_{C} |u - a_{C}| dx\right)^{2} & \leq \frac{1}{m(C)} \int_{C} |u(x) - a_{C}|^{2} dx \\ & = \frac{1}{2} (m(C))^{-2} \int_{C} dx \int_{C} dy |u(x) - u(y)|^{2}. \end{split}$$

In particular u has mean oscillation $\leq K$, if u is bounded and its oscillation |u(x)-u(y)| does not exceed the value $\sqrt{2}K$ in C_0 .

Boundedness of u is not necessary for boundedness of its mean oscillation. Let indeed u(x) be any integrable function in C_0 with the property that we can associate with every subcube C a value a_C such that the subset S_{σ} of C, where

$$|u-a_C| \geq \sigma$$

has measure

$$\mu(\sigma) \le Be^{-b\sigma}m(C)$$
 for $\sigma > 0$.

Then

$$\int_{C} |u - a_{C}| dx = \int_{0}^{\infty} \mu(\sigma) d\sigma \leq \frac{B}{b} m(C)$$

so that the mean oscillation of u does not exceed B/b. Take now for u the function $\log |x-y|$, where y is fixed. Let C be any cube of side h, and let ξ and η be points of C for which

$$|\xi-y| = \max_{x \in C} |x-y|, \qquad |\eta-y| = \min_{x \in C} |x-y|.$$

Take $a_C = \log |\xi - y|$. Then for x in C

$$|u(x)-a_C|=\log\frac{|\xi-y|}{|x-y|}.$$

 S_{σ} is the subset of C lying in the sphere

$$|x-y| \leq |\xi-y|e^{-\sigma}$$
.

If S_{σ} is not empty, it must contain η , so that

$$|\xi-y|e^{-\sigma} \ge |\eta-y| \ge |\xi-y| - |\xi-\eta| \ge |\xi-y| - \sqrt{n} \; h.$$

Thus

$$|\xi - y| \le \frac{\sqrt{n} \ h}{1 - e^{-\sigma}}.$$

It follows that S_{σ} is contained in the sphere

$$|x - y| \le \frac{\sqrt{n} h}{e^{\sigma} - 1}$$

and that its measure $\mu(\sigma)$ does not exceed

$$\left(\frac{\sqrt{n}\omega_n}{e^{\sigma}-1}\right)^n m(C),$$

where the volume of the unit sphere in *n*-space is denoted by $(\omega_n)^n$. Since also $\mu(\sigma) \leq m(C)$ for all $\sigma \geq 0$, we find that

$$\mu(\sigma) \leq (1 + \sqrt{n}\omega_n)^n e^{-n\sigma} m(C) = Be^{-b\sigma} m(C)$$
 for $\sigma > 0$,

where B and b do not depend on C. This proves that $\log |x-y|$ is of bounded mean oscillation in every cube C_0 . The same holds then for any function u(x) of the form

$$u(x) = \int \zeta(y) \log|x-y| dy$$
 with $\int |\zeta(y)| dy < \infty$.

Lemma 1 will be derived from

LEMMA 1'. Let u(x) be integrable in a cube C_0 and assume that there is a constant κ such that for every parallel subcube C we have

$$\frac{1}{m(C)}\int_{C}|u-u_{C}|dx \leq \kappa,$$

where u_C is the mean value of u in C. Then if S_{σ} is the set of points where $|u-u_{C_0}| > \sigma$, its measure $m(S_{\sigma})$ satisfies

(2)'
$$m(S_{\sigma}) \leq \frac{A}{\kappa} \int_{C_0} |u - u_{C_0}| dx \cdot e^{-\alpha \sigma \kappa^{-1}} \quad \text{for} \quad \frac{\sigma}{\kappa} \geq a.$$

Since $m(S_{\sigma}) \leq m(C_0)$ it follows that

(2)"
$$m(S_{\sigma}) \leq e^{\alpha a} e^{-\alpha \sigma \kappa^{-1}} m(C_0) \quad \text{for} \quad \sigma > 0.$$

Here $A \leq 1$, α , a are positive numbers depending only on the dimension n. By a standard type of argument we can derive, as consequences of (2)', the following inequalities: for $0 < \beta < \alpha$,

(3)'
$$\int_{C_0} e^{\beta \kappa^{-1}|u-uC_0|} dx \leq \left(\frac{\alpha}{\alpha-\beta} + e^{\beta a}\right) m(C_0),$$

$$\begin{split} \int_{C_0} \left(e^{\beta\kappa^{-1}|u-u_{C_0}|}-1\right) dx & \leq \left\{\frac{e^{\beta\alpha}-1}{\beta a} + \frac{A}{\kappa} \frac{\alpha}{\alpha-\beta} \, e^{a(\beta-\alpha)}\right\} \int_{C_0} |u-u_{C_0}| dx \\ & = \tilde{A} \int_{C_0} |u-u_{C_0}| dx \\ & \leq 2\tilde{A} \int_{C_0} |u| dx. \end{split}$$

The inequality (3)'' is of interest since, in case u(x) is integrable in an *infinite* cube \tilde{C}_0 and satisfies (1)' in every finite subcube, we can conclude from (3)'' that

$$\int_{\tilde{C}_0} (e^{\beta \kappa^{-1}|u|} - 1) dx \leq 2\tilde{A} \int_{\tilde{C}_0} |u| dx.$$

If one wishes to prove (2)" directly, without proving (2), then the proof given below can be simplified slightly.

Lemma 1 follows easily from Lemma 1'; for (1) implies that $|u_C - a_C| \le K$ so that

$$\frac{1}{m(C)} \int_{C} |u - u_{C}| dx \le 2K.$$

By Lemma 1', (2)" holds, with $\kappa = 2K$, and (2) then follows easily.

The proof of Lemma 1' is based on a decomposition of integrable functions which, in one dimension, is due to F. Riesz, and which has been used extensively by Calderon and Zygmund [1] and Hörmander [2]. For completeness we include the proof of this decomposition, in a form suitable for application to Lemma 1'.

DECOMPOSITION. Let u be an integrable function defined in a cube C_0 and let s be a positive number such that

$$(4) s \ge \frac{1}{m(C_0)} \int_{C_0} |u| dx.$$

There exists a denumerable number of open disjoint cubes I_k in C_0 such that

- i) $|u| \leq s$ a.e. in $C_0 \bigcup_k I_k$,
- ii) the average value u_k of u in I_k is bounded in absolute value by $2^n s$,

iii)
$$\sum_{k} m(I_k) \leq s^{-1} \int_{C_0} |u| dx$$
.

Proof: Divide C_0 (by halving each edge) into 2^n equal cubes and let I_{11}, I_{12}, \cdots be those open cubes over which the average value of |u| is $\geq s$. Then

$$sm(I_{1k}) \le \int_{I_{1k}} |u| dx \le 2^n s \ m(I_{1k})$$

by (4). Next subdivide each remaining cube, over which the average of |u| is < s, into 2^n equal cubes, and denote by I_{21}, I_{22}, \ldots those cubes thus obtained over which the average of |u| is $\ge s$. Again subdivide the remaining cubes, etc. In this way we obtain a sequence of cubes I_{ik} , which we rename I_k , such that

$$\operatorname{sm}(I_k) \leqq \int_{I_k} |u| dx < 2^n \operatorname{sm}(I_k).$$

Clearly property ii) is satisfied. Furthermore, summing the left inequality over k we obtain iii). We observe finally that a point of C_0 which does not belong to any of the I_k belongs to arbitrarily small cubes over which the average of |u| is < s. Hence $|u| \le s$ a.e. outside all the I_k , verifying i).

Proof of Lemma 1': We may assume without loss of generality that $u_{C_0} = 0$ and that $\kappa = 1$, by replacing u by $(u - u_{C_0})/\kappa$.

Denote by $F(\sigma)$ the smallest number, depending only on σ and n (and independent of the particular function u or cube C_0) such that

$$m(S_{\sigma}) \leq F(\sigma) \int_{C_{\mathbf{0}}} |u| dx;$$

obviously $F(\sigma) \leq 1/\sigma$. We now prove that, for $\sigma \geq 2^n$,

(5)
$$F(\sigma) \leq \frac{1}{s} F(\sigma - 2^n s) \quad \text{for} \quad 2^{-n} \sigma \geq s \geq 1.$$

To this end we apply the above decomposition to the function u in C_0 with

$$2^{-n}\sigma \geq s \geq 1 \geq \frac{1}{m(C_0)} \int_{C_0} |u| dx,$$

the last inequality following from (1)'. Because of i) we see that if $|u(x)| > \sigma$, then x belongs to one of the I_k (except for a set of measure zero). Hence, since the average u_k of u in I_k is bounded by $2^n s$ in absolute value, we see that

$$\textstyle m(S_\sigma) = m\{x\big||u(x)| > \sigma\} \leqq \sum\limits_k m\{x\big||u(x)-u_k| > \sigma-2^ns \quad \text{in} \quad I_k\}.$$

Now in the cube I_k the function $u-u_k$ satisfies the hypotheses of Lemma 1', in particular it satisfies (1)' for every cube in I_k . Hence, using the definition of $F(\sigma)$, we have

$$\begin{split} m\{x\big||u(x)-u_k| &> \sigma-2^n s \text{ in } I_k\} \leqq F(\sigma-2^n s) \int_{I_k} |u-u_k| dx \\ & \leqq F(\sigma-2^n s) m(I_k). \end{split}$$

Thus we find

$$m(S_{\sigma}) \leq F(\sigma - 2^{n}s) \sum_{k} m(I_{k}) \leq \frac{1}{s} F(\sigma - 2^{n}s) \int_{C_{0}} |u| dx$$

by iii), proving (5).

Setting s = e in (5) we see that if $F(\sigma) \le Ae^{-\alpha\sigma}$, $\alpha = 1/(2^n e)$ for some σ , then

$$F(\sigma+2^n e) \leq \frac{1}{e} A e^{-\alpha \sigma} = A e^{-\alpha(\sigma+2^n e)}.$$

From this it follows that if on some interval of length $2^n e$ the inequality $F(\sigma) \leq A e^{-\alpha \sigma}$ holds, then it holds for all larger σ . But a calculation shows that

$$F(\sigma) \leq \frac{1}{\sigma} \leq \frac{12}{10} 2^{-n} e^{-\alpha \sigma} \quad \text{for} \quad \frac{2^n e}{e-1} \leq \sigma \leq \frac{2^n e}{e-1} + 2^n e.$$

(This interval is the one of length $2^n e$ on which the maximum of $e^{\alpha \sigma}/\sigma$ is as small as possible.) Thus we conclude that

$$m(S_{\sigma}) \leq \frac{12}{10} 2^{-n} e^{-\alpha \sigma} \int_{C_0} |u| dx \quad \text{for} \quad \alpha \sigma \geq \frac{1}{e-1}, \quad \alpha = \frac{1}{2^n e},$$

that is, we have proved (2)' with

(6)
$$A = \frac{12}{10} 2^{-n}, \quad \alpha = \frac{1}{2^n e}, \quad a = \frac{2^n e}{e - 1}.$$

We have made no attempt here to obtain the best constants. The exponent α can be considerably improved, i.e. increased, by using the hypothesis (1)' again to sharpen the estimate $|u_k| \leq 2^n s$ that was provided by ii). We mention only that we have proved (2)' with a constant α which for large n behaves like $(1/e \log 2)$ $(\log n/n)$.

§ 2. A recent paper by M. Weiss and A. Zygmund [3] contains the following

THEOREM. If F(x) is periodic and for some $\beta > \frac{1}{2}$ satisfies

(7)
$$F(x+h)+F(x-h)-2F(x)=O\left(\frac{h}{|\log h|^{\beta}}\right)$$

uniformly in x, then F is the indefinite integral of an f belonging to every L_p . They also give an example showing that the result does not hold for $\beta = \frac{1}{2}$.

The proof of the theorem in [3] is rather short but it relies on a theorem of Littlewood and Paley, and it seems of interest to us to show how it may be derived from our Lemma 1': we prove

LEMMA 2. Let u(x) be an integrable function defined in a finite cube C_0 in n-space. Assume that there is a constant K and a constant $\beta > \frac{1}{2}$ such that if C_1 and C_2 , are any two equal subcubes having a full (n-1)-dimensional face in common, then

(8)
$$|u_{C_1} - u_{C_2}| \le \frac{K}{1 + |\log h|^{\beta}};$$

here u_{C_1} , u_{C_2} are the mean values of u in the cubes C_1 and C_2 , and h is the common side length. Then u satisfies the conditions of Lemma 1' with some constant κ depending on K, β and n so that, consequently, u satisfies (2)" and (3)'.

The preceding theorem follows easily from this lemma. By convolution of F with a smooth peaked kernel we may suppose that F is infinitely differentiable. It suffices merely to estimate the L_p norm of the derivative f of F. Hypothesis (7) asserts simply that f satisfies (8) for n=1. Applying Lemma 2 we obtain from (2)" or (3)" an estimate for the L_p norm of f depending only on K and β , proving the theorem. From (3)" we find, furthermore, that $e^{a'|f|}$ is integrable for some a' > 0.

Proof of Lemma 2: Consider a subcube C, of side length k subdivided into 2^{nN} equal cubes C_r , $r=1,\cdots,2^{nN}$, obtained by dividing each edge into 2^N equal parts, and let u_r denote the mean value of u in C_r . Then

$$\frac{1}{m(C)} \int_{C} |u - u_{C}| dx = \lim_{N \to \infty} 2^{-nN} \sum_{r} |u_{r} - u_{C}|.$$

Thus to prove (1)' it suffices to show that $2^{-nN} \sum |u_r - u_C| \le \kappa$, with κ depending only on K, β and n.

By Schwarz inequality,

$$2^{-nN} \sum |u_r - u_C| \leqq [2^{-nN} \sum |u_r - u_C|^2]^{1/2} = a_N^{1/2}.$$

We shall prove that the a_N are uniformly bounded by showing that

(9)
$$a_{N+1} \le a_N + \left(\frac{nK}{1 + |\log h|^{\beta}}\right)^2, \qquad h = \frac{k}{2^{N+1}}.$$

Since $a_0 = 0$, it follows that

$$a_{N+1} \le n^2 K^2 \sum_{j=1}^{\infty} (1+|j \log 2 - \log k|^{\beta})^{-2} \le \kappa^2$$

for some constant κ independent of k, convergence being guaranteed by the fact that $\beta > \frac{1}{2}$.

Thus to complete the proof we shall establish (9). We observe first that $2^{-nN} \sum_r u_r = u_C$ so that using the general identity

$$k \sum_{1}^{k} b_{r}^{2} = (\sum b_{r})^{2} + \frac{1}{2} \sum_{r,s} (b_{r} - b_{s})^{2}$$

p

1:

s ti

f

1

for real b_r , we find

(10)
$$2^{2nN}a_N = 2^{nN} \sum |u_r - u_C|^2 = \frac{1}{2} \sum_{r,s} |u_r - u_s|^2.$$

Now, on the next subdivision of C into $2^{n(N+1)}$ cubes each C_r is divided into 2^n equal cubes C_{ri} , $i=1,\cdots,2^n$, of side length $h=k/2^{N+1}$. If u_{ri} is the mean value of u in C_{ri} we have

(11)
$$u_r = 2^{-n} \sum_i u_{ri}.$$

Furthermore, since any two C_{ri} , C_{rj} can be connected by a chain of at most n+1 cubes each having a full face in common with the succeeding one, we find from (8) that

$$|u_{ri} - u_{rj}| \le \frac{nK}{1 + |\log h|^{\beta}} = M,$$

where M is so defined. This together with (11) implies

$$|u_{ri} - u_r| \le M.$$

According to formula (10)

$$\begin{split} 2.2^{2n(N+1)} \, a_{N+1} &= \sum_{\substack{r,s \leq 2^{nN} \\ i,j \leq 2^n}} |u_{ri} - u_{sj}|^2 \\ &= \sum \left[(u_{ri}^2 + u_{sj}^2) - 2u_{ri}u_{sj} \right] \\ &= \sum \left[(u_{ri} - u_r)^2 + (u_{sj} - u_s)^2 + 2u_{ri}u_r \right. \\ &+ 2u_{sj}u_s - u_r^2 - u_s^2 - 2u_{ri}u_{sj} \right] \\ &= \sum_{\substack{r,s \\ i,j}} \left[(u_{ri} - u_r)^2 + (u_{sj} - u_s)^2 \right] \\ &+ \sum_{r,s} \left[2.2^{2n} (u_r^2 + u_s^2) - 2^{2n} (u_r^2 + u_s^2) - 2.2^{2n} u_r u_s \right], \end{split}$$

by (11),

$$\begin{split} & \leq 2M^2 \, 2^{2nN+2n} + 2^{2n} \sum_{r,\,s} \, (u_r - u_s)^2 \\ & = 2.2^{2n(N+1)} \, M^2 + 2.2^{2n(N+1)} \, a_N \,, \end{split}$$

by (10), or

$$a_{N+1} \leq a_N + M^2.$$

This is the desired inequality (9) and the proof is complete.

§ 3. In this section we present briefly a generalization of Lemma 1'.

LEMMA 3. Let u be integrable in a finite cube C_0 and consider a subdivision of C_0 into a denumerable number of cubes C_i , no two having a common interior point. Assume that for fixed p, 1 , the expression

$$\left\{\sum_{i}m(C_{i})^{1-p}\left|\int_{C_{i}}|u-u_{C_{i}}|dx\left|^{p}\right.\right\}^{1/p}\right.$$

is finite. Denote by K_u the lim sup of such expressions for all possible subdivisions of C_0 of this kind: in general $K_u = \infty$. If $K_u < \infty$, the measure $m(S_\sigma)$ of the set S_σ , where $|u-u_{C_0}| > \sigma$, satisfies

$$m(S_{\sigma}) \leq A \left| \frac{K_u}{\sigma} \right|^p$$
 for $\sigma > 0$,

for some constant A depending only on n and p.

The result implies that the function u belongs to $L^{p'}$ for every p' < p. For $p = \infty$ the hypothesis of Lemma 3 agrees with that of Lemma 1'.

Proof: We shall not attempt to obtain the best constants. Let q = p/(p-1) be the conjugate exponent to p. We may assume that $u_{C_0} = 0$. Using induction with respect to the integer j we shall prove that if

(12)
$$s = \frac{2^{-n} \sigma}{p(q^{j}-1)+1} \ge \frac{K_{u}}{m(C_{0})^{1/p}},$$

then

$$(13) \quad m(S_{\sigma}) \leq 2^{-n} q^{1/q + 2/q^2 + \dots + j/q^j} \left| \frac{2^n p(1 - q^{-1-j}) K_u}{\sigma} \right|^{p(1 - 1/q^{j+1})} \left(\frac{1}{K_u} \int_{C_0} |u| dx \right)^{1/q^j}.$$

Since

$$m(S_{\sigma}) \leq \frac{1}{\sigma} \int_{C_{\mathbf{0}}} |u| dx,$$

(13) holds for j = 0. Suppose then it is true for j-1, we wish to prove it for j. Since

(14)
$$\frac{1}{m(C_0)} \int_{C_0} |u| dx \leq \frac{K_u}{m(C_0)^{1/p}},$$

we may apply the decomposition of § 1 to u, with s equal to its value in (12). Let u_k denote the mean value of u in I_k , and set $v_k = u - u_k$ in I_k . From the definition of K_u we may assert that

$$(15) \sum_{k} K_{v_k}^{p} \leq K_{u}^{p}.$$

Setting $a_k = \int_{I_k} |v_k| dx$ we note further (as in (14)) that

$$(16) m(I_k)^{1-p}a_k^p \leq K_{v_k}^p,$$

so that by Hölder's inequality

$$\sum a_k \leq (\sum m(I_k)^{1-p} a_k^p)^{1/p} |\sum m(I_k)|^{1/q}$$
$$\leq (\sum K_{v_k}^p)^{1/p} |\sum m(I_k)|^{1/q},$$

or

(17)
$$\sum a_k \leq K_u \left| s^{-1} \int_{C_0} |u| dx \right|^{1/q}$$

by (15) and iii).

As in the derivation of (5), we have

$$m(S_{\sigma}) \leq \sum_{k} m\{x \in I_{k} | |v_{k}| > \sigma - 2^{n} s\}.$$

Applying the induction hypothesis (13), for j-1, to the functions v_k in I_k we find

$$\begin{split} m(S_{\sigma}) & \leq \left[2^{-n} q^{1/q + \dots + (j-1)/q^{j-1}} \left| \frac{2^{n} p (1 - q^{-j})}{\sigma - 2^{n} s} \right|^{p(1 - 1/q^{j})} \right] \\ & \cdot \sum_{k} K_{v_{k}}^{p(1 - 1/q^{j})} \left(\frac{1}{K_{v_{k}}} \int_{I_{k}} |v_{k}| dx \right)^{1/q^{j-1}} \\ & = \left[\right] \sum_{k} K_{v_{k}}^{p(1 - q^{1-j})} a_{k}^{1/q^{j-1}} \\ & \leq \left[\right] (\sum a_{k})^{1/q^{j-1}} (\sum K_{v_{k}}^{p})^{1 - q^{1-j}}, \end{split}$$

by Hölder's inequality,

$$\leq \left[\ \, \right] K_u^{1/q^{j-1}} \left| \, s^{-1} \! \int_{C_0} |u| dx \, \right|^{1/q^j} K_u^{p-pq^{1-j}}$$

by (17) and (15), so that

$$m(S_{\sigma}) \leq \frac{[]}{S^{1/q^{j}}} K_{u}^{p(1-1/q^{j+1})} \left(\frac{1}{K_{u}} \int_{C_{0}} |u| dx\right)^{1/q^{j}}.$$

A slightly tedious calculation shows that this inequality is identical with the desired result (13).

Having established (13) we may now express it in a more convenient form: if (12) holds, then, in virtue of (14), there is a constant k depending only on n and p such that

$$m(S_{\sigma}) \leq k \left(\frac{K_u}{\sigma}\right)^{p(1-1/q^{j+1})} m(C_0)^{1/q^{j+1}}$$

or

$$m(S_{\sigma}) \leq k \left(\frac{K_u}{\sigma}\right)^p \cdot \left|\frac{\sigma m(C_0)^{1/p}}{K_u}\right|^{p/q^{j+1}}.$$

If now $2^{-n}\sigma \ge K_u m(C_0)^{-1/p}$ and we choose the largest integer $j \ge 0$ so that (12) is satisfied, we have the opposite inequality for j+1:

$$\frac{\sigma m(C_0)^{1/p}}{K_n} \leq 2^n \left(p(q^{j+1}-1)+1 \right) \leq 2^n pq^{j+1}.$$

Inserting into the previous inequality we find

$$\begin{split} m(S_{\sigma}) & \leq k \left(\frac{K_u}{\sigma}\right)^p |2^n p q^{j+1}|^{p/q^{j+1}} \\ & \leq A \left(\frac{K_u}{\sigma}\right)^p \quad \text{for} \quad \sigma \geq 2^n K_u m(C_0)^{-1/p}, \end{split}$$

for some constant A depending only on n and p. Since $m(S_{\sigma}) \leq m(C_0)$, the same inequality holds for all $\sigma > 0$, with some other constant A, and the proof of the lemma is complete.

§ 4. Inequality (2)" in Lemma 1' can be replaced by the more general inequality

$$(2)^{\prime\prime\prime} \qquad m(S_{2^{n+2}\sigma}) \leq Ae^{-B\sigma\kappa^{-1}}m(S_{\sigma}) \quad \text{for} \quad \sigma > 0$$

with A, B depending only on n.

Proof: Let $\kappa = 1$, $u_{C_0} = 0$. For a fixed positive s the cubes I_k shall be defined as in the proof of Lemma 1'. Put

$$\mu_k(\sigma) = m(x||u(x)| > \sigma \text{ in } I_k).$$

By definition, $\mu_k(\sigma)$ is non-increasing and does not exceed $m(I_k)$. By (2)" applied to I_k ,

$$\begin{split} \mu_k(\sigma) & \leq m(x|\; |u(x) - u_k| > \sigma - 2^n s \; \text{ in } \; I_k) \\ & \leq e^{\alpha a} e^{-\alpha(\sigma - 2^n s)} \, m(I_k). \end{split}$$

Then

$$\begin{split} sm(I_k) & \leqq \int_{I_k} |u| dx = \int_0^\infty \mu_k(\sigma) d\sigma \\ & = \int_0^{s/2} \mu_k(\sigma) d\sigma + \int_{s/2}^{2^{n_s}} \mu_k(\sigma) d\sigma + \int_{2^{n_s}}^\infty \mu_k(\sigma) d\sigma \\ & \leqq \frac{s}{2} \ m(I_k) + \left(2^n s - \frac{s}{2}\right) \mu_k\left(\frac{s}{2}\right) + \frac{1}{\alpha} \ e^{\alpha a} m(I_k). \end{split}$$

It follows for $s > \alpha^{-1} 2^{n+2} e^{\alpha a}$ that

$$\mu_k\left(\frac{s}{2}\right) \ge \frac{1}{2^{n+1}} \, m(I_k) \ge \frac{1}{2^{n+1}} \, e^{-\alpha a} e^{2^n \alpha s} \mu_k(2^{n+1} s).$$

Then also

$$\begin{split} m(S_{s/2}) & \geq \sum_{k} \mu_{k} \left(\frac{s}{2} \right) \geq 2^{-n-1} e^{-\alpha a} e^{2^{n} \alpha s} \sum_{k} \mu_{k} (2^{n+1} s) \\ & = 2^{-n-1} e^{-\alpha a} e^{2^{n} \alpha s} m(S_{2^{n+1} s}) \quad \text{for} \quad s > \frac{1}{\alpha} 2^{n+2} e^{\alpha a}. \end{split}$$

Inequality (2)" is an immediate consequence.

Bibliography

- [1] Calderon, A. P., and Zygmund, A., On the existence of certain singular integrals, Acta Math., Vol. 88, 1952, pp. 85-139.
- [2] Hörmander, L., Estimates for translation invariant operators in L_p spaces, Acta Math., Vol. 104, 1960, pp. 93-140.
- [3] Weiss, M., and Zygmund, A., A note on smooth functions, Nederl. Akad. Wetensch. Indagationes Math., Ser. A, Vol. 62, 1959, pp. 52-58.

Received February, 1961.