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0 Introduction

We will study in this paper a method of approximation to obtainW 1,p estimates
for solutions to a large class of elliptic problems.

The general setting for the method will be the following:

(A) a regularity result for a fixed operator A0,

(B) a local estimate of solutions to the given Au = 0 by comparison with
solutions to A0u = 0, and

(C) a real variable argument coming from the Calderón-Zygmund decompo-
sition.

First, we will apply the method to study W 1,p regularity for a nonlinear
elliptic operator in divergence form. We would like to point out that in the
particular case of a linear elliptic equation, this method gives an alternative
proof to the classical one, which uses the general theory of singular integrals.

The utility of the method that we describe below is that hypotheses (A)
and (B) are obtained directly by studying the deviation of the “coefficients” of
A from the “coefficients” of A0, and this is usually not a difficult task.

A more interesting application of this kind of approximation method is to
elliptic homogenization problems for which we obtain results that give W 1,p

estimates with a weak hypothesis of regularity in the coefficients.
For instance, we are able to study the following cases:

• the case of periodic, continuous coefficients, for which we obtain W 1,p

estimates for p <∞,
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• elliptic transmission problems in two cases:

– holes with a C1 boundary and then W 1,p estimates for all p <∞,
and

– holes with a Lipschitz boundary (in this case the homogenization
problem satisfies W 1,p estimates for some 2 < p < p0).

For the homogenization problems hypotheses (A) and (B) mean a coarse
bound and a limiting bound, respectively. The first one gives information about
the regularity of the solution, and the second one gives the information about
the existence of a corrector in Lp. See [4] for details about homogenization
problems and Section 4 for systematic definitions. Lp estimates in homoge-
nization problems with coefficients Cα can be seen in [2], where the results
are obtained by estimating singular integrals.

The organization of the paper will be as follows: In the next section we will
describe precisely the method by proving a general theorem of approximation.
The study of some linear elliptic problems is the subject of Section 2. Section
3 will be devoted to the W 1,p regularity of solutions of elliptic equations that
can be approximated for convenient nonlinear operators. Finally, Section 4
contains the W 1,p regularity result for homogenization problems.

We use the classical Hardy-Littlewood maximal operator, namely,

Mf(x) = sup
x∈Q, Q cube

1
|Q|

∫
Q
|f(y)|dy

which satisfies the (1, 1) weak-type inequality and obviously, by interpolation,
the Lp-estimate (see, for instance, [8]).

1 W 1;p Estimates by Approximation

In this section we study a general result of W 1,q regularity under hypotheses
that show the philosophy of the method in a transparent way. We begin with
the statement of the general hypotheses.

(H1) REGULARITY FOR THE REFERENCE EQUATION. The solutions u ∈
W 1,p to the equation

div a0(∇u) = 0(E1)

verifies for some constant B and all Q ⊂ Ω

‖∇u‖pL∞(Q) ≤
B

2
1
|2Q|

∫
2Q
|∇u|p dx ,(1.1)
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where 2Q is the double of Q. (That is, solutions to the problem div a0(∇u) =
0, naturally posed in the space W 1,p, enjoy interior W 1,∞ regularity.)

H2. APPROXIMATION PROPERTY HYPOTHESIS. Let u ∈W 1,p be a so-
lution to the equation

div a(x,∇u) = 0 .(E2)

Then there exists a small ε > 0 such that for all Q ⊂ Ω the solution to the
Dirichlet problem {

div a0(∇uh) = 0 in Q

uh = u on ∂Q
(AP)

satisfies

(i)
1
|Q|

∫
Q
|∇uh|p dx ≤

1 + ε

|Q|

∫
Q
|∇u|p dx

(ii)
1
|Q|

∫
Q
|∇(u− uh)|p dx ≤ εα 1

|Q|

∫
Q
|∇u|p dx for some α > 0.

The main result in this section is the following:

THEOREM A Let q be a given real number, q > p. Let u ∈ W 1,p be a
solution to (E2). Assume that (H1) holds. Then there exists ε0 > 0, ε0(q),
such that if (H2) holds for some 0 < ε < ε0, then u ∈W 1,q.

We will use the following version of the Calderón-Zygmund decomposition
result in our proof of Theorem A:

LEMMA 1.1 (Calderón-Zygmund) Let Q be a bounded cube in RN and A ⊂
Q a measurable set satisfying

0 < |A| < δ|Q| for some 0 < δ < 1 .

Then there is a sequence of disjoint dyadic cubes obtained from Q, {Qk}k∈N ,
such that

1. |A− ∪Qk| = 0,

2. |A ∩Qk| > δ|Qk|, and

3. |A ∩ Q̄k| < δ|Q̄k| if Qk is a dyadic subdivision of Q̄k.
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PROOF: Divide Q into 2N (Qj1) dyadic cubes. Choose those for which

|Qj1 ∩A| > δ|Qj1| .

Divide each cube that has not been chosen into 2N dyadic cubes, {Qj2}, and
repeat the process above iteratively. In this way we obtain a sequence of
disjoint dyadic cubes, which we denote as {Qk}. Now if x /∈ ⋃

k∈NQk,
then there exists a sequence of cubes {Ci(x)} containing x with diameter
δ(Ci(x))→ 0 as i→∞ and such that

|Ci(x) ∩A| < δ|Ci(x)| < |Ci(x)| .

By the Lebesgue theorem we conclude that for almost every x ∈ Q−⋃k∈NQk,
x ∈ Q−A.

We will call a sequence like the one in Lemma 1.1 a Calderón-Zygmund
covering for A. We would like point out that for each cube Qk in a Calderón-
Zygmund covering of A there exists a finite nested sequence of dyadic cubes

Q̃1
k ⊃ Q̃2

k ⊃ · · · ⊃ Q̃
r(k)
k ⊃ Qk , l = 1, . . . , r(k),

for which we have |Qlk ∩A| ≤ δ|Qlk|. This finite family of dyadic cubes will
be called the chain of predecessors of the cube Qk. We will simply label the
predecessor of Qk, that is, the one in the previous dyadic step, Q̃k ≡ Q̃r(k)

k .
In fact, we will use the following consequence of Lemma 1.1.

LEMMA 1.2 Let Q be a bounded cube in RN . Assume that A and B are
measurable sets, A ⊂ B ⊂ Q, and that there exists a δ > 0 such that

(i) |A| < δ|Q| and

(ii) for each Qk dyadic cube obtained from Q such that |A ∩Qk| > δ|Qk|,
its predecessor Q̃k ⊂ B.

Then |A| < δ|B|.

PROOF: Cover A with a Calderón-Zygmund covering. Extract a disjoint
subcovering by the predecessor Q̃k. From the hypothesis we have |Q̃k ∩A| ≤
δ|Q̃k| and Q̃k ⊂ B. Hence

|A| =
∑
k∈N
|Qk| ≤

∑
k∈N
|A ∩ Q̃k| ≤ δ|B| .
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The main point of the proof of Theorem A is the following result:

LEMMA 1.3 Assume that (H1) holds. Let u ∈W 1,p be a solution of (E2) in
Q. Denote by A the constant A = max(2N , 2p+1B), with B as in (H1). Then
for 0 < δ < 1 fixed, there exists an ε = ε(δ) > 0 such that if hypothesis (H2)
holds for such ε, and Qk ⊂ Q̄k ⊂ 1

4Q satisfies

|Qk ∩ {x |M(|∇u|p) > Aλ}| > δ|Qk| ,(1.2)

the predecessor satisfies Q̄k ⊂ {x | M(|∇u|p) > λ}. (Remark: A does not
depend on S.)

PROOF: We argue by contradiction. If Qk satisfies (1.2) and for the
corresponding Q̄k the conclusion is false, there exists an x ∈ Q̄k such that

1
|Q|

∫
Q
|∇u(y)|p dy ≤ λ for all cubes Q 3 x .

Solving the corresponding problem (AP), namely,

{
−div a0(∇uh) = 0 in Q̃ = 4Q̄

uh = u on ∂Q̃ ,

from (H1) and (H2) we have

1
|Q̃|

∫
Q̃
|∇uh(y)|p dy ≤ λ

and as a consequence ‖∇uh‖pL∞(Q̄k) ≤ λ
B
2 . Moreover,

1
|Q̃|

∫
Q̃
|∇(u− uh)|p dx ≤ εαλ .

Consider the restricted maximal operator

M∗(|∇u(x)|p) = sup
x∈Q, Q⊂2Q̄k

1
|Q|

∫
Q
|∇u(y)|p dy ;

then for x ∈ Qk, M(|∇u(x)|p) ≤ max{M∗(|∇u(x)|p), 2Nλ}.
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Since A = max{2N , 2p+1B}, a direct computation proves that

|{x ∈ Qk |M∗(|∇u|p) ≥ Aλ}|

≤
∣∣∣∣{x ∈ Qk |M∗(|∇(u− uh)|p) +M∗(|∇(uh)|p) > A

2p
λ

}∣∣∣∣
≤
∣∣∣∣{x ∈ Qk |M∗(|∇(u− uh)|p) > A

2p+1λ

}∣∣∣∣
+
∣∣∣∣{x ∈ Qk |M∗(|∇uh|p) > A

2p+1λ

}∣∣∣∣
=
∣∣∣∣{x ∈ Qk |M∗(|∇(u− uh)|p) > A

2p+1λ

}∣∣∣∣ .
Then by the (1, 1) weak-type inequality we obtain

|{x ∈ Qk |M∗(|∇u|p) ≥ Aλ}| ≤ C
2p+1

Aλ

∫
Q̃
|∇(u− uh)|p dy(1.3)

or

|{x ∈ Qk |M∗(|∇u|p) ≥ Aλ}| ≤ c(N)
2p+1

A
εα|Qk| .(1.4)

Then if c(N)
2p+1

A
εα < δ we reach a contradiction.

PROOF OF THEOREM A: Given q > p we study when g ≡ M(|∇u|p)
∈ Lq/p; by standard arguments of measure theory, g ∈ Lq/p if and only if

∞∑
k=1

A
k q
pωg(Akλ0) <∞ ,(1.5)

where ωg is the distribution function of g (see [5]).
Now take A, δ, and the corresponding ε > 0 given by Lemma 1.3; by

Lemma 1.2 we obtain that ωg(Aλ0) ≤ δωg(λ0) and by recurrence ωg(Akλ0) ≤
δkωg(λ0). Then (1.5) implies that

∞∑
k=1

Ak
q
pωg(Akλ0) ≤ ωg(λ0)

∞∑
k=1

Ak
q
p δk .

We need that δAq/p < 1. If M(|∇u|p) ∈ Lq/p a fortiori ∇u ∈ Lq.

Remark. Assume the equation of reference satisfies the following weaker
hypothesis of regularity:
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(H1′). The solutions u ∈W 1,p to the equation

div a0(∇u) = 0

satisfies for some q > p that there exists a constant B such that for any cube
Q ⊂ Ω (

1
|Q|

∫
Q
|∇u|q

)1/q
≤ B

2

(
1
|2Q|

∫
2Q
|∇u|pdx

)1/p
.

Assume that verifies a similar approximation property as (H2). Then we can
obtain a W 1,s-estimate for p < s < q in a similar way. In fact, (1.3) contains
an extra term that can be handled by taking into account the weak type (r, r)
estimate for the Hardy-Littlewood maximal operator for a convenient r > 1.

2 Lp Estimates for the Gradient of Linear Elliptic Equations
in Divergence Form

We apply Theorem A to linear equations. This result can be obtained by the
potential theory approach but the use of this method can be interesting in some
applications. More precisely, consider the elliptic equation

Di(aij(x)Diu) = 0(E)

in some bounded domain Ω of RN with

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2

for some λ,Λ > 0.
We then get the following result:

THEOREM B Let p be a real number, p > 2. Then there exists ε = ε(p) > 0
such that if I is the identity matrix in RN and

‖I − aij‖∞ ≤ ε,(HB)

then all solutions u to (E) in W 1,z satisfy u ∈W 1,p.

For the Laplacian we have the classical estimate

‖∇u‖2∞ ≤ C
1
|Q|

∫
Q
|∇u(y)|2 dy .

Then to apply Theorem B we need the following lemma:
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LEMMA 2.1 Let u ∈ W 1,2 be a solution of (E) and assume that (HB) is
satisfied. Then

1
|Q̃|

∫
Q̃
|∇(u− uh)|2 dy ≤ ε2 1

|Q̃|

∫
Q̃
|∇u|2 dy

where uh is the solution to the problem{
−∆uh = 0 in Q̃

uh = u on ∂Q̃ .
(P)

PROOF: Given ε > 0 by (HB) and integrating by parts, we have

1
|Q̃|

∫
Q̃
|∇(u− uh)|2 dy =

1
|Q̃|

∫
Q̃
〈∇(u− uh),∇(u− uh)〉dy

=
1
|Q̃|

∫
Q̃
〈∇(u− uh), aij∇u〉dy

− 1
|Q̃|

∫
Q̃
〈∇(u− uh), (I − aij)∇u〉dy

=
1
|Q̃|

∫
Q̃
〈∇(u− uh), (aij − I)∇u〉dy

≤ ε
(

1
|Q̃|

∫
Q̃
|∇(u− uh)|2dy

)1/2(
1
|Q̃|

∫
Q̃
|∇(u)|2dy

)1/2

.

Hence we conclude that

1
|Q̃|

∫
Q̃
|∇(u− uh)|2dy ≤ ε2 1

|Q̃|

∫
Q̃
|∇u|2 dy .

COROLLARY 2.2 If we assume that the equation (E) has continuous coeffi-
cients, then each solution u ∈W 1,2 verifies that u ∈W 1,p for all p <∞.

3 Lp Estimates for the Gradient of Nonlinear Elliptic Equations
in Divergence Form

We study in this section a more general model of nonlinear elliptic equations.
More precisely, consider

a : Ω× RN −→ RN ,

where a(x, ξ) is a Carathéodory function, namely, measurable in x and deriv-
able with respect to ξ for fixed x. Assume, moreover, the following:
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1. a(x, 0) = 0.

2. 〈Dηa(x, η)ξ, ξ〉 ≥ γ(κ+ |η|p−2)|ξ|2. Here Dη is the Jacobian matrix of
a with respect to η.

3. ‖Dηa(x, η)‖ ≤ Γ(κ+ |η|p−2).

Here γ, κ, and Γ are positive constants and κ can be zero (degenerate case).
Under these hypotheses we can find the following inequalities:

〈a(x, η)− a(x, η′), (η − η′)〉

≥ γ
{
|η − η′|p if p ≥ 2
|η − η′|2(1 + |η|+ |η′|)p−2 if 1 < p ≤ 2 .

(3.1)

See, for instance, [10].
Consider the equation

div a(x,∇u) = 0(EQ)

and u ∈ W 1,p a solution to (EQ). The method developed in Section 1 allows
us to show the following result:

THEOREM C Let q be a real number, q > p; then there exists ε > 0 such
that if

‖|ξ|p−2ξ − a(x, ξ)‖ ≤ ε|ξ|p−1 ,(HC)

then all solutions u ∈W 1,p to (EQ) verifies u ∈W 1,q.

We need to check in detail the inequality for the gradient of a p-harmonic
function, namely, hypothesis (H1) and the approximation by p-harmonic func-
tions that is the actual meaning of hypothesis (H2).

LEMMA 3.1 Consider u a p-harmonic function; if Q and 2Q are concentric
cubes related for a factor 2, then

‖∇u‖pL∞(Q) ≤ C(p,N)
1
|2Q|

∫
2Q
|∇u|p dx .

PROOF: In the case p = 2 we have directly that the gradient of a solution
is a solution and then a superlinear power is a subsolution. If p 6= 2 a direct
proof can be found in [3, proposition 3, p. 838].
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LEMMA 3.2 Assume u ∈W 1,p is a solution of (EQ) such that in some cube
Q

1
|Q|

∫
Q
|∇u|p dy ≤ λ ,

and assume uh is the solution of the nonlinear problem{
−∆puh ≡ −div(|∇u|p−2∇u) = 0 in Q

uh = u on ∂Q ,
(PQ)

and that (HC) in Theorem C is satisfied for some ε > 0. Then

1
|Q|

∫
Q
|∇u−∇uh|p dy ≤ γ−1εαλ

where α = p/(p− 1) if p ≥ 2 and α = p if 1 < p ≤ 2.

PROOF: (i) p ≥ 2. Call ap = γ−1. Then taking into account inequal-
ity (3.1) and equation (PQ) and then integrating by parts, we have

1
|Q|

∫
Q
|∇(u− uh)|p dy

≤ ap
1
|Q|

∫
Q
〈(−∆pu+ ∆puh), (u− uh)〉dy

= ap
1
|Q|

∫
Q
〈|∇u|p−2∇u,∇(u− uh)〉dy

=
ap
|Q|

(∫
Q
〈(|∇u|p−2∇u− a(x,∇u),∇(u− uh)〉dy

+
∫
Q
〈(a(x,∇u),∇(u− uh)〉dy

)
= ap

1
|Q|

∫
Q
〈(|∇u|p−2∇u− a(x,∇u),∇(u− uh)〉dy

≤ apε
(

1
|Q|

∫
Q
|∇(u)|pdy

)(p−1)/p ( 1
|Q|

∫
Q
|∇u−∇uh|pdy

)1/p

by hypothesis (HC). Then we conclude that

1
|Q|

∫
Q
|∇u−∇uh|pdy ≤ γ−1εp/(p−1)λ .

(ii) 1 < p ≤ 2. From the second inequality in (3.1) we obtain

1
|Q|

∫
Q

(1 + |∇u|+ |∇uh|)p−2 |∇(u− uh)|2 dy

≤ γ 1
|Q|

∫
Q
〈(−∆pu+ ∆puh), (u− uh)〉 dy .
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Then by the Hölder inequality,

1
|Q|

∫
Q
|∇(u− uh)|p dy

≤
(

1
|Q|

∫
Q

(1 + |∇u|+ |∇uh|)p−2 |∇(u− uh)|2dy
) p

2

×
(

1
|Q|

∫
Q

(1 + |∇u|+ |∇uh|)p dy
) (2−p)

2

≤ C
(
γ

1
|Q|

∫
Q
〈(−∆pu+ ∆puh), (u− uh)〉dy

)p/2
λ(2−p)/2 ,

and by the same argument as in the case p ≥ 2, we get

1
|Q|

∫
Q
|∇(u− uh)|pdy

≤ C
(
ε(

1
|Q|

∫
Q
|∇(u− uh)|pdy)1/p 1

|Q|

∫
Q
|∇u|pdy)(p−1)/p

)p/2
× λ(2−p)/2.

Then (
1
|Q|

∫
Q
|∇(u− uh)|pdy

)1/2
≤ Cεp/2λ1/2

and we are done.

As a consequence we have the following result:

COROLLARY 3.3 Assume that the vector field a(x, ξ) is continuous in x; then
each solution u ∈W 1,p to the equation (EQ) belongs to W 1,q for all q <∞.

4 Regularity for Homogenization Problems

It is clear from the previous sections that we really do not need the function
u to satisfy an equation; all we need is for u to be close in “energy” and at
every scale to a function (or vector, in the case of systems) that locally lies in
a better functional space. We illustrate this with the theory of homogenization.
Consider the matrix

A(y) = (aij(y))i,j=1,...,N

satisfying
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• (aij(y))i,j=1...N is T -periodic, T ∈ RN ,

• aij(y) ∈ L∞(RN ), and

• λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for some 0 < λ < Λ.

We will consider solutions of the elliptic problems−div
(
A

(
x

ε

)
∇uε

)
= 0 in Q

uε satisfying boundary conditions on ∂Q
(Pε)

where ε > 0 is a small parameter and Q is a bounded cube in RN .
It is well-known that solutions uε to (Pε) converge weakly in the Sobolev

space W 1,2 to u0, which is a solution to the constant-coefficient elliptic prob-
lem −div

(
Ã∇u0

)
= 0 in Q

u0 satisfying boundary conditions on ∂Q ,
(P0)

where the entries of Ã are given by

ãil ≡
∫
T
aij(y)(δjl + wlyj )dy , 1 ≤ i, l ≤ N,

and wl is the solution to the adjoint corrector problem−
(
aij(y)wlyj

)
yi

= (ail(y))yi in RN

wl T -periodic, 1 ≤ l ≤ N .
(Pc)

The corrector measures the defect to strong convergence by giving the asymp-
totic behavior of the oscillations in a convenient norm. See [4] for details.
Bounds in C1α, uniformly in ε, are obtained in [1] under the hypothesis that
A is Hölder continuous. We will study in this section uniform W 1,p estimates
in two cases:

• A(y) continuous and

• transmission problems with

– C1 holes in a cube Q or

– Lipschitz holes in a cube Q.
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4.1 A(y) Continuous

According to Section 2, if A(y) is continuous, then we should expect W 1,p

estimates for all p, 1 < p < ∞. We will assume general hypotheses that
contain the above homogenization problem.

Statement of the Hypotheses

We will consider a one-parameter family of functions Fε ⊂ W 1,2(Q) (the
“solutions”), with the following renormalization properties (0 < ε ≤ 1):

(h1) (COARSE BOUND) If uε ∈ Fε, uε(δx)|Q ∈ Fε/δ, and if u1 ∈ F1,

‖∇u1‖L∞(Q1/2) ≤ C‖∇u‖L2(Q1) .

(h2) (LIMITING BOUND) There exists a universal constant M such that∣∣∣{x | |∇uε| > M} ∩Q1/2

∣∣∣ ≤ D(ε)‖∇u‖2L2(Q1)

and D(ε)→ 0 as ε→ 0 .

The main theorem in this case is the following:

THEOREM D Assume that the solutions to problems (Pε) satisfies (h1) and
(h2). Then for all p ∈ (1,∞) there exists a C(p) such that, independently of
ε,

‖∇uε‖Lp(Q1/2) ≤ C(p)

provided that ∫
Q1

|∇uε|2dx ≤ 1 .

Sketch of the Ideas

First, we sketch the idea of the proof, and then we prove the results as lemmas.
Consider the maximal function Mε(x) ≡ M(|∇uε(x)|2) defined above.

We want to show that given δ > 0,

|{x | Mε(x) > λ}| ≤ C(δ)λ−(1/δ) ,

because now the problem is to obtain the estimates for all p < ∞. If we
get the previous estimate for the distribution function of the Hardy-Littlewood
maximal operator, then we can proceed in the same way as in the proof of
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Theorem A. The insight is the following: Given a finite p we choose a corre-
sponding µ for which the summability in the Stieltjes sums for the Lp-norm
of the maximal function can be guaranteed. This can be done by hypothesis
(h2), and we get, for instance,

|{x ∈ Q1 | Mε(x) > M}| ≤ µ if ε ≤ ε0 .(4.1)

Then the idea is to study the sets

Ak(ε) =
{
x ∈ Q1 | Mε(x) > 20nMk

}
.(4.2)

Take the Calderón-Zygmund covering for Ak(ε) with δ = 20nµ and {Qkj }, and
call sj the side of Qkj . Let ε0 = 2−l0 . We classify the cubes in the following
way:

1. For those Qkj verifying that εj = ε/sj is such that εj ≤ ε0, we put
Ak(ε) ∩Qkj as a part of the set Bk. Then

Bk =
⋃

εj≤ε0
(Ak(ε) ∩Qkj ) .(4.3)

Hence Bk contains the part of Ak(ε) corresponding to the cubes of high
frequencies.

2. For those Qkj verifying that 2−(l+1) ≤ εj ≤ 2−l for 1 ≤ l < l0, we put
Ak(ε) ∩Qkj as a part of the set C lk(ε). Namely,

C lk(ε) =
⋃

2−(l+1)≤εj≤2−l
(Ak(ε) ∩Qkj ) .(4.4)

If we call ε0 the critical scale, while Bk(ε) represents the cubes with
subcritical scale or, equivalently, high frequencies, the sets C lk(ε) contain the
cubes with supercritical scales, or low frequencies, classified by levels.

The measure of Bk(ε) will be estimated with the same type of arguments
as in Section 1 as we will see in the next result (Lemma 4.1) and its corollary.

The estimate of the measure of the sets C lk(ε) will be reduced to the
estimate of the measure of Bk−m(ε) where m depends only on ε0, namely, to
the sets of high frequencies of a previous step k −m.

LEMMA 4.1 Let Bk(ε) and Bk+1(ε) be defined as in (4.3). Then

|Bk+1(ε)| ≤ 20nµ|Bk(ε)| .(4.5)
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PROOF: We try to apply Lemma 1.2 with A ≡ Bk+1(ε) and B ≡ Bk(ε).
If Q is a cube of the Calderón-Zygmund covering of Bk+1(ε) for 20nµ, then,
by definition, it is also a cube of the Calderón-Zygmund covering of Ak+1(ε).
Let Q̃ be the predecessor of Q and s be the side of Q̃. We will prove that Q̃ ⊂
Ak(ε) and equivalently that Q̃ ⊂ Bk(ε), since Q̃, being of higher frequency
than Q, is also of high frequency. Assume the contrary, i.e., there exists x0 ∈ Q̃
such that

Mε(x0) ≤Mk.

Scaling by ūε(y) =
uε(sx)
Mk

, Q̃ becames Q1 and we have

∫
Q1

|∇uε|2dy ≤
Mε(x0)
Mk

≤ 1 .

Then by the definition of µ in (4.1) we have that∣∣∣{x ∈ Q1/2 | Mūε(x) ≥M}
∣∣∣ < µ ,

but this contradicts the fact that |Ak+1(ε) ∩Q| ≥ 20nµ|Q|.

COROLLARY 4.2 If Bk and µ are defined by (4.3) and (4.1), respectively,
then |Bk| ≤ µk.

LEMMA 4.3 Let C lk(ε) be defined by (4.4). There exists a constant m =
m(ε0) such that for any l < l0,

C lk(ε) ⊂ Bk−m(ε) .

PROOF: Let Qi ∩Ak(ε) be a part of C lk(ε). Consider the chain of prede-

cessors of Qi, Q̃1
i , . . . , Q̃

r(i)
i , and the measure of the intersections Q̃ti ∩Ak−m.

Take the biggest Q̃ti for which∣∣∣Q̃ti ∩Ak−m∣∣∣ > 20nµ
∣∣∣Q̃ti∣∣∣(4.6)

The corresponding scale for Q̃ti is supercritical, namely,

ε̄(Q̃ti) =
ε

s(Q̃ti)
≥ ε0

where s(Q̃ti) is the side length.
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Then Q̃ti must be contained in Ak−m(ε). If that were not the case, Q̃t−1
i

would not be contained in Ak−m+1(ε) and then, for some x0 ∈ Q̃t−1
i ,Mε(x0)

≤Mk−m+1; in particular,

1
|Q̃t−1

i |

∫
Q̃t−1
i

|∇uε|2 dy ≤Mk−m+1

and since Q̃t−1
i has supercritical scale, by rescaling, the hypothesis (h1) gives

that
‖∇uε‖L∞(Q̃ti)

≤ C(ε0)Mk−m+1 .

Hence choosing m = m(ε0) in such way that C(ε0)Mk−m+1 ≤ Mk, we get
a contradiction.

Therefore choosing m = m(ε0) as above we have that the first predecessor
for which

|Q̃ti ∩Ak−m(ε0)(ε)| > µ|Q̃ti|

has scale ε̄ ≤ ε0; namely, Q̃ti ∩Ak−m(ε0)(ε) is a part of Bk−m(ε0)(ε).

PROOF OF THEOREM D: We have that for all ε > 0 fixed, the distribu-
tion function of the maximal operator Mε satisfies

|Ak(ε)| ≤ |Bk|+ |Bk−m(ε0)| ≤ µk + µk−m(ε0) .

Then given p we choose µ and finish the proof as in Section 1.

4.2 Transmission Problems

Finally, we will study the homogenization of a transmission problem. More
precisely, we assume

A(x) =
r∑
i=1

diχDi(x)(4.7)

where Q is a cube and D̄i ⊂ Q are bounded domains in RN with boundaries

• C1 in the first case and

• Lipschitz in the second case.

We will consider A(y) extended periodically to the whole RN , and we also
assume the ellipticity hypothesis.
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Consider the problems−div
(
A

(
x

ε

)
∇uε

)
= 0 in Ω

uε satisfying boundary conditions on ∂Ω .
(Pε)

In the case of C1 boundaries, if uε ∈ W 1,2, then uε ∈ W 1,p for all p < ∞.
This regularity result is a consequence of the potential theory results by Fabes,
Jodeit, and Rivière. See [7] for details.

According to [6], in the case of Lipschitz boundaries, we have that the
solutions are in W 3/2,2. See also [9] for other references about the regularity
in Lipschitz domains.

Hence in both cases we have W 1,p regularity for 2 < p < p0; in case 1,
p0 = ∞, while in case 2, p0 = 2N/(N − 1). In this way and also by using
the definition of the correctors in [4], we get the situation described below.

4.3 Statement of the Hypotheses

As before, we have a one-parameter family of functions Fε in W 1,2(Q) with
the same renormalization properties, but now we will assume that

(i) ‖∇u1‖Lp(Q1/2) ≤ C‖∇u1‖L2(Q1) for some p > 2, and

(ii) there exists a universal constant C0 such that∣∣∣{M(|∇uε|2 > λ2}
∣∣∣ ≤ C0(λ−p + σ(ε)λ−2)

where σ(ε)→ 0 as ε→ 0 .

Remark. For the homogenization problem, the coarse bound in (i) is given
by the regularity for the problem, while the limiting bound in (ii) is given by
the existence of correctors in W 1,p.

Using the same line of ideas used in Theorem D, we have the following
result:

THEOREM E Assume that the solutions to problems (Pε) satisfy (i) and (ii).
Then for all q < p there exists a constant Cq independent of ε such that

‖∇uε‖Lq(Q1/2) < Cq‖∇uε‖L2(Q1/2) .
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PROOF: We prove that for 2 < q < p fixed and by choosing c1 and M
large enough

|Ak(ε)| =
∣∣∣{M(|∇uε|2) ≥ c1M

2k}
∣∣∣ ≤ CM−qk ,(4.8)

and then we finish as at the end of the proof of Theorem A. We first choose
M so that

C0M
−p ≤ 1

10n
M−q

and then

ε0 = 2−k0 for which C0σ(ε)M−2 ≤ 1
10n

M−q for ε < ε0 .

For δ = 1
2nM

−p/2 we consider the Calderón-Zygmund covering of Ak(ε). As
in the proof of Theorem D we split Ak(ε) in the part of high frequencies, Bk,
and the part of low frequencies classified by its level, namely,

Ak(ε) = Bk ∪

 ⋃
1≤l≤k0

C lk


where if Qkj is a cube in the Calderón-Zygmund decomposition and sj its side,
then

• Bk is the subset of Ak(ε) contained in the cubes Qkj for which ε/sj ≤
ε0 = 2−k0 , and

• C lk is the subset of Ak(ε) contained in the cubes Qkj for which ε02l−1 ≤
ε/sj ≤ ε0 = 2l.

Now a predecessor, Q̃, of a cube, Q, defining Bk is a fortiori in the range
of high frequency, because it has a larger side, s̄j , than Q and then ε/s̄j ≤ ε0.
Therefore the choice of ε0 and M and the argument in Lemma 4.1 and its
corollary imply that

|Bk| ≤
1
2n
M−kq .

We now choose m = m(ε0) such that

C

ε0
Mk−m ≤Mk .

Then we have the following claim:
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Claim. If Qjk belongs to the Calderón-Zygmund covering of Ak, then its
predecessor is contained in Ak−m and, in particular, can be covered with cubes
in the Calderón-Zygmund decomposition of Ak−m.

From the claim taking into account the size of the cubes, it follows that

C lk ⊂ Bk−m ∪

⋃
s<l

Csk−m

 ;

thus

|C1
l | ≤

1
2n
M−(k−m)q , |C2

l | ≤
1
2n
M−(k−2m)q , · · · .

Then by choosing n large enough,

|Ak| ≤ C̄M−kq where C̄ = M−k0mq .

We point out that in the first step, k0m, we get the inequality by using the
uniform weak-type estimates in the unit cube, namely,

|Ak0m| =
∣∣∣{M(|∇uε|2) ≥ C1M

2k0m}
∣∣∣ ≤ c 1

C1M2k0m

∫
Q1

|∇uε|2 dx

≤ c 1
C1M2k0m

.

Hence by choosing C1 large we get the inequality also for the first case and
then we finish as in Theorem D.

It remains to justify the claim. We will use an argument by contradiction.
If we assume that Qjk is in the Calderón-Zygmund decomposition of Ak but its
predecessor Q̄jk 6⊆ Ak−m, we can find x0 ∈ Q̄jk such that M(|∇uε(x0)|2) <
C1M

2(k−m) in particular, and by hypothesis (i) we get

1

|Q̄jk|

∫
Q̄jk

|∇uε|pdx ≤Mpk

and by scaling ∫
Q1

|∇ūε|pdx ≤ 1 .

Scaling again, we obtain∣∣∣Qjk ∩ {M(|∇uε|2) > C1M
2k}
∣∣∣ ≤ CM−p|Qjk| ,

which contradicts the choice of δ and the hypothesis.
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Remark. Consider the problem{
L(u) ≡ −div(A(x)∇u) = div f in Ω, f ∈ Lr, r > N

boundary condition on ∂Ω ,
(TP)

where we assume that A(x) is a continuous matrix unless in a C1 or a Lipschitz
surface Σ that separates two subdomains Ω1 and Ω2 of Ω, namely, Ω =
Ω1 ∪ Ω2 ∪ Σ and

A(x) =

{
(a1
i,j(x)) if x ∈ Ω1

(a2
i,j(x)) if x ∈ Ω2 .

(a1
i,j(x)) and (a2

i,j(x)) are continuous, and moreover

ν|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ 1
ν
|ξ|2 for all x ∈ Ω and ξ ∈ RN .

The regularity of the solution depends on f and in the regularity of the coeffi-
cients of the matrix A. We will isolate the problem when f = 0. Taking into
account the regularity results in [6, 7], and using the arguments in Section 2
we get the following result:

THEOREM F Assume f = 0. If u ∈ W 1,2
loc is a weak solution of (TP), then

u ∈W 1,p
loc for all 2 < p < p0.

In the same way we can get an extension of Theorem E to problem (TP).
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