Charles University, Faculty of Mathematics and Physics

Papers

For the final versions of the papers we refer the interested readers to the journals.


M. Bulíček, M. Kalousek, P. Kaplický, V. Mácha: Gradient L^q theory for a class of non-diagonal nonlinear elliptic systems, submitted to Nonlinear Analysis TMA, preprint serie of NCMM,

P. Kaplický, J. Wolf: On the higher integrability of weak solutions to the generalized Stokes system with bounded measurable coefficients, accepted to Dyn. Partial Differ. Equ.

M. Cúth, O.F.K. Kalenda, P. Kaplický: Finitely additive measures and complementability of Lipschitz-free spaces, arXiv.

J. Burczak, P. Kaplický: INTERIOR REGULARITY OF SPACE DERIVATIVES TO AN EVOLUTIONARY, SYMMETRIC φ-LAPLACIAN , Monatshefte für Mathematik 183(1), 71-101, (2017( doi: 10.1007/s00605-016-1005-y

J. Burczak, P. Kaplický: Evolutionary, symmetric p-Laplacian. Interior regularity of time derivatives and its consequences, Communications on Pure and Applied Analysis 15 (6), 2401 - 2445, (2016), doi: 10.3934/cpaa.2016042

M. Bulíček, M. Kalousek and P. Kaplický: Homogenization of an incompressible stationary flow of an electrorheological fluid, Annali di Matematica Pura ed Applicata 196, 1185-1202, (2017), doi: 10.1007/s10231-016-0612-5, ReadCube.

P. Kaplický: On Lq estimates of planar flows up to boundary, Contemporary Mathematics 666 (2016), 253-264,doi: 10.1090/conm/666

H. Ali, P. Kaplický: Analysis of the Leray-alpha model with Navier slip boundary condition, Electron. J. Differential Equations, Vol. 2016 (2016), No. 235, pp. 1-13, webpage.

L. Diening, P. Kaplicky, S. Schwarzacher: Campanato estimates for the generalized Stokes system, Ann. Mat. Pura Appl. 193(4), 1779-1794, (2014),doi: 10.1007/s10231-013-0355-5

M. Bulíček, P. Kaplický, M. Steinhauer: On existence of a classical solution to a generalized Kelvin-Voigt model., Pacific J. Math. 262, 11-33, (2013),doi: 10.2140/pjm.2013.262.11

P. Kaplický, J. Tichý: Boundary Regularity of Flows under Perfect Slip Boundary Conditions, Cent. Eur. J. Math., 2013, doi: 10.2478/s11533-013-0232-x

L. Diening, P. Kaplický: Lq theory for a generalized Stokes system, Manuscripta Mathematica 141(1), 333-361, (2013), doi: 10.1007/s00229-012-0574-x

L. Diening, P. Kaplický, S. Schwarzacher: BMO estimates for the p-Laplacian, Nonlinear Analysis 75, 637-650, (2012), doi: 10.1016/j.na.2011.08.065

H. Beirao da Veiga, P. Kaplický and M. Růžička: Boundary regularity of shear thickening flows, Journal of Mathematical Fluid Mechanics 13 (3), 387-404, (2011), doi: 10.1007/s00021-010-0025-y

M. Bulíček, P. Kaplický, J. Málek: An L2-maximal regularity result for the evolutionary Stokes-Fourier system, Applicable Analysis 90 (1), 31­45, (2011), doi: 10.1080/00036811003735931.

H. Beirao da Veiga, P. Kaplický and M. Růžička: Regularity theorems, up to the boundary, for shear thickening flows, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 541--544.

M. Bulíček, F. Ettwein, P. Kaplický, D. Pražák: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids. Mathematical Methods in the Applied Sciences, 33: 1995–2010, (2010) doi: 10.1002/mma.1314

M. Bulíček, F. Ettwein, P. Kaplický, D. Pražák: The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Commun. Pure Appl. Anal. 8, no. 5, 1503--1520, (2009).

M. Bulíček, P. Kaplický: Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows, Discrete Contin. Dyn. Syst.-Series S, 1 (1), 41-50, (2008).

P. Kaplický, D. Pražák: Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow, Discrete Contin. Dyn. Syst., 20 (4), 961­974, (2008).

P. Kaplický: Regularity of Flow of Anisotropic Fluid, J. Math. Fluid Mech., 10, 71-88, (2008), online.

N. Ackermann, T. Bartsch, P. Kaplický, P. Quittner: A Priori Bounds, Nodal Equilibria and Connecting Orbits in Indefinite Superlinear Parabolic Problems, Trans. Amer. Math. Soc., 360(7) (2008), 3493-3539.

Nils Ackermann, Thomas Bartsch, Petr Kaplický: An invariant set generated by the domain topology for parabolic semiflows with small diffusion , Discrete Contin. Dyn. Syst., 18 (4), 613-628, (2007).

P. Kaplický, D. Pražák: Differentiability of the solution operator and the dimension of the attractor for certain power-law fluids, Jour. Math. Anal. Appl., 326 (2007), 75-87, .

P. Kaplický: Time regularity of flows of non-Newtonian fluids, IASME Transactions, 2, no. 7 (2005), 1232--1236.

P. Kaplický: Regularity of flows of a non-Newtonian fluid in two dimensions subject to Dirichlet boundary conditions, Journal for Analysis and its Applications, 24, no. 3 (2005), 467--486.

P. Kaplický: Some remarks to regularity of flow of generalized Newtonian fluid, International Conference on Differential Equations Hasselt 2003 (2005), 377-379.

P. Kaplický, J. Málek, J. Stará: Global in time Holder continuity of the velocity gradients for fluids with shear dependent viscosities, NoDEA, 9 (2002), 175-195.

P. Kaplický, J. Málek, J. Stará: On existence of smooth unsteady twodimensional flows for a class of nonnewtonian fluids in space-periodic setting, Proceedings of International Conference Jubilee Kateder Matematiky TUL 2000, eds. J. Vild (2002), 41-48.

P. Kaplický, J. Málek, J. Stará: On global existence of smooth two-dimensional steady flows for a class of non-Newtonian fluis under various boundary conditions, Applied Nonlinear Analysis, eds A. Sequeira, H. B. Veiga and J. H. Videman, Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow (1999), 213-229.

P. Kaplický, J. Málek, J. Stará: C^{1,\alpha}-solutions to a class of nonlinear fluids in two dimensions--stationary Dirichlet problem, Zapiski naukhnych seminarov POMI, 259 (1999).

P. Kaplický: On existence of C^{1,\alpha}-solutions to a class of nonlinear fluid in 2D -- stationary, periodic case, Proceedings of International Conference on Navier-Stokes equations, Theory and Numerical Methods, Pitman Research Notes in Mathematics Series, 388 (1998), 45-52.

P. Kaplický, J. Málek, J. Stará: Full regularity of weak solutions to a class of nonlinear fluids in two dimensions - stationary, periodic problem, Comment. Math. Univ. Carolinae,38, no. 4 (1997), 681--695.