
XIII.2 Integral with respect to a spectral measure

Definition. An abstract spectral measure in a Hilbert space H is a mapping E with the following prop-
erties:

(i) The domain of E is a σ-algebra A of subsets of C containing all Borel sets.
(ii) E(A) is an orthogonal projection on H for each A ∈ A.
(iii) E(∅) = 0, E(C) = I.
(iv) If A ∈ A satisfies E(A) = 0, then B ∈ A (and E(B) = 0) for each B ⊂ A.
(v) E(A ∩B) = E(A)E(B) for A,B ∈ A.
(vi) E(A ∪B) = E(A) +E(B) whenever A,B ∈ A, A ∩ B = ∅.
(vii) For each pair x, y ∈ H the mapping Ex,y : A 7→ 〈E(A)x, y〉 is a complex Borel measure on C.

The spectral measure E is called compactly supported if there is a compact setK ⊂ C such that E(C\K) =
0.
Recall that µ is a Borel measure if it is a σ-additive measure defined on a σ-algebra Aµ containing all

Borel sets such that for any A ∈ Aµ there are Borel sets B,C such that B ⊂ A ⊂ C and |µ| (B \C) = 0.

Lemma 5. If T ∈ L(H) is a normal operator, then ET is a compactly supported abstract spectral
measure.

Lemma 6 (properties of a spectral measure). Let E be an abstract spectral measure in a Hilbert
space H defined on a σ-algebra A. Then the following holds:

(a) The mapping x 7→ Ex,y is linear for each y ∈ H.
(b) The mapping y 7→ Ex,y is conjugate linear for each x ∈ H.

(c) Ey,x = Ex,y for x, y ∈ H.
(d) Ex,x is a nonnegative measure for each x ∈ H.
(e) Ex,y =

1

4
(Ex+y,x+y −Ex−y,x−y + iEx+iy,x+iy − iEx−iy,x−iy) for x, y ∈ H.

(f) |Ex,y(A)| ≤
√

Ex,x(A) · Ey,y(A) ≤
1

2
(Ex,x(A) +Ey,y(A)) for x, y ∈ H and A ∈ A.

(g) Ex+y,x+y ≤ 2(Ex,x +Ey,y) for x, y ∈ H.
(h) ‖Ex,y‖ ≤ ‖x‖ · ‖y‖ for x, y ∈ H.

Remark. In the definition of an abstract spectral measure, in (vii) it is enough to assume that Ex,x is
a Borel measure on C for any x ∈ H.

Proposition 7. Let E be an abstract spectral measure in a separable Hilbert space H. Then for any
A ∈ A there are Borel sets B and C such that B ⊂ A ⊂ C and E(C \B) = 0.

Remark. Spectral measure is sometimes defined only for separable Hilbert spaces H. Then it is defined
only on the σ-algebra of Borel sets and condition (iv) is omitted. For nonseparableH the above approach
is necessary.

Definition. Let E be an abstract spectral measure in a Hilbert space H defined on a σ-algebra A.

• Set N = {A ∈ A;E(A) = 0}.
• We denote by L∞(E) the space of all bounded A-measurable functions on C, where we identify
functions, which are equal except on a set from N (i.e., E-almost everywhere). Equip L∞(E) the
the norm

‖f‖ = ess sup
λ∈C

|f(λ)| = inf{c > 0; {λ ∈ C; f(λ) > c} ∈ N}.

Then L∞(E) is a commutative C∗-algebra (with pointwise multiplication and involution defined
as complex conjugation).



Theorem 8 (integral of a bounded function with respect to a spectral measure). If E is an abstract
spectral measure in H defined on a σ-albegra A and f : C → C is a bounded A-measurable function,
then there is a unique operator Φ0(f) ∈ L(H) such that

〈Φ0(f)x, y〉 =

∫

f dEx,y x, y ∈ H.

Moreover:

(a) Φ0 is an isometric ∗-isomorphism of the C
∗-algebra L∞(E) into L(H).

(b) σ(Φ0(f)) = ess rng(f) for each f ∈ L∞(E).
(c) For any f ∈ L∞(E) the operator Φ0(f) is normal. Moreover Φ0(f) is self-adjoint if and only
if f is real-valued (E-almost everywhere) and Φ0(f) is positive if and only if f ≥ 0 E-almost
everywhere.

(d) ‖Φ0(f)x‖ =
√

∫

|f |2 dEx for x ∈ H.

(e) If f ∈ L∞(E) and g ∈ C(σ(Φ0(f))), then Φ0(g ◦ f) = g̃(Φ0(f)).

Notation: The operator Φ0(f) from the previous theorem is denoted by
∫

f dE and is called the integral
of the function f with respect to the spectral measure E.

Lemma 9. Let E be an abstract spectral measure, f ∈ L∞(E) and T =
∫

f dE. Then the spectral
measure ET of T is given by ET (A) = E(f−1(A)).

Corollary 10 (spectral decomposition of a bounded normal operator). Let H be a Hilbert space and
T ∈ L(H) a normal operator. Then there is a unique abstract spectral measure such that T =

∫

id dE.
Moreover, this is the measure ET .

Theorem 11 (integral of a (not necessarily bounded) function with respect to a spectral measure).
Let E be an abstract spectral measure in H defined on a σ-albegra A, let f : C → C be an A-measurable
function. Set

D(Φ(f)) = {x ∈ H :

∫

|f |2 dEx,x < ∞}.

Then D(Φ(f)) is a dense linear subspace of H. Further, there exists a unique operator Φ(f) on H

with domain D(Φ(f)) satisfying

〈Φ(f)x, y〉 =

∫

f dEx,y, x, y ∈ D(Φ(f)).

Moreover,

‖Φ(f)x‖ =

√

∫

|f |2 dEx,x, x ∈ D(Φ(f)).

Remark: If f is bounded, then D(Φ(f)) = H and Φ(f) = Φ0(f).

Notation: The operator Φ(f) from the previous theorem is denoted by
∫

f dE and is called the integral
of the function f with respect to the spectral measure E.

Theorem 12 (properties of
∫

f dE). If E is an abstract spectral measure in H and f, g are A-
measurable functions, then:

(a) Φ(f) + Φ(g) ⊂ Φ(f + g);
(b) Φ(f)Φ(g) ⊂ Φ(fg) and D(Φ(f)Φ(g)) = D(Φ(g))∩D(Φ(fg)).
(c) Φ(f)∗ = Φ(f) and Φ(f)Φ(f)∗ = Φ(|f |2) = Φ(f)∗Φ(f), in particular Φ(f) is normal.
(d) Φ(f) is a closed operator.
(e) Φ(f) is continuous if and only if f is essentially bounded, i.e., there exists A ∈ A, such that

E(C \A) = 0 and f is bounded on A.

Proposition 13 (spectrum of
∫

f dE). If E is an abstract spectral measure, f is an A-measurable
function and T = inf f dE, then

σ(T ) = ess rng(f) := C \
⋃

{G ⊂ C : G open, E(f−1(G)) = 0}.

Moreover, for any λ ∈ C we have ker(λI − T ) = R(E(f−1({λ}))). In particular, λ is an eigenvalue of T
if and only if E(f−1({λ})) 6= 0.


