XIII.2 Integral with respect to a spectral measure

Definition. An abstract spectral measure in a Hilbert space H is a mapping F with the following prop-
erties:

) The domain of F is a o-algebra A of subsets of C containing all Borel sets.
) E(A) is an orthogonal projection on H for each A € A.

(i) E(®) =0, E(C)=1.
)
)
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If A € A satisfies E(A) =0, then B € A (and E(B) = 0) for each B C A.
E(ANB)=E(A)E(B) for A,B € A.
E(AUB) = E(A) + E(B) whenever A,B€ A, ANB = ().

(vii) For each pair z,y € H the mapping E, , : A — (E(A)z,y) is a complex Borel measure on C.
The spectral measure E is called compactly supported if there is a compact set K C C such that E(C\K) =
0.

Recall that p is a Borel measure if it is a o-additive measure defined on a o-algebra 4, containing all
Borel sets such that for any A € A, there are Borel sets B, C' such that B C A C C and |u| (B \ C) = 0.

Lemma 5. IfT € L(H) is a normal operator, then Er is a compactly supported abstract spectral
measure.

Lemma 6 (properties of a spectral measure).  Let E be an abstract spectral measure in a Hilbert
space H defined on a o-algebra A. Then the following holds:

(a

) The mapping x +— E, , is linear for each y € H.
(b) The mapping y — E, , is conjugate linear for each z € H.
) By, =E,, forx,yec H.
(d) By is a nonnegative measure for each ¢ € H.
)
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(e E (Er—l-y,r—l-y El‘ Y, T—Yy + ZEI—Hy,r—Hy iEr—iy,x—iy) for T,y € H.
(f |Ex y(A)] < VEra(A) - By y(A) < 3(Epa(A) + Eyy(A)) forz,y € H and A € A,
(g x+yx+y§2(me+Eyy) for z,y € H.

() 1 Eeyll < [l - lyll for =,y € H.

Remark. In the definition of an abstract spectral measure, in (vii) it is enough to assume that E, , is
a Borel measure on C for any = € H.

Proposition 7. Let FE be an abstract spectral measure in a separable Hilbert space H. Then for any
A € A there are Borel sets B and C such that BC A C C and E(C \ B) =0.

Remark. Spectral measure is sometimes defined only for separable Hilbert spaces H. Then it is defined
only on the o-algebra of Borel sets and condition (iv) is omitted. For nonseparable H the above approach
is necessary.

Definition. Let E be an abstract spectral measure in a Hilbert space H defined on a o-algebra A.
e Set N ={A € A;E(A) =0}.
e We denote by L>°(E) the space of all bounded .A-measurable functions on C, where we identify
functions, which are equal except on a set from N (i.e., F-almost everywhere). Equip L>°(E) the
the norm

|f]l = esssup|f(N\)| =inf{c > 0;{\ € C; f(\) > c} e N}.
AeC

Then L*>(F) is a commutative C*-algebra (with pointwise multiplication and involution defined
as complex conjugation).



Theorem 8 (integral of a bounded function with respect to a spectral measure). If F is an abstract
spectral measure in H defined on a o-albegra A and f : C — C is a bounded A-measurable function,
then there is a unique operator ®(f) € L(H) such that

@olfe) = [ 1B, zycH,
Moreover:
(a) ®g is an isometric *-isomorphism of the C*-algebra L*°(FE) into L(H).
(b) o(®o(f)) = esstng(f) for each f € L=(E).
(c) For any f € L°°(FE) the operator ®y(f) is normal. Moreover ®(f) is self-adjoint if and only
if f is real-valued (E-almost everywhere) and ®¢(f) is positive if and only if f > 0 E-almost
everywhere.

(d) [@o(f)all =/ [|fI?dE, for z € H.

(e) If f € L=°(E) and g € C(0(®o(f))), then ®o(go f) = G(Po(f))-
Notation: The operator ®,(f) from the previous theorem is denoted by [ f dE and is called the integral
of the function f with respect to the spectral measure E.
Lemma 9. Let E be an abstract spectral measure, f € L>(E) and T = [ fdFE. Then the spectral
measure Ep of T is given by Ep(A) = E(f~1(A)).

Corollary 10 (spectral decomposition of a bounded normal operator). Let H be a Hilbert space and
T € L(H) a normal operator. Then there is a unique abstract spectral measure such that T = [id dE.
Moreover, this is the measure Er.

Theorem 11 (integral of a (not necessarily bounded) function with respect to a spectral measure).
Let E be an abstract spectral measure in H defined on a o-albegra A, let f : C — C be an A-measurable
function. Set

D@(f) = (v e H: [ £ dE,. < o).

Then D(®(f)) is a dense linear subspace of H. Further, there exists a unique operator ®(f) on H
with domain D(®(f)) satisfying

(@(f)z.y) = / fAE,,. .y e D@®(f))

[8(F)z] = / P dEs.,  x e D@()).

Remark: If f is bounded, then D(®(f)) = H and ®(f) = ®o(f).

Notation: The operator ®(f) from the previous theorem is denoted by [ f dE and is called the integral
of the function f with respect to the spectral measure F.

Moreover,

Theorem 12 (properties of [ fdE). If FE is an abstract spectral measure in H and f,g are A-
measurable functions, then:

)
)®(g) C ®(fg) and D(2(f)®(9)) = D(®(g)) N D(®(f9))-

)* = ®(f) and ®(f)®(f)* = ®(|f]?) = ®(f)*®(f), in particular ®(f) is normal.
) is a closed operator.

)

Proposition 13 (spectrum of [ fdE). If E is an abstract spectral measure, f is an A-measurable
function and T = inf f dF, then

o(T) = essmg(f) :=C\ | J{G € C: G open, E(f7'(G)) = 0}.
Moreover, for any A € C we have ker(\ — T) = R(E(f~1({)\}))). In particular, ) is an eigenvalue of T
if and only if E(f~*({\})) # 0.



