XIII. Spectral measures and spectral decompositions

Convention: In this chapter we will consider bounded and unbounded operators on complex Hilbert spaces. Hence, Hilbert spaces are assumed to be complex, except for the very last section.

XIII. 1 Measurable calculus and spectral measure for normal bounded operators

Proposition 1 (Lax-Milgram). Let H be a Hilbert space and $B: H \times H \rightarrow \mathbb{C}$ a mapping satisfying the following properties.

- $x \mapsto B(x, y)$ is linear for each $y \in H$.
- $y \mapsto B(x, y)$ is conjugate linear for each $x \in H$.
- $\|B\|=\sup \left\{|B(x, y)| ; x, y \in B_{H}\right\}<\infty$.

Then there is a unique $T \in L(H)$ such that $B(x, y)=\langle T x, y\rangle$ for $x, y \in H$. Moreover, $\|T\|=$ $\|B\|$.
Constructing the spectral measure of a normal operator - Step 1. Let H be a Hilbert space and let $T \in L(H)$ be a normal operator. Let $f \mapsto \tilde{f}(T), f \in \mathcal{C}(\sigma(T))$, be the continuous functional calculus for T. For any $x, y \in H$ let $E_{x, y}$ denote the (unique) complex Radon measure on $\sigma(T)$ satisfying

$$
\langle\tilde{f}(T) x, y\rangle=\int_{\sigma(T)} f \mathrm{~d} E_{x, y}, \quad f \in \mathcal{C}(\sigma(T))
$$

Proposition 2 (properties of the measures $E_{x, y}$). Using the above notation, the following holds:
(a) $x \mapsto E_{x, y}$ is linear for each $y \in H$.
(b) $y \mapsto E_{x, y}$ is conjugate linear for each $x \in H$.
(c) $E_{x, x}$ is a non-negative measure for each $x \in H$.
(d) $\left\|E_{x, y}\right\| \leq\|x\| \cdot\|y\|$ for $x, y \in H$.
(e) $E_{x, y}=\frac{1}{4}\left(E_{x+y, x+y}-E_{x-y, x-y}+i E_{x+i y, x+i y}-i E_{x-i y, x-i y}\right)$ for $x, y \in H$.

Measurable calculus and the spectral measure. We use the above notation.

- Denote by \mathcal{A} the σ-algebra of all the subsets of $\sigma(T)$ which are $E_{x, y}$-measurable for each $x, y \in H$. (Recall that A is $E_{x, y}$-measurable if and only if there are Borel sets B, C such that $B \subset A \subset C$ and $\left|E_{x, y}\right|(B \backslash C)=0$.) Then \mathcal{A} is the σ-algebra of all the subsets of $\sigma(T)$ which are $E_{x, x}$-measurable for each $x \in H$.
- Let $f: \sigma(T) \rightarrow \mathbb{C}$ be a bounded \mathcal{A}-measurable function By $\tilde{f}(T)$ we denote the operator in $L(H)$ satisfying

$$
\langle\tilde{f}(T) x, y\rangle=\int_{\sigma(T)} f \mathrm{~d} E_{x, y}, \quad x, y \in H
$$

Its existence and uniqueness is provided by Proposition 1. The assignement $f \mapsto \tilde{f}(T)$ is called the measurable calculus for T.

- For $A \in \mathcal{A}$ set $E_{T}(A)=\widetilde{\chi_{A}}(T)$. The assignement $E_{T}: A \mapsto E_{T}(A)$ is called the spectral measure of T.
- Denote by \mathcal{N} the subfamily of \mathcal{A} formed by the sets which are $\left|E_{x, y}\right|$-null for each $x, y \in H$. Then \mathcal{N} is the family of all the sets which are $E_{x, x}$-null for each $x \in H$.
- Denote by $L^{\infty}\left(E_{T}\right)$ the space of all the bounded \mathcal{A}-measurable functions on $\sigma(T)$, where we identify the functions which are equal everywhere except on a set from \mathcal{N}. Equip $L^{\infty}\left(E_{T}\right)$ with the norm

$$
\|f\|=\underset{\lambda \in \sigma(T)}{\operatorname{ess} \sup }|f(\lambda)|=\inf \{c>0 ;\{\lambda \in \sigma(T) ; f(\lambda)>c\} \in \mathcal{N}\}
$$

Then $L^{\infty}\left(E_{T}\right)$ is a commutative C^{*}-algebra (with the pointwise multiplication and the involution defined as the complex conjugation).

- $\tilde{f}(T)$ is defined exactly for $f \in L^{\infty}\left(E_{T}\right)$. Moreover, $\tilde{f}(T)$ is then well defined, i.e., $\tilde{f}(T)=\tilde{g}(T)$ whenever $f=g$ except on a set from \mathcal{N}.

Lemma 3 (a consequence of Luzin's theorem).
(a) Let K be a compact metric space and let μ be a non-negative finite Borel measure on K. Let $f: K \rightarrow \mathbb{C}$ be a bounded μ-measurable function. Then there is a uniformly bounded sequence $\left(f_{n}\right)$ in $\mathcal{C}(K)$ such that $f_{n} \rightarrow f \mu$-almost everywhere. In particular, there is a bounded Borel function g on $\sigma(T)$ such that $f=g \mu$-almost everywhere.
(g) Let H be a separable Hilbert space and let $T \in L(H)$ be a normal operator. Let $f \in L^{\infty}\left(E_{T}\right)$ Then there is a uniformly bounded sequence $\left(f_{n}\right)$ in $\mathcal{C}(\sigma(T))$ such that $f_{n} \rightarrow f$ except on a set from \mathcal{N}. In particular, there exists a bounded Borel function g on $\sigma(T)$ such that $f=g$ except on a set form \mathcal{N}.

Theorem 4 (properties of the measurable calculus). Let H be a Hilbert space and $T \in L(H)$ be a normal operator.
(a) $f \mapsto \tilde{f}(T)$ is an isometric $*$-isomorphism of $L^{\infty}(E)$ into $L(H)$.
(b) If $\left(f_{n}\right)$ is a bounded sequence in $L^{\infty}(E)$ which pointwise converges to a function f (except on a set from \mathcal{N}), then $f \in L^{\infty}(E)$ and, moreover,

$$
\left\langle\tilde{f}_{n}(T) x, y\right\rangle \rightarrow\langle\tilde{f}(T) x, y\rangle, \quad x, y \in H
$$

(c) $\sigma(\tilde{f}(T))=\operatorname{ess} \operatorname{rng}(f)=\left\{\lambda \in \mathbb{C} ; \forall r>0: f^{-1}(U(\lambda, r)) \notin \mathcal{N}\right\}$ for $f \in L^{\infty}(E)$.
(d) $\tilde{f}(T)$ is a normal operator for each $f \in L^{\infty}(E)$. $\tilde{f}(T)$ is self-adjoint if and only if f is essentially real-valued (i.e., $f(\lambda) \in \mathbb{R}$ except on a set from \mathcal{N}).
(e) $\tilde{g}(\tilde{f}(T))=\widetilde{g \circ f}(T)$ whenever $f \in L^{\infty}(E)$ and g is continuous on $\sigma(\tilde{f}(T))$ (see (c)).
(f) If $S \in L(H)$ commutes with T, then S commutes with $\tilde{f}(T)$ for each $f \in L^{\infty}(E)$.

