X. Banach algebras and Gelfand transform

Convention: In this chapter all the Banach spaces are considered over the complex field (unless the converse is explicitly stated).
Remark: The real version of the theory of this chapter is studied as well, but it is quite different.

X. 1 Banach algebras - basic notions and properties

Definition.

- An algebra is a (complex) vector space A, equipped moreover with the operation of multiplication \cdot which enjoys the following properties:
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for $x, y, z \in A$;
- $x \cdot(y+z)=x \cdot y+x \cdot z$ for $x, y, z \in A$;
- $(x+y) \cdot z=x \cdot z+y \cdot z$ for $x, y, z \in A$;
- $\alpha \cdot(x \cdot y)=(\alpha \cdot x) \cdot y=x \cdot(\alpha \cdot y)$ for $\alpha \in \mathbb{C}$ and $x, y \in A$.
- An algebra A is said to be commutative, if the multiplication is commutative, i.e., if - $x \cdot y=y \cdot x$ for $x, y \in A$.
- Let A be an algebra. An element $e \in A$ is said to be
- a left unit if $e \cdot x=x$ for $x \in A$;
- a right unit if $x \cdot e=x$ for $x \in A$;
- a unit if $e \cdot x=x \cdot e=x$ for $x \in A$.

An algebra admitting a unit is called unital.

- Let A be an algebra equipped moreover with a norm $\|\cdot\|$ satisfying
- $\|x \cdot y\| \leq\|x\| \cdot\|y\|$ for $x, y \in A$.

Then A is said to be a normed algebra.

- A Banach algebra is a normed algebra A, which is complete in the metric generated by the norm.

Remarks:

(1) An algebra may have many left units or many right units.
(2) If an algebra has both a left unit and a right unit, they are equal. In particular, any algebra has at most one unit.
(3) If A is a nontrivial normed algebra with a unit e (nontrivial means $A \neq\{\boldsymbol{o}\}$), then $\|e\| \geq 1$.
Examples 1 (examples of Banach algebras).
(1) The complex field is a unital commutative Banach algebra.
(2) Let K be a compact Hausdorff space. Then $\mathcal{C}(K)$, the space of all the complex-valued continuous functions on K equipped with the supremum norm and with the pointwise multiplication (i.e., $(f \cdot g)(x)=f(x) \cdot g(x)$ for $f, g \in \mathcal{C}(K)$ and $x \in K$) is a unital commutative Banach algebra. Its unit is the constant function equal to 1.
(3) Let T be a locally compact Hausdorff space which is not compact (e.g., $T=\mathbb{R}^{n}$). Let the space
$\mathcal{C}_{0}(T)=\{f: T \rightarrow \mathbb{C}$ continuous; $\forall \varepsilon>0:\{x \in T ;|f(x)| \geq \varepsilon\}$ is a compact subset of $T\}$ be equipped with the supremum norm and with the pointwise multiplication. Then $\mathcal{C}_{0}(T)$ is a commutative Banach algebra which has no unit.
(4) For $n \in \mathbb{N}$ let M_{n} be the space of all the complex square matrices of order n, equipped with the matrix norm and with the matrix multiplication. Then M_{n} is a unital Banach algebra. Its unit is the unit matrix. If $n \geq 2, M_{n}$ is not commutative.
(5) Let X be a Banach space and let $L(X)$ be the space of all the bounded linear operators on X equipped with the operator norm. If we define the multiplication on $L(X)$ as the composition of operators (i.e., $S \cdot T=S \circ T$ for $S, T \in L(X)$), then $L(X)$ is a unital Banach algebra. Its unit is the identity mapping. If $\operatorname{dim} X \geq 2$, the algebra $L(X)$ is not commutative.
(6) Let X be a Banach space and let $K(X)$ be the space of all the compact operators on X. Then $K(X)$ is a closed subalgebra of $L(X)$, hence it is a Banach algebra. The algebra $K(X)$ is unital if and only if X is finite-dimensional. $K(X)$ is commutative if and only if $\operatorname{dim} X=1$.
(7) The Banach space $L^{1}\left(\mathbb{R}^{n}\right)$ becomes a commutative Banach algebra, if we define the multiplication as the convolution. This algebra has no unit.
(8) The Banach space $\ell^{1}(\mathbb{Z})$, equipped with the multiplication $*$ (called also convolution) defined by

$$
\left(x_{n}\right)_{n \in \mathbb{Z}} *\left(y_{n}\right)_{n \in \mathbb{Z}}=\left(\sum_{k \in \mathbb{Z}} x_{k} y_{n-k}\right)_{n \in \mathbb{Z}}, \quad\left(x_{n}\right)_{n \in \mathbb{Z}},\left(y_{n}\right)_{n \in \mathbb{Z}} \in \ell^{1}(\mathbb{Z})
$$

is a unital commutative Banach algebra. Its unit is the canonical vector \boldsymbol{e}_{0}.
(9) Let μ be the normalized Lebesgue measure on $[0,2 \pi)$ (i.e., $\mu=\frac{1}{2 \pi} \lambda$, where λ is a Lebesgue measure on $[0,2 \pi)$). Then the Banach space $L^{1}(\mu)$, equipped with the multiplication * (called also convolution) defined by

$$
\begin{aligned}
& f * g(x)=\int_{[0,2 \pi)} f(y) g((x-y) \bmod 2 \pi) \mathrm{d} \mu(y) \\
&=\frac{1}{2 \pi} \int_{[0,2 \pi)} f(y) g((x-y) \bmod 2 \pi) \mathrm{d} y, \quad f, g \in L^{1}(\mu), x \in[0,2 \pi),
\end{aligned}
$$

is a commutative Banach algebra. This algebra has no unit.
Proposition 2 (adding a unit).
(a) Let A be an algebra. Let A^{+}denote the vector space $A \times \mathbb{C}$ equipped with the multiplication defined by

$$
(x, \lambda) \cdot(y, \mu)=(x \cdot y+\lambda y+\mu x, \lambda \mu), \quad(x, \lambda),(y, \mu) \in A^{+} .
$$

Then A^{+}is an algebra and the element $(\boldsymbol{o}, 1)$ is its unit. Moreover, $\{(a, 0) ; a \in A\}$ is a subalgebra of A^{+}, which is isomorphic to the algebra A.
(b) If A is a Banach algebra, then A^{+}is a unital Banach algebra, if we define the norm by $\|(x, \lambda)\|=\|x\|+|\lambda|,(x, \lambda) \in A^{+}$. Moreover, $\{(a, 0) ; a \in A\}$ is then a closed subalgebra of A^{+}, which is isometrically isomorphic to the Banach algebra A.

Remarks:

(1) The algebraic structure of the algebra A^{+}is uniquely determined, for the norm on A^{+} it is not the case. The given norm is one of the possible ones, later we will see other possibilities, which are natural in some special cases.
(2) The procedure of adding a unit is important mainly in case A is not unital. However, it has a sense also in case A is unital. If A has a unit e, the unit of A^{+}is $(\boldsymbol{o}, 1)$ and the element $(e, 0)$ is not a unit anymore. This element is the unit of the subalgebra $\{(a, 0), a \in A\}$.

Proposition 3 (renorming of a Banach algebra). Let $(A,\|\cdot\|)$ be a nontrivial Banach algebra with a unit e. Then there exists an equivalent norm $\|\|\cdot\|\|$ on A such that $(A,\| \| \cdot\| \|)$ is also a Banach algebra and, moreover, $\|\mid e\| \|=1$.
Convention: By a unital Banach algebra we will mean in the sequel a nontrivial Banach algebra, which has a unit and the unit has norm one.
Proposition 4. Let A be a Banach algebra. Then:
(a) $x \cdot \boldsymbol{o}=\boldsymbol{o} \cdot x=\boldsymbol{o}$ for $x \in A$.
(b) The multiplication is continuous as a mapping of $A \times A$ to A.

Definition. Let A be a Banach algebra with a unit e.

- The element $y \in A$ is said to be an inverse element (or just an inverse) of an element $x \in A$ if

$$
x \cdot y=y \cdot x=e .
$$

- An element $x \in A$ is called invertible if it admits an inverse.
- The set of all the invertible elements of A is denoted by $G(A)$.

Remark. Let A be a Banach algebra with a unit e and let $x \in A$. If $y \in A$ satisfies $x \cdot y=e$, it is called a right inverse of x; if it satisfies $y \cdot x=e$, it is called a left inverse. An element x can have many different right inverses, or many different left inverses. However, if x has both a right inverse and a left inverse, it is invertible. Its inverse is uniquely determined and it is simultaneuously the unique right inverse and the unique left inverse. The inverse of x is denoted by x^{-1}.
Proposition 5 (on multiplication of invertible elements). Let A be a unital Banach algebra.
(a) Let $x, y \in G(A)$. Then $x \cdot y \in G(A)$ and $(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}$.
(b) $G(A)$ equipped with the operation of multiplication is a group.
(c) If the elements $x_{1}, \ldots, x_{n} \in A$ commute (i.e., $x_{j} \cdot x_{k}=x_{k} \cdot x_{j}$ for $j, k \in\{1, \ldots, n\}$), then $x_{1} \cdots x_{n} \in G(A)$ if and only if $\left\{x_{1}, \ldots, x_{n}\right\} \subset G(A)$.

Lemma 6 (Neumann's series). Let A be a Banach algebra with a unit e.
(a) Let $x \in A$ such that $\|x\|<1$. Then $e-x \in G(A)$ and, moreover,

$$
(e-x)^{-1}=\sum_{n=0}^{\infty} x^{n}
$$

where the series converges absolutely.
(b) If $x \in G(A), h \in A$ and $\|h\|<\frac{1}{\left\|x^{-1}\right\|}$, then $x+h \in G(A)$ and, moreover,

$$
(x+h)^{-1}=x^{-1} \cdot \sum_{n=0}^{\infty}(-1)^{n}\left(h \cdot x^{-1}\right)^{n} \quad \text { and } \quad\left\|(x+h)^{-1}-x^{-1}\right\| \leq \frac{\left\|x^{-1}\right\|^{2}\|h\|}{1-\left\|x^{-1}\right\|\|h\|}
$$

Theorem 7 (topological properties of the group of invertible elements). Let A be a unital Banach algebra. Then
(1) $G(A)$ is an open subset of A,
(2) the mapping $x \mapsto x^{-1}$ is a homeomorphism of $G(A)$ onto $G(A)$,
(3) if $\left(x_{n}\right)$ is a sequence in $G(A)$ which converges in A to some $x \notin G(A)$, then $\left\|x_{n}^{-1}\right\| \rightarrow \infty$.

