
XI. More on locally convex topologies
Reminder:

• Locally convex space is a vector space X over F equipped with a topology T with the properties:
◦ The mapping (x, y) 7→ x+ y is a continuous mapping X ×X → X.
◦ The mapping (t, x) 7→ t · x is a continuous mapping F×X → X.
◦ There exists a base of neighborhoods of zero formed by convex sets.

• Let X be a vector space over F and let U be a nonempty systém of its subsets with the properties:
(a) Elements of U are absolutely convex and absorbing.
(b) For any U ∈ U there exists V ∈ U satisfying 2V ⊂ U .
(c) For any two elements U, V ∈ U there exists W ∈ U satisfying W ⊂ U ∩ V .
Then there exists a unique locally convex topology onX such that U is a base of its neighborhoods
of zero. This topology is Hausdorff if and only if

⋂

U = {o}.
Conversely, any locally convex space has a base of neighborhoods of zero U with the properties

(a)-(c). Moreover, U can consist of open sets.
• Let X be a vector space over F and let P be a nonempty family of seminorms on X. Then the
family

U = {{x ∈ X; p1(x) < c1, . . . , pn(x) < cn}; p1, . . . , pn ∈ P , c1, . . . , cn ∈ (0,∞)}

is a base of neighborhoods of zero of some (uniquely determined) locally convex topology on X.
Conversely, any locally convex topology on X is defined in this way by a family of seminorms,

for example by the family of all the continuous seminorms.
Moreover, if the topology T is generated by a family of seminorms P , then a seminorm p is

T -continuous if and only if there exist p1, . . . , pn ∈ P and c > 0 such that p ≤ c ·max{p1, . . . , pn}.

XI.1 Lattice of locally convex topology and topologies agreeing with duality

Notation: Let X be a vector space. Denote by the symbol LC(X) family of all the locally convex
topologies on X.

Proposition 1. LetX be a vector space. ThenLC(X) is a complete lattice. I.e., wheneverF ⊂ LC(X)
is a nonempty subfamily, there exist the weakest locally convex topology finer than all the elements of
F (we denote it supF) and the finest locally convex topology weaker than all the elements of F (we
denote it infF). They can be described as follows:

• supF is generated by the family of all the seminorms which are continuous in some topology
from F.

• infF is generated by the family of all the seminorms which are continuous in all the topologies
from F.

Remarks:

(1) If at least one element of F is a Hausdorff topology, then supF is a Hausdorff topology as well.
(2) supLC(X) is the strongest locally convex topology. A base of neighborhoods of zero is formed by
all the absorbing absolutely convex sets. All the seminorms are continuous in it, so it is generated
by the family of all the seminorms on X. All the linear functionals are continuous in it, hence
(X, supLC(X))∗ = X# (the algebraic dual of X).

(3) infLC(X) is the indiscrete topology, the unique neighborhood of zero is the whole space X, the
unique continuous seminorm is the zero one and the unique continuous linear functional is the
zero one.

(4) If dimX < ∞, then X admits a unique Hausdorff locally convex topology.
(5) Let dimX =∞. Then infF need not be a Hausdorff topology, even if all the elements of F are
Hausdorff. In fact, the infimum of the family of all the Hausdorff locally convex topologies is the
indiscrete topology.

Lemma 2. Let X be vector space, f : X → F linear functional and p1, . . . , pn seminorms on X.
If |f | ≤ max{p1, . . . , pn}, then there exist linear functionals f1, . . . , fn and numbers t1, . . . , tn ∈ [0, 1]
satisfying

(i) |fj | ≤ pj for j = 1, . . . , n;
(ii) f = t1f1 + t2f2 + · · · + tnfn;
(iii) t1 + t2 + · · · + tn = 1.



Proposition 3. Let X be a vector space and let F ⊂ LC(X) be any nonempty subfamily. Then

(X, supF)∗ = span

(

⋃

T ∈F

(X,T )∗

)

, (X, inf F)∗ =
⋂

T ∈F

(X,T )∗.

Definition. Let X be a vector space and M ⊂⊂ X#.

• Denote
LC(X,M) = {T ∈ LC(X); (X,T )∗ =M}.

If X is a locally convex space and M = X∗, then the topologies from the family LC(X,X∗) are
called admissible topologies or topologies agreeing with the duality.

• By Proposition 3 the family LC(X,M) has the smallest and the largest element, i.e.,

infLC(X,M) ∈ LC(X,M) and supLC(X,M).

The smallest element is called the weak topology generated by M and is denoted by σ(X,M) (it
coincides with the weak topology from Section VI.1). The largest element is called the Mackeyho
topology generated by M , we will denote it by µ(X,M). (The symbol τ(X,M) is often used as
well.)

Lemma 4. Let (X,T ) be a LCS. Consider X∗ as a subspace of X# and the topologies σ(X∗,X) on
X∗ and σ(X#,X) on X#. Then:

(a) The topology σ(X#,X) is Hausdorff. The topology σ(X∗,X) coincides with the subspace topo-
logy generated by σ(X#,X).

(b) If T is Hausdorff, then X∗ is a σ(X#,X)-dense subspace of X#.
(c) Let A ⊂ X∗. Then A is relatively compact v (X∗, σ(X∗,X)) (i.e., its closure is compact) if and
only if the following two conditions hold:

◦ A is σ(X∗,X)-bounded.

◦ A
σ(X#,X)

⊂ X∗.

Definition. Let X be a vector space.

• Let A ⊂ X# be a σ(X#,X)-bounded set. By the symbol qA we will denote the seminorm on X

defined by
qA(x) = sup{|f(x)| ; f ∈ A}, x ∈ X.

• Let A be a nonempty family of σ(X#,X)-bounded subsets of X#. By the topology of uniform
convergence on elements of A we mean the locally convex topology on X generated by the family
of seminorms {qA;A ∈ A}.

Lemma 5. Let X be a vector space, A ⊂ X# a σ(X#,X)-bounded set and f ∈ X#. Then

|f | ≤ qA ⇔ f ∈ acoA
σ(X#,X)

.

Theorem 6 (Mackey-Arens). Let X be a vector space and M ⊂⊂ X#. Then the topology µ(X,M)
coincides with the topology of uniform convergence on absolutely convex σ(M,X)-compact subsets of
M .

Proposition 7. Let (X,T ) be a metrizable LCS. Then:

(a) (X∗, σ(X∗,X)) is σ-compact.
(b) µ(X,X∗) = T .

Corollary 8. Let X be a normed linear space. Then the topology µ(X,X∗) is the norm topology on
X.

Example 9. Let X be a Banach space.

(1) The topology µ(X∗,X) coincides with the topology of uniform convergence on absolutely convex
weakly compact subsets of X. Moreover, the topology µ(X∗,X) coincides with the norm topology
on X if and only if X is reflexive.

(2) Consider on X the topology of uniform convergence on absolutely convex weakly compact subsets
of X∗, denote it by ρ. Then ρ is an admissible topology on X, i.e., (X, ρ)∗ = X∗.


