
X.8 Complements to the theory of unbounded operators

Proposition 43. Let E be an abstract spectral measure in a Hilbert space
H defined on a σ-algebra A. For an A-measurable function f : C → C set
Φ(f) =

∫
f dE.

(1) Let x ∈ H. Set Hx = {Φ(f)x; f ∈ Cb(C)}. Then Hx is a (not necessarily
closed) subspace of H and the mapping Ux : f 7→ Φ(f)x is a linear
isometry of the space L2(Ex,x) onto Hx.

(2) There exists a set Γ ⊂ SH satisfying:
◦ Hx ⊥ Hy for x, y ∈ Γ, x 6= y.

◦ span(
⋃

x∈ΓHx) is a dense subspace H.
(3) Let Ω = Γ× C. Let

Ã = {A ⊂ Ω;∀x ∈ Γ : {λ ∈ C; (x, λ) ∈ A} ∈ A}

and

µ(A) =
∑

x∈Γ

Ex,x({λ ∈ C; (x, λ) ∈ A}), A ∈ Ã.

Then (Ω, Ã, µ) is a measure space (with a nonnegative measure). More-
over, the mapping U : L2(µ)→ H defined by

U(g) =
∑

x∈Γ

Φ(λ 7→ g(x, λ))x, g ∈ L2(µ)

is a linear isometry of L2(µ) onto H.
(4) Let f : C → C be an A-measurable function. Then Φ(f) = UMf̃U

∗,
where

f̃(x, λ) = f(λ), (x, λ) ∈ Ω

anf Mf̃ is the operator on L2(µ) given by

Mf̃g = f̃ · g, g ∈ D(Mf̃ ) = {g ∈ L2(µ); f̃ · g ∈ L2(µ)}.

Theorem 44 (diagonalization of a normal operator). Let T be a normal
operator on a Hilbert space H. Then T is unitarily equivalent to a suitable
multiplication operator. I.e., there exist a nonnegative measure µ, a unitary
operator U : L2(µ)→ H and a µ-measurable function f such that T = UMfU

∗,
where Mf is defined as in Proposition 43. Moreover:

(a) If T is selfadjoint, f can be chosen to be real-valued.
(b) If T is bounded, f can be chosen to be bounded.
(c) If H is separable, µ can be chosen to be σ-finite.



Theorem 45 (an alternative expression of the spectral decomposition of a
selfadjoint operator). Let T be a selfadjoint operator on H and let E be
its spectral measure (from Theorem 36). Then E(C \ R) = 0. For λ ∈ R set
Eλ = E((−∞, λ]). Then:

(a) Eλ is an orthogonal projection for each λ ∈ R.
(b) EλEµ = EµEλ = Emin{λ,µ} for λ, µ ∈ R.
(c) lim

µ→λ+
Eµx = Eλx for each x ∈ H and λ ∈ R.

(d) If λ is not an eigenvalue of T , then lim
µ→λ−

Eµx = Eλx for each x ∈ H.

(e) If λ is an eigenvalue of T , then the formula Pλx = lim
µ→λ−

Eµx, x ∈ H,

defines an orthogonal projectiom such that Eλ−Pλ is also an orthogonal
projection and, moreover, R(Eλ − Pλ) = Ker(λI − T ).

(f) lim
µ→−∞

Eµx = 0 and lim
µ→+∞

Eµx = x for each x ∈ H.

(g) A real number λ belongs to ρ(T ) if and only if the mapping µ 7→ Eµ is
constant on a neighborhood of λ.

Theorem 46 (selfadjoint operators on a real Hilbert space). Let H be a real
Hilbert space and let T be an operator na H. Then T ∗ can be defined in the
same way as in the complex case (see Section X.3). Let HC be the hilbertian
complexification ofH, i.e., the space HC = H+iH = {x+iy;x, y ∈ H} equipped
with the scalar product

〈x+ iy, u+ iv〉 = 〈x, u〉+ 〈y, v〉+ i 〈y, u〉 − i 〈x, v〉 , x+ iy, u+ iv ∈ HC .

Define an operator TC on HC by

TC(x+ iy) = T (x) + iT (y), x+ iy ∈ D(TC) = D(T ) + iD(T ).

Then:

(a) If T is densely defined, then TC is also densely defined and (TC)
∗ =

(T ∗)C .
(b) If T is selfadjoint, then TC is also selfadjoint and, moreover, for λ ∈ R

we have

λI − T is invertible in L(H)⇔ λIC − TC is invertible in L(HC).

(c) Let T be selfadjoint and let E be the spectral measure of TC , let A be
the corresponding σ-algebra. Then the formula

ER(A) = E(A)|H , A ∈ A

defines a “real spectral measure” on R and T =
∫
id dER.


