X.6 Spectral decomposition of a selfadjoint operator

Reminder: Let $T \in L(H)$ be a normal operator. Let

$$f \mapsto \tilde{f}(T), \quad f \in C(\sigma(T)),$$

denote the continuous functional calculus (see Section VIII.6). For any pair $x, y \in H$ let $E_{x,y}$ be the Radon measure on $\sigma(T)$ satisfying

$$\left\langle \tilde{f}(T)x, y \right\rangle = \int_{\sigma(T)} f \, \mathrm{d}E_{x,y} , \quad f \in C(\sigma(T)).$$

Then:

(1) $||E_{x,y}|| \le ||x|| \cdot ||y||$ for $x, y \in H$,

(2) $E_{x,x} \ge 0$ for each $x \in H$,

- (3) the mapping $x \mapsto E_{x,y}$ is linear for each $y \in H$,
- (4) the mapping $y \mapsto E_{x,y}$ is conjugate linear for each $x \in H$.

Let \mathcal{A}_T be the σ -algebra of those subsets of $\sigma(T)$, which are $E_{x,y}$ -measurable for any $x, y \in H$. If $h : \sigma(T) \to \mathbb{C}$ is a bounded \mathcal{A}_T -measurable function, by $\tilde{h}(T)$ we denote the unique element of L(H) satisfying

$$\left\langle \tilde{h}(T)x, y \right\rangle = \int_{\sigma(T)} h \, \mathrm{d}E_{x,y}.$$

The mapping $h \mapsto \tilde{h}(T)$ is called the **measurable calculus** of the operator T. For $A \in \mathcal{A}_T$ denote

$$E_T(A) = \widetilde{\chi_A}(T).$$

Then $E_T(A)$ is an orthogonal projection. The mapping $A \mapsto E_T(A)$ is called the **spectral measure** of the operator T.

We extend the mapping E_T to the σ -algebra $\{A \subset \mathbb{C}; A \cap \sigma(T) \in \mathcal{A}_T\}$ of subsets of \mathbb{C} by $E_T(A) = E_T(A \cap \sigma(T))$.

Proposition 31. Let $T \in L(H)$ be a normal operator. Then E_T is an abstract spectral measure.

Proposition 32. Let *E* be an abstract spectral measure defined on a σ -algebra $\mathcal{A}, g \in L^{\infty}(E)$ and $T = \int g \, dE$. The spectral measure of the operator *T* is given by the formula

$$E_T(A) = E(g^{-1}(A)) \text{ for } A \in \mathcal{A}_T = \{A \subset \mathbb{C}; g^{-1}(A) \in \mathcal{A}\}.$$

Theorem 33 (spectral decomposition of a bounded normal operator). Let $T \in L(H)$ be a normal operator. Then:

- (a) $T = \int \text{id } dE_T$. Moreover, the unique abstract spectral measure E satisfying $T = \int \text{id } dE$ is E_T .
- (b) If g is a bounded \mathcal{A} -measurable function, then $\tilde{g}(T) = \int g \, \mathrm{d}E_T$.

Lemma 34. Let T be a selfadjoint operator on H. Let E be the spectral measure of the operator C_T . Then

$$T = \int i \frac{1+z}{1-z} \, \mathrm{d}E(z).$$

Lemma 35 (on the image of a spectral measure). Let F be an abstract spectral measure in H defined on a σ -algebra \mathcal{A} and let $\varphi : \mathbb{C} \to \mathbb{C}$ be an \mathcal{A} -measurable mapping. Define

$$\mathcal{A}' = \{ A \subset \mathbb{C} : \varphi^{-1}(A) \in \mathcal{A} \}$$

and for $A \in \mathcal{A}'$ set

$$E(A) = F(\varphi^{-1}(A)).$$

Then E is an abstract spectral measure in H and for each \mathcal{A}' -measurable function f one has

$$\int f \, \mathrm{d}E = \int f \circ \varphi \, \mathrm{d}F.$$

Theorem 36 (spectral decomposition of a selfadjoint operator). If T is a selfadjoint operator on a Hilbert space H, then there exists a unique abstract spectral measure E in H such that $T = \int \operatorname{id} dE$.

This measure E is the image of the spectral measure of the operator C_T under the Borel mapping $z \mapsto i\frac{1+z}{1-z}$.

Corollary 37. Let T be a selfadjoint operator on H. Then T is bounded if and only if $\sigma(T)$ is a bounded set.