
X.3 Operators on a Hilbert space
Convention: In the sequel we will consider only operators on a complex Hilbert space H. The
inner product of x, y ∈ H is denoted by 〈x, y〉.

Remark: If H is a Hilbert space, then H × H is also a Hilbert space, if we define the inner
product by

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉+ 〈x2, y2〉 , (x1, x2), (y1, y2) ∈ H ×H.

Definition. Let T be a densely defined operator on H.

• By D(T ∗) we denote the set of those y ∈ H, for which the mapping

x 7→ 〈Tx, y〉

is continuous on D(T ).
• For y ∈ D(T ∗) denote by T ∗y the unique element of H satisfying

〈Tx, y〉 = 〈x, T ∗y〉 for each x ∈ D(T ).

Lemma 10. Let T be a densely defined operator on H. Then D(T ∗) is a linear subspace of
H and T ∗ is an operator on H with domain D(T ∗).

Remark. Let T be an operator on H, which is not densely defined. Set K = D(T ). The
definition of D(T ∗) still makes sense. Moreover, for each y ∈ D(T ∗) there exists a unique z ∈ K

satisfying 〈Tx, y〉 = 〈x, z〉 for x ∈ D(T ). It would be possible to define T ∗ as an operator from
H to K (which is a special case of operators on H). If we, moreover, denote by P the orthogonal
projection of H onto K, then PT is a densely defined operator on K, D((PT )∗) = D(T ∗) ∩K

and (PT )∗ is the restriction of the operator T ∗ from the previous sentence to D((PT )∗).

Definition. The operator T ∗ is said to be the adjoint operator to T .

Proposition 11 (properties of adjoint operator).

(a) If S is densely defined and S ⊂ T , then T ∗ ⊂ S∗.
(b) If S + T is densely defined, then S∗ + T ∗ ⊂ (S + T )∗. If moreover S ∈ L(H), then

S∗ + T ∗ = (S + T )∗.
(c) If S and ST are densely defined, then T ∗S∗ ⊂ (ST )∗. If moreover S ∈ L(H), then

T ∗S∗ = (ST )∗.

Proposition 12 (on kernel and range). For a densely defined operator T one has Ker(T ∗) =
R(T )⊥.

Lemma 13 (on the transformation of a graph). Define V : H × H → H × H by V (x, y) =
(−y, x). Then

(a) V is a unitary operator on H ×H,
(b) G(T ∗) = (V (G(T )))⊥ = V (G(T )⊥) for a densely defined operator T on H.

Remark: Lemma 13 is a very useful tool for working with adjoint operators. The assertion (b)
is a brief expression of the equivalence

z = T ∗y ⇔ (∀x ∈ D(T ) : (y, z) ⊥ (−Tx, x))⇔ (∀x ∈ D(T ) : 〈x, z〉 = 〈Tx, y〉).

Lemma 14. Let T be densely defined, one-to-one and let R(T ) be dense. Then (T−1)∗ =
(T ∗)−1.



Proposition 15 (adjoint operator and closedness). Let T be densely defined. Then:

(a) The operator T ∗ is closed.
(b) T has a closed extension if and only if T ∗ is densely defined (then T = T ∗∗).
(c) T is closed if and only if T = T ∗∗ (implicitly T ∗ is densely defined).

Definition. Let T be an operator on H.

• We say that T is symmetric if 〈Tx, y〉 = 〈x, Ty〉 for each x, y ∈ D(T ).
• We say that T is selfadjoint if T = T ∗.

Remarks.

(1) A symmetric operator need not be densely defined. If T is densely defined, then T is
symmetric if and only if T ⊂ T ∗.

(2) Let T be an operator on H, which is not densely defined. Set K = D(T ) and let P be
the orthogonal projection on K. Then PT is a densely defined operator on K. Moreover,
T is symmetric if and only if PT je symmetric.

(3) A selfadjoint operator is always densely defined (in order T ∗ is defined) and closed (by
Proposition 15(a)).

Lemma 16. Let T be a selfadjoint operator. Then T is maximal symmetric (i.e., there is no
proper symmetric extension of T ).

Remark. A densely defined maximal symmetric operator need not be selfadjoint. This follows
from the remarks at the end of Section X.4.

Proposition 17 (further properties of symmetric operators). Let T be a symmetric densely
defined operator on H. Then:

(a) T is symmetric.
(b) If D(T ) = H, then T is bounded and selfadjoint.
(c) If R(T ) is dense, then T is one-to-one.
(d) If R(T ) = H, then T is one-to-one, selfadjoint and T−1 ∈ L(H).
(e) If T is selfadjoint and one-to-one, then T−1 is selfadjoint (in particular densely defined).

Lemma 18 (on (α + iβ)I − S). Let S be a symmetric operator on H and λ ∈ C \ R. Then
λI − S is one-to-one and its inverse is continuous on R(λI − S). Moreover, S is closed if and
only if R(λI − S) is closed.

Theorem 19 (spectrum of a selfadjoint operator). For each selfadjoint operator T one has
∅ 6= σ(T ) ⊂ R.

Corollary 20 (characterization of selfadjoint operators among symmetric ones). For a densely
defined operator T on H the following assertions are equivalent:

(i) T is selfadjoint;
(ii) T is symmetric and σ(T ) ⊂ R;
(iii) T is symmetric and there exists λ ∈ C \ R such that λ, λ ∈ ρ(T ).


