XI.4 Weakly compact sets and operators in Banach spaces

Reminder, definitions and remarks: Let T be a Hausdorff completely regular space and $A \subset T$.

- The set A is said to be **compact** if any cover of A by open sets admits a finite subcover. Further, A is compact if and only if any net v A has a cluster point in A.
- Let $(x_{\nu})_{\nu \in \Lambda}$ be a net in T. Recall that a point $x \in T$ is a cluster point of the net if for any neighborhood U of x and any $\nu_0 \in \Lambda$ there is $\nu \geq \nu_0$ with $x_{\nu} \in U$. Further,

$$x$$
 is a cluster point of $(x_{\nu})_{\nu \in \Lambda} \iff x \in \bigcap_{\nu_0 \in \Lambda} \overline{\{x_{\nu}; \nu \geq \nu_0\}}$
 \iff there is a subnet of $(x_{\nu})_{\nu \in \Lambda}$ converging to x .

- The set A is said to be **relatively compact** if its closure \overline{A} is a compact subset of T. Further, A is relatively compact if and only if any net v A has a cluster point in T.
- A is said to be **countably compact** if any countable cover of A by open sets admits a finite subcover. Further, A is countably compact if and only if any sequence in A has a cluster point in A.
- Recall that a point x is a cluster point of the sequence (x_n) if any neighborhood of x contains x_n for infinitely many $n \in \mathbb{N}$. Further,

$$x$$
 is a cluster point of $(x_n) \iff x \in \bigcap_{n_0 \in \mathbb{N}} \overline{\{x_n; n \ge n_0\}}$
 \iff there is a subnet of the sequence (x_n) converging to x .

- A is said to be relatively countably compact, if any sequence in A has a cluster point in T.
- A is said to be **sequentially compact** if any sequence in A has a subsequence converging to some element of A.
- A is said to be **relatively sequentially compact**, if any sequence in A has a subsequence converging to some element of T.

Remark: The following implications and no other ones hold among the notions defined above.

A relatively compact \Rightarrow A relatively countably compact \Leftarrow A relatively sequentially compact

In particular, the closure of a relatively countably compact set need not be countably compact the closure of a relatively sequentially compact set need not be compact.

Remark: If T is a metric space and $A \subset T$, then

Definition. Let T be a Hausdorff completely regular topological space. T is said to be **angelic** if for any relatively countably compact subset $A \subset T$ the following assertions hold:

- (i) A is relatively compact;
- (ii) for each $x \in \overline{A}$ there exists a sequence (x_n) in A converging to x.

Remark: Any metric space is angelic.

Lemma 25. Let T be an angelic space. Then the equivalences (*) hold for any $A \subset T$.

Theorem 26.

- (a) If K is a compact Hausdorff space, then the space $(\mathcal{C}(K), \tau_p)$ is angelic.
- (b) If X is a Banach space, then the space (X, w) is angelic.

Theorem 26 can be proved by combining the following three results.

Lemma 27. Let K be a compact Hausdorff space and $A \subset \mathcal{C}(K)$ be τ_p -relatively countably compact. Then \overline{A}^{τ_p} is a τ_p -compact subset of $\mathcal{C}(K)$.

Theorem 28 (Kaplansky). Let K be a compact Hausdorff space, $f \in \mathcal{C}(K)$ and $A \subset \mathcal{C}(K)$. If $f \in \overline{A}^{\tau_p}$, then there is a countable set $C \subset A$ with $f \in \overline{C}^{\tau_p}$. (I.e., $(\mathcal{C}(K), \tau_p)$ has countable tightness.)

Proposition 29. Let K be a compact Hausdorff space and $A \subset C(K)$. If (A, τ_p) is compact and separable, then it is metrizable.

Theorem 30 (Eberlein-Šmulyan). Let X be a Banach space and $A \subset X$. The following assertions are equivalent:

- (i) A is relatively weakly compact.
- (ii) A is relatively weakly countably compact.
- (iii) A is relatively weakly sequentially compact.

Similarly, the following assertions are equivalent:

- (i') A is weakly compact.
- (ii') A is weakly countably compact.
- (iii') A is weakly sequentially compact.

Theorem 31 (Grothendieck). Let K be a compact Hausdorff space and let $A \subset \mathcal{C}(K)$ be a bounded set.

- (a) A is relatively weakly compact if and only if it is relatively τ_p -compact.
- (b) A is weakly compact if and only if it is τ_p -compact.

Definition. Let X and Y be Banach spaces and $T \in L(X,Y)$. An operator T is said to be weakly compact if $\overline{TB_X}$ is weakly compact.

Proposition 32. Let X and Y be Banach spaces and $T \in L(X,Y)$.

- (a) T is weakly compact if and only if for any bounded sequence (x_n) in X there exists a subsequence of the sequence (Tx_n) which is weakly convergent.
- (b) If T is compact, then it is weakly compact.
- (c) If at least one of the spaces X, Y is reflexive, then T is weakly compact.

Theorem 33 (Gantmacher). Let X and Y be Banach spaces and $T \in L(X, Y)$. The following assertions are equivalent:

- (i) T is weakly compact.
- (ii) The dual operator T' is weakly compact.
- (iii) The dual operator T' is continuous from (Y^*, w^*) to (X^*, w) .
- (iii) $T''(X^{**}) \subset \varkappa(Y)$.

Theorem 34 (Krein). Let X be a Banach space and let $K \subset X$ be weakly compact. Then $\overline{\text{aco } K}$ is weakly compact as well.

Remark: The following nontrivial **James theorem** holds:

Let X be a Banach space and let $A \subset X$ be a weakly closed set (this is satisfied, e.g., if A is closed and convex). If for each $f \in X^*$ we have that Re f attains its maximum on A, then A is weakly compact.