
XI.3 Compact convex sets
Convention: In this section we consider only vector spaces over R. It causes no
harm, as all the definitions and results can be used for complex spaces as well,
because only the structure of the real version of the space in question is used.

Definition. Let X be a vector space and let A ⊂ X be a convex set. A point
x ∈ A is said to be an extreme point of A if it is not an interior point of any
segment in A, i.e., if

∀a, b ∈ A ∀t ∈ (0, 1) : x = ta+ (1− t)b ⇒ a = b = x.

The set of all the extreme points of A is denoted by extA.

Remark. A point x ∈ A is an extreme point of a convex set A if and only if it
is not the center of any nondegenerate segment in A, i.e., if

∀a, b ∈ A : x =
1

2
(a+ b)⇒ a = b = x.

Examples 16. Let X = R2. Then:

(1) If A ⊂ R2 is a convex polygon, then its extreme points are just its
vertices.

(2) If A ⊂ R2 is a closed disc, then extA is its boundary circle.
(3) If A ⊂ R2 is an open disc, then extA = ∅.

Definition. Let X be a vector space and let A ⊂ X be a convex set. A subset
F ⊂ A is said to be a face of A if the following two coditions are fulfilled:

◦ F is a nonempty convex subset of A;
◦ ∀a, b ∈ A : 1

2
(a+ b) ∈ F ⇒ a ∈ F & b ∈ F.

Lemma 17 (properties of faces). Let X be a vector space and let A ⊂ X be

a convex set.

(a) x ∈ A is an extreme point of A if and only if {x} is a face of A.
(b) If F1 ⊂ A is a face of A and F2 ⊂ F1 is a face of F1, then F2 is a face of

A.

(c) If, moreover, X is a HLCS and A is a compact set containing at least

two points, then there is a closed face F $ A.

Theorem 18 (Krein-Milman). Let X be a HLCS and let K ⊂ X be a convex

compact set. Then

K = co extK.

In particular, extK 6= ∅ whenever K is nonempty.



Proposition 19 (Minkowski-Carathéodory). Let X be a HLCS of dimension

n ∈ N and let K ⊂ X be a nonempty compact convex set. Then K = co extK.
Moreover, any point in K can be expressed by a convex combination of at

most n + 1 extreme points of K and these points can be chosen to be afinnely
independent.

Example 20. Let K be a compact Hausdorff space and let P (K) be the
set of all the Radon probabilities on K considered as a subset of (C(K)∗, w∗).
Then P (K) is a compact convex set and its extreme points are exactly Dirac
measures.

Proposition 21 (Milman). Let X be a HLCS and K ⊂ X a convex compact

set. If A ⊂ K is such that K = coA, then extK ⊂ A.

Proposition 22 (on the barycenter of a measure). Let X be a HLCS and let

K ⊂ X be a compact convex set.

(a) For any µ ∈ P (K) there exists a unique x ∈ K satisfying

∀f : K → R continuous affine : f(x) =
∫

f dµ.

This x is said to be the barycenter of µ and is denoted by r(µ).
(b) The mapping r : µ 7→ r(µ) is a continuous affine mapping of P (K) onto

K.

Theorem 23 (Krein-Milman theorem on integral representation). Let X be

a HLCS and let K ⊂ X be a compact convex set. Then for each x ∈ K there

exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

Proposition 24. Let X be HLCS and let K ⊂ X be a compact convex set.

(a) If K is metrizable, then extK is a Gδ subset of K.

(b) If dimX ≤ 2, then extK is a closed subset K.

Remark. There is a compact convex subset K ⊂ R3 such that extK is not
closed.

Remark. The following Choquet theorem strengthens Theorem 22 in case K is
metrizable:

Let X be a HLCS and let K ⊂ X be a metrizable compact convex set. Then

for each x ∈ K there exists µ ∈ P (K) satisfying µ(extK) = 1 and x = r(µ).

Ther is another version of this theorem for nonmetrizable K, but its formu-
lation is more complicated.


