XI.2 bw*-topology and Krein-Šmulyan theorem **Definition.** Let X be normed linear space. We say that a set $A \subset X^*$ is bw^* -open if for each r > 0 the set $A \cap rB_{X^*}$ is (relatively) w^* -open in rB_{X^*} . **Lemma 10.** Let X be a normed linear space. Then the family of all the bw^* -open subsets X^* is a topology, which is finer than the w^* -topology. **Definition.** Let X be a normed linear space. Then the family of all the bw^* -open subsets X^* is called the bw^* -topology. **Proposition 11.** Let X be a normed linear space. The bw^* -topology on X^* coincides with the topology of uniform convergence on sequences in X, which are norm-convergent to zero. **Theorem 12** (Banach-Dieudonné). Let X be a normed linear space and let $\varkappa: X \to X^{**}$ denote the canonical embedding. Then $$(X^*, bw^*)^* = \overline{\varkappa(X)}.$$ In other words, the dual to (X^*, bw^*) can be identified with the completion of X. In particular, $$(X^*, bw^*)^* = \varkappa(X) \iff X \text{ is complete.}$$ Corollary 13 (Krein-Šmulyan). Let X be a Banach space and let $A \subset X^*$ be a convex set. Then A is $$w^*$$ -closed $\iff \forall r > 0 : A \cap rB_{X^*}$ is w^* -closed. Corollary 14 (Banach-Dieudonné). Let X be a Banach space and let f be a linear functional on X^* (i.e., $f \in (X^*)^{\#}$. Then $$f \in \varkappa(X) \iff f|_{B_{X^*}}$$ is w^* -continuous. **Theorem 15.** Let X be a Banach space. Denote $K = (B_{X^*}, w^*)$. Then K is a compact Hausdorff space. Define the mapping $J: X \to \mathcal{C}(K)$ by $J(x) = \varkappa(x)|_K$, $x \in X$. Then J is a linear isometry of X into $\mathcal{C}(K)$, a homeomorphism of (X, w) into $(\mathcal{C}(K), \tau_p)$ and, moreover, J(X) is τ_p -closed in $\mathcal{C}(K)$. **Remarks.** Let X be a Banach space and $A \subset X^*$ a convex set. Then $\overline{A}^{w^*} = \overline{A}^{bw^*}$. However, it may happen that $$\bigcup_{r>0} \overline{A \cap rB_{X^*}}^{w^*} \subsetneq \overline{A}^{w^*},$$ even if A is a subspace. This is illustrated by distingushing the following cases: Let $Y \subset X^*$. Define the seminorm \tilde{q}_Y on X by $$\tilde{q}_Y(x) = \sup\{|f(x)|; f \in Y \& ||f|| \le 1\},\$$ i.e., $\tilde{q}_Y = q_{B_{X^*} \cap Y}$. Then the following hold: - (1) \tilde{q}_Y is a norm on $X \Longleftrightarrow \overline{Y}^{w^*} = X^*$. - (2) $\tilde{q}_Y = \|\cdot\| \iff \overline{Y \cap B_{X^*}}^{w^*} = B_{X^*}$. In this Y is said to be a 1-norming subspace X^* . - (3) \tilde{q}_Y is an equivalent norm on $X \Longleftrightarrow \exists r > 0 : \overline{Y \cap B_{X^*}}^{w^*} \supset \frac{1}{r}B_{X^*}$ $\iff \bigcup_{r>0} \overline{Y \cap rB_{X^*}}^{w^*} = X^*$. In this Y is said to be a **norming** (or, more precisely, r-**norming**, where r is the number from the second condition) subspace of X^* .