V1.2 Weak topologies on locally convex spaces
Theorem 6 (Mazur theorem). Let X be a LCS and let A C X be a convex set. Then:
(a) A =4,
(b) A is close if and only if it is weakly closed.

Corollary 7. Let X be a metrizable LCS and let (z,) be a sequence in X weakly
converging to a point x € X. Then there is a sequence (y,,) in X such that

e y, € co{xy;k >n} for eachn € N;
e y, — x Iin (the original topology of) X.

Theorem 8 (boundedness and weak boundedness). Let X be a LCS and let A C X.
Then A is bounded in X if and only if it is bounded in o (X, X™).

Proposition 9 (weak topology on a subspace). Let X be a LCS and let Y CC X.

Then the weak topology o(Y,Y™) coincides with the restriction of the weak topology
o(X,X*) toY.

V1.3 Polars and their applications
Definition. Let X be a LCS. Let A C X and B C X™* be nonempty sets. We define

={feX"Vee A:Ref(x) <1}, By={xe X;VfeB:Ref(zr) <1},
A ={feX*VeeA:|f(x)|<1}, Bo={xeX;¥feB:|f(zx) <1},
L={feX*VxzecA: f(z)=0}, B, ={z e X;VfeB: f(x) =0}

The sets A” and B, are called polars of the sets A and B, the sets A° and B, are called
absolute polars and the sets A+ and B are called anihilators.

Remarks:

(1) The terminology and notaion is not unified in the literature. Sometimes ‘the
polar’ means ‘the absolute polar’, our polar is sometimes denoted by A°, B

(2) If X is Hausdorff and if we equip X* by the weak™* topology o(X*, X), then
(X*,w*)* = X, and hence for any B C X* the (downward) polar B, by the
previous definition coincide with the polar B> with respect to the space (X*, w™*)
and its dual X. Similarly for absolute polars and anihilators.

Example 10. Let X be a normed linear space. Then

(a) (Bx)” = (Bx)® = Bx-~,
(b) (Bx+)s = (Bx~)o = Bx.



Proposition 11 (polar calkulus). Let X be a LCS and let A C X be a nonempty set.

(a) The set A" is convex and contains the zero functional, A° is absolutely convex
and At is a subspace of X*. All the three sets are moreover weak* closed.

(b) At C A° C A”.

(c) If A is balanced, then A> = A°. If A CC X, then A> = A° = A+,

(d) {o}” = {0} = {o}* = X*, X* = X° = X = {o)}.

(e) (cA)” = L1A” and (cA)° = 1 A° whenever ¢ > 0.

(f) Let (A )ZeI be a nonempty famﬂy of nonempty subsets of X. Then (UZE] )o =
Nicr A5 The analogous formulas hold for polars and anihilators.

Remark: Analogous statements hold for B € X* and for the sets B,, B,, B, . There
are just two differences: The sets B,, B, and B, are weakly closed and for the validity
of the second statement in (d) one needs to assume that X je Hausdorff.

Theorem 12 (bipolar theorem). Let X be a LCS and let A C X and B C X* be
nonempty set. Then

(A”), = (AU {0}) (= XX (AU o)), (B,) =X X)(B U {o}),
(4°), = acoA (= aco” X1 4), (B,)° =ace” X X B,
(AJ‘)L = spand (= Span“(X,X*)A), (BJ_)J_ _ WU(X*,X)B'

Corollary 13. Let X and Y be normed linear spaces and let T' € L(X,Y"). Then
(ker T)+ = T'(X*)"

Theorem 14 (Goldstine). Let X be a normed linear space and let » : X — X** be
the canonical embedding. Then

O'(X**,X*)
Bx** = %(Bx) .

Theorem 15 (Banach-Alaoglu). Let X be a LCS and let U C X be a neighborhood
of o. Then:

(a) U° is a weak™ compact subset of X* (i.e., it is compact in the topology o(X*, X)).
(b) If X is moreover separable, U° is metrizable in the topology o(X*, X).

Corollary 16 (Banach-Alaoglu for normed spaces). Let X be a normed linear space.
Then (Bx~,w") is compact. If X is separable, (Bx~,w") is moreover metrizable.

Corollary 17 (reflexivity and weak compactness). Let X be a Banach space. Then X
is reflexive if and only if Bx is weakly compact. If X is reflexive and separable, (Bx ,w)
is moreover metrizable.

Corollary 18. Let X be a reflexive Banach space. Then each bounded sequence in X
admits a weakly convergent subsequence.



