V.4 Metrizability of topological vector spaces

Theorem 12 (characterization of metrizable TVS). Let (X,T) be a HT'VS. The following assertions
are equivalent:
(i) X is metrizable (i.e., the topology T is generated by a metric on X ).
(ii) There exists a translation invariant metric on X generating the topology T .
(iii) There exists a countable base of neighborhoods of o in (X,T).

Proposition 13. Let (X,7) be a HI'VS which has a countable base of neighborhoods of o. Then
there exists a function p : X — [0,00) with the following properties:

(a) p(o) =0;

(b) Vz € X \ {0} : p(x) > 0;

(c) Ve € XVA e F, |\ <1:p(Ax)<p(z);

(d) Yo,y € X :p(x+y) < p(z) +p(y);

(e) Vx € X : lim p(tx) =0;

t—0+

(f) {{a; € X;p(x) <r}yr> O} is a base of neigborhoods of o in X.

Then the formula p(z,y) = p(x — y), z,y € X, defines a translation invariant metric on X generating
the topology T .

Remark. Given a vector space X, a function p : X — [0,00) satisfying the conditions (a)—(e) from
the previous proposition is called an F-norm on X. If p satisfies the conditions (a),(c)—(e), it is called an
F-seminorm.

Corollary 14. Any HTVS which admits a bounded neighborhood of zero is metrizable.

V.5 Minkowski functionals, seminorms
and generating of locally convex topologies

Definition. Let X be a vector space and let A C X be an absorbing set. By the Minkowski functional of
the set A we mean the function defined by the formula

pa(z) =inf{\ > 0;z € A\A}, xr e X.

Proposition 15 (basic properties of Minkowski functionals). Let X be a vector space and let A C X
be an absorbing set.

o pa(tx) =tpa(z) whever x € X and t > 0.

e If A is convex, p, is a sublinear functional.

e If A is absolutely convex, p4 is a seminorm.

Lemma 16. Let X be a TVS and let A C X be a convex set. If x € A and y € Int A, then
{tx+ (1 —t)y;t €[0,1)} C Int A.

Proposition 17 (on the Minkowski functional of a convex neighborhood of zero). Let X be a TVS
amd let A C X be a convex neighborhood of o. Then:

® p4 is continuous on X.

e IntA={z¢e€ X;pa(z) <1}.
o A={z € X;pa(zr) <1}.

® PA=DPZ = PntA-

Corollary 18. Any LCS is completely regular. Any HLCS is Tychonoff.

Remark: It can be shown that even any TVS is completely regular, and hence any HT'VS is Tychonoff.
The proof of this more general case is more complicated, one can use a generalization of Proposition 13
from Section V.4. The proof that any TVS is regular is easy, it follows from Proposition 3(ii).



Theorem 19 (on the topology generated by a family of seminorms). Let X be a vector space and let
P be a nonempty family of seminorms on X. Then there exists a unique topology T na X such that
(X, T) is TVS and the familym

{{x € X;pi(z) <c1,...,pi(x) < cp}ipr,...,pp € Pocr,... cp > 0}

is a base of neighborhoods of o in (X, 7). The topology T is moreover locally convex. The topology T
is Hausdorff if and only if for each x € X \ {o} there exists p € P such that p(z) > 0.

Definition. The topology T from Theorem 19 is called the topology generated by the family of seminorms
P.

Theorem 20 (on generating of locally convex topologies). Let (X,7T) be a LCS. Let Py be the family
ofr all the continuous seminorms on (X, T ). Then the topology generated by the family Py equals T .

Proposition 21. Let X be a vector space.

(1) Ifp is a seminorm on X, then the set A = {x € X;p(x) < 1} is absolutely convex, absorbing and
satisfies p = py.
(2) Let p,q be two seminorms on X. Then p < q if and only if
{z e X;p(z) <1} D{z e X;q(z) < 1}.
(3) Let P be a nonempty family of seminorms on X and let T be the topology generated by the family
P. Let p be a seminorm on X. Then p is T -continuous if and only if there exist py,...,px € P
and ¢ > 0 such that p < ¢- max{p1,...,pk}-

Theorem 22 (on metrizability of LCS).  Let (X, 7T) be a HLCS. The following assertions are equivalent:

(i) X is metrizable (i.e., the topology T is generated by a metric on X).

(ii) There exists a translation invariant metric on X generating the topology T .
(iii) There exists a countable base of neighborhoods of o in (X, T).
(iv) The topology T is generated by a countable family of seminorms.

Theorem 23 (a characterization of normable TVS). Let (X,7) be a HI'VS. Then X is normable
(i.e., T is generated by a norm) if and only if X admits a bounded convex neigborhood of o.

Proposition 24. Let X be a LCS.

(a) The set A C X is bounded if and only if each continuous seminorm p on X is bounded on A. (It
is enough to test this condition for a family of seminorms generating the topology of X.)
(b) Let Y be a LCS and let L : X — Y be a linear mapping. Then L is continuous if and only if

Vq a continuous seminorm on Y Jp a continuous seminorm on X Vz € X : q(L(x)) < p(x).

If P is a family of seminorms generating the topology of X and Q is a family of seminorms
generating the topology of Y, then the continuity of L is equivalent to the condition

Vge Q3py,...,pr € PIec>0Ve € X : q(L(x)) < ¢-max{pi(x),...,pr(z)}.

(¢c) A net (z,) converges to x € X if and only if p(x, —x) — 0 for each continuous seminorm p on
X. (It is enough to test this condition for a family of seminorms generating the topology of X.)



