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ABSTRACT. We give a brief survey of the results on coarse or uniform embeddings of Banach spaces into c0.� / and the point character
of Banach spaces. In the process we prove several new results in this direction (for example we determine the point character of the spaces
Lp.�/, 1 � p � 2) solving open problems posed by C. Avart, P. Komjáth, and V. Rödl and by G. Godefroy, G. Lancien, and V. Zizler.
In particular, we show thatX D Lp.�/, 1 � p <1, bi-Lipschitz embeds into c0.� / if and only if densX < !! .

The Banach space c0 plays a fundamental role both in the linear and non-linear structural theory of Banach spaces. Indeed,
by the famous result of Mordecay Zippin [Z] it is the unique separable Banach space which is linearly complemented in every
separable superspace. On the other hand, a celebrated result in non-linear functional analysis, due to Israel Aharoni (Theorem 2
below), claims that every separable metric space admits a bi-Lipschitz embedding into the Banach space c0. It is apparently
unknown if the latter property also admits a converse statement, namely if a Banach space that contains a bi-Lipschitz copy of c0
also contains a linear copy thereof.

Our present note is focusing on embeddings into the non-separable version of c0, namely the space c0.� /. We are going to
survey some known results and prove several new theorems. The main body of work in this area is due to Jan Pelant and Vojtěch
Rödl, and their coauthors. These researchers were originally motivated by studying the covering properties of metric (or uniform)
spaces, and the connection with the uniform embeddings into c0.� / was discovered somewhat later by J. Pelant (Theorem 8
below). In fact, for normed linear spaces the existence of uniform embeddings is equivalent to the existence of bi-Lipschitz ones
(this was known to J. Pelant) as well as the coarse ones (a result of Andrew Swift). One of our main new contributions in this note
is contained in Theorem 13, which implies in particular that the embeddability of a normed linear space into c0.� / is equivalent to
the embeddability of its unit ball. Theorem 14 summarises known equivalent conditions for a normed linear space to be uniformly
embeddable into c0.� /. In Theorem 19, resp. Corollary 21 we improve the results of [PR] and [HS], showing that density !! and
larger is an obstacle for embeddings into c0.� / for all normed linear spaces of a non-trivial cotype.

The rest of the paper depends to a large extent on the characterisation of those sets�, for which `1.�/ embeds into some c0.� /,
which was obtained in [PR] and [AKR] (Theorems 17 and 18). Namely, such embeddings exist if and only if card� < !! . Using
the uniform equivalence of unit balls of certain Banach lattices (Theorems 23 and 24 below; in particular spaces of non-trivial
cotype with an unconditional basis) together with the fundamental embeddability result and Theorem 14 we prove in Corollary 26
that several classes of Banach spaces of a non-trivial cotype and density less than !! embed into c0.� /. The result holds true
in particular for spaces Lp.�/, 1 � p < 1. Finally, in Corollary 29 we apply our results to the theory of approximations of
Lipschitz mappings by smooth Lipschitz mapping in case when the range space is an absolute Lipschitz retract (e.g. any separable
C.K/-space).

Let us now pass to the technical part of our note. Let X be a metric space. By U.x; r/, resp. B.x; r/, resp. S.x; r/ we denote
the open ball, resp. closed ball, resp. sphere centred at x 2 X with radius r > 0. If it is necessary to distinguish the metric space in
which the ball is taken we use the notation UX .x; r/ etc. We begin by introducing several important concepts regarding uniformity
properties of non-linear mappings between metric spaces and the related non-linear embeddings.

Definition 1. Let .X; �/ and .Y; �/ be metric spaces and f W X ! Y . We say that f is of

� bounded expansion if for every d > 0 there exists K � 0 such that �
�
f .x/; f .y/

�
� K whenever x; y 2 X are such that

�.x; y/ � d ;
� bounded compression if for every K > 0 there exists d > 0 such that �

�
f .x/; f .y/

�
� K whenever x; y 2 X are such

that �.x; y/ � d .

The mapping f is called a coarse embedding if it is both of bounded expansion and bounded compression. It is called a uniform
embedding if it is one-to-one and both f and f �1 are uniformly continuous. It is called a bi-Lipschitz embedding if it is one-to-one
and both f and f �1 are Lipschitz.
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Note that a coarse embedding may not be an embedding (i.e. one-to-one) and if f is one-to-one, then it is a coarse embedding if
and only if both f and f �1 are of bounded expansion. Further, the notion of coarse embedding is non-trivial only for unbounded
metric spaces.

The theory of Lipschitz mappings between separable Banach spaces, which is based on differentiability concepts, has been
extensively developed by many authors (see [BL]). In particular, if X; Y are separable Banach spaces and Y has the RNP, then the
existence of a bi-Lipschitz embedding of X into Y implies that X is linearly isomorphic to a subspace of Y , [HM]. However,
the space c0 fails the RNP, so this theory cannot be applied in the situation of embeddings into c0 (or c0.� /). Instead, we have a
fundamental result due to I. Aharoni:

Theorem 2 ([A]). Every separable metric space admits a bi-Lipschitz embedding into cC0 (the non-negative cone of c0).

J. Pelant [P3] has found the optimal bi-Lipschitz constant in the above result to be 3 (see also [KL]).
Our focus will be on the non-separable version of the Aharoni theorem, i.e. embeddings (uniform, coarse, or bi-Lipschitz)

of Banach spaces into c0.� /. This problem, in the more general setting of embedding metric, or even uniform spaces, has an
interesting history. In our note we will restrict our attention (i.e. we will introduce and treat the relevant concepts) to the metric
case.

We will be using a topological approach introduced by J. Pelant, which appears unrelated at a first glance. A covering of a set A
is a collection U of subsets of A such that A D

S
U2U U . A covering U is called point-finite if for every x 2 A the set fU 2 UI

x 2 U g is finite. A covering V of A is called a refinement of a covering U if for every V 2 V there exists a U 2 U such that
V � U . By the well-known Stone theorem [St] every metric space X is paracompact, i.e. every open covering of X has a locally
finite open refinement (in particular every open covering has a point-finite refinement).

A uniform version of the latter property can be formulated as follows. Let X be a metric space. By U.r/ D fU.x; r/I x 2 Xg

we denote the full uniform covering of X . A covering U of X is called uniform if there exists an r > 0 such U.r/ refines U

(in such case we say that U is r-uniform). It is called uniformly bounded if there is R > 0 such that diamU � R for every U 2 U

(in such case we say that U is R-bounded).

Definition 3 ([PHK]). A metric space X is said to have the uniform Stone property if every uniform covering of X has a
point-finite uniform refinement.

Definition 4 ([Sw]). A metric space X is said to have the coarse Stone property if every uniformly bounded covering of X is a
refinement of a point-finite uniformly bounded covering of X .

Arthur H. Stone has asked (see [P2]) if a uniform version of the Stone theorem holds, i.e. if each uniform covering of a metric
space has a locally finite uniform refinement (or, equivalently, a point-finite uniform refinement, see e.g. [I]). In fact, the problem
was posed in the setting of uniform spaces which is more general; we will not introduce the concept of uniform spaces in our
note. The problem was solved in the negative independently by Evgeniy V. Shchepin [Sh] and J. Pelant [P1]. E. Shchepin proved
that the Banach space `1.� / fails the uniform Stone property whenever card� > exp!.!/. The proof in [P1] implies, in the
so-called Baumgartner model of ZFC, that for any cardinal � � 2!1 the Banach space `1.�/ does not have the uniform Stone
property. These results have prompted the definition of the point character of a metric/uniform space ([P1], [P2], [R2], [PR], [P3]):

Definition 5. For a collection E of subsets of some set its order is defined by
� ord E D n if n D max

˚
card D I D � E;

T
D ¤ ;

	
2 N,

� ord E D ˛ if ˛ D sup
˚
.card D/CI D � E;

T
D ¤ ;

	
is an infinite cardinal.

Definition 6. Let X be a metric space. Its point character pcX is the least cardinal ˛ such that every uniform covering of X has a
uniform refinement V with ord V < ˛.

It is important to note that the definition of the point character in the literature varies and some authors (usually those interested
in combinatorics rather than topology) use the following definition (which we will call the reduced point character):

Definition 7. Let X be a metric space. Its reduced point character rpcX is the least cardinal ˛ such that every uniform covering
of X has a uniform refinement V with ord V � ˛.

The difference between pc and rpc is that the cardinal pc can differentiate between certain situations occurring at limit cardinals.
For example assume that X is such that rpcX D !. Then either for each uniform covering of X there is a uniform refinement
with a finite order, but for different coverings this order needs to be arbitrarily high. In this case pcX D !. Or there is a uniform
covering of X that has no uniform refinement of a finite order (but has a uniform refinement of order !; note that this refinement is
still point-finite). In this case pcX D !1. On the other hand if rpcX is a successor cardinal, then pcX D .rpcX/C.

Note however that if X is a normed linear space, then thanks to homogeneity the former situation described above cannot
happen and so always pcX D .rpcX/C. Since we are primarily interested in normed linear spaces rather than general metric
spaces, we will use the cardinal rpc, which leads to more canonical formulas.

It is clear that a metric space X has the uniform Stone property if and only if rpcX � ! (if and only if pcX � !1). The
following crucial result of J. Pelant provides a link between the embeddings into c0.� / and the uniform covering properties.

Theorem 8 ([P3, Corollary 2.4]). A metric space X satisfies rpcX � ! if and only if it admits a uniform embedding into c0.� /,
where card� � densX .
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In general the embedding cannot be bi-Lipschitz, [P3, Corollary 4.4].
We begin our investigation by observing several simple facts concerning the point character. It is useful to notice that since the

notion of being a refinement is transitive and in normed linear spaces we can use homogeneity, it is possible to reformulate the
definitions of point character in the following way:

Fact 9. Let X be a metric space.
� pcX is the least cardinal ˛ such that for every r > 0 the covering U.r/ of X has a uniform refinement V with ord V < ˛.
� pcX is the least cardinal ˛ such that for every r > 0 there exists an r-bounded uniform covering U of X with ord U < ˛.

If X is a normed linear space, then
� pcX is the least cardinal ˛ such that for some r > 0 the covering U.r/ of X has a uniform refinement V with ord V < ˛.
� pcX is the least cardinal ˛ such that there exists a bounded uniform covering U of X with ord U < ˛.

Analogous statements hold for the cardinal rpc.

We will use the above reformulations freely without mention.

Fact 10. Let X , Y be metric spaces.
(a) If Y is uniformly homeomorphic to X , then pcY D pcX and rpcY D rpcX .
(b) If Y � X , then pcY � pcX and rpcY � rpcX .

Proof. (a) Let ˚ W .Y; �/! .X; �/ be a uniform homeomorphism. Let r > 0. There is ı > 0 such that �
�
˚�1.x/; ˚�1.y/

�
� r

whenever x; y 2 X , �.x; y/ � ı. Let V be a ı-bounded uniform covering of X with ord V < pcX (resp. ord V � rpcX).
Let s > 0 be such that V is s-uniform. There is " > 0 such that �

�
˚.x/; ˚.y/

�
< s whenever x; y 2 Y , �.x; y/ < ". Then

UY .x; "/ � ˚
�1
�
UX .˚.x/; s/

�
for every x 2 Y and so U D f˚�1.V /I V 2 Vg is an r-bounded "-uniform covering of Y . Also,

ord U D ord V , since ˚ is a bijection. Therefore pcY � pcX , resp. rpcY � rpcX . The reverse inequalities follow by symmetry.
(b) Let r > 0. Let V be an r-bounded uniform covering of X with ord V < pcX , resp. ord V � rpcX . Let s > 0 be such that

V is s-uniform. Put U D fV \ Y I V 2 Vg. For every x 2 Y there is V 2 V such that UX .x; s/ � V and so UY .x; s/ � V \ Y .
Thus U is an r-bounded s-uniform covering of Y . Finally, ord W � ord V . Hence pcY � pcX , resp. rpcY � rpcX .

ut

Next, let us mention an easy (but loose) estimate of the cardinal rpc, see e.g. [P3, Lemma 1.1]:

Fact 11. Let X be a metric space. Then rpcX � densX .

The topological theory of dimension yields the following result: rpcBRn D rpc Rn D n C 1 (see e.g. [Sm, Theorem 11]
with [I, Theorem V.5]). Combining this with Fact 10 it follows that if X is an infinite-dimensional normed linear space, then
rpcX � rpcBX � !.

If ˛ is a cardinal, then cf˛ denotes the cofinality of ˛ (see [Je, p. 31]). We will make use of the following lemma, which is
based on a trick from Mary Ellen Rudin’s proof of the Stone paracompactness theorem (cf. also [AKR]).

Lemma 12. Let U be an r-uniform covering of a metric space X . Assume that ˛ is an infinite cardinal such that U D
S
2� U

with ord U � ˛ for each  2 � and card� � cf˛. Then U has an r
2

-uniform refinement V with ord V � ˛.

Proof. We may assume without loss of generality that � is the ordinal interval Œ1; card� / and that U ,  2 � , are pairwise
disjoint in the sense that each U 2 U belongs to precisely one U . On each U ,  2 � , choose some well-ordering �. Let � be
a lexicographic ordering on U induced by .�;�/ and .U ;�/. Given any A � X let us denote zA D fx 2 X I U.x; r/ � Ag. For
U 2 U set yU D U n

S
V 2U;V�U

zV . Then V D f yU I U 2 Ug is the desired refinement. Indeed, let x 2 X . Let U � U be the
first one in the ordering � such that U.x; r

2
/ � U (such U exists, since U is r-uniform). It follows that U.x; r

2
/ \ zV D ; for

every V 2 U, V � U , since U.x; r
2
/ � U.´; r/ for any ´ 2 U.x; r

2
/. Consequently, U.x; r

2
/ � yU .

To see that ord V � ˛ let D � V be such that
T

D ¤ ;. For  2 � set D D f yV 2 D I V 2 Ug. Then D D
S
2� D

and .card D /
C � ˛, since

T
D ¤ ; in case that D ¤ ;. Let x 2

T
D and let U 2 U be the first one in the ordering � such

that U.x; r/ � U . It follows that x 2 zU and consequently x … yV for any V 2 U, V � U . Let ˇ 2 � be such that U 2 Uˇ .
Then D D ; for  > ˇ and so D D

S
�ˇ D . Since card D < ˛ and ˇ < cf˛, it follows that card D < ˛. Therefore

.card D/C � ˛.
ut

One of our main tools is the following result:

Theorem 13. LetX be a normed linear space. If rpcBX � ˛, where ˛ is an infinite regular cardinal, then rpcX � ˛. Consequently
if rpcBX is an infinite regular cardinal, then rpcX D rpcBX .

Proof. In this proof every covering of any A � X is understood as a covering of the metric space A, i.e. a covering by subsets
of A. Let r > 0 be such that BX has a 1

2
-bounded r-uniform covering of order at most ˛. The crucial step of the proof is the

following observation:
(�) Suppose that A � X has a 1

2
-bounded r-uniform covering of order at most ˛. Then B D 2A also has a 1

2
-bounded

r-uniform covering of order at most ˛.
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To see this let U be a 1
2

-bounded r-uniform covering of A with ord U � ˛. Then V D f2U I U 2 Ug is a 1-bounded
2r-uniform covering of B with ord V � ˛. Since each V 2 V is a subset of some ball BX .w; 1/, it has a 1

2
-bounded r-uniform

covering WV with ord WV � ˛. Set W D
S
V 2V WV . Then W is clearly 1

2
-bounded. Further, given any x 2 B there is

V 2 V such that UB.x; r/ D UX .x; r/ \ B � V and there is W 2 WV such that UV .x; r/ D UX .x; r/ \ V � W . Hence
UB.x; r/ D UV .x; r/ � W . It follows that W is an r-uniform covering of B .

Finally, to see that ord W � ˛ let D � W be such that
T

D ¤ ;. For V 2 V set DV D fW 2 D I W 2 WV g. Let x 2
T

D

and let A D fV 2 V I x 2 V g. Then
T

A ¤ ; and hence card A < ˛ D cf˛. Note that W � V whenever W 2 DV and V 2 V .
Thus DV D ; for V 2 V nA. Hence D D

S
V 2A DV . Since card DV < ˛ for V 2 A as

T
DV ¤ ;, it follows that card D < ˛

and so .card D/C � ˛

To finish, using observation (�) inductively starting with A D BX we conclude that for each n 2 N the ball BX .0; 2n/ has a
1
2

-bounded r-uniform covering Un with ord Un � ˛. It follows that U D
S1
nD1 Un is a uniformly bounded uniform covering

of X : for each x 2 X consider n 2 N satisfying 2n � kxk C r , then UX .x; r/ � BX .0; 2
n/ and there is U 2 Un such that

UX .x; r/ � U � BX .0; 2
n/. Finally, U has a uniform refinement of order at most ˛ by Lemma 12.

The last statement of the theorem follows from Fact 10(b).
ut

The following theorem, which summarises properties equivalent to uniform embedding into c0.� /, is a combination of results
of J. Pelant [P3], A. Swift [Sw], as well as some new ones:

Theorem 14. Let X be a normed linear space. The following statements are equivalent:
(i) rpcX � !.

(ii) X has the uniform Stone property.
(iii) X has the coarse Stone property.
(iv) X admits a coarse embedding into c0.� / for some set � .
(v) X admits a uniform embedding into c0.� / for some set � .

(vi) X admits a bi-Lipschitz embedding into c0.� / for some set � .
(vii) rpcBX � !.

(viii) BX admits a uniform embedding into c0.� / for some set � .
(ix) BX admits a bi-Lipschitz embedding into c0.� / for some set � .

The equivalence with statements (vii)–(ix) is new.

Proof of Theorem 14. (i),(ii) is just the definition. (i),(v) and (vii),(viii) follow from Theorem 8. (vi))(v) is trivial, (v))(vi)
is in [P3, Remark 4.6(3)] (cf. also [HJ1, Theorem 3]). (ii),(iii) is in [Sw, Lemma 3.7]. (iv),(v) is in [Sw, Corollary 3.14].
(vi))(ix))(viii) is trivial. (vii))(i) follows from Theorem 13.

ut

In light of the above characterisations it is clear that the problem of uniform embedding into c0.� / is not just a special result
and moreover it has a general answer. However, deciding the embeddability for concrete spaces is not so easy. Let us describe
some crucial results in this direction, which were in fact obtained before Theorem 8 was discovered.

V. Rödl [R2] constructed a metric space X with cardX D !1 and rpcX D !1.
An interesting problem, posed in [GLZ], is whether `1 embeds uniformly into some c0.� /. In view of Theorem 14 this is

equivalent to asking whether rpc `1 � !. [Ho, Theorem 5.1] would imply that the answer is negative. Unfortunately the argument
of A. Hohti is not correct and the problem seems to be still open. Similarly, the authors in [PR] mention an argument of J. Pelant
that rpc `1 > !, but the details have not been published. The best result in this direction are due to J. Pelant. First in [P1], using the
Baumgartner model of ZFC, it is shown that rpc `1.2!1/ > !. Later, in [P2, Remark on p. 160], J. Pelant gives an improvement,
which seems to be proved using only ZFC:

Theorem 15 ([P2]). If ˇ < ˛ are cardinals, where ˇ is regular, then rpc `1.˛/ > ˇ.

In particular, rpc `1.!1/ > !. Considering the model of set theory in which c > !! and using the well-known structural result
that `1.c/ is isometric to a subspace of `1 together with Theorem 17 below, we obtain the following observation:

Theorem 16. rpc `1 � !! if and only if c > !! .

Proof. ) follows from the fact that dens `1 D c, Fact 11, and the fact that cf c > ! ([Je, Theorem 5.16]).( follows from the
fact that `1.c/ is isometric to a subspace of `1 ([FHHMZ, Exercise 5.34]) and Theorem 17.

ut

So the answer to the question is consistently negative, but a ZFC proof is yet to be found.
Another class of Banach spaces for which rpc has been studied are p̀.� /, 1 � p <1. An early result of V. Rödl [R1] is that

rpc `1.� / can be arbitrarily large. In [PR] (cf. also [HS]) the main result is the following:

Theorem 17 ([PR]). If ˛ is a limit ordinal and 1 � p <1, then rpc p̀.!˛/ D !˛ .

This means of course that rpc p̀.!!/ D !! , so p̀.!!/ does not uniformly embed into any c0.� /. We will generalise this
result in Theorem 19 below. The main result in [AKR] is the following:
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Theorem 18 ([AKR]). Let ˛ be 0 or a limit ordinal and n 2 N0. Then rpc `1.!˛Cn/ D !˛ .

Hence for ˛ D 0 and any n 2 N0 we get rpc `1.!n/ D !, i.e. each of these spaces admit a bi-Lipschitz embedding into some
c0.� /. Let us remark that the proof of the above theorem is based on a combinatorial result [AKLR, Theorem 3], cf. [AKR,
Theorem 4]. There seems to be a small mistake in this result: apparently there should be q D bk�1

l
c instead of q D dk�1

l
e in its

statement. This means that in fact the cardinal '.k; l; ˛/ is in most cases the successor of the cardinal given in [AKLR, Theorem 3].
Nevertheless, the proof of Theorem 18 in [AKR] can be easily fixed by properly redefining the parameters that relate to [AKLR,
Theorem 3]. We will extend this result in Corollary 25 below.

Theorem 19. Let X be a normed linear space of a non-trivial cotype with densX � !˛ , where ˛ is a limit ordinal. Then
rpcX � rpcBX � !˛ . Consequently, if densX D !˛ , then rpcX D rpcBX D !˛ .

For the proof we need the following combinatorial lemma from [PR].

Lemma 20 ([PR, Lemma 2]). Let ˇ be an ordinal and n 2 N. Let � be a set of cardinality at least !ˇCn�1, let C be any set, and
let f W Œ� �n ! C be a colouring such that f .A/ ¤ f .B/ whenever A;B 2 Œ� �n are disjoint. Then there exists H � Œ� �n of
cardinality !ˇ such that card

T
H D n � 1 and f �H is one-to-one.

Proof of Theorem 19. To prove the inequalities it suffices to show that rpcX � !˛ . Indeed, if rpcBX < !˛ , then there is an
infinite regular cardinal � such that rpcBX � � < !˛ and hence rpcX � � by Theorem 13, a contradiction.

To prove that rpcX � !˛ it suffices to show that ord V � !˛ for any 1-bounded uniform covering V of X . So let V be a
1-bounded uniform covering of X . It suffices to show that for any ordinal ˇ < ˛ there is a point in X contained in !ˇ sets from V .
So let ˇ < ˛. Further, let ı > 0 be such that V is ı-uniform. Let q � 2 be such that X is of cotype q with cotype-q constant
C > 0 and set K D K1;qC , where K1;q is Kahane’s constant for exponents q and 1 (see e.g. [HJ, Theorem 2.76]). Let n 2 N be
such that 1

K
q
p
n ı
4
> 1.

Let fxg2� � S.0; ı3 / be a ı
4

-separated set with � D densX (see e.g. [HJ, Fact 6.65]). Let f"1; "2; : : : ; "2ng be some fixed
enumeration of the set f�1; 1gn. We define a mapping f W Œ� �n ! V2n in the following way: Let A 2 Œ� �n and let 1 < 2 <
� � � < n be such that A D f1; : : : ; ng. Put yA;i D

Pn
jD1 "i .j /xj , i D 1; : : : ; 2n. Then we set f .A/ D .V1; : : : ; V2n/, where

Vi 2 V are some sets such that U.yA;i ; ı/ � Vi , i D 1; : : : ; 2n.
Now assume that A;B � Œ� �n are disjoint such that f .A/ D f .B/. Let 1 < 2 < � � � < n, resp. �1 < �2 < � � � < �n be

such that A D f1; : : : ; ng, resp. B D f�1; : : : ; �ng. Then yA;i � yB;i D
Pn
jD1 "i .j /.xj � x�j /, i D 1; : : : ; 2

n, and so there is
i 2 f1; : : : ; 2ng such that

kyA;i � yB;ik �
1

K

 
nX

jD1

kxj � x�j k
q

! 1
q

�
1

K

�
n
ıq

4q

� 1
q

> 1:

Since V is 1-bounded, it follows that there is no V 2 V such that yA;i 2 V and yB;i 2 V , which contradicts the fact that
f .A/ D f .B/.

Consequently, the assumptions of Lemma 20 are satisfied (notice that ˇCn�1 < ˛, since ˛ is a limit ordinal). Thus there exists
H � Œ� �n of cardinality !ˇ such that card

T
H D n�1 and f �H is one-to-one. DenoteA D

T
H and let 1 < 2 < � � � < n�1

be such that A D f1; : : : ; n�1g. Denote D D f 2 � I A [ fg 2 Hg. Put 0 D 0 and n D � . Since cardD D !ˇ , there is
k 2 f1; : : : ; ng such that the ordinal interval .k�1; k/ contains !ˇ elements of D. Denote E D D \ .k�1; k/. Since f �H is
one-to-one, it follows that the set E D ff .A [ fg/I  2 Eg � V2n has cardinality !ˇ . Therefore there is m 2 f1; : : : ; 2ng such
that the projection of E to the mth coordinate has cardinality !ˇ (otherwise E would be a subset of a finite cartesian product of
sets with cardinality smaller that !ˇ ). By taking one element in the preimage of each point of this projection we conclude that
there is F � E of cardinality !ˇ such that f .A [ fg/m ¤ f .A [ f�g/m whenever ; � 2 F ,  ¤ �. Pick any � 2 F and set
B D A [ f�g. Since

kyB;m � yA[fg;mk D k"m.k/x� � "m.k/xk � kx�k C kxk < ı

for any  2 F , it follows that yB;m 2 f .A [ fg/m � V for every  2 F . All of these sets are however different and this
concludes the proof of the inequality ord V � !˛ .

Finally, if densX D !˛ , then we may apply Fact 11.
ut

Combining the previous theorem with Theorem 14 we obtain the following corollary:

Corollary 21. If X is a normed linear space of a non-trivial cotype and densX � !! , then X does not embed uniformly or
coarsely into any c0.� /.

On the other hand, in the positive direction we have the following:

Theorem 22. Let X be a metric space that embeds uniformly into a Hilbert space and let densX D !˛Cn, where ˛ is 0 or a limit
ordinal and n 2 N0. Then rpcX � !˛ . In particular, if densX < !! , then X embeds uniformly into c0.� / for some set � .

Proof. Let ˚ W X ! H be a uniform embedding into some Hilbert space H . By considering span˚.X/ we may assume that
densH D densX and dimH D 1. By [AMM] (see [BL, Corollary 8.11]) the space X embeds uniformly into SH . Using
the classical Mazur mapping ([M], see [BL, Theorem 9.1]) it follows that the space X embeds uniformly into S`1.� / with
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card� D densH D !˛Cn. Then rpcX � !˛ by Theorem 18 and Fact 10. If densX < !! , then rpcX � !, and so X embeds
uniformly into c0.� / by Theorem 8.

ut

We would like to stress that the most important ingredient of the proof above is the fact that we can actually embed X into a
sphere of H (or, equivalently, a ball), which allows us to forward it into `1.� / via the classical Mazur mapping. Another approach
is via Theorem 13. For this we will make use of the next two results. The first one was shown in the separable case in [OS]. The
proof in the non-separable case is essentially the same, as we explain below.

Theorem 23. Let X be a Banach space of a non-trivial cotype with a (long) unconditional basis feg2� . Then BX is uniformly
homeomorphic to B`1.� /.

Sketch of the proof. As in the first part of the proof of [OS, Theorem 2.1] we deduce that we can assume that X is uniformly
convex and uniformly smooth, and that feg2� is 1-unconditional. It is easy to see (cf. [OS, Proposition 2.9]) that if F W SX ! SY
is a uniform homeomorphism between the spheres of two Banach spaces X and Y , then the homogenous extension QF W BX ! BY ,
QF .x/ D kxkF.x=kxk/ for x ¤ 0 and QF .0/ D 0 is a uniform homeomorphism between BX and BY . Thus it is enough to find a

uniform homeomorphism between the spheres of X and `1.� /.
For a finite A � � we set XA D spanfe I  2 Ag � X . From the proof of [OS, Theorem 2.1] we can now deduce the

following in the case that card� is arbitrary: For each finite A � � there is a uniform homeomorphism FA W S`1.A/ ! SXA with
the following properties:

(i) The modulus of uniform continuity of FA and F �1A depends only on the modulus of convexity and the modulus of smoothness
of X .

(ii) FA is support preserving and preserves the signs of the coefficients.
(iii) The family fFA W A � � finiteg is consistent, meaning that for A � B and x 2 S`1.A/ it follows that FB.x/ D FA.x/.
From (iii) we deduce that the mapping F W S`1.� / \ c00.� /! SX \ c00.� / defined by F.x/ D FA.x/ for supp x � A is well
defined. (ii) implies that F is bijective and from (i) we obtain that F and F �1 are uniformly continuous. Thus F extends to a
uniform homeomorphism between the spheres of `1.� / and X .

ut

Fouad Chaatit proved the following result (cf. also [BL, Theorem 9.7]):

Theorem 24 ([Ch, Theorem 2.1]). Let X be an infinite-dimensional Banach lattice of a non-trivial cotype with a weak unit. Then
BX is uniformly homeomorphic to B`1.� / for some set � .

As a corollary of the above theorems we obtain an answer to a problem of Christian Avart, Péter Komjáth, and V. Rödl in
[AKR]:

Corollary 25. Let X be an infinite-dimensional subspace of
(a) Lp.�/ for some measure � and 1 � p <1, or
(b) a Banach lattice of a non-trivial cotype with a (long) unconditional basis or a weak unit.
Let densX D !˛Cn, where ˛ is 0 or a limit ordinal and n 2 N0. Then !˛ D rpcBX � rpcX � !˛C1.

Moreover, rpcX D rpcBX D !˛ in the following cases:
� (a) holds with p � 2;
� n D 0;
� !˛ is a regular cardinal (in particular ˛ D 0).

Proof. The case n D 0 follows from Theorem 19 when ˛ > 0, resp. Fact 11 when ˛ D 0. Now assume that n > 0. The inequalities
!˛ � rpcBX � rpcX follow again from Theorem 19. If (a) holds with p � 2, then rpcX � !˛ by Theorem 22 and [BL,
Example on p. 191]. In the other cases BX embeds uniformly into B`1.� / for some set � : In the case (a) we use the classical
Mazur mapping ([M], see [BL, Theorem 9.1]), in the case (b) we use Theorem 23, resp. 24. By considering span of the embedded
image we may assume that card� D densX D !˛Cn. Using Theorem 18 and Fact 10 we obtain that rpcBX � !˛ . Theorem 13
now implies that rpcX � !˛ in case that !˛ is regular, resp. rpcX � !˛C1 if !˛ is singular.

ut

We remark that it is consistent with ZFC that none of the !˛ , ˛ a limit ordinal, is actually regular, see [Je, p. 33].
In combination with Theorem 14 we obtain the following corollary, which contains the solution to a problem of Gilles Godefroy,

Gilles Lancien, and Václav Zizler in [GLZ]:

Corollary 26. Let X be a subspace of
(a) Lp.�/ for some measure � and 1 � p <1, or
(b) a Banach lattice of a non-trivial cotype with a (long) unconditional basis or a weak unit.
If densX < !! , then X admits a bi-Lipschitz embedding into some c0.� /. If densX � !! , then X does not admit a coarse or
uniform embedding into any c0.� /.
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The next result follows by the same reasoning as in [HS, Theorem 4.2]. In view of Corollary 26 the density assumption is
optimal.

Theorem 27. If X is a Banach space with a (long) sub-symmetric basis and densX � !! which admits a coarse or uniform
embedding into c0.� /, then X is linearly isomorphic to some c0.�/.

By combining Corollary 26, [HJ, Theorem 7.63], and [Jo, Theorem 9] we obtain the following corollary (note that any Lipschitz
function from a subset of a metric space can be extended to the whole space with the same Lipschitz constant):

Corollary 28. Let X be a subspace of Lp.�/ for some measure � and 1 < p <1, resp. of some super-reflexive Banach lattice
with a (long) unconditional basis or a weak unit, with densX < !! . Then there is a bi-Lipschitz embedding ˚ W X ! c0.� / such
that the component functions f B ˚ are C 1-smooth, where f are the canonical coordinate functionals on c0.� /.

We do not know whether in the corollary above in the case p � 2 the component functions can be of higher smoothness.
Invoking [HJ, Theorems 7.79 and 7.86] we obtain a corollary on approximation of Lipschitz mappings:

Corollary 29. Let X be a subspace of Lp.�/ for some measure � and 1 < p <1, resp. of some super-reflexive Banach lattice
with a (long) unconditional basis or a weak unit, with densX < !! , and let Y be a Banach space that is an absolute Lipschitz
retract. Then there is a constant C > 0 such that for any open ˝ � X , any L-Lipschitz mapping f W ˝ ! Y , and any continuous
function " W ˝ ! RC there is a CL-Lipschitz mapping g 2 C 1.˝IY / for which kf .x/ � g.x/k < ".x/ for all x 2 ˝.

The above corollary has applications for Whitney-type extension theorems, see [JZ].

Problem 30. Let X be a super-reflexive space, resp. a WCG space of a non-trivial cotype, with densX < !! . Does X embed
uniformly into c0.� /?

Note that by the result of J. Pelant C.Œ0; !1�/ does not embed uniformly into c0.� /, [PHK], so additional assumptions on X
must be placed here in order to expect a positive answer to this problem.

It should be noted that the cardinal !! appears rather frequently in dealings with certain properties of the Banach space c0.� /.
For example, in [GKL] it is proved that if X is a WCG space with densX < !! , then the assumption that X is bi-Lipschitz
isomorphic to (a subspace of) c0.� / implies that it is linearly isomorphic to it. The cardinality restriction is necessary and the
result fails for densX D !! , [GLZ]. Similarly, the non-separable Sobczyk theorem holds under the exact same assumptions.
More precisely, let X D c0.� / be a subspace of a WCG space Y . If card� < !! , then X is complemented. For card� D !!
one can find counterexamples.

We close our paper with another problem related to the implication (ix))(vi) in Theorem 14:

Problem 31. Let X , Y be Banach spaces such that BX admits a bi-Lipschitz embedding into Y . Does X admit a bi-Lipschitz
embedding into Y ?

The answer is positive for Y D c0.� / (Theorem 14). From the results of Florent Baudier ([B, Theorem 2.2]) it follows that the
answer is positive also for spaces Y such that Y is isomorphic to p̀.NIY / for some 1 � p <1, in particular for a Hilbert space,
p̀.� /, and Lp.�/ for a � -finite measure �. (We would like to thank the referee for pointing F. Baudier’s results to us.)

Note also that the uniform version of the above problem has a negative answer: While B`p is uniformly homeomorphic to B`2
for every 1 < p <1 using the classical Mazur mapping, p̀ does not embed uniformly into `2 for p > 2 ([BL, p. 194]).
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