
A NOTE ON BIORTHOGONAL SYSTEMS
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ABSTRACT. We consider the following problem (which is a generalisation of a folklore result Proposition 1 below): Given a continuous
linear operator T W X ! Y , where Y is a Banach space with a (long) sub-symmetric basis, under which conditions can we find a
continuous linear operator S W X ! Y such that S.BX / contains the basis of Y . As a tool we also consider a non-separable version of [HJ,
Theorem 3.56]: Given an infinite subset A � X�, under which conditions can we find a biorthogonal system in X � A of cardinality
cardA?

We are interested in a generalisation of the following two results into a non-separable and more general setting. The first one is
a folklore result, see e.g. [HJ, Proposition 3.33]:

Proposition 1. Let X be a Banach space, Y D p̀ , 1 � p < 1, or Y D c0, and suppose there is a non-compact operator
T 2 L.X IY /. Then there are S 2 L.X IY / and a normalised basic sequence fxng � X such that S.xn/ D en, n 2 N, where
feng is the canonical basis of Y . If X does not contain `1, then fxng may be chosen to be weakly null.

It turns out that the following theorem by the authors which deals with finding biorthogonal systems in preduals is a good tool
for this problem.

Theorem 2 ([HJ, Theorem 3.56]). Let X be a Banach space and let ffng � X� be a bounded sequence. The following statements
are equivalent:

(i) ffng is not a relatively compact set.
(ii) There are a subsequence fgng of ffng and an (infinite-dimensional) subspace Y � X such that fgn�Y g � Y � is a

semi-normalised w�-null sequence.
(iii) There is a semi-normalised basic sequence fxng � X which is biorthogonal to a subsequence of ffng.
Moreover, we may assume in addition that fxng is either weakly null or equivalent to the canonical basis of `1.

This theorem has useful applications, see e.g. [HJ] or [J].
To generalise these results into a non-separable setting we first need to define certain properties.
Let X be a normed linear space. For A � X� and x 2 X we denote suppA x D ff 2 AI f .x/ ¤ 0g.

Definition 3. Let X be a normed linear space and A � X�. We say that A has
� property C if suppA x is countable for each x 2 X ;

� property Z if fn
w�

! 0 for every sequence ffng of distinct elements of A;
� property B if for every " > 0 there is k."/ � 0 such that cardff 2 AI jf .x/j > "g � k."/ for any x 2 BX .

Let � be an infinite cardinal. We say that X has
� property C� if there is A � SX� of cardinality � with property C ;
� property Z� if there is A � SX� of cardinality � with property Z;
� property B� if there is A � SX� of cardinality � with property B.

For an application of property Z see e.g. [HŠZ], property B comes from [B], where it is used for a construction of smooth
surjections, cf. [J]. First we gather some useful facts about these properties.

Fact 4. Let X be a normed linear space and A � X�. Then A has property Z if and only if for every x 2 X and every " > 0 the
set ff 2 AI jf .x/j > "g is finite.

Proof. ) Assume that there is x 2 X and " > 0 such that B D ff 2 AI jf .x/j > "g is infinite. Then there is a sequence ffng of
distinct elements of B and jfn.x/j > " for each n 2 N, a contradiction with ffng being w�-null.
( Let ffng be a sequence of distinct elements of A, x 2 X , and " > 0. Then B D fn 2 NI jfn.x/j > "g is finite and

jfn.x/j � " whenever n > maxB .
ut

In particular, note that B ) Z) C .
Further, note that every normed linear space of dimension at least 2 has trivially property C! . Moreover, by the Josefson-

Nissenzweig theorem every infinite-dimensional normed linear space has even property Z! .
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Fact 5. Let f.x
 If
 /g
2� be a fundamental biorthogonal system in a normed linear space such that ff
g
2� is bounded. Then
ff
 I 
 2 � g has property Z.

Proof. Let f
ng1nD1 be a sequence of distinct elements of � . If 
 2 � , then f
n.x
 / ¤ 0 for at most one n 2 N and hence
f
n.x
 / ! 0. Consequently, f
n.y/ ! 0 for every y 2 Y D spanfx
 I 
 2 � g. Let C > 0 be such that kf
k � C for each

 2 � . Now given x 2 X and " > 0 we find y 2 Y such that kx � yk < "

2C
. Then there is n0 2 N such that jf
n.y/j <

"
2

whenever n � n0. So jf
n.x/j � jf
n.y/j C jf
n.x � y/j < " whenever n � n0.
ut

Fact 6. Let � be any set, let M be a non-degenerate Orlicz function, and let ff
g
2� be the canonical coordinate functionals of
the Orlicz space hM .� /. Then ff
 I 
 2 � g has property B.

Proof. We set k."/ D 1
M."/

. Now if x 2 BhM .� /, then
P

2� M.jf
 .x/j/ � 1 and hence cardf
 2 � I jf
 .x/j > "g < 1

M."/
D

k."/ for each " > 0.
ut

Fact 7. The properties C , Z, B are preserved by continuous linear mappings in the following sense: Let X , Y be normed linear
spaces and T 2 L.X IY /. If A � Y � has one of the properties C , Z, B, then T �.A/ has the same property.

Moreover, if T �.A/ � X� n f0g and A is infinite in case of property Z or B, resp. uncountable in case of property C , then
cardT �.A/ D cardA.

Proof. The first statement follows from the fact that
cardfg 2 T �.A/I jg.x/j > "g � cardff 2 AI jT �.f /.x/j > "g D cardff 2 AI jf .T .x//j > "g

D card
n
f 2 AI

ˇ̌̌
f
�
T.x/
kT k

�ˇ̌̌
> "
kT k

o
for any x 2 X and " � 0 (together with Fact 4).

To see the second statement, let g 2 T �.A/ and let x 2 X be such that g.x/ > 0. Then ff 2 AI T �.f / D gg �
˚
f 2 AI

jT �.f /.x/j > g.x/
2

	
D
˚
f 2 AI jf .T .x//j > g.x/

2

	
and the last set is finite in case of property Z or B, or countable in case

of property C . Since A D
S
g2T �.A/ff 2 AI T

�.f / D gg, it follows that T �.A/ is infinite and cardA � cardT �.A/, and so
cardT �.A/ D cardA.

ut

Lemma 8. Let X be a normed linear space and let A � X� be an infinite set with property Z, resp. B, and such that there is
ı > 0 satisfying kf k � ı for each f 2 A. Then B D

˚
f
kf k
I f 2 A

	
� SX� has property Z, resp. B, and cardB D cardA.

Proof. Consider the mapping ˚ W A ! SX� , ˚.f / D
f
kf k

. Then B D ˚.A/. Fix x 2 X . Then fg 2 BI jg.x/j > "g D

˚.ff 2 AI j˚.f /.x/j > "g/ D ˚.ff 2 AI jf .x/j > "kf kg/ � ˚.ff 2 AI jf .x/j > "ıg/ and so cardfg 2 BI jg.x/j > "g �
cardff 2 AI jf .x/j > "ıg. The last quantity is finite (Fact 4) and in case of property B and x 2 BX not greater than k."ı/.
Consequently, B has property Z, resp. B.

Now let g 2 B and let x 2 X be such that g.x/ > 0. Then ff 2 AI ˚.f / D gg �
˚
f 2 AI j˚.f /.x/j > g.x/

2

	
�
˚
f 2 AI

jf .x/j > g.x/
2
ı
	

and the last set is finite. Since A D
S
g2B ˚

�1.g/, it follows that B is infinite and cardA � cardB , and so
cardB D cardA.

ut

The generalisation of Theorem 2 to large cardinalities is actually a purely combinatorial result:

Theorem 9. Let X be a normed linear space and A � X� n f0g a set with property C and cardA > !1. Further, for each f 2 A
let xf 2 X be such that f .xf / D 1. Then there is B � A, cardB D cardA such that f.xf If /gf 2B is a biorthogonal system.

Proof. Define F W A! P .A/ by F.f / D suppA xf n ff g. Then by the assumption cardF.f / < !1 for each f 2 A. Therefore
by Hajnal’s theorem on free sets ([EHMR, Theorem 44.3]) there is B � A, cardB D cardA that is free with respect to F , i.e.
F.f / \ B D ; for each f 2 B . This means that g … suppA xf , i.e. g.xf / D 0 for any f; g 2 B , f ¤ g.

ut

For cardinality !1 we have at least the following well-known weaker statement.

Lemma 10. Let X be a normed linear space and A � X� an uncountable set. Suppose that for each f 2 A there is a given
xf 2 X and that suppA xf is countable (this holds in particular ifA has property C ). Then there is a long sequence ff˛g˛<!1 � A
such that fˇ .xf˛ / D 0 whenever ˛ < ˇ < !1.

Proof. We will use transfinite induction. Let ˇ < !1. Then card
S
˛<ˇ suppA xf˛ � maxfcardˇ; !g < !1 and so there is

fˇ 2 A n
S
˛<ˇ suppA xf˛ .

ut

For cardinalities not larger than !1 it is already not a purely combinatorial problem and a bit of analysis gets involved. For the
countable case see the proof of [HJ, Theorem 3.56]. For cardinality !1 we have the following proposition.
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Proposition 11. Let X be a Banach space and A � X�. The following statements are equivalent:
(i) There is a biorthogonal system f.x
 If
 /g
2� � X � A of cardinality !1.

(ii) There is a system f.´
 If
 /g
2� � X � A of cardinality !1 such that f
 s are distinct, f˛.´˛/ ¤ 0 and
P

2� jf
 .´˛/j <

C1 for each ˛ 2 � .

Proof. (i))(ii) is trivial.
(ii))(i) By scaling the ´
 s we may assume that f˛.´˛/ D 1 for each ˛ 2 � . Further, by passing to a subset of � we may

assume that f´
g
2� is bounded, say by C > 0. By Lemma 10 we may pass to a further subset of � and reindex by ordinals so
that

fˇ .´˛/ D 0 whenever ˛ < ˇ < !1. (1)
Pick any ı 2 .0; 1/. By the assumption for each ˛ < !1 there is a finite setF.˛/ � !1nf˛g such that

P

2!1n.F .˛/[f˛g/

jf
 .´˛/j �

ı. By Hajnal’s theorem on free sets ([EHMR, Theorem 44.3]) there is B � !1, cardB D !1 that is free with respect to F , i.e.
F.˛/ \ B D ; for each ˛ 2 B . By passing to this set B we may assume thatX


<˛

jf
 .´˛/j � ı (2)

for each ˛ < !1. (Note that we can retain the ordering during reindexing so that (1) still holds.)
Finally, we will construct a long sequence fx˛g˛<!1 � X such that f.x˛If˛/g˛<!1 is a biorthogonal system. Fix ˛ < !1. By

induction we construct a sequence fykg1kD1 � X . Set y1 D ´˛ and

ykC1 D yk �
X

<˛

f
 .yk/´


for k 2 N. The fact that yk is well-defined for each k 2 N will follow inductively from the following claim:X

<˛

jf
 .yk/j � ı
k (3)

for each k 2 N. For k D 1 it follows from (2). Now let k 2 N. If ˇ < ˛, then by the inductive hypothesis and (1) we obtain

fˇ .ykC1/ D fˇ .yk/ �
X

<˛

f
 .yk/fˇ .´
 / D �
X

<˛

¤ˇ

f
 .yk/fˇ .´
 / D �
X

ˇ<
<˛

f
 .yk/fˇ .´
 /:

ThereforeX
ˇ<˛

jfˇ .ykC1/j �
X
ˇ<˛

 X
ˇ<
<˛

jf
 .yk/jjfˇ .´
 /j

!
D

X

<˛

 X
ˇ<


jf
 .yk/jjfˇ .´
 /j

!
D

X

<˛

 
jf
 .yk/j

X
ˇ<


jfˇ .´
 /j

!
� ı

X

<˛

jf
 .yk/j � ı
kC1;

where we used the Fubini theorem for non-negative functions, (2), and the inductive hypothesis.
From (3) it follows that kykC1 � ykk �

P

<˛jf
 .yk/jk´
k � Cık . Consequently, kyl � ykk �

Pl�1
jDkkyjC1 � yj k �

C
Pl�1
jDk ı

j �
C
1�ı

ık for any k; l 2 N, k < l . Thus fykg is Cauchy and hence convergent to some x˛ 2 X . Using (1) and
induction it is easily seen that f˛.yk/ D 1 and fˇ .yk/ D 0 whenever ˇ > ˛ and k 2 N. Thus f˛.x˛/ D 1, while fˇ .x˛/ D 0
for ˇ > ˛. Now if ˇ < ˛, then (3) implies that jfˇ .yk/j � ık for each k 2 N and hence fˇ .x˛/ D limk!1 fˇ .yk/ D 0.

ut

We note that the proof is based on a similar idea as in the countable case. The main difference is that in the countable case we
easily get rid of the “head” of the vector and the analysis is used to get rid of the “tails”, while in the the proof above it is the other
way round.

Thanks to the results of Stevo Todorčević Proposition 11 can be applied in the case when we assume Martin’s axiom MA!1 :

Theorem 12. (MA!1) Let X be a Banach space and A � X� a set with property Z and cardA D !1. Then there are semi-
normalised systems ff˛g˛<!1 � A and fx˛g˛<!1 � X such that f.x˛If˛/g˛<!1 is a biorthogonal system.

Proof. Let ff˛g˛<!1 � A n f0g be such that all f˛s are distinct. For each ˛ < !1 choose ´˛ 2 X such that f˛.´˛/ D 1. The
axiom MA!1 allows us to pass to a subset of indices of cardinality !1 so that we may assume that

P

<!1
jf
 .´˛/j < C1 for

each ˛ < !1. The proof can be found in [T, pp. 699–700] (we set Z D f´˛I ˛ < !1g), cf. also [HMVZ, pp. 153–154]. We
conclude the proof by appealing to Proposition 11 and then passing to subsets of indices so that both ff˛g˛<!1 and fx˛g˛<!1 are
semi-normalised.

ut

We note that Theorem 12 actually follows from the proof of [T, Theorem 1]. However, the argument using Proposition 11 as
above is orders of magnitude simpler. Further, we remark that we do not know of any counterexample to a general version of
Theorem 12 (without additional axioms), since the space C.K/, where K is a Kunen-type compact, does not have property Z!1
([HŠZ, Proposition 4]).
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As we shall see, non-separable versions of Proposition 1 are tied with the behaviour of the dual operator. The next three
propositions record some useful properties of the dual operator.

Proposition 13. Let X , Y be normed linear spaces and T 2 L.X IY /. Let A � Y � be a bounded infinite set of cardinality �
with property C if � > ! or Z if � D !. Then the following statements are equivalent:

(i) There are ı > 0 and B � A with cardB D � such that kT �.f /k � ı for every f 2 B .
(ii) Both T .BX / and T �.A/ contain uniformly separated sets of cardinality �.

Proof. (ii))(i) If T �.B/ is 2ı-separated, then the ball U.0; ı/ contains at most one member of T �.B/.
(i))(ii) From Fact 7 we get that cardT �.B/ D cardB D �. Let C > 0 be such that A � B.0; C /. By Theorem 9 (for

� > !1), Lemma 10 (for � D !1), or Theorem 2 (for � D !) there are fg˛g˛<� � T �.B/ and fx˛g˛<� � BX .0; R/ for
some R > 0 such that g˛.x˛/ D 1 and gˇ .x˛/ D 0 whenever ˛ < ˇ < �. For each ˛ < � choose any f˛ 2 B such that
T �.f˛/ D g˛ . Then kg˛ � gˇk � 1

kx˛k
.g˛ � gˇ /.x˛/ D

1
kx˛k

�
1
R

and kT .xˇ / � T .x˛/k � 1
kfˇk

fˇ
�
T .xˇ / � T .x˛/

�
�

1
C

�
T �.fˇ /.xˇ / � T

�.fˇ /.x˛/
�
D

1
C

�
gˇ .xˇ / � gˇ .x˛/

�
D

1
C

whenever ˛ < ˇ < �.
ut

Proposition 14. Let X be a normed linear space, � an infinite cardinal, and T 2 L.X I c0.�//. Denote by f.e˛If˛/g˛<� the
canonical basis of c0.�/. Then the following statements are equivalent:

(i) T �.ff˛I ˛ < �g/ contains a uniformly separated set of cardinality �.
(ii) T .BX / contains a uniformly separated set of cardinality �.

Proof. (i))(ii) follows from Proposition 13 and Fact 5.
(ii))(i) Let A � BX be such that cardA D � and kT .x/ � T .y/k � ı for some ı > 0 and every x; y 2 A, x ¤ y. We

will construct a sequence f
˛g˛<� of distinct ordinals such that kT �.f
˛ /k �
ı
2

by (transfinite) induction. The proof will then
be finished by using Proposition 13 (and Fact 5). So let ˛ < �. Denote �˛ D f
ˇ I ˇ < ˛g, Z˛ D spanfe
 I 
 2 �˛g, and
P�˛ W c0.�/ ! Z˛ the canonical projection. Then card�˛ � card˛. Note that P�˛ .T .x// 2 BZ˛ .0; kT k/ for every x 2 A.
There are x; y 2 A, x ¤ y such that kP�˛ .T .x// � P�˛ .T .y//k < ı. Indeed, if ˛ < !, then it follows from the compactness of
BZ˛ .0; kT k/, while for ˛ � ! it follows from the fact that densBZ˛ .0; kT k/ � card˛ < �. Since kT .x/ � T .y/k � ı, there is

˛ 2 � n �˛ such that jf
˛ .T .x/ � T .y//j � ı. Then kT �.f
˛ /k �

1
2
jT �.f
˛ /.x � y/j D

1
2
jf
˛ .T .x � y//j �

ı
2

.
ut

Proposition 15. Let X be a normed linear space, 1 � p <1, and � an infinite cardinal. Denote by f.e˛If˛/g˛<� the canonical
basis of p̀.�/. Then the following statements are equivalent:

(i) There is T 2 L.X I p̀.�// such that fT �.f˛/I ˛ < �g is uniformly separated.
(ii) There is T 2 L.X I p̀.�// such that T .BX / contains a uniformly separated set of cardinality �.

Proof. (i))(ii) follows from Proposition 13 and Fact 5.
(ii))(i) Let A � BX be such that cardA D � and kT .x/ � T .y/k � ı for some ı > 0 and every x; y 2 A, x ¤ y. Put

" D ı
2
.1 � 1

2p
/
1
p > 0. For any � � � denote by P� W p̀.�/! spanfe
 I 
 2 �g the canonical restriction projection. We will

construct (long) sequences fA˛g˛<� � � of finite disjoint subsets of � and fg˛g˛<� � X� by (transfinite) induction. Let ˛ < �.
Denote �˛ D

S
ˇ<˛ Aˇ and Z˛ D spanfe
 I 
 2 �˛g. Then �˛ is finite if ˛ < ! and card�˛ � card˛ otherwise. Note that

P�˛ .T .x// 2 BZ˛ .0; kT k/ for every x 2 A. There are x; y 2 A, x ¤ y such that kP�˛ .T .x// � P�˛ .T .y//k <
ı
2

. Indeed, if
˛ < !, then it follows from the compactness of BZ˛ .0; kT k/, while for ˛ � ! it follows from the fact that densBZ˛ .0; kT k/ �
card˛ < �. Denote ´ D x�y 2 2BX . Then ıp � kT .x/�T .y/kp D kT .´/kp D kP�˛ .T .´//k

pCkP�n�˛ .T .´//k
p < ıp

2p
C

kP�n�˛ .T .´//k
p and hence kP�n�˛ .T .´//k > ı.1�

1
2p
/
1
p D 2". Thus there is A˛ � � n�˛ finite such that kPA˛ .T .´//k � 2".

Further, let h˛ 2 S`p.A˛/� be such that h˛
�
PA˛ .T .´//

�
D kPA˛ .T .´//k � 2" and set g˛ D h˛ B PA˛ B T . Then g˛ 2 X�,

kg˛k � kT k, and kg˛k � 1
2
g˛.´/ D

1
2
h˛
�
PA˛ .T .´//

�
� ". This finishes the induction step.

Now define S W X ! `1.�/ by S.x/ D .g˛.x//˛<�. Then S is clearly a linear mapping. Further,
P
˛<�jg˛.x/j

p DP
˛<�

ˇ̌
h˛
�
PA˛ .T .x//

�ˇ̌p
�
P
˛<�kPA˛ .T .x//k

p D
P
˛<�

P

2A˛
jf
 .T .x//j

p � kT .x/kp for any x 2 X . Consequently,
S maps into p̀.�/ and S 2 .X I p̀.�//. Moreover, S�.f˛/ D g˛ , and so kS�.f˛/k D kg˛k � " for each ˛ < �. We finish by
applying Proposition 13 (passing to another restriction).

ut

Finally, the next four theorems offer various variants of the generalisation of Proposition 1.

Theorem 16. LetX be a Banach space and � an infinite cardinal. Let Y be a Banach space with a (long) sub-symmetric Schauder
basis f.e˛If˛/g˛<�. Consider the following statements:

(i) There are T 2 L.X IY / and ı > 0 such that kT �.f˛/k � ı for every ˛ < �.
(ii) There is T 2 L.X IY / such that T .SX / � fe˛g˛<�.

Then (ii))(i). If � ¤ !1 or if we assume MA!1 , then the statements are equivalent.
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Proof. (ii))(i) For each ˛ < � let x˛ 2 BX be such that T .x˛/ D e˛ . Then kT �.f˛/k � T �.f˛/.x˛/ D f˛.T .x˛// D

f˛.e˛/ D 1.
Now assume that either � ¤ !1, or MA!1 holds and let us prove (i))(ii). By Facts 5 and 7 the set fT �.f˛/I ˛ < �g has

property Z and is of cardinality � (note that ff˛g˛<� is automatically semi-normalised, as the basis is sub-symmetric). Using
Theorem 9 (for � > !1), Theorem 12 (for � D !1), or Theorem 2 (for � D !) we obtain � � � with card� D � and a bounded
fx
g
2� � X such that f.x
 IT �.f
 //g
2� is a biorthogonal system. Denote Z D spanfe
 I 
 2 � g. Define S W X ! Z by
S.x/ D

P

2� kx
kf
 .T .x//e
 . The unconditionality of fe˛g˛<� implies that S is a well-defined continuous linear mapping.

Also, S
� x

kx
k

�
D e
 for each 
 2 � . Finally, since fe˛g˛<� is sub-symmetric, there is an isomorphism I W Z ! Y that maps

fe
g
2� onto fe˛g˛<�. The operator we seek in our proof is then I B S .
ut

Theorem 17. Let X be a normed linear space and � an uncountable cardinal. Denote by ff˛g˛<� the canonical coordinate
functionals on `c

1.�/ and by fe˛g˛<� the canonical coordinate vectors in `c
1.�/, i.e. e˛ D �f˛g. Consider the following

statements:
(i) X has property C�.

(ii) There is T 2 L.X I `c
1.�// such that T .BX / contains a uniformly separated set of cardinality � and fT �.f˛/g˛<� � SX�

is uniformly separated.
(iii) There is T 2 L.X I `c

1.�// such that cardf˛I T �.f˛/ ¤ 0g D �.
(iv) There is T 2 L.X I `c

1.�// such that T .X/ � fe˛g˛<�.
(v) There is T 2 L.X I `c

1.�// such that T .SX / � fe˛g˛<�.
Then (i),(ii),(iii)((iv),(v). If � > !1, then all the statements are equivalent.

Proof. (i))(ii) Let A � SX� be a set of cardinality � with property C . For each f 2 A choose any xf 2 2BX such that
f .xf / D 1. By Theorem 9, resp. Lemma 10 there is fg˛g˛<� � A such that gˇ .xg˛ / D 0 whenever ˛ < ˇ < �. Define
T W X ! `1.�/ by T .x/ D .g˛.x//˛<�. Property C implies that T actually maps into `c

1.�/ and it is clearly a bounded linear
operator. Note that T �.f˛/ D g˛ 2 SX� for every ˛ < �. Further, kT .1

2
xg˛ / � T .

1
2
xgˇ /k �

ˇ̌
fˇ
�
T .1

2
xg˛ / � T .

1
2
xgˇ /

�ˇ̌
Dˇ̌

gˇ .
1
2
xg˛ / � gˇ .

1
2
xgˇ /

ˇ̌
D

1
2

and kT �.f˛/ � T �.fˇ /k D kg˛ � gˇk � .g˛ � gˇ /.12xg˛ / D
1
2

whenever ˛ < ˇ < �.
(ii))(iii) is trivial.
(iii))(i) Let � D f˛I T �.f˛/ ¤ 0g and consider the mapping F W � ! SX� , F.˛/ D

T �.f˛/
kT �.f˛/k

. Set A D F.� /. Given
g 2 A and x 2 X , note that g.x/ ¤ 0 if and only if f˛.T .x// D T �.f˛/.x/ ¤ 0 for every ˛ 2 F �1.g/. It follows that
suppA x � F.suppT .x// and so suppA x is countable for each x 2 X . Hence A has property C . It also follows that F �1.g/ is
countable for each g 2 A. Consequently, card� D card

S
g2A F

�1.g/ � maxfcardA;!g, and so cardA D card� D �.
(iv))(iii) For each ˛ < � let x˛ 2 X be such that T .x˛/ D e˛ . Then T �.f˛/.x˛/ D f˛.T .x˛// D f˛.e˛/ D 1.
(v))(iv) is trivial.
(iv))(v) Assume that � D !1. For each ˛ < � let x˛ 2 X be such that T .x˛/ D e˛ . Consider An D f˛ < �I kx˛k � ng.

Then � D
S1
nD1An and since cf� > !, there is n 2 N such that cardAn D �. Define S W X ! `c

1.An/ by S.x/ D�
kx˛kf˛.T .x//

�
˛2An

. Then S 2 L.X I `c
1.An//, kSk � nkT k, and S

�
x˛
kx˛k

�
D e˛ for each ˛ 2 An.

Now assume that � > !1 and let us prove (i))(v). Let A � SX� be a set of cardinality � with property C . For each g 2 A
find xg 2 2BX such that g.xg/ D 1. By Theorem 9 there is B � A with cardB D � such that f.xg Ig/gg2B is a biorthogonal
system. Define T W X ! `1.B/ by T .x/ D

�
kxgkg.x/

�
g2B

. Then clearly T is a bounded linear operator with kT k � 2 and by
property C it maps into `c

1.B/. Finally, T
� xg
kxgk

�
D eg for each g 2 B .

ut

Corollary 18. Let X be a Banach space and � an infinite cardinal. Denote by f.e˛If˛/g˛<� the canonical basis of c0.�/.
Consider the following statements:

(i) X has property Z�.
(ii) There are T 2 L.X I c0.�// and ı > 0 such that kT �.f˛/k � ı for every ˛ < �.

(iii) There is T 2 L.X I c0.�// such that T .BX / contains a uniformly separated set of cardinality �.
(iv) There is T 2 L.X I c0.�// such that T .SX / � fe˛g˛<�.

Then (i),(ii),(iii)((iv). If � ¤ !1 or if we assume MA!1 , then all the statements are equivalent.

Proof. (i))(ii) Let A � SX� be a set of cardinality � with property Z. Let fg˛g˛<� � A be a long sequence of distinct elements
of A. Define T W X ! `1.�/ by T .x/ D .g˛.x//˛<�. Fact 4 implies that T actually maps into c0.�/ and it is clearly a bounded
linear operator. Obviously T �.f˛/ D g˛ 2 SX� for every ˛ < �.

(ii))(i) follows from Fact 5, Fact 7, and Lemma 8.
(ii))(iii) follows from Fact 5 and Proposition 13.
(iii))(ii) From Proposition 14 it follows that there are ı > 0 and � � � with card� D � such that kT �.f
 /k � ı for each


 2 � . Define a bounded linear operator S W X ! c0.� / by S.x/ D
�
f
 .T .x//

�

2�

. Then clearly S�.f
 / D T �.f
 / for each

 2 � .

The rest follows from Theorem 16.
ut
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Corollary 19. Let X be a Banach space and � an infinite cardinal. Denote by f.e˛If˛/g˛<� the canonical basis of the Orlicz
space hM .�/. Consider the following statements:

(i) X has property B�.
(ii) There are a non-degenerate Orlicz function M , T 2 L.X I hM .�//, and ı > 0 such that kT �.f˛/k � ı for every ˛ < �.

(iii) There are a non-degenerate Orlicz function M and T 2 L.X I hM .�// such that T .SX / � fe˛g˛<�.
Then (i),(ii)((iii). If � ¤ !1 or if we assume MA!1 , then all the statements are equivalent.

Moreover, the Orlicz function M in (ii) and (iii) can be the same.

Proof. (i))(ii) Let A � SX� be a set of cardinality � with property B. Let fg˛g˛<� � A be a long sequence of distinct elements
of A. We may assume without loss of generality that the function " 7! k."/ is positive and non-increasing. Let f"ng1nD1 � .0; 1/ be
any sequence decreasing to 0. Let ' W Œ0; "1�! R be a function affine on each Œ"nC1; "n� and satisfying '."n/ D 1

n2
� 1=k

� "nC1
nC1

�
,

'.0/ D 0. Let M be the convex envelope of '. It is easily seen that M can be extended to a non-degenerate Orlicz function. We
define T W X ! `1.�/ by T .x/ D .g˛.x//˛<�. Then T is clearly a linear operator. Further, if x 2 B.0; �/, then cardf˛ < �I

jg˛.x/j > "g D cardf˛ < �I jg˛.x� /j >
"
�
g � k. "

�
/, and so if � � 1, then (putting "0 D �)X

˛<�

M.jg˛.x/j/ D

1X
nD1

X
f˛I "n<jg˛.x/j�"n�1g

M.jg˛.x/j/ �

1X
nD1

M."n�1/k
�"n
�

�
�

X
n��

M."n�1/k
�"n
�

�
C

X
n>�

M."n�1/k
�"n
n

�
�

X
n��

M."n�1/k
�"n
�

�
C

X
n>�

1

.n � 1/2
< C1:

It follows that T actually maps into hM .�/ and that T 2 L.X I hM .�//. Clearly T �.f˛/ D g˛ 2 SX� for every ˛ < �.
(ii))(i) follows from Fact 6, Fact 7, and Lemma 8.
The rest follows from Theorem 16.

ut
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