
A QUANTITATIVE VERSION OF THE CONVERSE TAYLOR THEOREM:
C k;!-SMOOTHNESS

MICHAL JOHANIS

ABSTRACT. We prove a uniform version of the Converse Taylor theorem in infinite-dimensional spaces with an explicit relation between
the moduli of continuity for mappings on a general open domain. We show that if the domain satisfies certain conditions (e.g. if it is convex
and bounded), then we can extend the estimate up to the boundary.

The converse to the Taylor theorem is a well-known result, see e.g. [LS] or [AD]. We could not find in the literature a version
of this theorem for mappings with uniformly continuous derivatives that deals explicitly with the moduli of continuity, so we prove
such a version below (Theorem 9). Usually when dealing with quantitative uniform estimates for derivatives of mappings on
general open domains there are troubles when we approach the boundary. We show that if the domain satisfies certain conditions
(e.g. if it is convex and bounded), then these problems can be avoided.

All vector spaces considered are real. We denote by B.x; r/, resp. U.x; r/ the closed, resp. open ball in a normed linear space
centred at x with radius r > 0. By BX we denote the closed unit ball of a normed linear space X , i.e. BX D B.0; 1/. Let X , Y
be normed linear spaces and n 2 N. By Ls.nX IY / we denote the space of symmetric n-linear mappings from X to Y with the
norm kMk D supx1;:::;xn2BX kM.x1; : : : ; xn/k. By P .nX IY / we denote the space of n-homogeneous polynomials from X to Y
with the norm kP k D supx2BX kP.x/k. By P n.X IY / we denote the space of polynomials of degree at most n from X to Y
with the norm kP k D supx2BX kP.x/k. We will use the following convention: for k 2 N0 D N [ f0g and x 2 X we denote
kx D x; : : : ; x„ ƒ‚ …

k times

. If P 2 P .nX IY /, then we denote by }P the uniquely determined symmetric n-linear mapping that gives rise to the

polynomial P , i.e. P.x/ D }P .nx/. We start by recalling a few well-known results on polynomials that will be needed later on.
They can be found e.g. in [M].

Lemma 1. Let X , Y be normed linear spaces, n 2 N, P 2 P .nX IY /, and x; y 2 X . Then

P.x C y/ D

nX
jD0

�
n

j

�}P .jx; n�jy/:
Theorem 2. Let n 2 N0. There are numbers akj 2 R, k; j D 0; : : : ; n, such that whenever X , Y are normed linear spaces,
P 2 P n.X IY /, and Pk 2 P .kX IY / are such that P D

Pn
kD0 Pk , then Pk.x/ D

Pn
jD0 akjP

�
j
n
x
�

for every x 2 X .
In particular, there are constants Kn;k > 0 such that

kQk.x/k � Kn;k max
0�j�n



Q� j
n
x
�



wheneverX , Y are normed linear spaces,Q 2 P n.X IY /, x 2 X , and k 2 f0; : : : ; ng, whereQk is the k-homogeneous summand
of Q.

The next lemma shows that the Polarisation formula applied to a non-homogeneous polynomial extracts its “leading term”.

Lemma 3 ([MO]). Let X , Y be normed linear spaces, n 2 N, and let P 2 P n.X IY / be such that P D
Pn
kD0 Pk where

Pk 2 P .kX IY /. Then

}Pn.x1; : : : ; xn/ D 1

2nnŠ

X
"jD˙1

"1 � � � "nP

 
aC

nX
jD1

"jxj

!
for every a; x1; : : : ; xn 2 X .

The following lemma is useful for estimating the norm of a homogeneous polynomial using its values on an arbitrary ball.

Lemma 4. Let X , Y be normed linear spaces, n 2 N, let P 2 P n.X IY / be such that P D
Pn
kD0 Pk , Pk 2 P .kX IY /, and let

a 2 X . Then

kPn.x/k �
nn

nŠ
sup

t2Œ�1;1�

kP.aC tx/k
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for every x 2 X . In particular, for any r > 0

sup
x2B.0;r/

kPn.x/k �
nn

nŠ
sup

x2B.a;r/

kP.x/k:

Proof. By Lemma 3,

kPn.x/k D n
n



Pn�x

n

�


 � nn

2nnŠ

X
"jD˙1






P
 
aC

x

n

nX
jD1

"j

!




 � nn

nŠ
sup

t2Œ�1;1�

kP.aC tx/k:

ut

Let X , Y be normed linear spaces, U � X open, f W U ! Y , and x 2 U . By Df.x/ we denote the Fréchet derivative of f
at x, and by Df.x/Œh� we denote the evaluation of this derivative at the direction h 2 X . Similarly we denote by Dkf .x/ the
kth Fréchet derivative of f at x. By dkf .x/ we denote the k-homogeneous polynomial corresponding to the symmetric k-linear
mapping Dkf .x/, and by dkf .x/Œh� we denote its evaluation at h 2 X , i.e. dkf .x/Œh� D Dkf .x/Œkh�.

We say that f is C k-smooth if Dkf (i.e. the mapping x 7! Dkf .x/) is continuous in the domain. We denote by C k.U IY /
the vector space of all C k-smooth mappings from U into Y . For convenience we put C 0.U IY / D C.U IY /, i.e. the continuous
mappings.

Lemma 5. Let X , Y be normed linear spaces, U � X open, f W U ! Y , k 2 N, and a 2 U . Then dkf .a/ exists if and only if
D.dk�1f /.a/ exists.

Proof. Denote by I W P .k�1X IY /! Ls.k�1X IY / the canonical isomorphism I.P / D }P from the Polarisation formula. Then
Dk�1f D I B dk�1f and dk�1f D I�1 BDk�1f and so the equivalence follows from the Chain rule.

ut

Notice that by the Polarisation formula f 2 C k.U IY / if and only if the mappings x 7! d jf .x/, j D 1; : : : ; k, are continuous
on U . Recall the following two versions of Taylor’s theorem:

Theorem 6 (Peano’s form of Taylor’s theorem). Let X , Y be normed linear spaces, U � X an open set, f W U ! Y , a 2 U ,
k 2 N, and suppose that Dkf .a/ exists. Then




f .x/ �

kX
jD0

1

j Š
d jf .a/Œx � a�






 D o.kx � akk/; x ! a:

Theorem 7. Let X , Y be normed linear spaces, U � X an open convex set, k 2 N, and f 2 C k.U IY /. Then for any x 2 U
and h 2 X satisfying x C h 2 U we have




f .x C h/ �

kX
jD0

1

j Š
d jf .x/Œh�






 � 1

kŠ

�
sup
t2Œ0;1�



dkf .x C th/ � dkf .x/

� � khkk :
Let X , Y be normed linear spaces, U � X an open set, f W U ! Y , and k 2 N0. We say that f is T k-smooth at x 2 U if

there exists a polynomial P 2 P k.X IY / satisfying P.0/ D f .x/ and

f .x C h/ � P.h/ D o.khkk/; h! 0: (1)

We say that f is T k-smooth on U if it is T k-smooth at every point x 2 U .
We remark that the polynomial in (1) is uniquely determined. It is easy to see that T kC1-smoothness implies T k-smoothness.

If f is T 1-smooth at x, then f is Fréchet differentiable at x with Df.x/ D P1, the 1-homogeneous term of P .
Theorem 6 implies that aC k-smooth mapping is also T k-smooth and the approximating polynomial is given by

Pk
jD0

1
j Š
d jf .x/.

The converse is not true in general: consider f W R ! R, f .x/ D xkC1 sin 1

xk
, f .0/ D 0. Then f is T k-smooth but not even

C 1-smooth. Nevertheless, under certain uniformity assumptions the converse does hold.

Theorem 8 (Converse Taylor theorem). Let X , Y be normed linear spaces, U � X an open set, f W U ! Y , and k 2 N0. Then
f 2 C k.U IY / if and only if f is a T k-smooth mapping satisfying

lim
.y;h/!.x;0/

h¤0

kR.y; h/k

khkk
D 0 (2)

for every x 2 U , where R.x; h/ D f .x C h/ � P x.h/ and the polynomials P x 2 P k.X IY / come from the definition of
T k-smoothness at x. In this case P x D

Pk
jD0

1
j Š
d jf .x/.

The proof of the uniform version below reuses significant parts of the proof of this theorem. For this reason (and also for the
reader’s convenience) we give our version of the proof. The main ideas are the same as in [AD].
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Proof. ) If f 2 C k.U IY /, then f is T k-smooth, and P x D
Pk
jD0

1
j Š
d jf .x/ by the uniqueness of the Taylor polynomial. Fix

x 2 U and choose any " > 0. Let ı > 0 be such that B.x; 2ı/ � U and kdkf .´/� dkf .x/k < " for ´ 2 B.x; 2ı/. By Theorem 7

kR.y; h/k �
1

kŠ

�
sup

´2B.y;ı/



dkf .´/ � dkf .y/

� � khkk � 2"

kŠ
khkk

whenever y 2 B.x; ı/ and h 2 B.0; ı/, from which (2) follows.
(We use induction on k. For k D 0 the assertion is obvious, since both T 0-smoothness and C 0-smoothness mean just the

continuity of f . So assume that k 2 N and the theorem holds for k � 1.
Fix x 2 U and let ı > 0 be such that U.x; 2ı/ � U . We have

f .x C hC y/ D P x.hC y/CR.x; hC y/;

f .x C hC y/ D P xCh.y/CR.x C h; y/
(3)

for all h; y 2 U.0; ı/. Set q.h; y/ D P xCh.y/� P x.hC y/. Denote by P ´j the j -homogeneous summands of P ´, j D 0; : : : ; k.

By Lemma 1 we can write q.h; y/ D
Pk
jD0 qj .h; y/, where

qj .h; y/ D P
xCh
j .y/ �

kX
lDj

�
l

j

�
zP xl .l�jh; jy/:

Note that q.h; �/ 2 P k.X IY / and qj .h; �/ 2 P .jX IY /, j D 0; : : : ; k, for h 2 U.0; ı/. By subtracting the equalities (3) we obtain
q.h; y/ D R.x; hC y/ �R.x C h; y/. Thus for any h; y 2 U.0; ı/ such that kyk � khk, y ¤ 0, and y ¤ �h we obtain

kq.h; y/k � kR.x; hC y/k C kR.x C h; y/k �

�
2k
kR.x; hC y/k

khC ykk
C
kR.x C h; y/k

kykk

�
khkk :

It follows (using also simpler versions of the above estimate if y D 0 or y D �h) that

kq.h; y/k D o.khkk/; .h; y/! .0; 0/; kyk � khk:

Applying Theorem 2 we get kqj .h; y/k � Kk;j max
0�l�k

kq.h; l
k
y/k for all h 2 U.0; ı/, y 2 X , and j 2 f0; : : : ; kg. Therefore

kqj .h; y/k D o.khk
k/; .h; y/! .0; 0/; kyk � khk:

So finally by taking the supremum over y 2 B.0; khk/ and using the j -homogeneity of qj .h; �/ we obtain

kqj .h; �/k D
1

khkj
sup
kyk�khk

kqj .h; y/k D sup
kyk�khk

kqj .h; y/k

khkj
D o.khkk�j /; h! 0 (4)

for each j 2 f0; : : : ; kg.
Since qk.h; �/ D P xChk

� P x
k

, it follows that the mapping x 7! P x
k

is continuous on U . Further, since for h ¤ 0

f .y C h/ �Pk�1
jD0 P

y
j .h/




khkk�1

�
kR.y; h/k C kP

y

k
.h/k

khkk�1
�

�
kR.y; h/k

khkk
C kP

y

k
k

�
khk;

the continuity of x 7! P x
k

implies lim
.y;h/!.x;0/

h¤0

kf .yCh/�
Pk�1
jD0 P

y

j
.h/k

khkk�1
D 0 and so by the inductive hypothesis f is C k�1-smooth

and P xj D
1
j Š
d jf .x/, j D 0; : : : ; k � 1. Thus

qk�1.h; y/ D
1

.k � 1/Š

�
dk�1f .x C h/Œy� � dk�1f .x/Œy�

�
� kzP xk .h; k�1y/

and from (4) we get 

dk�1f .x C h/ � dk�1f .x/ � kŠzP xk .h; �; : : : ; �/

 D o.khk/; h! 0:

Therefore dkf .x/ exists by Lemma 5, and consequently dkf .x/ D kŠP x
k

by Theorem 6, which finishes the proof.
ut

A modulus is a non-decreasing function ! W Œ0;C1/! Œ0;C1� continuous at 0 with !.0/ D 0. The set of all moduli will be
denoted by M. An important subset of all moduli consists of the sub-additive moduli. A nice feature of a sub-additive modulus !
is that it is real-valued and uniformly continuous with modulus of continuity !. It is easy to check that the minimal modulus of
continuity of a uniformly continuous mapping defined on a convex subset of a normed linear space is sub-additive.

Let X , Y be normed linear spaces, U � X an open set, k 2 N, f 2 C k.U IY /, and let ! 2M. We say that f is C k;!-smooth
on U if dkf is uniformly continuous on U with modulus !.

Let X , Y be normed linear spaces, V � X an open set, f W V ! Y , and k 2 N0. We say that f is UT k-smooth on V if there
exists ! 2M such that for each x 2 V there is a polynomial P 2 P k.X IY / satisfying

kf .x C h/ � P.h/k � !.khk/khkk for x C h 2 V .
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We note that UT kC1-smoothness in general it does not imply UT k-smoothness – the function f .x/ D x3 is UT 2-smooth
on R but it is not UT 1-smooth on R.

Theorem 7 implies that a C k;!-smooth mapping on a convex U is UT k-smooth on U with modulus 1
kŠ
!. The converse

statement is contained in the next theorem.

Theorem 9. Let X , Y be normed linear spaces, U � X an open set, f W U ! Y , and k 2 N. Suppose that f is UT k-smooth
on U and the modulus ! from the definition of UT k-smoothness is sub-additive. If V � U is an open bounded subset satisfying
dist.V;X n U/ > 0, then f is C k;m!-smooth on V , where m > 0 is a constant depending on k, diamV , and dist.V;X n U/.

If moreover U is bounded and there exists r > 0 such that for each x 2 U there is a 2 U satisfying conv
�
fxg [ B.a; r/

�
� U ,

then f is C k;m!-smooth on the whole of U , where m D ck
� diamU

r

�k and ck > 0 is a constant depending only on k. The same
holds if U D X (in this case m D ck).

Proof. First notice that f 2 C k.U IY / by Theorem 8. Let V � U be a non-empty bounded open set for which dist.V;X nU/ > 0.
Put � D diamV and " D min

˚
�; dist.V;X n U/

	
. Fix any x 2 V and h 2 X such that x C h 2 V . We use the notation from the

proof of Theorem 8. For any y 2 X satisfying kyk � khk and x C hC y 2 U we have

kq.h; y/k � kR.x; hC y/k C kR.x C h; y/k � !.khC yk/khC ykk C !.kyk/kykk

� !.2khk/2kkhkk C !.khk/khkk � .2kC1 C 1/!.khk/khkk :
(5)

Therefore by Theorem 2

dkf .x C h/Œy� � dkf .x/Œy�

 D kŠkqk.h; y/k � kŠKk;k max
0�l�k



q.h; l
k
y/


 � kŠKk;k.2kC1 C 1/!.khk/khkk

for all y 2 X satisfying kyk � "
�
khk. Consequently, if h ¤ 0,



dkf .x C h/ � dkf .x/

 D 1�
"
�
khk

�k sup
kyk� "� khk



dkf .x C h/Œy� � dkf .x/Œy�

 � �k

"k
kŠKk;k.2

kC1
C 1/!.khk/:

Note that in the case U D X we can take the supremum over kyk � khk (since xC hC y always lies in the domain of f ) and
thus we obtain the estimate for any x; h 2 X .

Finally, let us suppose that U is bounded and there exists r > 0 such that for each x 2 U there is a 2 U satisfying
conv

�
fxg[B.a; r/

�
� U . Fix any x 2 U and h 2 X nf0g such that xCh 2 U . Put ˛ D r

diamU and s D ˛khk, and note that ˛ � 1
2

and s � r . Let a 2 U be such that conv
�
fxChg[B.a; r/

�
� U . Set u D a if ka�x�hk � khk and u D xChC a�x�h

ka�x�hk
khk

otherwise. Note that B.u; s/ � U . Indeed, if u D a, then we use the fact that s � r . Otherwise, every ´ 2 B.u; s/ can be
expressed as a convex combination ´ D

�
1 � khk

ka�x�hk

�
.x C h/C khk

ka�x�hk
w, where w D aC .´ � u/ ka�x�hk

khk
2 B.a; r/.

Now if y 2 B.u � x � h; s/, then x C hC y 2 B.u; s/ � U and kyk � ku � x � hk C s � khk C s D .1C ˛/khk < 2khk.
Hence, similarly as in (5),

kq.h; y/k � !.khC yk/khC ykk C !.kyk/kykk � !.3khk/.2C ˛/kkhkk C !.2khk/.1C ˛/kkhkk

�
�
3.2C ˛/k C 2.1C ˛/k

�
!.khk/khkk � 5.2C ˛/k!.khk/khkk :

Thus using Lemma 4 we obtain

dkf .x C h/ � dkf .x/

 D 1

sk
sup

y2B.0;s/



dkf .x C h/Œy� � dkf .x/Œy�

 D kŠ

sk
sup

y2B.0;s/

kqk.h; y/k

�
kk

sk
sup

y2B.u�x�h;s/

kq.h; y/k �
kk

sk
5.2C ˛/k!.khk/khkk D 5kk

�
1C

2

˛

�k
!.khk/:

ut

In the convex case the assumption on the sub-additivity of the modulus ! can be dropped:

Corollary 10. Let X , Y be normed linear spaces and let U � X be an open convex set that is either bounded or has the property
that there are a 2 X , r > 0, and fungn2N � X , kunk D n such that B.a C un; nr/ � U for each n 2 N (this holds in
particular if U contains an unbounded cone). If f W U ! Y is UT k-smooth, k 2 N, and ! is the modulus from the definition
of UT k-smoothness, then f is C k;m!-smooth on U for some m > 0. More precisely, in the bounded case m D cke

k
U , where

eU D
diamU

supfrI B.a;r/�U g and ck > 0 is a constant depending only on k; in the unbounded case m D ck
�
1C 1

r

�k .

Proof. First suppose that U is bounded and B.a; r/ � U . By the convexity the assumption of Theorem 9 is satisfied and
from the proof it is easily seen that we obtain



dkf .x C h/ � dkf .x/

 � 2kk
�
1C 2 diamU

r

�k
!.3khk/ for any x; h 2 U .

Thus !1.t/ � ckekU!.3t/, where !1 is the minimal modulus of continuity of dkf on U . But since !1 is sub-additive, we get
!1.t/ � 3!1.

1
3
t / � 3cke

k
U!.t/.
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In the unbounded case choose any n 2 N and put V D U \U.a; nC nr/. Then U.aC un; nr/ � V and so by the first part of
the proof f is C k;m!-smooth on V for m D ck

�
2.nCnr/
nr

�k
D 2kck

�
1C 1

r

�k . Since this constant is independent of n, it follows
that f is C k;m!-smooth on the whole of U .

ut
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