A SIMPLER PROOF OF THE APPROXIMATION BY REAL ANALYTIC LIPSCHITZ FUNCTIONS

MICHAL JOHANIS

ABSTRACT. A theorem in [AFK] asserts that on a real separable Banach space with separating polynomial every Lipschitz function can
be uniformly approximated by real analytic Lipschitz function with a control over the Lipschitz constant. We give a simpler proof of this
theorem.

Using ideas from [KI], [F], and [HI] we give a simpler proof of the following theorem from [AFKI].

Theorem 1 (Azagra-Fry-Keener). Let X be a real separable Banach space with a separating polynomial. Then there is a constant
K € R such that for each ¢ > 0 and any L-Lipschitz function f: X — R there is a K L-Lipschitz function g € C®(X) satisfying
supyex | /(x) —g(x¥)| =&

By B(x,r) (resp. U(x, r)) we denote the closed (resp. open) ball centred at x with radius r > 0. If we need to stress that the
ball is taken in the space X we write Uy (x, 7). By X we denote the Taylor complexification of a real Banach space X. By H(£2)
we denote the set of all holomorphic functions defined on an open subset §2 of a complex Banach space.

The proof is divided into a few steps (Proposition [2] Proposition[4] and Lemma[6)). We begin by introducing an auxiliary notion.
Let X be areal Banach space and U = {Uy; x € U, C X.xeX } be a collection of open neighbourhoods in X.LetAC X.We
say that a function 2: | J U — C separates A with respect to U if
(S1) h by maps into R,

(S2) h(x) > 1 whenever x € A4,
(S3) |h(2)| < 4—1‘ whenever z € Uy, x € X, dist(x, 4) > 1.

Proposition 2. Let X be a real Banach space. Assume that there is U = {(Uy; x € Uy C X,x € X} a collection of open
neighbourhoods in X and C > 0 such that for each A C X there is a function hy € H (U ‘l,() which separates A with respect to
U and such that hy 'x is C-Lipschitz. Then for every ¢ > 0 and every L-Lipschitz function f: X — R there is a 10C L-Lipschitz
Sunction g € C®(X) satisfying sup,cy | f(x) — g(x)| < e.

For the proof we need the following technical lemma.

Lemma 3. There are functions 6, € H(C), n € N, with the following properties:
(T1) 6, 'r maps into [0, 1],
(T2) O, |'r is 4-Lipschitz,
(T3) 10,(2)] < 27" foreveryz € C, |z]| < %,
(T4) |6, (x) — 1| <27" foreveryx e R, x > 1,
(T5) (6, IR) (X)| < 27" forevery x € R, x < % orx > 1.
Proof of Proposition[2] Let us define a function f : X - Rby f (x) = % f (&x). This function is obviously 1-Lipschitz.
Denote f * = max{ f ,0} and f ~ = max{— f , 0} and notice that both functions are again 1-Lipschitz. Next, let us define sets
Ap ={x e X; f*’(x) > n} forn € N U {0}. Clearly, A, C A,—; forall n € N, and using the 1-Lipschitz property of f+ it is
easy to check that
dist(X \ 45, Ap4+1) =1 foralln € N. (D
Denote h,(z) = 6y o ha, forn € N.Foreachn € N, h, € H(|J U) and hy, | x is 4C-Lipschitz. Put h™ = Y02 | h,,.
Fix an arbitrary x € X. Then there is m € N such that x € 4,,—; \ 4,,. Hence
x €A, forn<m and x € X\ Ap—; forn > m. 2)

From this, (T)), (, and ( it follows that |h,(z)| < 27" forall n > m and z € U,. Hence the sum in the definition of A
converges absolutely uniformly on Uy and so h* € H (| U). This together with ( and ( implies that 4™ |y € C?(X).

Using (2), ( and (, (@, ( and (, and finally m — 1 4 A, (x) € [m — 1,m] and f T (x) € [m — 1, m), we obtain

m—1 [e'e}
@) = )] = Y @) + )+ Y ha(x) = (%)
n=1 n=m+1
m— oo m—1 0o
< ) =1+ Y @)+ m =1 b () = fT0)] < Y 27"+ Y 2 1<,
n=1 n=m+1 n=1 n=m+1
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Further, from (T)) it follows that there is a neighbourhood U of x in X suchthat U C X \ A, and U C A, forn <m — 1.
Thus |hg, (y)] < % forn > mandy € U,and hy,(y) > 1 forn < m —1and y € U. This together with ( | implies

[ tx) O = 16 M) (ha, WD I (hay, 1x)' DI = 27"C forn € N\ {m — 1m} and y € U. Hence 3~ (hn [x)’
converges absolutely uniformly on U and so

[ )Y ] D[ bx) @) < Y 27"C + [[(hm %) (0)| < € +4C = 5C.

n=1 n#m

Similarly we obtain an approximation of f ~ denotedby h~.Puth = ht —h~. Then h }x € C®(X),
every x € X, and ||(h M x) ()| < (AT tx) )| + |[(h~ tx) (x)|| < 10C forevery x € X.
Finally, let g(x) = £h (%x) for x € X. It is straightforward to check that g satisfies the conclusion of our proposition.

h(x) — f(x)| < 4 for

|

Let X be a set. A collection {¥/y }qe 4 of functions on X is called a supremal partition (sup-partition) if
e Yy: X = [0,1]foralla € A,
o thereis a Q > 0 such that supy,c 4 Yo (x) > Q foreach x € X,
e for each x € X and for each ¢ > 0 the set {& € A; ¥, (x) > ¢} is finite.

Proposition 4. Let X be a real Banach space. Suppose that there is an open neighbourhood G of X in X and a collection
{Untnen of functions on G with the following properties:

(P1) {1&,1 M }neN is a sup-partition on X,

(P2) the mapping z — (ay x@n (2))neN is a holomorphic mapping from G into ¢ Sfor any (ap) € oo,

(P3) there is M > 0 such that each lﬁn Mx is M -Lipschitz,

(P4) there is r > 0 such that for each n € N there is X, € X such that Iﬁn(x) < gfor)c eX, |lx =X, =r

Then there is a collection U of open neighbourhoods in X such that for each A C X there is a function hy € H (U ‘L() which
separates A with respect to U and such that hy | is C-Lipschitz, where C = 2r~/2M/ Q.

In the proof we use the following proposition.

Proposition 5. Let g > 1. There is an open set W C ¢o and a function u € H(W) with the following properties:

(M1) Forevery w € co \ {0} there is Ay, > 0 such that Uz, (y, Aw) C W for every y € cq satisfying |lw| < |y| < q |w|, where
the inequalities are understood in the lattice sense.

(M2) p(w) = 8 forw € co, [|w] =38,

(M3) |(2)| < 2forz € Ugy (v, Aw), where y € co, ||y]| < 1, and w € co \ {0}, [w| < |y] = g [w],

(M4) ple, is \2-Lipschitz and maps into R.

A

ProofofPfoposition Let W, u, and Ay, be as in Proposition |5| for ¢ = %. Further, we put G = 2—er, Xp = ﬁ—;, and
Y (2) = ¥, (2rz) for z € G. Then the functions v, |'x are 2rM -Lipschitz and

1
%(X)S% forx € X, ||x—xn||z§' 3)

Denote w(z) = (¥»(2))nen for z € G. By the continuity of the mapping w (which follows from (F2)), for each x € X
there is an open neighbourhood Uy of x in X such that U, C G and ||w(z) — w(x)]|| < Ay (x)/q whenever z € Uy. (Notice that
w(x) € co \ {0}.) Put U = {Uy; x € X}.

Let A C X.Foreachn € N put b, = ¢ if dist(x,, 4) < % and b, = 1 otherwise. Choose z € | J U and let x € X be such
that z € Uy. Then

[[(bn¥n (2)) = (ba¥n (X))l = sup b (Y (2) = Yn(0))] < q sup [¥n(2) =¥ ()] = ¢ [w(@) —w®)]| < Awe) @)

and since 0 < w(x) < (b ¥, (x)) < qw(x) in the lattice sense, from (M[I)) it follows that (b, ¥, (z)) € W. Therefore we may
define 714(z) = 2 ((ba¥n(2))) for z € | U and ( implies that 74 € H (| U). Further, /14 } x is obviously C-Lipschitz.
Next we show that h4 separates A with respect to U. Clearly h4 has property (SI). Pick any x € A. From (HI) and (@) it follows
that sup{¥, (x); n € N, dist(x,, A) < %} > Q. Therefore ||(by¥n(x))|| = ¢O = 8 and consequently ( gives property (.
Finally, to show ( let x € X be such that dist(x, A) > 1. Then, by (@), ¥, (x) < % for those n € N for which dist(x,, 4) < %
Thus [|(by s (x))]| < max{g<,1} = 1. Now (@) together with ( implies |h4(z)| < § for z € Uy.
O

The following lemma finishes the proof of Theorem I}

Lemma 6. Let X be a real separable Banach space with a separating polynomial. Then there is an open neighbourhood G of X
in X and a collection of functions {Y, }neN satisfying the properties ( —(ﬂé]) in Proposition

To prove this lemma we will need a few auxiliary statements.



A SIMPLER PROOF OF THE APPROXIMATION BY REAL ANALYTIC LIPSCHITZ FUNCTIONS 3

Lemma 7. Let X be a real Banach space with a separating polynomial. Then there is A > 0 and a function v € H (£2), where
2 ={x+iyeX; x,y € X,|lyll <A}, such that v }x is Lipschitz and maps into [0, +00), v(0) = 0, v(x) > | x]|| — 1 for
x € X, and the family of functions {y — Imv(x +iy); y € X, ||y|| < A}xex is equicontinuous at 0.

Proof. Ttis an easy well-known fact that if X admits a separating polynomial then X admits a homogeneous separating polynomial
(see e.g. [FPWZ]). Put v(z) = (1 + P(z))"/" — 1 for a suitable n-homogeneous separating polynomial P. The equicontinuity
follows from the fact that v is even Lipschitz on the whole of £2. For the details see [AFK| Lemma 2].

|

Lemma 8. There are functions ¢, € H(C") and constants §,, > 0, n € N, with the following properties:

(H1) ¢y Mrr maps into [0, 1],

(H2) ¢y, Mrn is 1-Lipschitz with respect to the maximum norm,

(H3) |pn(z)| < 27" forevery z € C" such that thereis j € {1,...,n—1} forwhichRe z; < %and Imz;| <6 fori =1,...,n,
(H4) ¢n(x) > iforeveryx € R” for whichx, <3andx; >3,i=1,...,.n—1,

(H5) ¢n(x) < 35 for x € R", x, > 5.

With the aid of the statements above the proof of Lemma []is not difficult.

Proof of Lemmal6] Let v and §2 be the function and the set from Lemmaand ¢n be the functions from Lemma Let {x, }neN
be a dense subset of X. Put

Vn(2) = ¢pu(v(z —x1),....v(z—x,)) forz € 2,neN.
Then Y, € H($2) and by (HI) ¥, }'x maps into [0, 1].

Let M > 0 be such that v }y is M -Lipschitz. Pick any x € X. Then from the density of {x,} and the fact that v(y) < M | y||
forany y € X it follows that there is k € N such that v(x — xz) < 3. Let k € N be the smallest such number. Then property (H4)
implies that ¥ (x) > %. Thus sup, cy ¥n(x) > O foreach x € X, where Q = 7

By the continuity of v there is p > 0 such that |v(z)| < % whenever z € X, Izl < p. Now fix x € X and find an index
J € N such that |[x; — x| < p. Using the equicontinuity of {y +— Imv(w + iy)} at 0 choose 0 < A; < A such that
Imv(w + iy)| < 8; whenever w,y € X, ||y|| < Aj. Letus define Uy = {z = w+1iy € X: |z —xi|l < p. ¥l < 4;}.
Notice that Uy is an open neighbourhood of x and z — x; € §2 forevery z € Uy,!/ € N. Letz = w + iy € Ux. Then
Imv(z —x7)| = [Imv(w — x; + iy)| < §; for every [ € N. Furthermore, [Rev(z — x;)| < |[v(z — xj)| < % Hence, by (,
|¥n(z)| <27" forn > j and z € Uy. It follows that for any (an) € Lo, (AnV¥n(2))neN = Y peq @n¥n(2)en € ¢o and the sum
converges absolutely uniformly on Uy. As the mappings z + a, V¥, (2)e, are holomorphic as mappings from £2 into ¢y, we can
conclude that (@, ) is a holomorphic mapping from G = | J,.cx Ux into ¢p, which gives (.

Property (F3) obviously holds by (H2). Finally we show that (P4) is satisfied with r = 6. Indeed, fix n € N. For x € X,
|lx — x|l > 6 we have v(x — xp,) > ||x — x| — 1 = 5, hence, by ( H Yn(x) < % = %.

O

For the proof of Proposition 5| we need the following version of the Implicit Function Theorem with explicit estimates on the
size of the region where the solution is found.

Theorem 9 (Implicit Function Theorem). Let X be a complex Banach space, U C X and V C C open sets, and F € H({U x V).
Letz € U, u € V satisfy F(Z,u) = 0. Furtherlet R > 0, S > 0, and M > 0 be such that B(Z, S) C U, Bu,R) C V, and

|F(z,u)|fooreveryzeB(é,S),ueB(ft,R).Assumethat|%—I;( )|>a>0and0<r< R+M Putc = ar — R%{_zr)

= 0. Denote such u by ¢(z). Then

=
¢ € HU(Z,s)).

The proof of this theorem is

for on X . Some details can be found e.g. in [CHP], although the estimates and the proof given there are not entlrely correct.

Proof of Proposition 5] Define u on cg as the Minkowski functional of the set {x €Co5 Yooy (x)*" < 1}. Then p is an equiva-
lent norm on ¢q for which ||x| < u(x) < +/2||x|| (see [FPWZI). This gives property ( and (.

Let F: éo x (C \ {0}) — C be defined as F(z,u) = Y v ;(zn/u)?" — 1. This function is holomorphic on ¢ x (C \ {0}) and
for every x € cg \ {0} we have F(x, u(x)) = 0.

2n
: — lwl ¢ _— lwl - 1, 2 _ 1 . 1

Fixw e co\ {0} PutR =150 § =12 M =143, (5 + m |wn|> 4= T m1n{5aR+M’2 f}
and Ay, = s as defined in Theorem [9] Now choose any y € co, [w| < |y| < g|w|. Then R < |w| < [y|| < n(y), thus
B(u(y). R) C V = C\ {0}. Forany z € B(y. ), u € B(u(y), R) we have |u| = u(y) = R = |y] = R = wl| - R = 151
and |z,| < |yn| + IZn Yn| < qlwa| + IIZ—y|| < q|wa| + ”w” , and hence |F(Z w| <1+, |z—"|2n < M. Finally,

%) Yn \2n " 2n 1 .

1L (v, n(y))| = ) u(y) Yol 2n(3)7 | 2 M(y) Do 1(M(y)) =75 = [”y” > a. Thus by Theorem 9| the equation
F(z,u) = 0 uniquely determines a holomorphic function 3 on Uz, (y, Ay) with values in U(u(y), r) and this holds for every
y €co, lw| = |yl = qwl.
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Take any two functions p; = p,;,”ll, Mo = ,u;}; defined on open balls U; and U, respectively. If U; and U, intersect, then
it is easy to check that U; N U, N ¢y is a non-empty set relatively open in ¢o. Since w; = pon Uy N¢cp and p, = p on
U, N ¢y, it follows that both holomorphic functions w; and p, agree on some ball in U; N U, and therefore on the whole
U; N U,. This observation allows us to put W = | J {Ugo(y, Ap); wecg\{0},y €co,|w| < |yl <¢q |w|} and define p on W
by u(z) = )’ (z) whenever z € U(y, Ay). This gives property (.

To prove ( letw € co\ {0}, y €co, [w| < |y| <g|wl|, ||yl £1,and z € Ug,(y, Aw). Then by the choice of r above we
have pu(z) € U(u(y). 2 — +/2) and therefore |u(z)| < [u()|+2—v2 < V2]ly| +2-+v2 <2,

O

It remains to prove Lemma [3|and Lemma 8] The proofs are standard using integral convolution technique and estimates which
are not difficult. We could just write the formulas for the functions in consideration and stop there (we claim a short proof after
all). Nevertheless for the convenience of the reader we include rather detailed computations.

Proof of Lemmal8] Let {,: R" — [0, 1] be a 1-Lipschitz function (with respect to the maximum norm) such that

£a(x) = 0 wheneverx, >4ordi €{l,...,n—1}:x; <1,
" Wheneverx,,§3and\7’le{l,...,n—l}:xizz.
For eachn € N put §, = /27"/8 and find a,, € R such that
a,2™" > 3, 5)
e <227, (©)
/ e 7 )
—ap2™" N 4/5 '
Finally, put
| —an ¥ 27 @—1)?
n(2) = —/ La(t)e i=1 dr forz € C",
Cn JR?

where ¢, = [gn ™" Yii27 g = (%)n [T, 2.
Using standard theorems on integrals dependent on parameter we obtain ¢, € H(C"). Property (HI) is obvious, and
property (HZ2) is easy to check.

Next we will need the elementary estimate

“+o00 +o0o 1
/ e dr < / te™dr = —e= for x > 1. (8
X X 2

To prove ( we use successively the definition of ,, Fubini’s theorem, substitution, Re z; < 2, estimate (8) together with (),
the definition of §;, and finally (6)) to obtain

n X
n R anp Y. 27! (Imzl—)z n X
1 —an Y. 2771 Re(z;—t;)? d e i=l1 —an Y. 27T (Rezj—1;)?
t

@l = — | Ge "= /R e

A

Cn

ané? _ i _ an8? _ —i )2 400
e J an Z 27" (Rez; lz) e J an _2_2 (Rez;—t;) _ —J 2
e i dr = e i dr- [ e ez gy,
teR R2—1 1

Cn 1;>1 Cn
00 an5 +o0 an5 +o00
n _ —J )2 e 42 e _42
= ap2=J "2 Rez;=0)" qp e dt < e ! dr
VT an2=7/ (1-Rez;) ﬁ L an2—i
2

anés .

e % 1 o 1 g (2—J J4—82 1 e _
< —zan27/ _ .e an(27/ /4 8j) < .e an2™"/8 <2 n

W 2 U7 27
To prove ( we use successively the definition of ,, Fubini’s theorem and substitution, x,, < 3 and x; > 3, substitution,
and (7) to obtain

n .
—ap Y 27 (xij—1;)? 1 [3%n

n—1l ntoo
bu(x) > + o s =1 g [ e a
Cn <3 Cn im1 2—x;

t;>2,i=1,...n—1 o

1 n +o0

+o00
e ¢ 2712 e Z*itz e ’t2 1 —12
— n dr - / n > / n2 dt = —— e dr
/ l_[ 2 Cn ll_[ 2 (Jm)n ll:[1 —Jan2~i

i=1

11 &t 2\ 1
st =3 (5 / ) =g
2 (\/;)n e anz—n \/_ anz n 4
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Finally, to prove ( we use successively the definition of ¢, Fubini’s theorem, substitution, x, > 5, and (8] together with (3))

to obtain
g SN =i (g Van 27 (4—xp)
bn(x) L ;T e 0t g = e dt
cp JteR” 7'[2”

th<4

IA

—ap2™" <

1
< .
—f/anzn VA 32

O

Proof of Lemma[3] Let{: R — [0, 1] be defined as ¢(r) = 0 fort < §, () =4t -3 fort € (% %), and ¢(¢) = 1 fort > %.
Obviously ¢ is a 4-Lipschitz function. For each n € N find @, € R such that

3
g«/a > 1, ©)
P L W (10)
+o00 s
/ 1 e dt > (1-2"")/m, and (11)
-\ Jan

2 ay e 8 < 727", (12)
Finally, put

1
0, (2) = — /R t()e G4 forz e C,

_ —ant? 34 _ 7
where ¢, = [p e dt = /2

Using standard theorems on integrals dependent on parameter we obtain 6, € H(C). Property (T[I) is obvious, and property (1[2)
is easy to check.

To prove ( we use successively the definition of ¢, [Im z| < 7, substitution, Re z < %, estimate (B)) together with (9), and
finally (T0) to obtain

1 an(lmz) elL(v“” +oo
160 (2)] = — / g(r)e™nReGE=D% gp = / Lpem e dr < — /5 emn®Rez=0)? g4t
n JR n 3
eTlsa" +o0o eﬁa” +oo e lﬁan 9, e—s%an .
:\/_ dt<f d[_zf. 64”:2\/_ <27
7w Jja(gren) 7

To prove (Td) we use successively the definition of ¢, substltutlon, x > 1, and (TI) to obtain

1 Foo 2 1 +oo 2 1 oo 2
0, (x) > —/ A P e dt > — e dr>1-2"",
e J3 VT an () VS

Finally, we show (T[3). Differentiating under the integral sign we obtain

2
b (x) = =

— x)e =% g,

Thus for x < % using the definition of ¢, substitution, and (T2) we get

+00 _an(%_")z 2
|9,’,(x)| < 2an (t —x)e_“”(t_x)2 dr = 1 e?dy = ‘/a—” ceman(3=x)" < ,/a—" e~ o1n <27
Cn % Cn J—00 b g T

On the other hand, for x > 1 using the definition of ¢, evaluation of the integrals, and (12)) we get

i
2a 3 +o0
6,0 = == || @ —x)em ™ ar + / (t = x)e =9 dys
Cn 8 8
i
§ +
< 20 /8 £ — x| o= gy 4 2 [ (- e g
€ J§ €n /%
2an

= / (I—x)e_a”(t x)? dr + — —an( —x)2

Cn

= — e_a”(%_x) _e_a”(%_x) +e_a"( —x) < — e_a"( —x) <2 l .e 64“” <27
Cn Cp T
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