
A SIMPLER PROOF OF THE APPROXIMATION BY REAL ANALYTIC LIPSCHITZ FUNCTIONS

MICHAL JOHANIS

ABSTRACT. A theorem in [AFK] asserts that on a real separable Banach space with separating polynomial every Lipschitz function can
be uniformly approximated by real analytic Lipschitz function with a control over the Lipschitz constant. We give a simpler proof of this
theorem.

Using ideas from [K], [F], and [HJ] we give a simpler proof of the following theorem from [AFK].

Theorem 1 (Azagra-Fry-Keener). Let X be a real separable Banach space with a separating polynomial. Then there is a constant
K 2 R such that for each " > 0 and any L-Lipschitz function f W X ! R there is a KL-Lipschitz function g 2 C!.X/ satisfying
supx2X jf .x/ � g.x/j � ".

By B.x; r/ (resp. U.x; r/) we denote the closed (resp. open) ball centred at x with radius r > 0. If we need to stress that the
ball is taken in the space X we write UX .x; r/. By QX we denote the Taylor complexification of a real Banach space X . By H.˝/
we denote the set of all holomorphic functions defined on an open subset ˝ of a complex Banach space.

The proof is divided into a few steps (Proposition 2, Proposition 4, and Lemma 6). We begin by introducing an auxiliary notion.
Let X be a real Banach space and U D fUx I x 2 Ux � QX; x 2 Xg be a collection of open neighbourhoods in QX . Let A � X . We
say that a function h W

S
U! C separates A with respect to U if

(S1) h�X maps into R,
(S2) h.x/ � 1 whenever x 2 A,
(S3) jh.´/j � 1

4
whenever ´ 2 Ux , x 2 X , dist.x; A/ � 1.

Proposition 2. Let X be a real Banach space. Assume that there is U D fUx I x 2 Ux � QX; x 2 Xg a collection of open
neighbourhoods in QX and C > 0 such that for each A � X there is a function hA 2 H

�S
U
�

which separates A with respect to
U and such that hA�X is C -Lipschitz. Then for every " > 0 and every L-Lipschitz function f W X ! R there is a 10CL-Lipschitz
function g 2 C!.X/ satisfying supx2X jf .x/ � g.x/j � ".

For the proof we need the following technical lemma.

Lemma 3. There are functions �n 2 H.C/, n 2 N, with the following properties:
(T1) �n�R maps into Œ0; 1�,
(T2) �n�R is 4-Lipschitz,
(T3) j�n.´/j � 2�n for every ´ 2 C, j´j � 1

4
,

(T4) j�n.x/ � 1j � 2�n for every x 2 R, x � 1,
(T5) j.�n�R/

0.x/j � 2�n for every x 2 R, x � 1
2

or x � 1.

Proof of Proposition 2. Let us define a function Of W X ! R by Of .x/ D 4
"
f
�
"
4L
x
�
. This function is obviously 1-Lipschitz.

Denote Of C D maxf Of ; 0g and Of � D maxf� Of ; 0g and notice that both functions are again 1-Lipschitz. Next, let us define sets
An D fx 2 X I Of

C.x/ � ng for n 2 N [ f0g. Clearly, An � An�1 for all n 2 N, and using the 1-Lipschitz property of Of C it is
easy to check that

dist.X n An; AnC1/ � 1 for all n 2 N. (1)
Denote hn.´/ D �n B hAn

for n 2 N. For each n 2 N, hn 2 H
�S

U
�

and hn�X is 4C -Lipschitz. Put hC D
P1
nD1 hn.

Fix an arbitrary x 2 X . Then there is m 2 N such that x 2 Am�1 n Am. Hence

x 2 An for n < m and x 2 X n An�1 for n > m. (2)

From this, (1), (S3), and (T3) it follows that jhn.´/j � 2�n for all n > m and ´ 2 Ux . Hence the sum in the definition of hC

converges absolutely uniformly on Ux and so hC 2 H
�S

U
�
. This together with (S1) and (T1) implies that hC�X 2 C!.X/.

Using (2), (S2) and (T4), (1), (S3) and (T3), and finally m � 1C hm.x/ 2 Œm � 1;m� and Of C.x/ 2 Œm � 1;m/, we obtainˇ̌
hC.x/ � Of C.x/

ˇ̌
D

ˇ̌̌̌
ˇ
m�1X
nD1

hn.x/C hm.x/C

1X
nDmC1

hn.x/ � Of
C.x/

ˇ̌̌̌
ˇ

�

m�1X
nD1

jhn.x/ � 1j C

1X
nDmC1

jhn.x/j C
ˇ̌
m � 1C hm.x/ � Of

C.x/
ˇ̌
<

m�1X
nD1

2�n C

1X
nDmC1

2�n C 1 < 2:
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Further, from (1) it follows that there is a neighbourhood U of x in X such that U � X n Am and U � An for n < m � 1.
Thus jhAn

.y/j � 1
4

for n > m and y 2 U , and hAn
.y/ � 1 for n < m � 1 and y 2 U . This together with (T5) implies

k.hn�X /0.y/k D j.�n�R/
0.hAn

.y//j k.hAn
�X /0.y/k � 2�nC for n 2 N n fm � 1;mg and y 2 U . Hence

P1
nD1.hn�X /0

converges absolutely uniformly on U and so

.hC�X /0.x/


 � 1X

nD1



.hn�X /0.x/


 � X

n¤m

2�nC C


.hm�X /0.x/



 < C C 4C D 5C:
Similarly we obtain an approximation of Of � denoted by h�. Put h D hC � h�. Then h�X 2 C!.X/,

ˇ̌
h.x/ � Of .x/

ˇ̌
< 4 for

every x 2 X , and k.h�X /0.x/k � k.hC�X /0.x/k C k.h��X /0.x/k < 10C for every x 2 X .
Finally, let g.x/ D "

4
h
�
4L
"
x
�

for x 2 X . It is straightforward to check that g satisfies the conclusion of our proposition.
�

Let X be a set. A collection f ˛g˛2� of functions on X is called a supremal partition (sup-partition) if
�  ˛ W X ! Œ0; 1� for all ˛ 2 �,
� there is a Q > 0 such that sup˛2�  ˛.x/ � Q for each x 2 X ,
� for each x 2 X and for each " > 0 the set f˛ 2 �I  ˛.x/ > "g is finite.

Proposition 4. Let X be a real Banach space. Suppose that there is an open neighbourhood OG of X in QX and a collection
f O ngn2N of functions on OG with the following properties:

(P1) f O n�Xgn2N is a sup-partition on X ,
(P2) the mapping ´ 7! .an O n.´//n2N is a holomorphic mapping from OG into Qc0 for any .an/ 2 `1,
(P3) there is M > 0 such that each O n�X is M -Lipschitz,
(P4) there is r > 0 such that for each n 2 N there is Oxn 2 X such that O n.x/ �

Q
8

for x 2 X , kx � Oxnk � r .

Then there is a collection U of open neighbourhoods in QX such that for each A � X there is a function hA 2 H
�S

U
�

which
separates A with respect to U and such that hA�X is C -Lipschitz, where C D 2r

p
2M=Q.

In the proof we use the following proposition.

Proposition 5. Let q � 1. There is an open set W � Qc0 and a function � 2 H.W / with the following properties:
(M1) For every w 2 c0 n f0g there is �w > 0 such that UQc0

.y;�w/ � W for every y 2 c0 satisfying jwj � jyj � q jwj, where
the inequalities are understood in the lattice sense.

(M2) �.w/ � 8 for w 2 c0, kwk � 8,
(M3) j�.´/j < 2 for ´ 2 UQc0

.y;�w/, where y 2 c0, kyk � 1, and w 2 c0 n f0g, jwj � jyj � q jwj,
(M4) ��c0

is
p
2-Lipschitz and maps into R.

Proof of Proposition 4. Let W , �, and �w be as in Proposition 5 for q D 8
Q

. Further, we put G D 1
2r
OG, xn D Oxn

2r
, and

 n.´/ D O n.2r´/ for ´ 2 G. Then the functions  n�X are 2rM -Lipschitz and

 n.x/ �
Q

8
for x 2 X , kx � xnk �

1

2
. (3)

Denote w.´/ D . n.´//n2N for ´ 2 G. By the continuity of the mapping w (which follows from (P2)), for each x 2 X
there is an open neighbourhood Ux of x in QX such that Ux � G and kw.´/ � w.x/k < �w.x/=q whenever ´ 2 Ux . (Notice that
w.x/ 2 c0 n f0g.) Put U D fUx I x 2 Xg.

Let A � X . For each n 2 N put bn D q if dist.xn; A/ � 1
2

and bn D 1 otherwise. Choose ´ 2
S

U and let x 2 X be such
that ´ 2 Ux . Then

k.bn n.´// � .bn n.x//k D sup
n2N
jbn. n.´/ �  n.x//j � q sup

n2N
j n.´/ �  n.x/j D q kw.´/ � w.x/k < �w.x/ (4)

and since 0 � w.x/ � .bn n.x// � qw.x/ in the lattice sense, from (M1) it follows that .bn n.´// 2 W . Therefore we may
define hA.´/ D 1

8
�
�
.bn n.´//

�
for ´ 2

S
U and (P2) implies that hA 2 H

�S
U
�
. Further, hA�X is obviously C -Lipschitz.

Next we show that hA separates A with respect to U. Clearly hA has property (S1). Pick any x 2 A. From (P1) and (3) it follows
that supf n.x/I n 2 N; dist.xn; A/ � 1

2
g � Q. Therefore k.bn n.x//k � qQ D 8 and consequently (M2) gives property (S2).

Finally, to show (S3) let x 2 X be such that dist.x; A/ � 1. Then, by (3),  n.x/ �
Q
8

for those n 2 N for which dist.xn; A/ � 1
2

.
Thus k.bn n.x//k � max

˚
qQ
8
; 1
	
D 1. Now (4) together with (M3) implies jhA.´/j � 1

4
for ´ 2 Ux .

�

The following lemma finishes the proof of Theorem 1.

Lemma 6. Let X be a real separable Banach space with a separating polynomial. Then there is an open neighbourhood G of X
in QX and a collection of functions f ngn2N satisfying the properties (P1)–(P4) in Proposition 4.

To prove this lemma we will need a few auxiliary statements.
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Lemma 7. Let X be a real Banach space with a separating polynomial. Then there is � > 0 and a function � 2 H.˝/, where
˝ D fx C iy 2 QX I x; y 2 X; kyk < �g, such that ��X is Lipschitz and maps into Œ0;C1/, �.0/ D 0, �.x/ � kxk � 1 for
x 2 X , and the family of functions fy 7! Im �.x C iy/I y 2 X; kyk < �gx2X is equicontinuous at 0.

Proof. It is an easy well-known fact that ifX admits a separating polynomial thenX admits a homogeneous separating polynomial
(see e.g. [FPWZ]). Put �.´/ D .1C P.´//1=n � 1 for a suitable n-homogeneous separating polynomial P . The equicontinuity
follows from the fact that � is even Lipschitz on the whole of ˝. For the details see [AFK, Lemma 2].

�

Lemma 8. There are functions �n 2 H.Cn/ and constants ın > 0, n 2 N, with the following properties:
(H1) �n�Rn maps into Œ0; 1�,
(H2) �n�Rn is 1-Lipschitz with respect to the maximum norm,
(H3) j�n.´/j � 2�n for every ´ 2 Cn such that there is j 2 f1; : : : ; n�1g for which Re j́ �

1
2

and jIm ´i j � ıj for i D 1; : : : ; n,
(H4) �n.x/ � 1

4
for every x 2 Rn for which xn � 3 and xi � 3, i D 1; : : : ; n � 1,

(H5) �n.x/ � 1
32

for x 2 Rn, xn � 5.

With the aid of the statements above the proof of Lemma 6 is not difficult.

Proof of Lemma 6. Let � and ˝ be the function and the set from Lemma 7 and �n be the functions from Lemma 8. Let fxngn2N

be a dense subset of X . Put
 n.´/ D �n

�
�.´ � x1/; : : : ; �.´ � xn/

�
for ´ 2 ˝, n 2 N.

Then  n 2 H.˝/ and by (H1)  n�X maps into Œ0; 1�.
Let M > 0 be such that ��X is M -Lipschitz. Pick any x 2 X . Then from the density of fxng and the fact that �.y/ �M kyk

for any y 2 X it follows that there is k 2 N such that �.x � xk/ � 3. Let k 2 N be the smallest such number. Then property (H4)
implies that  k.x/ � 1

4
. Thus supn2N  n.x/ � Q for each x 2 X , where Q D 1

4
.

By the continuity of � there is � > 0 such that j�.´/j < 1
2

whenever ´ 2 QX , k´k < �. Now fix x 2 X and find an index
j 2 N such that kxj � xk < �. Using the equicontinuity of fy 7! Im �.w C iy/g at 0 choose 0 < �j < � such that
jIm �.w C iy/j < ıj whenever w; y 2 X , kyk < �j . Let us define Ux D f´ D w C iy 2 QX I k´ � xj k < �; kyk < �j g.
Notice that Ux is an open neighbourhood of x and ´ � xl 2 ˝ for every ´ 2 Ux , l 2 N. Let ´ D w C iy 2 Ux . Then
jIm �.´ � xl /j D jIm �.w � xl C iy/j < ıj for every l 2 N. Furthermore, jRe �.´ � xj /j � j�.´ � xj /j < 1

2
. Hence, by (H3),

j n.´/j � 2
�n for n > j and ´ 2 Ux . It follows that for any .an/ 2 `1, .an n.´//n2N D

P1
nD1 an n.´/en 2 Qc0 and the sum

converges absolutely uniformly on Ux . As the mappings ´ 7! an n.´/en are holomorphic as mappings from ˝ into Qc0, we can
conclude that .an n/ is a holomorphic mapping from G D

S
x2X Ux into Qc0, which gives (P2).

Property (P3) obviously holds by (H2). Finally we show that (P4) is satisfied with r D 6. Indeed, fix n 2 N. For x 2 X ,
kx � xnk � 6 we have �.x � xn/ � kx � xnk � 1 � 5, hence, by (H5),  n.x/ � 1

32
D

Q
8

.
�

For the proof of Proposition 5 we need the following version of the Implicit Function Theorem with explicit estimates on the
size of the region where the solution is found.

Theorem 9 (Implicit Function Theorem). Let X be a complex Banach space, U � X and V � C open sets, and F 2 H.U � V /.
Let Ó 2 U , Ou 2 V satisfy F. Ó ; Ou/ D 0. Further let R > 0, S > 0, and M > 0 be such that B. Ó ; S/ � U , B. Ou;R/ � V , and
jF.´; u/j �M for every ´ 2 B. Ó ; S/, u 2 B. Ou;R/. Assume that

ˇ̌
@F
@u
. Ó ; Ou/

ˇ̌
� a > 0 and 0 < r < aR2

aRCM
. Put c D ar � Mr2

R.R�r/

and s D S c
cCM

. Then for each ´ 2 U. Ó ; s/ there is a unique u 2 U. Ou; r/ satisfying F.´; u/ D 0. Denote such u by '.´/. Then
' 2 H.U. Ó ; s//.

The proof of this theorem is fairly standard using for example the Rouché theorem and Cauchy’s estimates for @
nF
@un on C and

for @F
@´

on X . Some details can be found e.g. in [CHP], although the estimates and the proof given there are not entirely correct.

Proof of Proposition 5. Define � on c0 as the Minkowski functional of the set
˚
x 2 c0I

P1
nD1.xn/

2n � 1
	
. Then � is an equiva-

lent norm on c0 for which kxk � �.x/ �
p
2 kxk (see [FPWZ]). This gives property (M4) and (M2).

Let F W Qc0 � .C n f0g/! C be defined as F.´; u/ D
P1
nD1.´n=u/

2n � 1. This function is holomorphic on Qc0 � .C n f0g/ and
for every x 2 c0 n f0g we have F.x; �.x// D 0.

Fix w 2 c0 n f0g. Put R D kwk
2

, S D kwk
4

, M D 1C
P1
nD1

�
1
2
C

2q
kwk
jwnj

�2n
, a D 1p

2qkwk
, r D min

n
1
2

aR2

aRCM
; 2 �

p
2
o
,

and �w D s as defined in Theorem 9. Now choose any y 2 c0, jwj � jyj � q jwj. Then R < kwk � kyk � �.y/, thus
B.�.y/; R/ � V D C n f0g. For any ´ 2 B.y; S/, u 2 B.�.y/; R/ we have juj � �.y/ � R � kyk � R � kwk � R D kwk

2

and j´nj � jynj C j´n � ynj � q jwnj C k´ � yk � q jwnj C
kwk
4

, and hence jF.´; u/j � 1 C
P1
nD1

ˇ̌
´n

u

ˇ̌2n
� M . Finally,ˇ̌

@F
@u
.y; �.y//

ˇ̌
D

ˇ̌̌
�

1
�.y/

P1
nD1 2n

�
yn

�.y/

�2n ˇ̌̌
�

1
�.y/

P1
nD1

�
yn

�.y/

�2n
D

1
�.y/
�

1p
2kyk

� a. Thus by Theorem 9 the equation
F.´; u/ D 0 uniquely determines a holomorphic function �wy on UQc0

.y;�w/ with values in U.�.y/; r/ and this holds for every
y 2 c0, jwj � jyj � q jwj.
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Take any two functions �1 D �
w1
y1

, �2 D �
w2
y2

defined on open balls U1 and U2 respectively. If U1 and U2 intersect, then
it is easy to check that U1 \ U2 \ c0 is a non-empty set relatively open in c0. Since �1 D � on U1 \ c0 and �2 D � on
U2 \ c0, it follows that both holomorphic functions �1 and �2 agree on some ball in U1 \ U2 and therefore on the whole
U1 \ U2. This observation allows us to put W D

S˚
UQc0

.y;�w/I w 2 c0 n f0g; y 2 c0; jwj � jyj � q jwj
	

and define � on W
by �.´/ D �wy .´/ whenever ´ 2 U.y;�w/. This gives property (M1).

To prove (M3) let w 2 c0 n f0g, y 2 c0, jwj � jyj � q jwj, kyk � 1, and ´ 2 UQc0
.y;�w/. Then by the choice of r above we

have �.´/ 2 U.�.y/; 2 �
p
2/ and therefore j�.´/j < j�.y/j C 2 �

p
2 �
p
2 kyk C 2 �

p
2 � 2.

�

It remains to prove Lemma 3 and Lemma 8. The proofs are standard using integral convolution technique and estimates which
are not difficult. We could just write the formulas for the functions in consideration and stop there (we claim a short proof after
all). Nevertheless for the convenience of the reader we include rather detailed computations.

Proof of Lemma 8. Let �n W Rn ! Œ0; 1� be a 1-Lipschitz function (with respect to the maximum norm) such that

�n.x/ D

(
0 whenever xn � 4 or 9i 2 f1; : : : ; n � 1g W xi � 1,
1 whenever xn � 3 and 8i 2 f1; : : : ; n � 1g W xi � 2.

For each n 2 N put ın D
p
2�n=8 and find an 2 R such that

an2
�n
� 3; (5)

e�an2
�n=8
� 2
p
� � 2�n; and (6)Z C1

�
p
an2�n

e�t
2

dt �
1

n
p
2

p
�: (7)

Finally, put

�n.´/ D
1

cn

Z
Rn

�n.t/e
�an

nP
iD1

2�i .´i�ti /
2

dt for ´ 2 Cn,

where cn D
R

Rn e
�an

Pn
iD1 2

�i t2
i dt D

q�
�
an

�nQn
iD1 2

i .
Using standard theorems on integrals dependent on parameter we obtain �n 2 H.Cn/. Property (H1) is obvious, and

property (H2) is easy to check.
Next we will need the elementary estimateZ C1

x

e�t
2

dt �
Z C1
x

te�t
2

dt D
1

2
e�x

2

for x � 1. (8)

To prove (H3) we use successively the definition of �n, Fubini’s theorem, substitution, Re j́ �
1
2

, estimate (8) together with (5),
the definition of ıj , and finally (6) to obtain

j�n.´/j �
1

cn

Z
Rn

�n.t/e
�an

nP
iD1

2�i Re.´i�ti /
2

dt D
e
an

nP
iD1

2�i .Im´i /
2

cn

Z
Rn

�n.t/e
�an

nP
iD1

2�i .Re´i�ti /
2

dt

�
e
anı

2
j

cn

Z
t2Rn

tj>1

e
�an

nP
iD1

2�i .Re´i�ti /
2

dt D
e
anı

2
j

cn

Z
Rn�1

e
�an

P
i¤j

2�i .Re´i�ti /
2

dt �
Z C1
1

e�an2
�j .Re j́�tj /

2

dtj

D
e
anı

2
j

p
�

p
an2�j

Z C1
1

e�an2
�j .Re j́�t/

2

dt D
e
anı

2
j

p
�

Z C1
p
an2�j .1�Re j́ /

e�t
2

dt �
e
anı

2
j

p
�

Z C1
1
2

p
an2�j

e�t
2

dt

�
e
anı

2
j

2
p
�
� e�

1
4an2

�j

D
1

2
p
�
� e
�an.2

�j =4�ı2
j
/
<

1

2
p
�
� e�an2

�n=8
� 2�n:

To prove (H4) we use successively the definition of �n, Fubini’s theorem and substitution, xn � 3 and xi � 3, substitution,
and (7) to obtain

�n.x/ �
1

cn

Z
tn�3

ti�2;iD1;:::;n�1

e
�an

nP
iD1

2�i .xi�ti /
2

dt D
1

cn

Z 3�xn

�1

e�an2
�nt2 dt �

n�1Y
iD1

Z C1
2�xi

e�an2
�i t2 dt

�
1

cn

Z 0

�1

e�an2
�nt2 dt �

n�1Y
iD1

Z C1
�1

e�an2
�i t2 dt �

1

2

1

cn

nY
iD1

Z C1
�1

e�an2
�i t2 dt D

1

2

1

.
p
�/n

nY
iD1

Z C1
�

p
an2�i

e�t
2

dt

�
1

2

1

.
p
�/n

nY
iD1

Z C1
�
p
an2�n

e�t
2

dt D
1

2

�
1
p
�

Z C1
�
p
an2�n

e�t
2

dt
�n
�
1

4
:
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Finally, to prove (H5) we use successively the definition of �n, Fubini’s theorem, substitution, xn � 5, and (8) together with (5)
to obtain

�n.x/ �
1

cn

Z
t2Rn

tn<4

e
�an

nP
iD1

2�i .xi�ti /
2

dt D
r
an

�2n

Z 4

�1

e�an2
�n.xn�t/

2

dt D
1
p
�

Z pan2�n.4�xn/

�1

e�t
2

dt

�
1
p
�

Z C1
p
an2�n

e�t
2

dt �
1

2
p
�
� e�an2

�n

<
1

32
:

�

Proof of Lemma 3. Let � W R! Œ0; 1� be defined as �.t/ D 0 for t � 5
8

, �.t/ D 4t � 5
2

for t 2
�
5
8
; 7
8

�
, and �.t/ D 1 for t � 7

8
.

Obviously � is a 4-Lipschitz function. For each n 2 N find an 2 R such that

3

8

p
an � 1; (9)

e�
5

64an � 2
p
� � 2�n; (10)Z C1

� 1
8

p
an

e�t
2

dt � .1 � 2�n/
p
�; and (11)

2
p
an � e

� 1
64an �

p
� � 2�n: (12)

Finally, put

�n.´/ D
1

cn

Z
R
�.t/e�an.´�t/

2

dt for ´ 2 C,

where cn D
R

R e
�ant

2
dt D

q
�
an

.

Using standard theorems on integrals dependent on parameter we obtain �n 2 H.C/. Property (T1) is obvious, and property (T2)
is easy to check.

To prove (T3) we use successively the definition of �, jIm ´j � 1
4

, substitution, Re ´ � 1
4

, estimate (8) together with (9), and
finally (10) to obtain

j�n.´/j �
1

cn

Z
R
�.t/e�an Re.´�t/2 dt D

ean.Im´/2

cn

Z
R
�.t/e�an.Re´�t/2 dt �

e
1

16an

cn

Z C1
5
8

e�an.Re´�t/2 dt

D
e

1
16an

p
�

Z C1
p
an. 5

8�Re´/
e�t

2

dt �
e

1
16an

p
�

Z C1
3
8

p
an

e�t
2

dt �
e

1
16an

2
p
�
� e�

9
64an D

e�
5

64an

2
p
�
� 2�n:

To prove (T4) we use successively the definition of �, substitution, x � 1, and (11) to obtain

�n.x/ �
1

cn

Z C1
7
8

e�an.x�t/
2

dt D
1
p
�

Z C1
p
an. 7

8�x/
e�t

2

dt �
1
p
�

Z C1
� 1

8

p
an

e�t
2

dt � 1 � 2�n:

Finally, we show (T5). Differentiating under the integral sign we obtain

� 0n.x/ D
2an

cn

Z
R
�.t/.t � x/e�an.t�x/

2

dt:

Thus for x � 1
2

using the definition of �, substitution, and (12) we get

ˇ̌
� 0n.x/

ˇ̌
�
2an

cn

Z C1
5
8

.t � x/e�an.t�x/
2

dt D
1

cn

Z �an. 5
8�x/

2

�1

ey dy D
r
an

�
� e�an. 5

8�x/
2

�

r
an

�
� e�

1
64an � 2�n:

On the other hand, for x � 1 using the definition of �, evaluation of the integrals, and (12) we getˇ̌
� 0n.x/

ˇ̌
D
2an

cn

ˇ̌̌̌
ˇ
Z 7

8

5
8

�.t/.t � x/e�an.t�x/
2

dt C
Z C1

7
8

.t � x/e�an.t�x/
2

dt

ˇ̌̌̌
ˇ

�
2an

cn

Z 7
8

5
8

jt � xj e�an.t�x/
2

dt C
2an

cn

ˇ̌̌̌
ˇ
Z C1

7
8

.t � x/e�an.t�x/
2

dt

ˇ̌̌̌
ˇ

D
�2an

cn

Z 7
8

5
8

.t � x/e�an.t�x/
2

dt C
1

cn
� e�an. 7

8�x/
2

D
1

cn

�
e�an. 7

8�x/
2

� e�an. 5
8�x/

2

C e�an. 7
8�x/

2
�
�
2

cn
� e�an. 7

8�x/
2

� 2

r
an

�
� e�

1
64an � 2�n:

�
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