LOCALLY FLAT BANACH SPACES

PETR HAJEK AND MICHAL JOHANIS

ABSTRACT. Let X be a separable Banach space with a Schauder basis, admitting a bump which depends locally on finitely many
coordinates. Then X admits also a C °°-smooth bump which depends locally on finitely many coordinates. There exists an Orlicz space
admitting a C °°-smooth bump which depends locally on finitely many coordinates, and which is not isomorphic to a subspace of any
C(K), K scattered. In view of the related results this space is possibly not isomorphic to a polyhedral space.

1. INTRODUCTION

In the present paper we investigate the properties of separable Banach spaces admitting bump functions depending locally on
finitely many coordinates (LFC). The first use of the LFC notion for a function was the construction of C*°-smooth and LFC
renorming of ¢y, due to Kuiper, which appeared in [BH]. The LFC notion was explicitly introduced and investigated in the paper
[PWZ] of Pechanec, Whitfield and Zizler. In their work the authors have proved that every Banach space admitting a LFC bump
is saturated with copies of cg, providing in some sense a converse to Kuiper’s result. Not surprisingly, it turns out that the LFC
notion is closely related to the class of polyhedral spaces, introduced by Klee [K] and thoroughly investigated by many authors
(see [JL, Chapter 15] for results and references). (We note that polyhedrality is understood in the isomorphic sense in this paper.)
Indeed, prior to [PWZ], Fonf [E1] has proved that every polyhedral Banach space is saturated with copies of cg. Later, it was
independently proved in [F2] and [Haj1f] that every separable polyhedral Banach space admits an equivalent LFC norm. Using
the last result Fonf’s result is a corollary of [PWZ]. The notion of LFC has been exploited (at least implicitly) in a number of
papers, in order to obtain very smooth bump functions, norms and partitions of unity on non-separable Banach spaces, see e.g.
[Tol, [Tall, IDGZI1, ([GPWZ], IGTWZI, [EZ], [Hay1]l, [Hay2], [Hay3|l, [S1], IS2], [Haj 1[I, [Haj2]l, [Haj3[, and the book [DGZ]. In
fact, it seems to be the only general approach to these problems. The reason is simple; it is relatively easy to check the (higher)
differentiability properties of functions of several variables, while for functions defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach space is polyhedral if and only if it admits a LFC
renorming (resp. C *°-smooth and LFC renorming), [Haj1]]. However, this smoothing up result is obtained by using the boundary
of a Banach space, rather than through some direct smoothing procedure. There is a variety of open questions, well known among
the workers in the area, concerning the existence and possible smoothing of general non-convex LFC functions. In our note we are
going to address the following ones. Suppose a Banach space X admits a LFC bump. Does X admit a C *°-smooth bump (norm)?
Is the space X necessarily polyhedral?

To this end, we develop some basic theory of LFC functions on separable Banach spaces. In fact, in Section [2] we introduce
a formally more general notion of a locally flat space, and generalise the known structural results valid for spaces admitting a
(continuous) LFC bump function in this context. It is not clear to us whether the generalisation is genuine. However, locally flat
spaces include for example all spaces admitting a (not necessarily continuous) bump locally depending on finitely many linear (i.e.
not necessarily continuous) functionals. This notion offers itself for a possible purely combinatorial characterisation of locally flat
spaces. We intend to investigate in this direction in the future.

The main result of Section [3|is that a separable Banach space with a Schauder basis has a C *°-smooth and LFC bump function
whenever it has a continuous LFC bump. This seems to be the first relatively general result in this direction. We establish some
additional properties of such bumps, with an eye on the future developments.

The main result of the paper, contained in Section 3] is a certain rather subtle construction of an Orlicz sequence space having a
C*°-smooth and LFC bump function, which we suspect to be non-polyhedral. Such an example is of course needed to justify the
whole theory, since in the polyhedral case the smoothing up (and structural) results are well known and easier. In fact, our paper,
and in particular the example was motivated by the beautiful theory of polyhedrality for separable Banach spaces with Schauder
basis, and especially Orlicz sequence spaces, developed by Leung in [L1] and [L2]. The key result of these works is the following
theorem.

Theorem ([L2]). The following statements are equivalent for every non-degenerate Orlicz function M :

(i) There exists a constant K > 0 such that lim Aﬁg;) =00
t—>0+

(ii) The Orlicz sequence space hyy is isomorphic to a subspace of C(w®).
(iii) The Orlicz sequence space hyy is isomorphic to a subspace of C(K) for some scattered compact K.
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All spaces satisfying (ii) are polyhedral, and Leung conjectured that conversely all polyhedral Orlicz sequence spaces fall under
this description. There is a strong evidence supporting this idea. First, Theorem[34] part of which is also in Leung’s paper, shows
that the naturally defined LFC renormings exist precisely for those spaces. Second, negating the condition in (i) we obtain the

following formula

. M(Kt,)
o0

(VK > 0)3Htnyy=1:tn \0) Tlim MG,

Reversing the order of the quantifiers we obtain the following stronger (less general) condition
M(K1y)
M(tn)
Leung proved that Orlicz sequence spaces satisfying the last condition are not polyhedral (although they may be c¢ saturated).

Thus Leung’s theorem above is a near characterisation of polyhedrality for Orlicz sequence spaces, the gap lying in the exchange
of quantifiers. Our example of an Orlicz sequence space with C°°-smooth and LFC bump lies strictly in between the above
conditions. Therefore, our space is either a non-polyhedral space admitting a LFC bump (we are inclined to believe this alternative),
or Leung’s polyhedral conjecture is false.

We use a standard Banach space notation. If {e; } is a Schauder basis of a Banach space, we denote by {e/"} its biorthogonal
functionals. P, are the canonical projections associated with the basis {e;}, P, are the operators adjoint to Py, i.e. the canonical
projections associated with the basis {e}. Given a set A C N we denote by P4 the projection associated with the set A, i.e.
Pyx = ) ;cqef(x)e;. By R, we denote the projections R, = I — Py, where I is the identity operator. For a finite set B,
| B| denotes the number of elements of B. U(x, §) is an open ball centred at x with radius §. By X* we denote an algebraic dual to
a vector space X .

We refer to [F=Z], [LT] and [JL| for background material and results.

FHtn 3221t \WO)(VK > 0) nlggo

n=1"

2. LocAL FLATNESS

In this section, we are going to generalise the well known structural results for polyhedral spaces (or spaces with a (continuous)
LFC bump), to a (at least formally) larger class of locally flat spaces. Apart from the usual effort to find the essential ingredients in
the theory, we feel that the more discrete and combinatorial notions have a better chance for finding characterisation, e.g. among
the Orlicz sequence spaces. This is crucial for finding new examples.

The notion of a function, defined on a Banach space with a Schauder basis, which is locally dependent on finitely many
coordinates was introduced in [PWZJ]. The following definition is a slight generalisation which was used by many authors.

Definition 1. Let X be a topological vector space, 2 C X an open subset, E be an arbitrary set, M C X* and g: 2 — E. We
say that g depends only on M ona set U C 2 if g(x) = g(y) whenever x,y € U are such that f(x) = f(y)forall f € M. We
say that g depends locally on finitely many coordinates from M (LFC-M for short) if for each x € 2 there are a neighbourhood
U C 2 of x and a finite subset F C M such that g depends only on F on U. We say that g depends locally on finitely many
coordinates (LFC for short) if it is LFC-X*.

We may equivalently say that g depends only on { f1,..., 4} C X* on U C $2 if there exist a mapping G : R” — E such that
gx) =G(fi(x),..., fu(x)) forall x € U. If g is moreover LFC (i.e. LFC-X*), then we have the following characterisation:

Lemma 2. Let X be a topological vector space, §2 C X an open subset, E be an arbitrary set, M C X* and g: 2 — E. The
mapping g is LFC-M if and only if for each x € 2 there are an open neighbourhood U C $2 of x, n € N, a biorthogonal system
{(ei, fi)}'—, C X x M, an open set V. C R", and a mapping G: V — E, such that g(y) = G(f1(y)..... fu(y)) forall y € U,
where G(w) = g (x + Y_i—;(wi — fi(x))e;) for eachw € V.

Proof. Let Uy be an open neighbourhood of x and n € N such that g depends only on { f1, ..., f,} C M on Uy. Without loss
of generality we may assume that the functionals fi,..., f, are linearly independent. Hence there are vectors ey, ...,e, € X
such that {(e;, f;)}7_, is a biorthogonal system (as N;«; ker f; ¢ ker f; foreach 1 < j <n).Let @: R" — X be defined as
dw)=x+>1, (w,- — fi (x))e,-. This is a continuous mapping, so the set V = @~ (Uj) is an open subset of R”. Notice that
G(w) = g(@(w)) foreachw € V.Let ¥: X — R” be defined as ¥(y) = (f1(¥),..., fu(¥)). This is a continuous mapping,
so the set U = w1 (V) N Uy is open. Moreover, ®(¥(x)) = x, hence U is an open neighbourhood of x.

Now choose any y € U. Since ¥(y) € V, G(¥(y)) is well defined. Further, from the facts that y € Uy, @(¥(y)) € Uy,
@@ = £ + Y () — fi(0)) fi(e;) = f3(y) foreach 1 < j < n, and g depends only on { /1. ... f,} on U,
we may conclude that G(¥'(y)) = g(@(¥(y))) = g(»).

The other implication is obvious.

|

Notice, thatif g: 2 — E is LFC and h: E — F is any mapping, then also % o g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on cq, which is LFC-{e/} away from the origin. Indeed,
take any x = (x;) € co, x # 0. Letn € N be such that |x;| < |x||, /2 fori > n. Then |||, depends only on {e},...,e;} on
UGx. [xllo0 /4.

The following lemma shows that under some conditions it is possible to join together some of the neighbourhoods in the
definition of LFC:
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Lemma 3. Let X be a topological vector space, E be an arbitrary set, g: X — E and M C X*. Let U, C X, a € I be open
sets such that U = | ey Uy is convex and g depends only on M on each Uy, o € I. Then g depends only on M on the whole
of U.

Proof. Pick any x,y € U such that f(x) = f(y) forall f € M. Since U is convex, the line segment [x, y] C U. Since

[x, y] is compact, there is a finite covering Uy, ..., U, € {Uy}aer of [x, y]. Since [x, y] is connected, without loss of generality
we may assume that x € U;, y € U, and there are x; € U; N U1 N [x,y] fori = 1,...,n — 1. As x; € [x,y], we have
f(x)= f(y)= f(x;)forall f € M andi =1,...,n — 1. Therefore g(x) = g(x1) =--- = g(xp—1) = g(»)-

O

A norm on a normed space is said to be LFC, if it is LFC away from the origin. Recall that a bump function (or bump) on a
topological vector space X is a function b: X — R with a bounded non-empty support.

The existence of a LFC norm (or even a continuous LFC bump) on a Banach space is known to have strong implications on the
structure of the space (see e.g. [F1], [PWZ], [EZ]). The role of continuity in these results seems rather interesting. It turns out that
the essence lies in the discrete (or combinatorial) structure of the space itself. This leads us to the following general concept:

Definition 4. Let X be a vector space, A C X, U C X be arbitrary subsets of X. We say that A is determined on U by a subspace
ZCXifUNn(y+2Z)CAforally e UnN A.

Clearly, if A is determined on U by Z then A is determined on U by any subspace of Z.
Let us denote the set of all finite-codimensional subspaces of a vector space X by ¥ €(X). If X is moreover a topological
vector space, we denote by ¥ €. (X) the set of all closed finite-codimensional subspaces.

Definition 5. Let X be a topological vector space, A C X be an arbitrary subset of X and Z C F€(X). We say that A is locally
finite-dimensionally determined by Z (or LFD-Z for short) if for any x € X there is a neighbourhood U C X of x and Z € Z
such that A is determined by Z on U. We say that A is locally finite-dimensionally determined (or LFD) if A is LFD-F €(X).

Fact 6. Let X be a topological vector space, let A C X and M C X*. The function y 4 is LFC-M if and only if A is LFD-Z for
Z ={iz ker fi; {f1...., fu} C M,n € N}

Proof. A is determined on U by ();_ ker f; if and only if x4 on U depends only on {f1,..., f»} C X*.
O

Fact7. Let X be a topological vector space and A, B C X.

(a) X and @ are LFD. If A and B are LFD, then so are the sets AN B, AU B and X \ A. In other words, all LFD subsets of X
form an algebra.

(b) If T: X — X is an automorphism or a translation and A is LFD, then T (A) is also LFD.

(c) If A and B are separated (i.e. AN B = AN B = @) and AU B is LFD, then both A and B are LFD.

Proof. (a): Fix x € X.If U, V are neighbourhoods of x such that A is determined by Z on U and B is determined by W on V,
then both A N B and A U B are determined by Z N W on U N V. The rest is obvious.

(b): It is obvious, since an automorphism preserves the finite codimension of subspaces.

(c): For a fixed x € X there is a neighbourhood of x such that A U B is determined by Z € F€(X) on U and U — x is
balanced, hence U is connected. Forany y € U N A,wehave U N (y + Z) C AU B and U N (y + Z) is connected, which
means that U N (y + Z) C A.

O

Theorem 8. Let X be a topological vector space and Z C ¥ €(X). Ifaset A C X is LFD-Z, then its closure A is LFD-:‘Z, where
zZ={Z,7ZeZ} CFE(X).

Proof. Fix x € X. There is an open neighbourhood of zero U and Z € Z such that A is determined on x + U by Z. Let VV be an
open neighbourhood of zero such that V 4+ V + V C U. Choose any y € (x + V)N Aandz € Z suchthat y +z € x + V.
There is a net {y, } C A such that y, — y and a net {z,,} C Z such that z,, — z. We can moreover assume that {y, } C x + U,
{yp}Cy+Vand{z,} Cz+V.Theny, +z,—x=Q+2—-x)+Qy,—y)+(&y—2) €V +V +V CU. Thus
¥y + 2y € x + U which together with y,, € (x + U) N A gives y, + z,, € A. Itfollows that y + z € A, which means that A4 is
determined on x + V by Z.

|

Similarly, we have

Theorem 9. Let X be a topological vector space, $2 C X an open subset, E a Hausdorff topological space and g: 2 — E. If g
is LFC-X* and continuous, then gis LFC-X*.

Proof. Fix x € 2. Let U be a neighbourhood of x such that g depends only on { f1,..., fu} € X*onU.Let{fi,..., fu} C X*
are such that (ker f; = () ker f;. Choose y € U. Since g(z) = g(y) for any z € U such that z € y 4 (| ker f;, the continuity

of g implies that g(z) = g(y) also for any z € U such that z € y + [\ ker f;, i.e. whenever f;(y) = fi(z) forall1 <i <n.
O



4 PETR HAJEK AND MICHAL JOHANIS

If X is a topological vector space, let us recall that a set-valued mapping ¥ : X — 2% is called a cusco mapping if for each
x € X, ¥ (x) is a non-empty compact convex subset of X and for each open set U in X, {x € X;v(x) C U} is open.

Lemma 10. Let X be a locally convex space, E be an arbitrary set and g: X — E be a LFC-M mapping for some M C X*.
Further, let y: X — 2% be a cusco mapping with the following property: For any finite F C M, if x,y € X are such that
f(x) = f(y)forall f € F, then for each w € Y (x) there is 7 € ¥ (y) such that f(w) = f(z) forall f € F.

Then the mapping G: X — 28, G(x) = g(¥(x)), is LFC-M.

Proof. Let xg € X. We can find a finite covering of the compact ¥ (x¢) by open sets U;, i = 1,...,n, so that g depends only on
a finite set F; C M on U;. Let W be a convex neighbourhood of zero such that ¥ (xo) + W C |JU; and put U = ¥ (xo) + W
and F = J F;. As U isconvex and U C |J Uj;, by Lemma g depends only on F on U.

Suppose V' C X is a neighbourhood of x¢ such that (V) C U.Letx,y € V besuchthat f(x) = f(y) forall f € F.Choose
w’ € G(x) and find w € ¥ (x) for which g(w) = w’. Then, by the assumption on , there is z € ¥ (y) such that f(w) = f(z)
forall f € F.Butwe have alsow € ¥(x) C U and z € ¥(y) C U and hence g(w) = g(z). Therefore w’ € G(y) and by the

symmetry we can conclude that G(x) = G(y).
O

As we shall see, the existence of a non-empty bounded LFD set in an infinite-dimensional space has a strong impact on the
structure of the space.

Definition 11. We say that a topological vector space X is locally flat if there exists a non-empty bounded LFD subset A C X.

Let X be a topological vector space, Y C X and Z C X be linear subspaces. As follows from the remark after Definition [4]
and the fact that dim Y /(Y N Z) < dim X/ Z, any linear subspace of a locally flat space is also locally flat.

By Theorem [§] and Fact[6] X is locally flat if and only if it admits a LFC bump function b (in general arbitrary, i.e. even
non-continuous). Indeed, then (1 — y¢o3) o b is a characteristic function of a bounded set which is LFC.

Theorem 12. Let X be a locally flat topological vector space. Then X has a basis of neighbourhoods of zero formed by bounded
LFD sets.

Proof. 1t suffices to show that there is a set C C X that is a bounded LFD neighbourhood of zero in X, since then by the
boundedness {%C 152, is a basis of neighbourhoods of zero.

By Fact[7]and Theorem 8| we may assume that there is a closed bounded LFD-% €. (X) subset 4 of X such that 0 € A. There
is a neighbourhood U of zero and ¥ € F €. (X) such that 4 is determined by ¥ on U. Put Ag = A N Y. By Fact[7] Ao is still a
closed bounded LFD-% €. (X) subset of X for whichOe UNY C 49 C Y.

We assume that codim ¥ = 1, otherwise we repeat inductively the following construction.

Choose e € X \ Y and denote B = {se; |s| < 1}. Put Ay = Ao + B. The set A; is bounded and LFD-¥€.(X): Fix
any x € X,x = y + tefor y € Y and ¢ scalar. There is a neighbourhood V of y such that Ay is determined on V' by some
ZeF€.(X),ZCY. Wedenote V'y =V NY andput W = Vy +te + B. Since Y is closed and codim Y = 1, the product
topology on Y & span{e} coincides with the topology of X and thus W is a neighbourhood of x. Then for any z € W N A; we
have z = 71 + se, where z; € Vy N Ag = V N Ap and |s| < 1. As Ay is determined by Z on V', we have V N (z1 + Z) C Ao
and therefore W N (z + Z) = Vy N(z1 + Z) + se C Ag + se C A;.

A1 is a neighbourhood of zero in X, because A; O (U N Z) + B and U N Z is a neighbourhood of zero in Z and we use the
same argument on product topology as above.

(]

Using Kolmogorov’s theorem we immediately obtain
Corollary 13. Any Hausdorff locally convex space that is locally flat is normable.
Another consequence follows from Lemma[I0}]
Corollary 14. Let X be a locally flat normed linear space. Then X has a balanced bounded LFD neighbourhood of zero.

Proof. By Theorem [12|there is A C X which is a bounded LFD neighbourhood of zero. Define a mapping ¥ : X — 2% by
V(x) = {tx; |t] < 1}.Itis easy to check that v is a cusco mapping. Furthermore, let F C X*, and suppose x, y € X are such
that f(x) = f(y) forall f € F. Choose any w € ¥ (x). Then w = tx for some suitable ¢, |[f| < 1, and we have ty € ¥ (y)
and f(w) = f(tx) = f(ty) forall f € F. The function g = y4 is LFC by Fact[6] Thus Lemma[10]implies that the function
h(x) = infj<; g(tx) = inf g(Y¥ (x)) is LFC.

Let D = h~!({1}). This set is LFD by Fact@ We have h(x) < g(x) forall x € X and hence D C A and D is bounded.
Since A is a neighbourhood of zero, there is some ball B, B C A, and we have h(x) = 1 for any x € B. Thus B C D and D
is a neighbourhood of zero. Next, h(tx) = infj5<; g(tsx) > infjg <1 g(sx) = h(x) for any ¢, |¢| < 1. Therefore x € D implies
tx € Dforallt, |¢t| < 1and D is balanced.

|

Theorem 15. Let X be a normed linear space, A C X be a balanced bounded LFD neighbourhood of zero. If the Minkowski
functional p of A is continuous, then it is LFC away from the origin. In particular, if A is moreover convex, then p is an equivalent
LFC norm.



LOCALLY FLAT BANACH SPACES 5

Proof. Without loss of generality we may assume that A4 is closed and LFD-F €. (X).

Fix any x € X \ {0} and put 8 = p(x). Thereis 0 < § < |x|| such that A is determined by Z € F€.(X) on U(x, §). Let
n= 1+ %)/2 and 1, = (1 + %)/2. Let V be a neighbourhood of x such that |p(y) — p(x)| < Bmin{l —t;,t, — 1}
for y € V. Put

U=Vvn () UGx.18) =V NU(tx,08) N U(tpx. 18),
1 <t<tr
which is a neighbourhood of x, as by the definition of #; and ¢, both U(t;x,t;6) and U(t,x, t28) are neighbourhoods of x. (The
second equality follows by an easy convexity argument.)

It is easy to see that each of the sets 1A, t; <t < t,, is determined on U by Z. Furthermore, ;8 < p(y) < tf for any
y € U. Since A is closed, we have y € p(y)Aand y ¢ tA for0 <t < p(y). Therefore y + z € p(y)Aand y + z ¢ tA for
1B <t < p(y) whenever z € Z is such that y + z € U. As A is balanced, it follows that y + z ¢ tA forall 0 < ¢t < p(y) and
hence p(y + z) = p(y) whenever z € Z is such that y + z € U. This means that p depends on U only on f1,..., f, € X*
such that Z = [ ker f;.

O

Theorem 16 ([PWZI)). An infinite-dimensional locally flat Banach space X is saturated by c.

Proof. As any subspace of X is also locally flat, it suffices to prove that co C X.
Let A C X be a non-empty bounded LFD set. Without loss of generality we may assume that 0 € A. We will inductively

construct a sequence {x; } C X satisfying Z?:o gix; € A for all choices of signs ¢; = £1,i =0, ...,n, as follows: Set xo = 0.
If xo, x1, ..., xp—1 have already been defined, we put
n—1

Ap = %yeX\{O}; Zsixi+enyeA for all choices of signs ¢; = £1,i =0,...,n¢.

i=0

Since A is LFD, the set A, is non-empty. Indeed, Z:’;& gix; € Afor any &; = =1 by the induction and in the neighbourhood of
each of these points the set A is determined by some finite-codimensional subspace. Since there is finitely many of these points, the
intersection of all the respective finite-codimensional subspaces is non-empty and sufficiently small vectors from this intersection
belong to A,. We put M, = supyc 4, ||y, and choose x,, € A, such that [[x, | > M, /2.
We claim that the series Y ;o x; does not converge unconditionally. Indeed, let us assume the contrary. Then the set
S = {Z?:l &ixi; & = xl,n € N} C A is relatively compact and we can find a finite covering of the compact S by open
balls U(ay, 61),...,U(ag,8;) and Zy, ..., Z, C FE€(X) such that A is determined on U(a;,25;) by Z;,i = 1,...,k. We put
Z = ﬂle Z; and § = minj<;<¢ 6;. As dim Z = oo (and hence Z is non-trivial), we can choose z € Z for which ||z|| = 4.
Since z € A, for any n € N, it follows that ||x,| > M, /2 > §/2 for all n € N, which contradicts the convergence of > 1o, X;.
Without loss of generality we may assume that Y ;o , x; is not convergent (otherwise we change appropriately the signs of x;).
As the set A is bounded, there is K > 0 such that || > Eix H < K for any choice of &; = &1 and alln € N. Thus } 72, x; is
weakly unconditionally Cauchy and by the Bessaga-Pelczyriski theorem ([LT} 2.e.4]) X contains an isomorphic copy of ¢g. (The
canonical basis of ¢g is equivalent to some sequence of blocks of {x;}.)
|

Theorem 17. Let A C X be a non-empty bounded LFD-Z subset of a Banach space X. Denote Z+ = \ {Z+: Z € Z}. Then
Zl = x*.

Proof. Since Z+ = 7{ by Theorem [8| we may assume that A is closed. Pick any f € X* and ¢ > 0 and notice that f is
bounded on A. Let J4: X — R U {+o0} be the indicator function of the set A4, i.e. J4(x) = 0 forx € A and J4 = +o0 for
x € X\ A. Putp = J4 — f. Then ¢ is a lower semi-continuous bounded below function and so by the Ekeland variational

principle there is x¢g € X such that ¢(x) > ¢(x¢) — €||x — x¢|| for every x € X. Obviously xo € A and for every x € A we have
—f(x) = —f(x0) — €||x — x| from which it follows that

f(x —x0) < é€|lx —xo| foreveryx € A. (1)

Let § > 0 and Z € Z be such that A4 is determined by Z on U(x¢, ). Forany z € Z, ||z|| < § we have xo + z € A and hence
f(z) < ¢llz]l by (). This means that || f ' z|| < e. By the Hahn-Banach theorem we can find g € X™* such that g = f on Z and

gl < e Cleatly, f —g € Z- and || f — (f — @)l <.
O

The next corollary removes the assumption of continuity in a theorem from [FZ].
Corollary 18. Let X be a Banach space, M C X* and X admits an arbitrary LFC-M bump function. Then span M = X *.

Proof. Let b be the LFC-M bump function. Put A = {x € X; b(x) # 0} and Z = {(\/_, ker fi; fi...., fa € M,n € N}.

Then A is a non-empty bounded LFD-Z set (Fact@), Z' = span M and sospan M = X* by Theorem
|
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Corollary 19. Any infinite-dimensional locally flat Banach space X is a co-saturated Asplund space.

Proof. X is cp-saturated by Theorem Since local flatness passes to subspaces, it is enough to show that X * is separable
provided that X is separable.

By the Lindelof property of X there exists a countable collection Z = {Z;} C F€(X) such that A is LFD-Z. If Z € ¥ €(X),
then Z* C X* is a subspace with dim Z+ < codim Z. As Z; is finite-codimensional, we can find {f; ;}7, C Z;-, such
that Z;- = span{f,-,j};";l, where n; < codim Z;. We have Z+ = |J; Zi* C spanlJ; Z+ = spanJ;{fi.1...., fin,} and by
Theorem X* =spanlJ;{fi,1..... fin, }, hence it is separable.

O

3. SPACES WITH SCHAUDER BASES

The word “coordinate” in the term LFC originates of course from spaces with bases, where LFC was first defined using the
coordinate functionals. In order to apply the LFC techniques to spaces without a Schauder basis, the notion had to be obviously
generalised using arbitrary functionals from the dual. However, as we will show in this section, the generalisation does not
substantially increase the supply of LFC functions on Banach spaces with a Schauder basis, and we can always in addition assume
that the given LFC function in fact depends on the coordinate functionals. This fact is not only interesting in itself; it is the main
tool for smoothing up LFC bumps on separable spaces with basis.

We begin with a simple related result for Markushevich bases:

Theorem 20. Let E be a set, X be a separable Banach space and g: X — E be a LFC mapping. Then there is a Markushevich
basis {x;,x}} C X x X* such that g is LFC-{x]}.

Proof. By the Lindeldf property of X we can choose a countable { f;} C X * such that g is LFC-{ f; }. Find a countable {g;} C X*
such that it separates points of X and { f;} C {g;}. Then we can use the Markushevich theorem (see e.g. [F=Z]) to construct a
Markushevich basis {x;, x} such that span{x} = span{g;} D span{ f;}.

Now let x € X and U C X be a neighbourhood of x such that g depends only on M = {fi,..., fu} on U. Let
M C span{xy,...,x,}. Then forany y,z € U such that x}(y) = xj(z) forall j = 1,...,m we have also f;(y) = fi(z) for
anyi = 1,...,n and hence g(y) = g(z). Thus g depends only on {x,....x,} onU.

O

We would like to establish a similar result for Schauder bases. In this context, shrinking Schauder bases emerge quite naturally,
taking into account Corollary [T§] (see also Theorem [28). We will use the following simple fact:

Fact 21. Let X and Y be Banach spaces with equivalent Schauder bases {x;} and {y;} respectively. Then {x;} is shrinking if and
only if {y;} is shrinking.

Proof. Let {x;} be a shrinking basis and 7: Y — X be an isomorphism of Y onto X such that Ty; = x;. Then T*: X* — Y*
is an isomorphism of X * onto Y * such that 7*x = y and thus

Y* = T*(X*) = T*(spanix}}) C T*(span{x;}) = 5pan T ({x}}) = spanty;}.
O

The next result is the main tool used in the sequel for the study of functions locally dependent on finitely many coordinates on
spaces with shrinking Schauder bases.

Lemma 22. Let X be a Banach space with a shrinking Schauder basis {e;}. Let f € X*, ¢ > 0 andn € N. Then there is a
(shrinking) Schauder basis {x;} of X and N € N, N > n, such that x; = e; for 1 <i < N, {x;} is (1 + €)-equivalent to {e;},
span{x; }7* . = span{e;}" foralll <k <nandm >k, x; = e ifi <nori > N, andspan{x;; i > N} C ker f.

i=

Proof. Without loss of generality we may assume that there is a z € span{e;; i > n} for which f(z) = 1. Let us denote
S = f = P_,f. As {e;} is shrinking, | fx|| — 0 and hence we can find N € N such that N > maxsuppz > n and
|/l < (2++)”Z” Putx; =e¢; for1 <i < N and x; = e¢; — f(e;)z fori > N. For any m,m, € N and any sequence {a; } of
scalars we have

ma

Z a;e;

mo myp mo
D aixi D aei—z Yy aif(e)

mo
= = + Z.fN(Zaiei)"
i=mq i=mq i=max{m,N} i=m i=m
my e ma
< (1 + Il )| Y aer] < (1+2+8) 3 ae
i=m) i=m
and
myp my myp s myp
3 a2 | 3 ae - sz(_z ) = (1-55) | 3 we
i=my i=m i=m i=m
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This implies that {x; } is a basic sequence (1 + ¢)-equivalent to {e; }. Since z € span{x;; n <i < N}, we have span{x;}/’, =
span{e; }7L, forall 1 <k <nand m > k, and therefore span{x; } = span{e; }, which implies that {x; } is a basis of X. Moreover,

x[(x) = Z e; (x)xf (ej) = Z e; (x)x; (xj) + Z er (0)x; (x; + f(ej)z)
J<N J=N
= Ze;-‘(x)x;‘(xj) + x7(2) Z ej(x)f(ej) = e (x) ifi <mori>N.
j=N
Finally, f(x;) =0fori > N.
(]

It is perhaps worth noticing that the method used in the previous lemma (and the next theorem) does not rely on the classical
argument of perturbation by the norm-summable sequence. In fact our new basis is “far”” away from the original one.

Theorem 23. Let X be a Banach space with a shrinking Schauder basis {e;}, let { f;} C X™* be a countable subset and ¢ > 0.
Then there is a (shrinking) Schauder basis {x;} of X such that it is (1 + €)-equivalent to {e; }, span{x; }/, = span{e; }/*, for all
m € N and span{ f;} C span{x]}.

Proof. Choose a sequence of &; > 0 such that [[; (1 +¢;) < (1 + ¢) and put Ny = 1. We apply Lemma[22]to {e;}, f1, &1 and
n = 1. We obtain a basis {xl.l} which is (1 + &1)-equivalent to {e; } and N1 € N such that spﬁ{x}; i > Ni} C ker f;. Moreover,
x}! = e; fori < Ny and span{x!}"™ = span{e;}""_, forallm € N.

We proceed by induction. Suppose the basis {xlk} and Ny € N have already been defined in such a way that the basis
{xlk} is ]_[jsk(l + &j)-equivalent to {e;}, xf‘ = xlk_l fori < Ng, span{xf‘}l’-"=1 = span{e; }72, for all m € N, and finally
spﬁ{x;‘; i > Nj} Cker fjforl < j < k. We apply Lemmato {xlk} Ji+1, €k+1 and n = Ny in order to obtain a basis
{xl?‘-i-l} which is []; .4, (1 + &;)-equivalent to {e; } and a number N1 € N, Ngi1 > Ni, such that spﬁ{xlk-ﬂ; i > Npyq} C
f‘“ = x{‘ fori < Ng41 and span{xl(”'l}{”=1 = span{x!‘}»l’-"=1 = span{e; }7_, for all m € N. Since also
+1};’1=Nj = span{x{‘}l’.';Nj foralll < j <kandm > N;, we havespﬁ{x{‘“; i>N;}Ckerfjforl <j<k+1.
Clearly, there is a sequence {x; } such that lim;_, o, xi.j = x; for all i € N. (This is because the sequence N is increasing and

ker fx+1. Moreover, x

span{x{c

thus x] is eventually constant (in j).) It is straightforward to check that span{x; }”" = span{e;}", forallm € N, {x;} is a basis
of X which is (1 4 €)-equivalent to {e;} and span{x;; i > N;} C ker f; (which means that f; € span{x: i < N;}) for any
j e N.

O

If a Banach space X has a shrinking Schauder basis, using the Lindelof property of X (as in the proof of Theorem 20) and
Theorem 23| we obtain the following corollary, which allows us to work only with LFC-{e} functions.

Corollary 24. Let E be a set, X be a Banach space with a shrinking Schauder basis {e;}, g: X — E be a LFC mapping and
& > 0. Then there is a (shrinking) Schauder basis {x;} of X, (1 + €)-equivalent to {e;}, such that g is LFC-{x}.

Using Fact[6] we can reformulate this corollary as follows:

Corollary 25. Let X be a Banach space with a shrinking Schauder basis {e;}, A C X be LFD-F€.(X) and ¢ > 0. Then there is
a (shrinking) Schauder basis {x;} of X, (1 + €)-equivalent to {e;}, such that A is LFD-Z for Z = {Span{x; }$2,: n € N}.

The following lemma seems to be the crucial reason why we need to work with Schauder bases.

Lemma 26. Let X be a Banach space with a Schauder basis {e; } and E be an arbitrary set. Then f: X — E is LFC-{e]} if and
only if for each x € X there is § > 0 and ng € N such that f(y) = f(P,y) whenever |x — y|| < § and n > ny.

Proof. The “if” part is trivial: Pp,y = P,z whenever e/ (y) = e/ (z) for 1 <i < ng. Thus f(y) = f(Pnyy) = f(Pny2) =
f(z) if moreover y, z € U(x, §), which means that f depends only on {7, ..., e, } on U(x, ).

The “only if” part is also simple. Let K be a basis constant of {e; } and x € X. Thereism € N and § > O suchthat f(y) = f(z)
ify,z € U(x,8(1 + K))ande/(y) = e/(z)for1 <i < m.Choose ng > m such that |x — P,x|| < § foralln > ng. Then for
any n > ng and y € X such that ||x — y|| < § we have | P,y — x|| < ||Ppy — Pux|| + || Pax — x|| < (1 + K) and therefore

fO) = f(Pny).
|

Let X be a Banach lattice. We say that a function f: X — R is a lattice function if it satisfies either f(x) < f(y) whenever
|x| < |y|,or f(x) > f(y) whenever |x| < |y|. Recall that a Banach space X with an unconditional basis {e; } has a natural lattice
structure defined by )" a;e; > 0if and only if a; > 0 for all i € N. The same holds for £.

The following technical lemma will be useful later for smoothing up lattice functions.

Lemma 27. Let f: R — R be an even function that is non-decreasing on [0,00) and let ¢: R — R be an even function
with bounded support that is non-increasing on [0,00). Then (f * ¢)(x) = [ f(x —1)@(t)dt is an even function that is
non-decreasing on [0, 00).
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Proof. Note that f x ¢ is well defined as f and ¢ are bounded on bounded sets.

Obviously, (f * @)(—x) = [ f(—x —)e(t)dt = [5 f(x +1)e(t)dt = [ f(x —1)p(t) dt = (f * ¢)(x), using first the
fact that f is even, then the fact that ¢ is even.

Now pick any 0 < x < y < oo. The function ¥ (¢) = <p(% —t)— (p(% — t) is an odd function (this is obvious), such that
¥ (1) = 0 forz > 0. Indeed, either we have 0 > 5% — 7 > 52 — 7, 0r 0 < 5% —1 <t — 5% and in both cases we use the

properties of ¢. Similarly we get that the function ¢ — f (% + t) —f (% — t) is non-negative for ¢ > 0. Therefore,

(00 = +0@ = [ FOlp =0 =g =0)di = [ £(+0)p)d
R

R

_ /f(%ﬂ)x//(z)dw/f(%w)w(t)dt

(—00,0) (0,00)
— / f(% —t>w(z)dt + / f(% +t)1p(t)dz
(0,00) (0,00)
- / (f(% +r> —f(% —t))lﬁ(t)dt > 0.
(0,00)

Now we can prove one of the main results of this paper.

Theorem 28. Let X be a Banach space with a Schauder basis {e;}. The following statements are equivalent:

(i) {e;} is shrinking and X admits a continuous LFC bump.

(ii) X admits a continuous LFC-{e} } bump.
(iii) X admits a C*°-smooth LFC-{e} } bump.

For the proof of Theorem [28| we will need the following lemma, the basic idea of which is implicitly contained in [Hajl1]. Let
A = {8,}72 | be a sequence of positive real numbers. We denote by V4 an open subset of £, such that x € V4 if and only if
there is n, € N satisfying [x(nx)| — 8, > sup,~, |x(n)| + 8n,. Forany x € V4, the set
VA =y €l [yl =8, > sup |y()] + 8, < V2
n>ny

is an open neighbourhood of x in £,.

Lemma 29. Let ¢ > 0 and a sequence A = {8, },>,, 6, > 0 be given. There is a convex lattice 1-Lipschitz function F : {ooc — R
such that || x|, < F(x) < ||X|lo +&forany x € oo and F is LFC-{e} } and C* on VA. Moreover, for any x € VA, F depends

only on {e*}!* on anc , where e are the coordinate functionals on .

Proof. Let &1 = min{8y, ¢} and &, = min{8,,e,—1} for n > 1. Choose a sequence {¢,}52; of C*°-smooth even functions
¢n: R — [0, 00) such that supp ¢, C [—&p, €], ¢ is non-increasing on [0, 00) and [ ¢, (¢) dt = 1. Define a sequence {F,,}32
of functions F,: £oc — R by the inductive formula

Fo(x) = [xlloo »

Fa) = [ Eaca 5 ten)n(t) dr.
R
It is easily checked that each F}, is convex, 1-Lipschitz and Fj(x) — ||x| o < € for any x € £. To see that F, is lattice, pick
X,y €lso, x = (), y = (), satisfying |y| < |x|. Define g: R — R by g(u) = F,—1(y + (4 — yn)en). Then

Fy(x) — Fo(y) = / (Fact (x + ten) — Faer (v + te))gn(t) di

R
= /(Fn—l(x +ten) — Fn—l(y + (Xn — yn + t)en)>¢n(t) dt
R
+ /(Fn—l (y + (xn —yn + t)en) — Foa(y + len))(pn(t) dt
R
= /(anl(x +ten) — Foc1(y + (tn — yu + t)en))fpn(t) dt + g * @n(xn) — & * @n(yn) = 0,
R

because F,—1(x + tey) > Fy—1(y + (xn, — yn + t)e,) which follows from the induction hypothesis (notice that we have
X+tey = (X1, s Xn—1,Xn + 1, Xnt1,...)and y + (xp —yn +)en = V1,-- -, Yn—1,Xn + 1, Yu+1,...), thereby |x + te,| >
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|y + (xn — yn + t)en] in the lattice sense), and because g is an even function non-decreasing on [0, co) also by the induction
hypothesis and so we may use Lemma[27]
Further, by Jensen’s inequality,

F,(x) = /Fn_l(x + ten)pn(t)dt > Fy_q (x + e, [ ton(t) dt) = F,_1(x),
R R

which means that the sequence {F, } is non-decreasing. Consequently the function F = lim, F,, = sup, F, is convex, lattice,
1-Lipschitz and ||x||,, < F(x) < ||x|loo + € forany x € £o.
Forany y € £ and k € N we have

&k €1
Fo(y) = / Iy + t1er + - + kel 91 () @ 1) iy - .
Ek

—&1

Fix an arbitrary x € V4 and pick any y € Vnﬂ and k > ny. Then
Iy +ner+ - +ixerlloo = ly +t1er + -+ tnen llog = 1Py +11e1 + - +tnen o »

aslong as |t;| < 8,, forn, <i < k. Since &, < §,, forn > n, and f]R on = 1, it follows that Fx(y) = F,, . (¥) = Fu, (Pn,y).
This means that F(y) = F,,(Py,y) and therefore F is C*-smooth and depends only on {¢}/*  on anc .

|

Proof of Theorem (iii)=(i) follows from Corollary [I8]

()= (ii) follows from Corollary If g is a continuous LFC bump on X, let {x; } be a basis obtained from Corollary 24|and T
be an isomorphism e; > x;. Then the function g o 7" is a continuous LFC-{e/ } bump.

It remains to prove (ii)=>(iii). Since X admits a continuous LFC-{e} bump, using an affine transformation and a composition
with a suitable function we can produce a continuous LFC-{e}'} function b: X — [1,2] such that »(0) = 1 and b(x) = 2
whenever || x|| > 1. Choose a sequence of real numbers {7,} decreasing to 1 such that n; < 1 + % and a decreasing sequence
A = {8y} such that 0 < §, < %(nn — Np+1) and 61 < %.

For a fixed n € N, let T,: R® — P, X be a canonical isomorphism, i.e. T,(¢1,...,t,) = tie; + --- + t,e,. Because
boT, € C(R") and it is constant outside a sufficiently large ball in R", using standard finite-dimensional smooth approximations
we can find b, € C®(R") such that supgn |0, (y) — 1ub(Tny)| < 8n. We define by (x) = by(T, ! P,x) and thus b, € C®(X)
and supy |bp(x) — Nub(Pnx)| < &y.

Further, let us define @: X — £o by @(x)(n) = by(x). Pick any x € X. By Lemma[26|there is § > 0 and n, € N such that
b(y) = b(P,y) whenever ||x — y|| < § and n > ny. Thus forn > m > ny, and ||x — y|| < § we have

|2 (m)| = 8m = bm(y) = 8m > Nmb(Pmy) = 26m = Nmb(y) = 28m > Nm+1b(y) + 26m
> Mub(y) + 8n + 8m = b (Pny) + 8n + Sm > bu(y) + 6w = |P(¥) ()| + Sm-
(The second inequality follows from the definition of §,,.) It means that |@(y)(nx)| — On, > |P(V)(nx + V| + 65, =
SUP, sy, [P(¥)(M)| + 8n, . As x € X is arbitrary, these inequalities show that @(X) C V4 and moreover
®(y) € V,2  whenever |x —y| <38. ()
We now apply Lemmaﬁto the sequence A and ¢ < % in order to obtain the corresponding function F' and we set f = F o ®@.
The properties of F together with () and the fact that b, depends only on {e/}’_, imply that f is LFC-{e/}. Moreover, as

Fo® = F o P, o® onaneighbourhood of x and P, o @ € C*°(X,{x), wWe can conclude that f is C°°-smooth.
Further,

1
£(0) = F(2(0)) < [@(0)|loo + & = supbn(0) + & < sup(nab(0) +8,) +e=n1 + 81 +e <1+ 5
n n
On the other hand, if || x|| > 1 we get
1
() = | P(x)]loo = Supbu(x) = by () > 0p b(Pp X)) —0p = N, b(X) —8p, >2—61 >2— s
n

Therefore f is a separating function on X and we obtain the desired bump by composing f with a suitable smooth real function.
|

Theorem 30. Let X be a Banach space with an unconditional Schauder basis {e; }, which admits a continuous LFC bump. Then
X admits a C*°-smooth LFC-{e]} lattice bump.

Proof. Since X is cy-saturated (Theoremor [PWZ])), it does not contain £; and so by James’s theorem {e; } is shrinking. By
Theorem [28| there is a continuous LFC-{e}} bump b on X and without loss of generality we may assume b: X — [0, 1] and
b(0) > 0. We may further assume that the norm |-|| on X is lattice.
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First we show that there is a continuous lattice LFC-{e}'} bump on X. Put g(x) = inf,|<x| b(y). If b(x) = 0 then also
g(x) = 0 and g(0) = b(0) > 0, hence g is a bump function. Further, for any x,y € X such that |y| < |x| we have
g(y) = infiz|<|y b(2) > infjz|<|x| b(2) = g(x), thus g is lattice.

Forany y € X we denote y(i) = e/ (y). Define a mapping ¥ : X — 2X by Y(y) = {z € X; |z] < |y|}. Clearly, ¥(y) is a
convex set for any y € X. Furthermore, as {e; } is unconditional, ¥ () is a compact set for any y € X (consider the mapping from
a compact space [ [;[— |¥(i)], |¥(i)]] into X defined by (t1,22,...) — Y tie;).

Now fix an arbitrary x € X. Let us define a projection y + y from X onto ¥ (x): For any y € X we put y(i) = y(i)
if |y(@)| < |x@)|, y@i) = sgny(i)|x(i)| otherwise. Notice that || < |x| and so indeed y € ¥ (x). Let z € X. Then
Iy =3Il < lIx = z|| forany y € ¥(z). Indeed, |5 (i) — y(i)| = [sgny (i) |x()| = y ()| = |Ix()| = |yD)| = ly()] = |x ()| <
|z(@)| — |x(@)| < |z() — x(i)| whenever |y(i)| > |x(i)|. Thus |y — y| < |x — z| and we use the fact that ||-|| is lattice.

Let U be a neighbourhood of ¥ (x) and § = dist(y¥(x), X \ U). Suppose z € X, |[x —z|| < 8. Then ||y — y|| < ||x — z|| < &
for any y € ¥(z) and hence ¥ (z) C U. This implies that 1 is a cusco mapping.

Given any ¢ > 0 we can find a neighbourhood U of {(x) and 0 < § < dist(y¥(x), X \ U) such that |b(y) —b(2)| < ¢
whenever y,z € U, ||y — z|| < 8. Suppose z € X, ||x — z|| < . Then, by the previous paragraph, |b(y) — b(y)| < €. Therefore,
8(z) = infyey () b(y) = infyey () (V) —& > inf ey (x) b(y) — € = g(x) — &. Similarly, considering a projection onto ¥ (z), we
obtain g(x) > g(z) — &. This shows that g is continuous.

Suppose that for some F C N we have x(i) = y(i) foralli € F and let w € ¥ (x). Define z € X such that z(i) = w(i) for
i € Fand z(i) = y(i) otherwise. Then z € ¥ (y) and the assumption of Lemmais satisfied. Hence g is LFC-{e]}.

We note that the process described above does not preserve smoothness as can be easily seen on a one-dimensional example.

Finally, we smoothen up the bump g by repeating the proof of Theorem [28] Notice only that the finite-dimensional smooth
approximations can be made lattice similarly as in the proof of Lemma[29] consequently @(-)(n) is lattice for each n € N and
since F from Lemma [29)is lattice too, we can conclude that the resulting function f = F o @ is lattice.

O

4. SPACES WITH SYMMETRIC SCHAUDER BASES

Let X be a Banach space with a symmetric Schauder basis. In such spaces it is possible to define a notion of the non-increasing
reordering, which will be one of the main tools in the sequel. For any x € X, x = (x;), let us denote by X a vector in X with its
coordinates formed by the non-increasing reordering of the sequence (|x;|). Notice that we can view X as a linear subspace of ¢g
through the natural “coordinate” embedding. In the following lemma we gather some simple properties of this reordering which
will be used later.

Lemma 31. Ler X be a Banach space with a symmetric Schauder basis, x,y € X be arbitrary.
(a) Let ||| be a symmetric lattice norm on X. Then |||Pk5c\|| — ||ij7||| <||lx — y|| for any k € N.
(b) R,x < I?n\x in the lattice sense for any n € N.

(©) IX = Ylloo = 1% = yllco-
(d) Let ||-|| be a lattice norm on X such that the basis is normalised. Then the mapping x — P,X is n-Lipschitz for any n € N.

Proof. (a): Consider a set A C N, |A| = k, such that Paix = Py x. Since ||-|| is symmetric and lattice, | PyX]|| = || P4x|| and
I Pyl = [ Payll- Therefore || PeX[| — | Pyl < [[Paxll — [[Payll < | PaCx = »)] = llx = ylI.

(b): Let A C N, |A| < n be such that R,x = W, where w = X — P4X. We put z = R,X. ThenZ; = X;4, fori € N. Let
m: N — N be a one to one mapping such that W; = wy). Then W; = X fori € N. Asi < 7(i) <i + n, it follows that
Zi = Xitn < Xn@) = W;.

(c):Letm: N — Nando: N — N be one to one mappings such that X; = |x)| and y; = |ys()|. Pick any n € N. There
is k < n such that |y, )| < |yo(m)|- (Otherwise there would be at least n coordinates of y for which their absolute value is greater
than |y, (»)| which is impossible.) Consequently, X» — Vn = [Xz(m)| — [Voo)| = [Xz)| — V2| = X2y — Yzl = 11X = Yl oo-

(d): Using the fact that the basis is normalised, then (c) and then the fact that ||-|| is lattice we obtain || P, X — P,y| =
I1PaE =P = 201 [ =il <nlF = Flloo <nllx = ylloo <nllx =yl

O

This is the key lemma:

Lemma 32. Let X be a Banach space with a symmetric Schauder basis {e;}, ®: X — R be a continuous function such that
@(x) > 0ifx # 0and {y,} C (0, +00) be a decreasing sequence. For any N € N define

Wy (x) = max Yn @ (PyX).

Then each function Wy is LFC-{e]'} on X \ {0}.

Proof. Without loss of generality we may assume that ||-|| is symmetric and lattice. Let N € N and x € X \ {0} be given. We
claim that there exist a neighbourhood V' of x and N; € N such that Xy, > Xy, +1 and ¥y (y) = ¥ningw,n,3(v) forall y € V.
If |[supp x| > N, then there exists Ny > N such that ')?Nl > 3C\N] +1 and the claim follows. Otherwise, find N1 < N such that
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XN, > XN +1 = 0. Then choose 0 < § < Xy, /2 such that

[2(0) ~ 2@ < L 0 ®)
1

if ||z = X| < (N1 + 1)8. Denote B = supp x and notice that |B| = Ny.If ||x — y|| < §,i € B and j ¢ B, then
lyil = |xi| =8 >Xn, —8>20—-86=26=|x;|+6=> |yl
and hence

[Rn, VIl = [ Pa\BY Il = | Pny(y =) < Iy — x|l <.
Thus, for any n > Ny,

1Pny =XIl = I1Pny — Py XN < IRN Y| + 1PNy Y — Py X < 8+ Nil]Y = Xloo = 8+ N[y =X < (N1 + DS.

(For the last but one inequality use Lemma c).) It follows from the choice of § that for n > N; we have

I ®(PrF) < (1 L _)/N1+1) OF) < w1 (1 LT _VN1+1) OF) = YN + VN +1 o).

2y 2’le+1 2
On the other hand,
Y D(PyT) > T (1 YN~ VN1+1) OF) =y (1 YN~ VNH-I) DF) = IV g
2)/1 2J/N1 2

This means that ¥y (y) = maxi<p<n, Yo P(P,Y) for ||x — y|| < &, which proves the claim.

Using N; and V from the claim, let ¢ = (X, =Xy, +1)/2. Choose A C N, |A| = Ny, such that Py, X = Pyx.If lx —y|l <e,
then |y;| > |y;| wheneveri € A and j ¢ A. Hence for 1 <n < N; the mappings y — P,y depend only on {e/};c4 on U(x, ).
By the choice of Ny, it follows that ¥ depends only on {e;};eq4 on V N U(x, ¢).

O

5. ORLICZ SEQUENCE SPACES

This section contains the main result of the paper, namely a construction of an Orlicz sequence space /s with a C *°-smooth
and LFC bump, which does not embed into any C(K) space, K scattered compact. As explained in the introduction, our space is
possibly non-polyhedral. If so, it would be the first separable example of a Banach space for which the best smoothness (in the
wider sense) of its bumps exceeds the best smoothness of its renormings. Indeed, our space has C°°-smooth renormings, but, if
non-polyhedral, it would have no LFC renormings. Up to now, the only examples (due to Haydon [Hay3|}, see also [DGZI]) with a
similar property are non-separable. Recall that Haydon’s space has a C *°-smooth bump, but no equivalent Giteaux smooth norm
(and in fact using basically the same proof one can conclude that it neither has an equivalent LFC renorming).

For the basic properties of Orlicz sequence spaces we refer e.g. to [LT].

Let M be a non-degenerate Orlicz function and denote by /s the respective Orlicz sequence space. Let us define a function
v:hy — [0,00) by v(x) = Y 72, M(|x;]). It is easily checked that this function is convex, symmetric and lattice, v(0) = 0,
v(x) > 0 for x # 0, and, by the definition of the norm in Ay, || x|| = 1 if and only if v(x) = 1. It follows from the convexity that
v(x) < ||x|| for x € Bp,,, while v(x) > |x]| if [|x] > 1.

Lemma 33. The mapping iv: hyy — £ defined by u(x) = (M(|x,|)) is continuous. Thus the function v(x) = ||u(x)ll,, is
continuous.

Proof. Suppose x € hpr and 0 < ¢ < 1. Choose N € N such that || Ry x| < &/2. Then, by the continuity of M, we can choose
0 <8 < e/2suchthat | Py (t(x) — (W) lg, = ZlN:l|M(|x,-|) — M(|y,~|)| < eif ||x — y|| < é. Further, if ||x — y| < §, then
IRvyll < [Rnvx|l + [|Ry (x = »)II = [Rnx]| + [lx — y|| < & and hence

() = e, < 1PN (r(x) =D lg, + RN g, + | RN (D)l
<e+Vv(Ryx) +v(Ryy) <e+ | Rnx| + [[Rny] < 3e. O

Let M be a non-degenerate Orlicz function such that there is a K > 1 for which lim;—.o4+ M(K?)/M(t) = oco. Leung in [L1]
constructs a sequence {1} of real numbers decreasing to 1 such that the norm on /s defined by |||x|||; = supg 1« || PxX|| has
the property that for each x € fps thereis j € N such that |||x[[|; = ||| P;x|||; and the supremum is attained at some n € N. An
immediate consequence of this is that the norm ||| x||| = supg n,% | Pex|| is LEC-{e/}. To see this, fix x € hpr \ {0} and letn € N
be such that 1, | Pu¥ || = supy 7k | PeX]l- Let e = 1 | Pu® ]| G — 41)/ (02 + 12..,) and take y € hipg satistying [|x — y]| < e.
Then, by Lemma[31fa), ||| PxX|| — || P7ll| < & for any k € N. Thus, for k > n,

N IPaT 1| > 153 | PaXNl = mye = N1t | PaX || + m 18 = nictin | PaX | + nge = i | PeX | + nge > i | PP

which implies that ||| y[|| = supg, ni | P ||. Combining this with Lemmawe obtain that [||-|| is LFC-{e}"}.
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Theorem 34 (Leung). Let M be a non-degenerate Orlicz function. There is a sequence {ny } of real numbers decreasing to 1 such
that the norm on hyy defined by

x|l = SUp Tk [| Prx|l

is LFC-{e}} if and only if there is a K > 1 such that

M(K1)
o+ M(1)

Proof. For the “if” part see the remark preceding the theorem. To show the “only if” part (which also appeared in [L1]], but not
precisely formulated and without proof), suppose that (3) does not hold and let {5} be any sequence decreasing to 1. We will
construct a vector x € Sp,, such that its coordinates form a positive non-increasing sequence and ny || Prx| < 1 for each k € N.
Then obviously [||x||| = 1, but ||| P,x||| = maxg<, nx || Pxx|| < 1 forany n € N and so |[||-||| is not LFC-{e} by Lemma

Let { K, } be an increasing sequence of real numbers, K, > 1 and K, — oo. For eachn € N let C, > 2 and {1} }?2, be such

3)

that limg_, o 1/ = 0 and M(K,1}}) < C, M(¢}}) for all k € N. Let {¢, } be a sequence of real numbers such that 0 < ¢, < % and
> o2 1 &nCn < 00.Putmg = 1 and find A > 0 such that M(1/A) = 1 (which means ||¢;|| = A forany i € N).
We choose 71 € {t} this way: Define
k
mp = min {k: Nk Ztlei > 1§,
i=1

and choose t; € {t,i} small enough such that

M(t)) <&, and 4)

<12 Kl )

i e, Ci— 1
By the convexity of M we have
—1 —1 —1 —1
Myt < (1= 2 ) M) + " MKy < (1= 22 ) M) + 20 Mey)
K —1 K —1 K —1 K —1 ©

= (14 O = D=7 ) M < (1 72 ) M) = = mG

where the last inequality follows from (3)). By the definition of m, we have my M (1), 11) > 1. Consequently, using this inequality
together with (6), m1 M (t1) > m(1 — e2) M(nm, t1) > 1 — &,. Hence, by @),
(my — l)M(Zl) > 1—2¢,.

mj -1
Weput x; = ) tje;. Notice that by the definition of m; we have 1/ny,,—1 > ||x1]| = 1/0m, — At1.
i=1
Let us continue by induction. Fix any j > 1. Suppose we have 1; € {t,’c} m; € N and x; € hyy already defined for alli < j

such that 35 _, (mg — mp_)M(tg) > 1 —26i41, 1/Nm;—1 > |xi|| = 1/0m; — At; and

i m;—1
X; = Z Z t1eg.
I=1k=m;_

We choose ¢; € {t,f} this way: Define

k

Xj—1 + Z tje;

i=mj_

Z 1}7

M([j) < &j+1 and @)

Ej+1 . | Ki—1
— Imin .
C —1

mj = min{k >mj1: Nk

and choose #; € {t,{} small enough such that

Nm <1+ 3

1 —gjyq1 1=si<i

Notice that this is possible since ||xj—1| < 1/7m,_,—1. Using again the convexity of M, the fact that#; € {t,i} and (8)), for any
1 <1 < j we obtain

Mm; — 1 M, — 1 M, — 1 Nm, — 1
M. ;) < [1— -2 M ! M(K;t;) < [1—- =<2 M ! CiM(1;
(nm_,t)_( Ki—l) (#) + K —1 (Kiti) ( K,'—l) (ti) + K —1 i M(t;)
Ci—1 & 1
= (14t = DT ) M < (14 T ) M) = T —m.
K,' -1 1-— Ej+1 1 —&j+1
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These estimates together with the definition of m; and x;_; give

j—1
D mi —mim)M(1) + (mj —mj—y + M)

i=1

Jj—1
> (1- 8j+1)(Z(mi —mi—1)M(m;t;) + (m; —mj—1 + I)M(Umjlj)) > 1—gj41,

i=1

so the use of (7) yields
J
Z(mi —mi—)M(5;) > 1 —2¢j41. )
i=1
We put
J m;—1
Z Z lieg
i=lk=m;_;
and notice that, by the definition of m;,
1/7Imj—1 > [Ix;ll = l/nmj — At (10)

We have inductively constructed a sequence {x;} C &y given by the formula above, such that ||x;|| < 1 and (9) holds for any
Jj € N. Choose any j > 1. Since ||x;|| < 1, it follows that Z{=1(mi —mj_1)M(t;) < 1 and comparing this with (9) for j — 1
we obtain
(mj —mj_l)M(tj) < 2¢;.
This implies that x; — x € hps. Indeed, suppose K > 0. Let n € N be such that K, > K. Then

o0 o0 o0 oo
D (mi —mi— )M(Kt;) <Y (mi —mi—)M(Kiti) <Y (mi —mi—)CiM(1;) <2 & Ci < 00
and so by the basic properties of /s the vector x = Y 72, Z;{";:nll_l t; e belongs to fips. This means also that £; — 0 and thus
from we can conclude that ||x|| = lim||x; || = 1. Moreover, the construction of x; (namely the choice of m;) guarantees that
Nk || Pex| < 1 foreachk € N.
O

The following theorem is a strengthening of a theorem from [L1]]. Leung’s statement is that the Orlicz sequence space /s does
not admit a LFC norm if M satisfies the condition below.
Theorem 35. Let M be a non-degenerate Orlicz function for which there exists a sequence {t, } decreasing to 0 such that
M(K1y)
sup ———
W M(ty)

Then the Orlicz sequence space hyy is not locally flat.

< oo forall0 < K < oo.

Proof. Suppose that there is a non-empty bounded A C &y which is LFD. Without loss of generality we may assume that
0 € A C Bx and A is LFD-Z, where Z = {span{e; }72,; n € N}. (Since hyy is co-saturated by Theorem it does not contain
£1. As {e;} is unconditional, it is shrinking by James’s theorem. Now consider 7(A), where T: X — X is an equivalence
isomorphism of the bases {x;} and {¢;} from Corollary [23])

Notice, that the vectors with coordinates in the set {#,,} U {0} have the property of “bounded completeness”: If we have
|| Zf.;l I, €; H < 1forall k € N, where m; € N U {0} are not necessarily distinct (we put ¢y = 0), then Zfil Im; €i converges
in Ay . Indeed, it follows that Zle M(ty,) < 1forallk € N.Forall0 < K <ocoandallk € N,

M(Ktn)
M(Kt l)<sup M(t l)_sup
E S ,Z} ) =P
Consequently, > 7o, M(Kty;) < ocoforall0 < K < 00, and the sum ) I, e; converges in hipy.
We construct a sequence {x;} C A by induction. Put xg = 0 € A and define natural numbers mg = ng = 1. Ilf my_; € N,
nxg—1 € N and x;_; € A are already defined, we put

My = {(m,n) e N> m > my_y,n > ng_; and xg_; + tme, € A}.
As A is determined by some W € Z on a neighbourhood of x;_;, where W contains all e,, for n big enough, and #,, — 0, we can
see that My # @. Let (my,ny) = min My in the lexicographic ordering of N2 and put x; = x;_; + Iy €ny -

Since {x;} C A C By and x; = Zf;l Im, en;, by the above argument x; — x € hpr. We can find § > 0 so that A4 is
determined by some Z € Z on U(x, §). Thereis N € N such that {e; };~y C Z. Because x; converges, we have mj — oo and
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so there is j € N such that x; € U(x,8/2), |[tm;e1ll <8/2,m;j <mjtyandn; > N.Then x; + fm,en;+1 € A and therefore
(mj,n; +1) € Mjy1.But (mj,nj + 1) < (mj41,n;41), which is a contradiction.
O

In [L1], Leung constructed a co-saturated Orlicz sequence space satisfying the condition in Theorem 35 Therefore, we have
the following corollary:

Corollary 36. Leung’s space is a separable cy-saturated Asplund space that is not locally flat.
The main construction of this paper is contained in the next theorem.

Theorem 37. Let M be a non-degenerate Orlicz function for which there exist sequence Fy, C (0, 1] such that

(i) limg oo (sup F) = 0,
(ii) there is a sequence Ky > 1 such that
M(Kyt)
m ———— =
t—0+ M(l)
t¢Fy

)

(iii) thereis a K > 1 and a sequence Cy — oo such that M(Kt) > Cp M(t) forallt € Fy.

Then there exists a C°°-smooth LFC-{e]} lattice bump function on the Orlicz sequence space hyy.

Proof. Without loss of generality we may and do assume that M (1) = 1 (i.e. |le1]| = 1) and Cx > C; > 0 for any k € N.

For each t € Fi \ {0} choose 8’,‘ > 0 such that M(s) < 2M(¢t) and /2 < s < 2t if |s—¢| < 8’,‘. Let us define sets
G, = UteFT\{o}(t - slt‘,t + s’,‘). Then each Gy, is open, G D ( Fx \ {0}) and sup G < 2 sup Fi. Moreover, for any s € Gy the
choice of an appropriate t € Fy \ {0} from the definition of Gy yields M(2Ks) > M(Kt) > Cy M(t) > Cy M(s)/2 (using (iii)
and the continuity of M). So, if we multiply K by 2 and each Cy by % and denote these new constants K and Cy again to avoid
carrying unnecessary factors, we have

lim (sup Gx) =0, (11)
k—o00
M(Kt) > CuM(t) forallt € Gy. (12)

Let us define a sequence of continuous functions ¢ on [0, +00) such that 0 < @i (¢) < t, g (t) = 0 fort € F; and
@r(t) =t fort ¢ Gy, and a mapping ¢ : hyr — har by ¢ (x) = (@i (|xi])) for x = (x;) € hpr. (We can take for example
@ (t) = t dist(z, F)/(dist(z, F) + dist(r,R \ G)) fort > 0 and ¢, (0) = 0.)

Fix k € N.

First, observe that the mapping ¢ : ipr — hay is continuous: Choose x € sy and & > 0 and find n € N such that | R, x| < §.
As @y is continuous, there is § > 0 such that ||xi| — |y,~|| < § implies |<pk(|x,-|) — <pk(|yi|)| < 5, forall 1 <i < n. We have
||xi| — |yi || < |xi —yil = ||(x = y)iei|]| < |lx — y||. (The last inequality uses the fact that the norm ||-|| is a lattice norm.) Thus,
whenever ||x — y|| < min{$, {},

% (x) = k(W = [1Pn(Prc (x) = S YD + [ Rn(Drc (x) — (W)

n
&
< Z|‘Pk(|xi|) — e (lyi D] + | Rupk (I + | Rudpic W) < 5+ [ Rnx|| + | Rn |
i=1
& £ £ £ &
=5+ [Rnx| + [[Rux|l + [[Rn(x — y)|| < stststa=¢

The third and the fifth inequality follow again from the fact that the norm ||-| is lattice.

Claim 1. There is a non-increasing sequence {nﬁ} C R satisfying nﬁ < 2 and limy,_, 775 = 1, such that for each x € hys for
which ¢ (x) # 0 there is § > 0 and ng € N such that for any y € U(x, §) we have

nﬁv(an) > v(m) foralln > ny.

We will construct the sequence n’,ﬁ as follows: If (0,a) C Fj for some a > 0, then any non-increasing sequence nﬁ — 1 such
that 1 < n’,j < 2foralln € N will do. Indeed, then there is no € N such that |x;| < a/2fori > n¢ and hence ¢r(y) = Puydr ()

whenever | x — y|| < a/2.
Otherwise, put b, = inf{ MA(fftk)t); 0<t< ,/M—l(}t), t ¢ Fk}. By our assumption, b,, < oo for all # € N. Notice, that b, is

non-decreasing and, by (ii), b,, — oo. Define nﬁ = min{2, (1 —-b, 1 2)_1 } It is trivial to check that nﬁ is non-increasing and
175 — 1.
Define a mapping Qg : hpr — hpr by Qr(x); = |x;| if |x;i| € Fk, Ox(x); = 0 otherwise.

Now choose x € hyps for which ¢ (x) # 0. By Lemma [33|there is 0 < § < ﬁ such that v(¢r(y)) > %v(q&k(x)) if

lx = y[l < 8. Find n € N such that % = (1—b; )71, b "> < Jv(@e(x)), [Rux|| < 5 and M71(2) < 1/(|x]| + 8)?
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forn > ng. Fixn > ng and y € hpy such that ||x — y|| < 8. Using Lemma[31|(b) and the fact that the canonical norm on Ay is a
symmetric lattice norm, we have

— 1
| B 00| = 1Rn Qi) = NRuYI < 1R ) + 1R = )] < - (13)
As Y72, M(Qk(y),-/ ||y||) <> 21 M({yil/yI) =v(y/llyl) = 1 and the sequence Q(y); is non-increasing, it follows
that Qx (»)i/ Iy < M_l(llv) for any i € N. From the definition of ng we obtain Q(y); < |||l M_l(ll) < (JIx|l +8)M_1(%) <
VM ~1(3) fori > ny. Notice further that mi ¢ Fy forany i € N, thus by the definition of b, and (I3]) we have
1> v(Ke Ry Ok(9) = Y- M(Ki Qi (»)i) = D biM (Qk(»)i) = b Y M(Qi(»)i).
i>n i>n i>n
which together with the easily checked inequality mi < wi for any i € N implies

S M@0 = 3 M (00 < —.

, by
1>n i>n

Notice that by the definition of § and n¢ and by the symmetry of v we have v(m) > b, 12 and therefore (use this fact for the
second inequality)

(Eae0) = M (B00) = 3 M) = 5 = v(B0) = > (1= () = ()
i=1 i=1 n "

which proves the claim.

Choose an arbitrary sequence {y;} C R decreasing to 1. Let us define a sequence of functions g : iz — R by
1 —
gr(x) = C_ =+ sup Vk+n77]y§V(Pn¢k(x))~
k n

Claim 2. Each gy is a LFC-{e}} function on {x € hyr, ¢r(x) # 0} and continuous on hyy.

Indeed, for a fixed k € N and x € hpr, ¢x (x) # 0, choose an appropriate § and ng from Claim[I} Let N > ng be such that
J/k+n?7],§ < Yk+no Whenever n > N. Then for y € U(x,6) and n > N we have

Vk+noflﬁov(Pn0m) > Yk+n Tlﬁv(m) = Vk+n77]n€V(an)

and hence

1 .
gr(y) = —+ max Vetn e v (Pagic (1)) (14)

By Lemmathere is a neighbourhood V of ¢ (x) and a finite A C N such that the function maxi<,<n Vi +n nln‘ v(P,Z) depends
only on {e/};c4 on V. But since ¢ is continuous, there is a neighbourhood U of x, U C U(x, §), such that ¢ (U) C V. Further,
as ¢r(¥)i = ¢r(z); whenever y; = z; forany i € N, the function g; depends only on {e/};c4 on U.

Moreover, each g is continuous on /s: Using the continuity of ¢, Lemma [31(d) and we can see that gj is continuous
on {x € hp, ¢r(x) # 0}. On the other hand,

1 1
S gr(x) < o + 7k v(r (x)),

and the continuity of g at any x with ¢ (x) = 0 follows from the continuity of ¢y and the properties of v.

Notice further that, since v is lattice,
1
() = — + yiniu(x), (15)
k
and as gr(x) > C_I/\ + Vi+n nﬁv(P,, m)) for each n € N, the continuity of v implies
1
gr(x) > o + v(¢x (x)). (16)

for any x € hps and any k € N.

Claim 3. For each x € hyy there is § > 0 and kg € N such that for any y € U(x,8) and k > ko we have

b0 < &+ v(B ).
k
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Indeed, choose an arbitrary x € hps. Let n € N be such that | R, x| < ﬁ and 0 < § < % be such that moreover
§ < %min{|xi| ; x; #0,i <n}if P,x # 0.Pick any y € hys for which ||x — y|| < §. Notice that if |y;| < § then either x; = 0
ori >n.Let Ay = {i; x; =0}, A, = {i; i > n}. Then
1
1Parua Y I < 1Py y I + [ Rnyll < 124y (v = 0| + [ Rux ]| + [ RuCx = p)]l < -

Therefore we have >~ M (K |y;|) < 1. By (TI) we can find ko € N such that Gx C (0, ) for all k > ko and hence, using (T2),
lyil<8
! 1
Z M(|y,|) < — forall k > k.
Ck
lyileGx
It follows that, for any y € U(x, §) and k > ko,

v(y) = iM(mD = > M(lyil)+ D M(lyl)

i=1 |vil€Gk 17i |£Gk
I — 1
= > M(yil)+ Y M(g()i) < i > M(r(y)) = o ().
|vileGk |yi |Gk i=1

Finally let us define a function g: hpr — R by
glx) = SUP Vie8k (x).
Choose 0 # x € hy and find § and ko from Claim [3| Since v is continuous, we may also assume that v(y) > v(x)/2 if

|x — || <§.Thereis N € N such that 2y /(v(x)Cy) + y,fn’f < Yk, fork > N. Then for any y € U(x,d) and k > N we have
(using first (T3), then the definition of N, Claim3]and finally (T6))

Yk Yk
Yigr(y) < A + V2N () < i (v) < C—k‘) + ViV (Bro (V) < Vio ko (V)- (17)
0
This means that
gy) = sip Y8k (y) = max yi g » (18)

for y € U(x, §). In particular, since each g is continuous on /7, it follows that g is continuous on /37 \ {0}. On the other hand,
for any y € hyy,

Y1 Y1
= <ngi(y) <g(y) < = + 270 (),
C1 Cl

(the last inequality follows from (I3))) and the continuity of v implies that g is continuous at 0 and hence on the whole of /.
Let us define aset D = {x € hy, g(x) > g—ll} Choose any x € D and find an appropriate N and § for this x as above. Let
A=1k: 1<k <N, ¢gr(x) #0} . Ifk € {1,..., N} \ A, then
Yk
== <= < .
Yk 8k (X) e g(x)
By the continuity of all ¢, gx and g, there is a neighbourhood U of x, U C U(x,§), such that ¢ (y) # 0 for k € A and

Y8k (y) < g(y) fork € {1,..., N} \ A whenever y € U. Thus, by (I8), g(¥) = maxge4 yx gk (y) for y € U. Since each g,
k € A,isLFCon U, so is g. Therefore g is LFC on D.

From the last two inequalities in we can see that g(x) > v(x) for any x € hps. Thus g(x) > ||x| on {x € hyps; ||x|| > 1}
and we can compose g with a suitable real continuous function to obtain a desired continuous LFC bump. To finish the proof, it
remains to apply Theorem

O

Theorem 38. There is a non-degenerate Orlicz function M such that lim inf; 4 %(—ff)’) < oo for any K > 1, yet the correspond-

ing Orlicz sequence space hyy admits a C*°-smooth LFC-{e}} lattice bump.

Proof. Suppose we have a sequence b, > 1,n > 0.Forn =0,1,2,...,puta, = [[,_o b1 and let M(t) be a piecewise linear
continuous function on [0, 00), such that M(0) = 0, M'(t) = a, for 2=+ <t <27 and M'(¢) = 1 fort > 1. Clearly, this
is a non-degenerate Orlicz function and the constants b, determine the ratio of the slopes of M on the two consecutive dyadic
intervals. Suppose that j € N U {0} and 2=+ < < 27" for some n > j. Then

22, S MY < M) < M(2PT") <27 "ay .

Hence, forn > j > 2,

n i n+1
-~ MQit) .
2 +2
272 ] | b < D = 27 | | Bum. (19)
m=n—j+2 m=n—j+1

If Fy is chosen to be |, c I [2_("“), 27™) for some I C N, then for conditions (i) to (iii) in Theoremto hold, it is sufficient
to require
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(a) lim min I = oo,
k—o00
(b) For each k € N, there exists j; € N such that nlgrolo max{b,—j,,...,bn} = 00,
(¢) lim minb, = néli
k—o0 nely
Indeed, (a) implies (i). If 7 € (0,1) \ Fy, then there is n ¢ Iy such that ¢ € [2=®*1D 277 and thus (T9) together with (b) implies
(ii) for K = 272 Finally, (T9) together with (c) implies (iii) for K = 4 and C = minyez, b,. On the other hand, condition

(d) liminfmax{b,—_j,..., b} <ooforall j € N
n—>oo

with (T9) ensures that lim inf; o+

M(Kt)

o < oo for any K > 1.

Now we construct a sequence b, > 1,n > 0 and a sequence [ C N satisfying conditions (a) to (d). Choose a non-decreasing
sequence {c,} C R suchthatc, > 1andc¢, - co.Fori =0,1,2,...,j =0,...,iandk =0,...,j + 1, let

and define {b, }52, by b, j,0) = ci and by jk) =cjfork =1,...

i—-1 I+1

ni.j.k)y=>y > (m+1)+

[=0m=1

J
(m+1)+k
m=1

,J + 1. The sequence {b, } fills a triangular table, where the

index n = n(i, j, k) is interpreted as follows: i counts the rows, by j we index groups of columns, where the jth group consists
of j + 2 columns, and k is an index of a column in the jth group. So we have the following table
by by
by bs3 bs bs be
b;  bg by bio bn bi2 b1z bia bis
bie b1z big bio b bai baa baz by bas bys ba7 bag Do
with the values
Co Co
C1 Co 1 C1 (C1
2 Co 2 (€1 (1 C2 C2 C2 (2
¢z  Co 3 €1 €3 €3 (3 C2 €3 €3 (3 (3 (3

For any j € N we have max{b,,j 1), -

vbu,jj+1)) = ¢j foralli > j and (d) is clearly satisfied.

o0 oo
Nowletl = U U {n@,m,1),....,n(i,m,m+ 1)} fork € N, i.e. I} consists of all the columns in the table starting with

m=k—1 i=m

the (k — 1)th group but without the first column in each group. Condition (a) obviously holds. If n(i, j, 1) & Ir,thenl < j+1 <k

or [ = 0 but in both cases max{by . j.1)—k+1, - - -

bugi.j} = bn(,j0) = ¢i and hence (b) is satisfied. Finally, min, ez, by = cr—1

implies (c).
O
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