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Let N = pqg be the product of two primes. Let e, d be two integers
satisfying
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where ¢(N) = (p — 1)(q — 1).
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Definition (RSA cryptosystem)
Let N = pqg be the product of two primes. Let e, d be two integers

satisfying
ed=1 (mod ¢(N))

where ¢(N) = (p—1)(qg —1).
N ... RSA modulus
e ... encryption exponent
d ... decryption exponent
(N,e) ... public key
(N,d) ... private key
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Introduction

C=M* (mod N)

Indeed, from Euler's theorem it follows that

C!=MI=M (mod N).
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M. Franklin M. Reiter

Artist: Milan Boha&ek
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Low Exponent RSA with Related Messages

What does Marvin know?
» public key (N, e)
» k ciphertexts of different messages produced using the same
public key (N, e)

» polynomial relation between the messages

What is Marvin's goal?

> to recover the plaintext messages



Two messages with affine relation

mi,m €Zy, m=am+p, «a,B€Ly

a=m; (mod N)

o =m; = (am; +£)° (mod N)

mi—c =0 (mod N)
(ami +B)° —c=0 (mod N)

Let z denote the unknown message mx:

z—a=0 (modN)
(az+B)° —c2=0 (mod N)

Applying Euclidean algorithm should yield the linear polynomial z — m;.

z—m =gcd(2° —c1, (am + B)° — @) € Zn[X]



Two messages with polynomial relation

We have p € Zy[x], ma = p(m1), deg(p)=>2.

z°—c =0 (mod N)
(p(2))*—c2=0 (mod N)

Euclidean algorithm should yield z — m;.

z—m =gcd (2° —c1,(p(2)* — @) € Znlx]



Resultant

p(x) = pmx™ + ...+ p1x+ po, deg(p)=m
q(x):qnx"+...+q1x+q07 deg(q):n



Resx(p, q)

p(x) = pmx™ + ...+ p1x+ po
g(x) = gx"+ ...+ q1x + qo

Pm
Pm—1
Pm—2

pP1

Po

Pm
Pm—1

P2
p1

Po

Resultant

o

Pm
pP3

p1

o O O

p1

deg(p) = m
deg(q) = n
Qn 0 0
dn—1 an O
dn—2 dn—1 an
q1 qz qs
qo qi qz
0 Qo q1
0 0 0

o o

qi
qo




Resultant

p(x) = pmx™ + ...+ p1x+ po, deg(p)=m
q(x):qnx"+...+Q1X+q07 deg(q) =n

Pm 0 o ... O gn 0 o ... O

Pm—1 Pm 0 0 dn—1 an 0 . 0

Pm—2 Pm—1 Pm 0 dn—2 dn—1 an cee 0
Resx(p, q) — P1 P2 p3 ... : q1 Q2 g3
Po p1 p2 ... . qo q1 q2
0 Po pro... 0 qo q1

: : : o : S @

0 0 0 ... p O 0 0 ... q

Fact: The resultant of two polynomials with coefficients in an integral domain
is zero if and only if they have a common divisor of positive degree.



Implicit polynomial relation

What if m; and mo satisfy an implicit polynomial relation?
p(mi,m) =0 (mod N), deg(p)=24
Then we have:

P; = p(mi,my) =0 (mod N)
P=m{—c =0 (mod N)
Ps=m5—c =0 (mod N)
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P1 = p(x,y)=0 (mod N)
P, =x*—c =0 (mod N)
P; =y —c =0 (mod N)
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yield a polynomial Ps(y),deg(Ps) < de.
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Implicit polynomial relation

P1 = p(x,y) =0 (mod N)
P, =x*—c =0 (mod N)
P3:ye—CzEO (mod N)

Resultant of Pi(x,y) and Pa(x) with respect to the variable x will
yield a polynomial Ps(y),deg(Ps) < de.

ged (P3, Py) should yield the linear polynomial y — m»

ged (P1, P2) should yield the linear polynomial x — my



Arbitrary polynomial relationship among messages

We have my, ma,....my; p(mi,....my) =0.

Po(xts ..., xx) = p(x1,....x) =0 (mod N)
Pl(Xl) = Xf — = 0 (mod N)

Pk(xk) = Xf — Ck = 0 (mod N)



Arbitrary polynomial relationship among messages

We have my, mz,...,my;  p(my,...,mi) =0.

Pi(xk) =xg —a =0 (mod N)

Qu(Xl, ey

QE(XH—L cee

Qu—1(>x)

,Xk) = Resx,(QJ—l, P;)

xx) = Po




Arbitrary polynomial relationship among messages

We have my, mo,....my;  p(mi,...,mg) =0.

Po(xts ..., xx) = p(x1,....x) =0 (mod N)
Pi(x1) =x —a =0 (mod N)

Pi(xk) =xf —ca =0 (mod N)

Qo(x1,...,xk) = Po ged (Qu—1(xk), Pr(xk)) = xx — mx

Qi(Xit1, - .- ,;(k) = Res.(Qi-1, P;) ged (Pi(xi), Qi—1(xi, U;wl-, Ce M) =X — my

Qu—1(>x)
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Wiener's Attack

Theorem (M. Wiener)

Let N =pqg withq < p<2q. Letd < %N% Given a public key
(N, e) with ed =1 (mod ¢(N)), an adversary can efficiently
recover d.

ed —kp(N) =1 k¢(N)=ed—1 e<§(N) = k<d<INi

‘e_k‘_l

¢(N) d|  do(N)
e k| _|ed—kp(N)+ kdp(N)—kN|
N_d‘_ Nd ‘_

k(N —g(N)) - 1| _ 3kv/N| 3k 1 1
Nd SITNG | T avN S gnt T 242
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Wiener's Attack

== g is a convergent of the continued fraction expansion of
(Lemma 3)

= 4 has maximum of log, N convergents

—> we obtain k and d

= we obtain ¢(N)

— we can factor N
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Countermeasures

1. (N,e) — (N,e/)7 e =e+ téd(N) for some large t.
If e > N5 attack cannot be mounted.
2. CRT: choose d so that
dp=dmodp—1 and dg=dmodg—1
are both small.

Decryption:
M, = C% (mod p)

M, = C% (mod q)
Using CRT find M € Zy satisfying:
M=M, (modp) & M=M,; (mod q)
M= C? (mod N)
dp and dy are small but d mod ¢(N) can be large.



Wiener's Attack

Boneh and Durfee: d < N92%?

Open Problem

Let N = pq and d < N%5. If Marvin is given (N, e) with ed = 1
(mod ¢(N)) and e < ¢(N), can he recover d?
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» NeZ
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Theorem 5

» NeZ
» f € Z[x] is monic, deg(f) =9
> X = N%_E for some € > 0

Then, given (N, f), Marvin can efficiently find all integers |xp| < X
satisfying
f(x)=0 (mod N)

The running time is dominated by the time it takes to run the LLL
algorithm on a lattice of dimension O(w) with
w = min(%, loga(N)).

€



Lemma 6

Let h(x) € Z[x] be a polynomial of degree §, and let X be a
positive integer. Suppose ||h(xX)|| < %. If [xo| < X satisfies
h(xo) =0 (mod N) then h(xg) = 0 holds over the integers.



Lemma 6

Let h(x) € Z[x] be a polynomial of degree J, and let X be a
positive integer. Suppose ||h(xX)|| < \[ If [xo| < X satisfies

h(xo) =0 (mod N) then h(xg) = 0 holds over the integers.

Theorem (Cauchy-Schwarz)
For each u1,...,u, € C and vq,...,v, € C:

uf' v, _Zlufl ZIVkI

i=1 j=1




f(x) =0 mod N
f(x0)*=0 mod Nk
guv(x) = N""Vx"f(x)"

where 0 < v <mand 0 < u.
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guv(x) = N""Vx"f(x)"

GOAL Find an integer linear combination h(x) of

polynomials g, ,(x) such that ||h(xX)|| < —2Z

\/deg(h)’

How to find h(x)?



Lattices

Definition
Let u1,...,u, € Z* be linearly independent vectors. A (full-rank)
lattice £ spanned by (u1, ..., u,) is defined as:

L:=au+ -+ a,u, €7Z.

det(L) := det

— uw —



LLL Algorithm

INPUT by,..., b, - basis of £ (L is spanned by (b1, ...

OUTPUT bi,..., b, - basis of L satisfying:

w(w—1)
1—

IBL] < [[Bh]| < -+ < |[Bl]| < 250 det (L)



LLL Algorithm

INPUT by,..., b, - basis of £ (L is spanned by (b1, ...

OUTPUT bi,..., b, - basis of L satisfying:

161 < 18] < - < (6] < 2955 det (£)

1B, < 2% det (L)~

b))



Our case

We view polynomials g, ,(x) as vectors and study the lattice £
spanned by them.
We let:

v=20,...,m

u=20,...,0—1

Hence the lattice has dimension w = §(m + 1).



Some big matrix called G

uv(x) = N""Vx'f(x) v=0,....m u=0,.
w=09m+1)
1 Xl X2 X(S—l X(S
80.0(xX) n™
g1.0(xX) ©ONTX
&,0(xX) N7 X3
gs—1.0(xX) Nmxo-1
go,1(xX) NmXO

85—1,m

X5(m+1)—1




Some big matrix called G

guv(x) = NT"Vx“f(x)"
w=09m+1)

80,0(xX)
81,0(xX)
82,0(xX)

gs—1,0(xX)
80,1(xX)

85—1,m

,m u=0,
X§—1 X(S
me6—1
Nm71X5

det(G) _ N%6m(m+1)X%(6(m+1)71)(6(m+1)) — N%mwx%(wfl)w

51
Xé(m+1)—1
X5(m+1)—1




Applying the LLL algorithm on matrix the G we obtain a
polynomial h(xX) € L:

1h(eX)|| < 27 det(G)= =

w N™
— 29 Nzmx3(@-1) < T ... for large enough m
w



Applying the LLL algorithm on matrix the G we obtain a
polynomial h(xX) € L:

|(xX)|| < 2% det(G)s =
w Nm
— 29 Nzmx3(@-1) < —... for large enough m
Vw
Let h(x) € Z[x] be a polynomial of degree ¢, and let X be a

positive integer. Suppose ||h(xX)| < %. If [xo| < X satisfies
h(xo) =0 (mod N) then h(xp) = 0 holds over the integers.



Applications of Coppersmith’'s Theorem
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M ... message



P1

M ... message



” M ... message
a
\



M ... message

Pr—1






M ... message

e ‘&%ﬁ
% P2 Y Pk__l" ‘
(Ny,ep) % (g» (Nk. ex)

(N2, &) (Nik—1;ex—1)



” M ... message
3 M < min;(N;)

I31 Pk

e ‘&%ﬁ
% P2 Y Pk__l" ‘
(Ny,ep) % (g» (Nk. ex)

(N2, &) (Nik—1;ex—1)



” M ... message
£ M < minf(Nj)
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Suppose ¢, =3 Vie{1,2,...,k}, k=>3.
Marvin obtains: C1, Gy, C3 where:
Ci=M3 (mod Ny)

G =M3 (mod Ny)
C3= M3 (mod N3)
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Hastad's Broadcast Attack
Suppose ¢, =3 Vie{1,2,...,k}, k=>3.
Marvin obtains: C1, Gy, C3 where:
Ci=M3 (mod Ny)

G =M3 (mod Ny)
C3= M3 (mod N3)

Then from CRT we have:

C' =M (mod NyNoN3) M3 < NiNoNs

— M=V



Hastad's Broadcast Attack

Suppose that for each participant P;, Bob has a fixed polynomial
fi € Zy,[x].

M — ((M))" = G

Suppose that Marvin learns C;.
Hastad showed that if enough parties are involved, Marvin can
recover M.



Hastad's Broadcast Attack

Theorem (Héstad)

Let Ny, ..., Ny be pairwise relatively prime integers, and set
Nmin = min;j(N;). Let gi € Zy,[x] be k polynomials of maximum
degree §. Suppose there exists a unique M < Np,;, satisfying

gi(M)=0 (mod N;) foralli=1,... k.

Under the assumption that k > §, Marvin can efficiently find M
. k
given (N, gi)i_; .



Hastad's Broadcast Attack
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Hastad's Broadcast Attack
Proof.

/\_/Z: N1N2---Nk
WLOG, gj is monic and degg; =3 Vi={1,2.... k}.
k
g(x) = Z Tigi(x),
i=1
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Hastad's Broadcast Attack
Proof.

/\_/Z: N1N2---Nk
WLOG, gj is monic and degg; =3 Vi={1,2.... k}.
k
g(x) = Z Tigi(x),
i=1

T, — Imod N, i=j
Omod N;, i#j

g is monic (mod N), g(M)=0 (mod N)

x|
Sl

M < Npin < Nk < N



Hastad's Broadcast Attack

Conclusion - Use random padding !



Coppersmith’s Short Pad Attack

Suppose e = 3; R, R’ random pads such that R = R + r, where
Ir| < Ns; M € Z,

c=m*=(2*M+R)® (mod N)
c =(m )3—(2 M+R)3—(m+r)3 (mod N)
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Coppersmith’s Short Pad Attack

Suppose e = 3; R, R’ random pads such that R = R + r, where
Ir| < Ns; M € Z,

c=m*=(2"M+R)® (mod N)

c=(m)P=02"M+RY¥ =(m+r)?® (modN)

Eliminating m:

Resy,(m® —c,(m+r)®—c) =

r9 4+ (3¢ =3¢ ) 4 (3% +21cc’ +3(c )P +(c— )P =0
(mod N)

|r| < N5 — recover r with Coppersmith’s method

And then use Franklin-Reiter method to recover m.
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Partial Key Exposure

Suppose we have obtained 300 least significant bits of d; e =2 + 1
We want to factorize N.

ed —ko(N) =1, k<e
ed—k(N-p—q+1)=1
ed—k(N—p—qg+1)=1 (mod?2'), forl €1,---,300
ped —k(pN —p* = N+1)=p (mod 2')

— obtain 300 least significant bits of p
p = rx+t, where r = 230 ¢ known

We compute r~ " (mod N)

rilp=x+r't=0 (mod p)

f(x)=x+r't=0 (mod N)



Thank you for your attention!
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