
WALNUT PROVER

Written by Hamoon Mousavi

Available on webside of Jeffrey O. Shallit
https://cs.uwaterloo.ca/∼shallit/papers.html

Most of examples in this representation come from this
webside and the Walnut documentation.



How to run Walnut?

Walnut is used by typing command in command line.

Java is needed to run the Walnut.

We run Walnut by write:

cd C : / . . . / Walnut / b i n
> j a v a Main . p r o v e r
.
.
.
>e x i t



Commands

List of all commands and their parameters:

e v a l <name> <p r e d i c a t e >
d e f <name> <p r e d i c a t e >
r e g <name> <number system> < r e g u l a r e x p r e s s i o n >
r e g <name> <a l p h a b e t> < r e g u l a r e x p r e s s i o n >
l o a d < f i l e name>
e x i t



Command eval

Eval is basic command.

It has two parameters: name and predicade.

Example:

e v a l example ”b=a +1”;

As an output we get three files in the directory
.../Walnut/Result:

example.txt
example.gv
example log.txt



Output

table-form description
(example.txt)

msd 2 msd 2
0 0
0 0 -> 0
0 1 -> 1
1 1 -> 0
1 1
1 0 -> 1

graph-form description
(example.gv)

(a,b): b=a+1

0

(0,0)
(1,1)

1
(0,1)

(1,0)

inputed words:

a = 101101111
b = 101110000



Overlaps in the Thue-Morse infinite word

Theorem

The Thue-Morse word is overlap-free.

The following predicade sais ”In t is overelap of order n,
starting at position i”:
(n > 0) ∧ ∀k : k ≤ n⇒ T [i + k] = T [i + n + k]

The resultant automaton:

(i,n): n>0 & Ak k<= n => T[i+k]=T[i+k+n]

0

The automaton defines an empty language, so there are
no overlaps in the Thue-Morse infinite word.



Overlaps in the Thue-Morse infinite word

Theorem

The Thue-Morse word is overlap-free.

The following predicade sais ”In t is overelap of order n,
starting at position i”:
(n > 0) ∧ ∀k : k ≤ n⇒ T [i + k] = T [i + n + k]

The resultant automaton:

(i,n): n>0 & Ak k<= n => T[i+k]=T[i+k+n]

0

The automaton defines an empty language, so there are
no overlaps in the Thue-Morse infinite word.



Overlaps in the Thue-Morse infinite word

Theorem

The Thue-Morse word is overlap-free.

The following predicade sais ”In t is overelap of order n,
starting at position i”:
(n > 0) ∧ ∀k : k ≤ n⇒ T [i + k] = T [i + n + k]

The resultant automaton:

(i,n): n>0 & Ak k<= n => T[i+k]=T[i+k+n]

0

The automaton defines an empty language, so there are
no overlaps in the Thue-Morse infinite word.



Overlaps in the Thue-Morse infinite word

In the file log we can find some information about the
proces of computing the automaton.

n>0 has 2 s t a t e s : 453ms
k<=n has 2 s t a t e s : 0ms
T[ ( i+k )]=T [ ( ( i+k)+n ) ] has 12 s t a t e s : 56ms
( k<=n=>T[ ( i+k )]=T [ ( ( i+k)+n ) ] ) has 25 s t a t e s : 2ms
(A k ( k<=n=>T[ ( i+k )]=T [ ( ( i+k)+n ) ] ) ) has 1 s t a t e s : 9ms
(n>0\&(A k (k<=n=>T[ ( i+k )]=T [ ( ( i+k)+n ) ] ) ) ) has 1 s t a t e s : 0ms

t o t a l computat ion t ime : 583ms

Computation is devided into several steps following the
structure of the predicade.



Squares in the Thue-Morse infinite word

Of what orders are squares in the Thue-Morse infinitive
word?

Predicade: ∃i∀k < n : t[i + k] = t[i + n + k];

Automaton:

(n): Ei Ak k<n => T[i+k]=T[i+n+k]

0

(0)

1
(1)

2
(0)
(1)

(0)

In t, there are squares of orders 2n and 3n for all n ∈ N0.



Squares in the Thue-Morse infinite word

Of what orders are squares in the Thue-Morse infinitive
word?

Predicade: ∃i∀k < n : t[i + k] = t[i + n + k];

Automaton:

(n): Ei Ak k<n => T[i+k]=T[i+n+k]

0

(0)

1
(1)

2
(0)
(1)

(0)

In t, there are squares of orders 2n and 3n for all n ∈ N0.



Squares in the Thue-Morse infinite word

Of what orders are squares in the Thue-Morse infinitive
word?

Predicade: ∃i∀k < n : t[i + k] = t[i + n + k];

Automaton:

(n): Ei Ak k<n => T[i+k]=T[i+n+k]

0

(0)

1
(1)

2
(0)
(1)

(0)

In t, there are squares of orders 2n and 3n for all n ∈ N0.



Squares in the Thue-Morse infinite word

Of what orders are squares in the Thue-Morse infinitive
word?

Predicade: ∃i∀k < n : t[i + k] = t[i + n + k];

Automaton:

(n): Ei Ak k<n => T[i+k]=T[i+n+k]

0

(0)

1
(1)

2
(0)
(1)

(0)

In t, there are squares of orders 2n and 3n for all n ∈ N0.



Comamnd def

If predicade parameter for eval is to dificult, we can break
it into more simpler commands, using command def.

The difference between eval and def is that outcome
automaton is saved in an automaton library and can be
used later.

Example
instead of:

e v a l c o m p l i c a t e d E q ”a = 3∗ ( ( b +3)/2)”;

we can write:

d e f s imp leEq ” c =(b +3)/2”;
e v a l s imp leEq2 ”Ec a=3∗c & $s impleEq ( c , b ) ” ;



Comamnd def

If predicade parameter for eval is to dificult, we can break
it into more simpler commands, using command def.

The difference between eval and def is that outcome
automaton is saved in an automaton library and can be
used later.

Example
instead of:

e v a l c o m p l i c a t e d E q ”a = 3∗ ( ( b +3)/2)”;

we can write:

d e f s imp leEq ” c =(b +3)/2”;
e v a l s imp leEq2 ”Ec a=3∗c & $s impleEq ( c , b ) ” ;



command reg

Command reg provides another way to define an
automaton.

It takes as parametr an language and a regular expression.

Some properties about numbers can be clearly seen from
binary expression.

The following automaton cheks if n equals 2 modulo 4.

Command and automaton:

r e g res2mod4 msd 2 ” ( 0 |1 )∗1 0 ” ;

(): (0|1)*10

0

(0)
1

(1)

(1)

2

(0)

(0)

(1)

Evaluation of reg is also saved in an automaton library.



command reg

Command reg provides another way to define an
automaton.

It takes as parametr an language and a regular expression.

Some properties about numbers can be clearly seen from
binary expression.

The following automaton cheks if n equals 2 modulo 4.

Command and automaton:

r e g res2mod4 msd 2 ” ( 0 |1 )∗1 0 ” ;

(): (0|1)*10

0

(0)
1

(1)

(1)

2

(0)

(0)

(1)

Evaluation of reg is also saved in an automaton library.



command reg

Command reg provides another way to define an
automaton.

It takes as parametr an language and a regular expression.

Some properties about numbers can be clearly seen from
binary expression.

The following automaton cheks if n equals 2 modulo 4.

Command and automaton:

r e g res2mod4 msd 2 ” ( 0 |1 )∗1 0 ” ;

(): (0|1)*10

0

(0)
1

(1)

(1)

2

(0)

(0)

(1)

Evaluation of reg is also saved in an automaton library.



Fibonacci base

Theorem (Zeckendorf)

Every natural number can be uniquely writen as a sum of
Fibonnaci numbers, where no two consecutive Fibonacci
numbers are used.

So we can uniquely express every natural number in
Fibonacci base.

Example:

85321

10dec =10010fib = 8dec + 2dec



Fibonacci base

Theorem (Zeckendorf)

Every natural number can be uniquely writen as a sum of
Fibonnaci numbers, where no two consecutive Fibonacci
numbers are used.

So we can uniquely express every natural number in
Fibonacci base.

Example:

85321

10dec =10010fib = 8dec + 2dec



Example in Fibonacci base

What orders are squares in the Fibonacci word?

We definine Fibonacci base by typing ?msd fib at the
begining of predicade parametr.

Command:

o r d e r O f S q u a r e I n F ”? m s d f i b E i
( Ak k<n => F [ i+k]=F [ i+n+k ] ) ” ;

automaton:

(n): ?msd_fib Ei Ak k<n => F[i+k]=F[i+n+k]

0

(0)

1
(1)

(0)

The automaton defines language 0∗10∗, whichs are exactly
Fibonacci numbers.



Example in Fibonacci base

What orders are squares in the Fibonacci word?

We definine Fibonacci base by typing ?msd fib at the
begining of predicade parametr.

Command:

o r d e r O f S q u a r e I n F ”? m s d f i b E i
( Ak k<n => F [ i+k]=F [ i+n+k ] ) ” ;

automaton:

(n): ?msd_fib Ei Ak k<n => F[i+k]=F[i+n+k]

0

(0)

1
(1)

(0)

The automaton defines language 0∗10∗, whichs are exactly
Fibonacci numbers.



Periodicity of the infinity Fibonacci word

Theorem

The infinite Fibonacci word is not ultimately periodic.

Intuitively, periodicity would imply, that frequency of 0 is
rational. However, we know it is 1

ϕ , where ϕ is golden
ratio, which is irrational number.

The predicade, coding the theorem:
(p > 0) ∧ ∃n∀i ≥ n : F [i] = F [i + p]

Log:

p>0 has 3 s t a t e s : 0ms
p>0 has 2 s t a t e s : 15ms
i>=n has 2 s t a t e s : 0ms
F [ i ]=F [ ( i+p ) ] has 10 s t a t e s : 63ms
( i>=n=>F [ i ]=F [ ( i+p ) ] ) has 22 s t a t e s : 15ms
(A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) has 1 s t a t e s : 250ms
(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) has 1 s t a t e s : 0ms
(p>0&(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) ) has 1 s t a t e s : 0ms

t o t a l computat ion t ime : 32ms



Periodicity of the infinity Fibonacci word

Theorem

The infinite Fibonacci word is not ultimately periodic.

Intuitively, periodicity would imply, that frequency of 0 is
rational. However, we know it is 1

ϕ , where ϕ is golden
ratio, which is irrational number.

The predicade, coding the theorem:
(p > 0) ∧ ∃n∀i ≥ n : F [i] = F [i + p]

Log:

p>0 has 3 s t a t e s : 0ms
p>0 has 2 s t a t e s : 15ms
i>=n has 2 s t a t e s : 0ms
F [ i ]=F [ ( i+p ) ] has 10 s t a t e s : 63ms
( i>=n=>F [ i ]=F [ ( i+p ) ] ) has 22 s t a t e s : 15ms
(A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) has 1 s t a t e s : 250ms
(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) has 1 s t a t e s : 0ms
(p>0&(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) ) has 1 s t a t e s : 0ms

t o t a l computat ion t ime : 32ms



Periodicity of the infinity Fibonacci word

Theorem

The infinite Fibonacci word is not ultimately periodic.

Intuitively, periodicity would imply, that frequency of 0 is
rational. However, we know it is 1

ϕ , where ϕ is golden
ratio, which is irrational number.

The predicade, coding the theorem:
(p > 0) ∧ ∃n∀i ≥ n : F [i] = F [i + p]

Log:

p>0 has 3 s t a t e s : 0ms
p>0 has 2 s t a t e s : 15ms
i>=n has 2 s t a t e s : 0ms
F [ i ]=F [ ( i+p ) ] has 10 s t a t e s : 63ms
( i>=n=>F [ i ]=F [ ( i+p ) ] ) has 22 s t a t e s : 15ms
(A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) has 1 s t a t e s : 250ms
(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) has 1 s t a t e s : 0ms
(p>0&(E n (A i ( i>=n=>F [ i ]=F [ ( i+p ) ] ) ) ) ) has 1 s t a t e s : 0ms

t o t a l computat ion t ime : 32ms



Palindromes in the infinity Fibonacci word

Theorem

The infinite Fibonacci word f has exactly one palindromic
factor of length n for n even and exactly two palindromic
factor of length n for n odd.

Theorem is proved by Walnut in two steps. Firstly we
verify the even case, than the odd case.

The following predicade defines n such that f has exactly
one palindromic factor of lenght n

∃i(∀t < n : f [i + t] = f [i + n− 1− t])∧

∀j(∀s < n : f [j + s] = f [j + n− 1− s])⇒

⇒ (∀u < n : f [i + u] = f [j + u])



Palindromes in the infinity Fibonacci word

Theorem

The infinite Fibonacci word f has exactly one palindromic
factor of length n for n even and exactly two palindromic
factor of length n for n odd.

Theorem is proved by Walnut in two steps. Firstly we
verify the even case, than the odd case.

The following predicade defines n such that f has exactly
one palindromic factor of lenght n

∃i(∀t < n : f [i + t] = f [i + n− 1− t])∧

∀j(∀s < n : f [j + s] = f [j + n− 1− s])⇒

⇒ (∀u < n : f [i + u] = f [j + u])



Palindromes in the infinity Fibonacci word

(n): ?msd_fib Ei((At t<n => F[i+t]=F[i+n-1-t])& (Aj (As s<=n => F[j+s]=F[j+n-1-s])=> (Au u<n => F[i+u]=F[j+u])))

0

(0)
1(1)

2
(0)

3
(0)

4

(1)

5(0)

6

(1)(0)

(0)
7

(1)

(0)

(0)

We can easily check, that this automaton defines even
numbers, by compute automaton of predicade
∃m(n = 2 ∗m) in Fibonacci base and compare them.

The case of odd palindromes could be verify in similar way.



Palindromes in the infinity Fibonacci word

(n): ?msd_fib Ei((At t<n => F[i+t]=F[i+n-1-t])& (Aj (As s<=n => F[j+s]=F[j+n-1-s])=> (Au u<n => F[i+u]=F[j+u])))

0

(0)
1(1)

2
(0)

3
(0)

4

(1)

5(0)

6

(1)(0)

(0)
7

(1)

(0)

(0)

We can easily check, that this automaton defines even
numbers, by compute automaton of predicade
∃m(n = 2 ∗m) in Fibonacci base and compare them.

The case of odd palindromes could be verify in similar way.



Antipalindromes in the infinity Fibonacci word

Definition

Word x ∈ {0, 1}∗ is antipalindrome if x = x̄R. That is x is
invariant under composition of reverse and negation.

Theorem

The only nonempty antipalindromes in f are 01, 10, 0101 and
1010.

Following predicade sais: There is antipalindrom
f [i, . . . , i− 1 + n] and it is the first occurence of such
antipalindrom in f .

(n > 0) ∧ (∀j < n : f [i + j] 6= f [i + n− 1− j])∧

∧(∀k < i,∃j < n : f [k + j] 6= f [i + j])



Antipalindromes in the infinity Fibonacci word

Definition

Word x ∈ {0, 1}∗ is antipalindrome if x = x̄R. That is x is
invariant under composition of reverse and negation.

Theorem

The only nonempty antipalindromes in f are 01, 10, 0101 and
1010.

Following predicade sais: There is antipalindrom
f [i, . . . , i− 1 + n] and it is the first occurence of such
antipalindrom in f .

(n > 0) ∧ (∀j < n : f [i + j] 6= f [i + n− 1− j])∧

∧(∀k < i,∃j < n : f [k + j] 6= f [i + j])



One more example

(i,n): ?msd_fib (n>0) & (Aj j<n => F[i+j]!=F[i+n-1-j]) & (Ak (k<i => (Ej j<n & F[k+j]!= F[i+j])))

0

(0,0)

1(0,1)

2

(1,1) 3

(0,0)

(1,0)

4
(0,0)

(0,1)

(1,1)

It can be easily seen that the automaton accepts pairs:
(0∗101, 0∗100), (0∗101, 0∗101), (0∗10, 0∗00) and
(0∗10, 0∗01) in Fibonacci base.

In decadic base: (4, 3), (4, 4), (2, 0) and (2, 1).

01001010010010100101 . . .
010010100100101001010 . . .



One more example

(i,n): ?msd_fib (n>0) & (Aj j<n => F[i+j]!=F[i+n-1-j]) & (Ak (k<i => (Ej j<n & F[k+j]!= F[i+j])))

0

(0,0)

1(0,1)

2

(1,1) 3

(0,0)

(1,0)

4
(0,0)

(0,1)

(1,1)

It can be easily seen that the automaton accepts pairs:
(0∗101, 0∗100), (0∗101, 0∗101), (0∗10, 0∗00) and
(0∗10, 0∗01) in Fibonacci base.

In decadic base: (4, 3), (4, 4), (2, 0) and (2, 1).

01001010010010100101 . . .
010010100100101001010 . . .



One more example

(i,n): ?msd_fib (n>0) & (Aj j<n => F[i+j]!=F[i+n-1-j]) & (Ak (k<i => (Ej j<n & F[k+j]!= F[i+j])))

0

(0,0)

1(0,1)

2

(1,1) 3

(0,0)

(1,0)

4
(0,0)

(0,1)

(1,1)

It can be easily seen that the automaton accepts pairs:
(0∗101, 0∗100), (0∗101, 0∗101), (0∗10, 0∗00) and
(0∗10, 0∗01) in Fibonacci base.

In decadic base: (4, 3), (4, 4), (2, 0) and (2, 1).

01001010010010100101 . . .
010010100100101001010 . . .


