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Introduction

William Rowan Hamilton - quaternions

John T. Graves - octaves

Arthur Cayley - Cayley’s numbers

Élie Cartan - geometrical relevance

Jordan, von Neumann and Wigner - the
foundations of quantum mechanics
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Inventing the Quaternions

Brougham Bridge - the bridge where Hamilton carved his
definition of the quaternions
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Octonions: if 4, why not more?

Graves: If you’re allowed make up a way of multiplying
lists of 4 numbers, why not more?

Hamilton: Just because it’s bigger I don’t know if it is
better. I have a horse with four legs, I don’t know if your
horse with eight legs will run twice as fast!
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Basic Definitions

A vector space is a finite-dimensional module over the
field of real numbers.
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Basic Definitions

A vector space is a finite-dimensional module over the
field of real numbers.

An algebra A is a vector space that is equipped with a
bilinear map m : A×A → A called ‘multiplication’ and
a nonzero element 1 ∈ A called the ‘unit’ such that
m(1, a) = m(a, 1) = a.

An algebra A is a division algebra if given a, b ∈ A

with ab = 0, then either a = 0 or b = 0.

A normed division algebra is an algebra A that is
also a normed vector space with ‖ab‖ = ‖a‖‖b‖.
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Levels of Associativity

An algebra is:

power-associative if the subalgebra
generated by any one element is associative
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Levels of Associativity

An algebra is:

power-associative if the subalgebra
generated by any one element is associative

alternative if the subalgebra generated by
any two elements is associative
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Levels of Associativity

An algebra is:

power-associative if the subalgebra
generated by any one element is associative

alternative if the subalgebra generated by
any two elements is associative

associative if the subalgebra generated by
any three elements is associative

Octonions – p. 6/??



Commutator and Associator

Commutator is an alternating bilinear map
[·, ·] : A2 → A given by [a, b] = ab − ba. It
switches sign whenever the two arguments
are exchanged [a, b] = −[b, a] or equivalently,
that it vanishes when they are equal [a, a] = 0.
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Commutator and Associator

Commutator is an alternating bilinear map
[·, ·] : A2 → A given by [a, b] = ab − ba. It
switches sign whenever the two arguments
are exchanged [a, b] = −[b, a] or equivalently,
that it vanishes when they are equal [a, a] = 0.

Associator is a trilinear map [·, ·, ·] : A3 → A
given by [a, b, c] = (ab)c − a(bc).

The associator measures the failure of
associativity just as the commutator
measures the failure of commutativity.
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Alternative Algebra

Theorem:
An algebra A is alternative if and only if for all
a, b ∈ A we have
(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa)
[Emil Artin, 1930s]

Proposition:
Associator is alternating precisely when A is
alternative.
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Basic Theorems

Theorem 1: R, C, H and O are the only
normed division algebras. [Hurwitz, 1898.]
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Basic Theorems

Theorem 1: R, C, H and O are the only
normed division algebras. [Hurwitz, 1898.]

Theorem 2: R, C, H and O are the only
alternative division algebras. [Zorn, 1930.]

Theorem 3: All division algebras have
dimension 1, 2, 4, or 8. [Kervaire and
Bott-Milnor, 1958.]

Octonions – p. 9/??



Constructing the Octonions

The octonions are an 8-dimensional algebra
with basis 1, e1, e2, e3, e4, e5, e6, e7.

The most elementary way to construct the
octonions is to give their multiplication table.
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Octonion Multiplication Table

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e5 −e7 e4 e3 −e1 −1 e2

e7 e3 e6 −e1 e5 −e4 −e2 −1

Octonions – p. 11/??



Properties

e1, . . . , e7 are square roots of −1
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of indices as living in Z7)
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Properties

e1, . . . , e7 are square roots of −1

ei and ej anticommute when
i 6= j : eiej = −ejei

the index cycling identity holds:
eiej = ek ⇒ ei+1ej+1 = ek+1 (where we think
of indices as living in Z7)

the index doubling identity holds:
eiej = ek ⇒ e2ie2j = e2k

nontrivial product: e1e2 = e4
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Quaternions

The quaternions, H, are a 4-dimensional algebra
with basis 1, i, j, k.
Multipication properties:
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Quaternions

The quaternions, H, are a 4-dimensional algebra
with basis 1, i, j, k.
Multipication properties:

1 is the multiplicative identity

i, j and k are square roots of −1

we have ij = k, ji = −k, and all identities
obtained from these by cyclic permutations of
(i, j, k)
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Multiplication of Quaternions

i

k j

Octonions – p. 14/??



Multiplication of Quaternions

clockwise

i

k j
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Multiplication of Quaternions

ij = k

i

k j
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Multiplication of Quaternions

counterclockwise

i

k j
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Multiplication of Quaternions

ji = −k

i

k j
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How to multiply octonions?

Fano plane
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Properties

1 is the multiplicative identity
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Properties

1 is the multiplicative identity

e1, . . . , e7 are square roots of −1

If ei, ej, and ek are cyclically ordered in this
way then eiej = ek, ejei = −ek .
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Properties

1 is the multiplicative identity

e1, . . . , e7 are square roots of −1

If ei, ej, and ek are cyclically ordered in this
way then eiej = ek, ejei = −ek .

the index doubling corresponds to rotating
the picture a third of a turn

Octonions – p. 16/??



The Fano plane

The Fano plane consists of 7 points and 7 lines.

The ’lines’ are the sides of the triangle, its altitudes,
and the circle containing all the midpoints of the sides.

It completely describes the algebra structure of the
octonions.

Octonions – p. 17/??



OctonionsO

The Fano plane is the projective plane over the
2-element field Z2.
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Subalgebras ofO

1 ∈ O - the origin in Z
3
2.
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Subalgebras ofO

1 ∈ O - the origin in Z
3
2.

Planes through the origin give subalgebras
isomorphic to the quaternions.
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1 ∈ O - the origin in Z
3
2.

Planes through the origin give subalgebras
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Subalgebras ofO

1 ∈ O - the origin in Z
3
2.

Planes through the origin give subalgebras
isomorphic to the quaternions.

Lines through the origin give subalgebras
isomorphic the complex numbers.

The origin itself gives a subalgebra
isomorphic to the real numbers.

Octonions – p. 19/??



The Cayley-Dickson Construction

The Cayley-Dickson construction gives an
infinite sequence of algebras, doubling in
dimension each time, with the normed
division algebras R, C, H and O as the first
four. Also, it explaines why each one fits
neatly inside the next.
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Complex numbers

z = a + ib ∈ C ⇐⇒ (a, b) ∈ R
2
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Complex numbers

z = a + ib ∈ C ⇐⇒ (a, b) ∈ R
2

multiplication:

(a, b)(c, d) = (ac − db, ad + cb)
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Complex numbers

z = a + ib ∈ C ⇐⇒ (a, b) ∈ R
2

multiplication:

(a, b)(c, d) = (ac − db, ad + cb)

conjugate:
(a, b)∗ = (a,−b)
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Quaternions

q ∈ H ⇐⇒ (a, b) ∈ C
2
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Quaternions

q ∈ H ⇐⇒ (a, b) ∈ C
2

multiplication:

(a, b)(c, d) = (ac − db∗, a∗d + cb)
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Quaternions

q ∈ H ⇐⇒ (a, b) ∈ C
2

multiplication:

(a, b)(c, d) = (ac − db∗, a∗d + cb)

conjugate:

(a, b)∗ = (a∗,−b)
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Octonions

We can define an octonion to be a pair of
quaternions.
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Octonions

We can define an octonion to be a pair of
quaternions.

Multiplication and conjugate are defined in
the same manner as for the quaternions.
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Octonions

We can define an octonion to be a pair of
quaternions.

Multiplication and conjugate are defined in
the same manner as for the quaternions.

Why isn’t there an infinite sequence of
division algebras, each one obtained from the
preceding one by the Cayley-Dickson
construction?
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∗-algebra

An algebra A equipped with a conjugation, that is, a
real-linear map ∗ : A → A with a∗∗ = a, (ab)∗ = b∗a∗ for
all a, b ∈ A is called ∗-algebra.

∗-algebra A is:

- real if a = a∗ for every element a ∈ A.

- nicely normed if a + a∗ ∈ R and aa∗ = a∗a > 0 for
all nonzero a ∈ A.

If A is nicely normed and alternative, A is a normed
division algebra.
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The General Construction

Starting from any ∗-algebra A, the
Cayley-Dickson construction gives a new
∗-algebra A′.

Elements of A′ are pairs (a, b) ∈ A2.

Multipication:

(a, b)(c, d) = (ac − db∗, a∗d + cb)

Conjugate:

(a, b)∗ = (a∗,−b)
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Propositions

P1: A′ is never real.
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Propositions

P1: A′ is never real.

P2: A is real (and thus commutative) ⇐⇒
A′ is commutative.

P3: A is commutative and associative ⇐⇒
A′ is associative.

P4: A is associative and nicely normed ⇐⇒
A′ is alternative and nicely normed.

P5: A is nicely normed ⇐⇒ A′ is nicely
normed.
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Effects

R is a real commutative associative nicely
normed ∗-algebra

=⇒
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=⇒
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Effects

R is a real commutative associative nicely
normed ∗-algebra

=⇒

C is a commutative associative nicely normed
∗-algebra

=⇒

H is an associative nicely normed ∗-algebra
=⇒
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Effects

R is a real commutative associative nicely
normed ∗-algebra

=⇒

C is a commutative associative nicely normed
∗-algebra

=⇒

H is an associative nicely normed ∗-algebra
=⇒

O is an alternative nicely normed ∗-algebra

Octonions – p. 27/??



Axioms of Projective Plane

For any two distinct points, there is a unique
line on which they both lie.

For any two distinct lines, there is a unique
point which lies on both of them.

There exist four points, no three of which lie
on the same line.

There exist four lines, no three of which have
the same point lying on them.
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Examples of Projective Plane

Fano plane
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Examples of Projective Plane

Fano plane

the real projective plane RP 2
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Points and Lines inRP 2

the points are lines through the origin in R
3
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Points and Lines inRP 2

the points are lines through the origin in R
3

each point (x, y) ∈ R
2 determines a point in

RP 2, namely the line in R
3 containing the

origin and the point (x, y,−1)
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Points and Lines inRP 2

the points are lines through the origin in R
3

each point (x, y) ∈ R
2 determines a point in

RP 2, namely the line in R
3 containing the

origin and the point (x, y,−1)

the ‘points at infinity’ are lines through the
origin in R

3 that do not intersect the plane
z = −1
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Points and Lines inRP 2

the points are lines through the origin in R
3

each point (x, y) ∈ R
2 determines a point in

RP 2, namely the line in R
3 containing the

origin and the point (x, y,−1)

the ‘points at infinity’ are lines through the
origin in R

3 that do not intersect the plane
z = −1

the lines are planes through the origin in R
3
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Axioms of Projective Space

For any two distinct points p, q, there is a
unique line pq on which they both lie.

For any line, there are at least three points
lying on this line.

If a, b, c, d are distinct points and there is a
point lying on both ab and cd, then there is a
point lying on both ac and bd.
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n-dimensional Projective Space

K - skew field : a ring such that every nonzero element
has a left and right multiplicative inverse

line through the origin: L = {αx : α ∈ K}, where
x ∈ K

n+1 is nonzero

plane through the origin: P = {αx + βy : α, β ∈ K},
where x, y ∈ K

n+1 are elements such that αx + βy = 0

implies α, β = 0

projective n-space is of the form KP n for some skew
field K only if n > 2
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Axial Perspectivity

Axial perspectivity is the condition satisfied if and
only if the points of intersection L ∩ L′, N ∩ N ′ and
M ∩ M ′, are collinear, on a line called the axis of
perspectivity.
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Central Perspectivity

Central perspectivity is the condition satisfied
if and only if the three lines xx′, yy′ and zz′

are concurrent, at a point called the center of
perspectivity .
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The Axiom of Desargues

In a projective space, two triangles are in perspective
axially if and only if they are in perspective centrally.

A projective plane satisfying this axiom is called
Desarguesian .
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Desarguesian Projective Planes and Skew Fields

We start with a projective plane P and try to reconstruct a
skew field from it:
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Desarguesian Projective Planes and Skew Fields

We start with a projective plane P and try to reconstruct a
skew field from it:

choose any line L and three distinct points on it - call
them 0, 1 and ∞

set K = L − {∞}

define addition and multiplication of points in K

The resulting structure (K,+, 0, ·, 1) will not be a skew field
and it will depend in a nontrivial way on the choices made,
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Desarguesian Projective Planes and Skew Fields

We start with a projective plane P and try to reconstruct a
skew field from it:

choose any line L and three distinct points on it - call
them 0, 1 and ∞

set K = L − {∞}

define addition and multiplication of points in K

The resulting structure (K,+, 0, ·, 1) will not be a skew field
and it will depend in a nontrivial way on the choices made,
but if we assume the axiom of Desargues, these problems
go away.

Octonions – p. 36/??



Brief History

Projective geometry was very fashionable in the 1800s, with such worthies as
Poncelet, Brianchon, Steiner and von Staudt making important contributions.
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Brief History

Projective geometry was very fashionable in the 1800s, with such worthies as
Poncelet, Brianchon, Steiner and von Staudt making important contributions.

In 1933 Ruth Moufang constructed a remarkable example of a non-Desarguesian
projective plane using the octonions.

The 1930s also saw the rise of another reason for interest in projective geometry:
quantum mechanics!
However, in quantum mechanics, observables do not form an associative algebra.

In 1932, Pascual Jordan attempted to understand this situation better by isolating
the bare minimum axioms that an ‘algebra of observables’ should satisfy.

In 1934, Jordan published a paper with von Neumann and Wigner classifying all

formally real Jordan algebras
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Formally Real Jordan Algebra

A formally real Jordan algebra is a commutative and
power-associative algebra satisfying

a2

1 + · · · + a2

n
= 0 =⇒ a1 = · · · = an = 0

for all n.
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Formally Real Jordan Algebra

A formally real Jordan algebra is a commutative and
power-associative algebra satisfying

a2

1 + · · · + a2

n
= 0 =⇒ a1 = · · · = an = 0

for all n.

The last condition gives the algebra a partial ordering:
if we write a ≤ b when the element b − a is a sum of
squares, it says that a ≤ b and b ≤ a imply a = b.
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Jordan Algebra

One can construct a commutative but nonassociative
product:

a ◦ b =
1

2
((a + b)2 − a2 − b2) =

1

2
(ab + ba).
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Jordan Algebra

One can construct a commutative but nonassociative
product:

a ◦ b =
1

2
((a + b)2 − a2 − b2) =

1

2
(ab + ba).

Any formally real Jordan algebra satisfies the identity
a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 for all elements a and b.
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Jordan Algebra

One can construct a commutative but nonassociative
product:

a ◦ b =
1

2
((a + b)2 − a2 − b2) =

1

2
(ab + ba).

Any formally real Jordan algebra satisfies the identity
a ◦ (b ◦ a2) = (a ◦ b) ◦ a2 for all elements a and b.

Any commutative algebra satisfying this identity is
called a Jordan algebra .
Jordan algebras are automatically power-associative.
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Classification

The simple formally real Jordan algebras consist of 4
infinite families and one exception:

The algebra hn(R) with the product a ◦ b = 1

2
(ab + ba).

The algebra hn(C) with the product a ◦ b = 1

2
(ab + ba).

The algebra hn(H) with the product a ◦ b = 1

2
(ab + ba).

The algebra R
n ⊕ R with the product

(v, α) ◦ (w, β) = (αw + βv, 〈v, w〉 + αβ).

The algebra h3(O) with the product a ◦ b = 1

2
(ab + ba).
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Relation betweenhn(C) and CP n

projections in hn(C) correspond to subspaces
of C

n

the projections onto 1-dimensional subspaces
correspond to points in CP n

the projections onto 2-dimensional subspaces
correspond to lines in CP n
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Constructing Projective Space

We can then try to construct a projective space whose
points are the rank-1 projections and whose lines are the
rank-2 projections, with the relation of ‘lying on’ given by
the partial order ≤.
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Constructing Projective Space

We can then try to construct a projective space whose
points are the rank-1 projections and whose lines are the
rank-2 projections, with the relation of ‘lying on’ given by
the partial order ≤.

from hn(R), hn(C) or hn(H), we obtain the projective
spaces RP n, CP n and HP n, respectively for n ≥ 2.
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Constructing Projective Space

We can then try to construct a projective space whose
points are the rank-1 projections and whose lines are the
rank-2 projections, with the relation of ‘lying on’ given by
the partial order ≤.

from hn(R), hn(C) or hn(H), we obtain the projective
spaces RP n, CP n and HP n, respectively for n ≥ 2.

from the spin factor R
n ⊕ R, for n ≥ 2, we obtain a

series of 1-dimensional projective spaces related to
Lorentzian geometry.
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Constructing Projective Space

We can then try to construct a projective space whose
points are the rank-1 projections and whose lines are the
rank-2 projections, with the relation of ‘lying on’ given by
the partial order ≤.

from hn(R), hn(C) or hn(H), we obtain the projective
spaces RP n, CP n and HP n, respectively for n ≥ 2.

from the spin factor R
n ⊕ R, for n ≥ 2, we obtain a

series of 1-dimensional projective spaces related to
Lorentzian geometry.

starting with the exceptional Jordan algebra h3(O), we
get the projective plane discovered by Moufang OP 2.
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Projective Lines

A one-dimensional projective space is called a
projective line .
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Projective Lines

A one-dimensional projective space is called a
projective line .

Since octonions are not associative, the problem of
defining the projective line over O arises.
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Projective Lines

A one-dimensional projective space is called a
projective line .

Since octonions are not associative, the problem of
defining the projective line over O arises.

A square matrix with entries in the ∗-algebra A is
hermitian if it equals its conjugate transpose.
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Projective Lines

A one-dimensional projective space is called a
projective line .

Since octonions are not associative, the problem of
defining the projective line over O arises.

A square matrix with entries in the ∗-algebra A is
hermitian if it equals its conjugate transpose.

Let hn(A) stand for the hermitian n × n matrices with
entries in A.
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Projections in h2(O)

Besides the trivial projections 0 and 1, they are all of
the form:





x∗

y∗





(

x y

)

=





x∗x x∗y

y∗x y∗y





where (x, y) ∈ O
2 has ‖x‖2 + ‖y‖2 = 1.

These nontrivial projections all have rank 1, so they are
the points of one line

It is easy to check that the axioms for a projective
space hold.
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OP 1

We have succeeded in creating the projective line
over O and that is OP 1.
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OP 1

We have succeeded in creating the projective line
over O and that is OP 1.

Given any nonzero element (x, y) ∈ O
2, we can

normalize it and then get a point in OP 1, which we call
[(x, y)].
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OP 1

We have succeeded in creating the projective line
over O and that is OP 1.

Given any nonzero element (x, y) ∈ O
2, we can

normalize it and then get a point in OP 1, which we call
[(x, y)].

Define an equivalence relation on nonzero elements of
O

2 by (x, y) ∼ (x′, y′) ⇐⇒ [(x, y)] = [(x′, y′)].
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OP 1

We have succeeded in creating the projective line
over O and that is OP 1.

Given any nonzero element (x, y) ∈ O
2, we can

normalize it and then get a point in OP 1, which we call
[(x, y)].

Define an equivalence relation on nonzero elements of
O

2 by (x, y) ∼ (x′, y′) ⇐⇒ [(x, y)] = [(x′, y′)].

We call an equivalence class for this relation a line
through the origin in O

2.
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Lines through the Origin

We can then identify points in OP 1 with lines through
the origin in O2.
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Lines through the Origin

We can then identify points in OP 1 with lines through
the origin in O2.

{(αx, αy) : α ∈ O} is not line through the origin
containing (x, y)!!!
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Lines through the Origin

We can then identify points in OP 1 with lines through
the origin in O2.

{(αx, αy) : α ∈ O} is not line through the origin
containing (x, y)!!!

(x, y) ∼ (y−1x, 1) when y 6= 0 and (x, y) ∼ (1, x−1y)

when x 6= 0, so the corresponding lines are
{(α, α(x−1y)) : α ∈ O} and {(α(y−1x), α) : α ∈ O}
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Lines through the Origin

We can then identify points in OP 1 with lines through
the origin in O2.

{(αx, αy) : α ∈ O} is not line through the origin
containing (x, y)!!!

(x, y) ∼ (y−1x, 1) when y 6= 0 and (x, y) ∼ (1, x−1y)

when x 6= 0, so the corresponding lines are
{(α, α(x−1y)) : α ∈ O} and {(α(y−1x), α) : α ∈ O}

In particular, the line through the origin containing
(x, y) is always a real vector space isomorphic to O.
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Manifolds

Let K denote a normed division algebra.
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Manifolds

Let K denote a normed division algebra.

We can cover KP 1 with two coordinate charts: one
containing all points of the form [(x, 1)], the other
containing all points of the form [(1, y)].
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Manifolds

Let K denote a normed division algebra.

We can cover KP 1 with two coordinate charts: one
containing all points of the form [(x, 1)], the other
containing all points of the form [(1, y)].

It is easy to check that [(x, 1)] = [(1, y)] ⇔ y = x−1, so
the transition function from the first chart to the second
is the map x 7→ x−1.
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Manifolds

Let K denote a normed division algebra.

We can cover KP 1 with two coordinate charts: one
containing all points of the form [(x, 1)], the other
containing all points of the form [(1, y)].

It is easy to check that [(x, 1)] = [(1, y)] ⇔ y = x−1, so
the transition function from the first chart to the second
is the map x 7→ x−1.

Since this transition function and its inverse are smooth
on the intersection of the two charts, KP 1 becomes a
smooth manifold.

Octonions – p. 47/??



Complex Case

CP 1 is just the Riemann sphere.
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Complex Case

CP 1 is just the Riemann sphere.

the map x 7→ [(x, 1)] is given by stereographic
projection:

where we choose the sphere to have diameter 1.
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Conformal Inversion

This map from C to CP 1 is one-to-one and
almost onto, missing only the point at infinity,
or north pole.
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Conformal Inversion

This map from C to CP 1 is one-to-one and
almost onto, missing only the point at infinity,
or north pole.

Similarly, the map y 7→ [(1, y)] misses only the
south pole.
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Conformal Inversion

This map from C to CP 1 is one-to-one and
almost onto, missing only the point at infinity,
or north pole.

Similarly, the map y 7→ [(1, y)] misses only the
south pole.

Composing the first map with the inverse of
the second, we get the map x 7→ x−1, which
goes by the name of conformal inversion .
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Riemann Sphere

The southern hemisphere of the Riemann
sphere consists of all points [(x, 1)] with
‖x‖ ≤ 1, while the northern hemisphere
consists of all [(1, y)] with ‖y‖ ≤ 1.

Unit complex numbers x give points
[(x, 1)] = [(1, x−1)] on the equator.
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Generalizing the Idea

Smooth manifold KP 1 is just a sphere with
dimension equal to that of K:

RP 1 ∼= S1

CP 1 ∼= S2

HP 1 ∼= S4

OP 1 ∼= S8
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Sphere Description

We can think of it as the one-point
compactification of K.
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Sphere Description

We can think of it as the one-point
compactification of K.

The southern hemisphere, northern
hemisphere and equator of K have
descriptions exactly like those given above for
the complex case.
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Sphere Description

We can think of it as the one-point
compactification of K.

The southern hemisphere, northern
hemisphere and equator of K have
descriptions exactly like those given above for
the complex case.

Also, as in the complex case, the maps
x 7→ [(x, 1)] and y 7→ [(1, y)] are
angle-preserving with respect to the usual
Euclidean metric on K and the round metric
on the sphere.
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Line Bundles

KP 1 is equipped with a vector bundle whose
fiber over the point [(x, y)] is the line through
the origin corresponding to this point.
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Line Bundles

KP 1 is equipped with a vector bundle whose
fiber over the point [(x, y)] is the line through
the origin corresponding to this point.

This bundle is called the canonical line
bundle, LK.
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Line Bundles

KP 1 is equipped with a vector bundle whose
fiber over the point [(x, y)] is the line through
the origin corresponding to this point.

This bundle is called the canonical line
bundle, LK.

When we are working with a particular
division algebra, ‘line’ means a copy of this
division algebra, so if we think of them as real
vector bundles, LR, LC, LH and LO have
dimensions 1,2,4 and 8, respectively.
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Building Canonical Line Bundles

Any k-dimensional real vector bundle over Sn can be
formed by taking trivial bundles over the northern and
southern hemispheres and gluing them together along
the equator via a map f : Sn−1 → O(n)
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Building Canonical Line Bundles

Any k-dimensional real vector bundle over Sn can be
formed by taking trivial bundles over the northern and
southern hemispheres and gluing them together along
the equator via a map f : Sn−1 → O(n)

We must therefore be able to build the canonical line
bundles LR, LC, LH and LO using maps:

fR : S0 → O(1)

fC : S1 → O(2)

fH : S3 → O(4)

fO : S7 → O(8)
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What Are These Maps?

In the southern hemisphere of KP 1, we can identify
any fiber of LK with K by mapping the point (αx, α) in
the line [(x, 1)] to the element α ∈ K.
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What Are These Maps?

In the southern hemisphere of KP 1, we can identify
any fiber of LK with K by mapping the point (αx, α) in
the line [(x, 1)] to the element α ∈ K.

Similarly, we can trivialize this bundle over the northern
hemisphere by mapping the point (β, βy) in the line
[(1, y)] to the element β ∈ K.
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What Are These Maps?

In the southern hemisphere of KP 1, we can identify
any fiber of LK with K by mapping the point (αx, α) in
the line [(x, 1)] to the element α ∈ K.

Similarly, we can trivialize this bundle over the northern
hemisphere by mapping the point (β, βy) in the line
[(1, y)] to the element β ∈ K.

If x ∈ K has norm one, [(x, 1)] = [(1, x−1)] is a point on
the equator, so we get two trivializations of the fiber
over this point: if (αx, α) = (β, βx−1) then β = αx.
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What Are These Maps?

In the southern hemisphere of KP 1, we can identify
any fiber of LK with K by mapping the point (αx, α) in
the line [(x, 1)] to the element α ∈ K.

Similarly, we can trivialize this bundle over the northern
hemisphere by mapping the point (β, βy) in the line
[(1, y)] to the element β ∈ K.

If x ∈ K has norm one, [(x, 1)] = [(1, x−1)] is a point on
the equator, so we get two trivializations of the fiber
over this point: if (αx, α) = (β, βx−1) then β = αx.

The map α 7→ β is thus right multiplication by x.
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The Importance of fK

fK : Sn−1 → O(n) is just the map sending any
norm-one element x ∈ K to the operation of right
multiplication by x.
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The Importance of fK

fK : Sn−1 → O(n) is just the map sending any
norm-one element x ∈ K to the operation of right
multiplication by x.

Using the obvious inclusions O(n) →֒ O(n + 1), we
obtain a topological group called O(∞)
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The Importance of fK

fK : Sn−1 → O(n) is just the map sending any
norm-one element x ∈ K to the operation of right
multiplication by x.

Using the obvious inclusions O(n) →֒ O(n + 1), we
obtain a topological group called O(∞)

Since O(n) is included in O(∞), we can think of fK as
a map from Sn−1 to O(∞).
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The Importance of fK

Homotopy class [fK] has the following marvelous
property, calculated by Raoul Bott in 1957:

[fR] generates π0(O(∞)) ∼= Z2

[fC] generates π1(O(∞)) ∼= Z2

[fH] generates π3(O(∞)) ∼= Z

[fO] generates π7(O(∞)) ∼= Z
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Bott Periodicity

Bott proved that the homotopy groups of the topological
group O(∞) repeat with period 8:

πi+8(O(∞)) ∼= πi(O(∞)).

He also computed the first 8:

π0(O(∞)) ∼= Z2 π4(O(∞)) ∼= 0

π1(O(∞)) ∼= Z2 π5(O(∞)) ∼= 0

π2(O(∞)) ∼= 0 π6(O(∞)) ∼= 0

π3(O(∞)) ∼= Z π7(O(∞)) ∼= Z
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Thank you for the attention!
Questions?
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