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Classical identities

Sums of one square

In any field F is valid

x2y 2 = (xy)2.

Sums of two squares

In any field F is valid

(x2
1 + x2

2 )(y 2
1 + y 2

2 ) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

This expresses product of two sums of two squares as another
sum of two squares.
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Similar identity

Euler in 1748, and later Hamilton in 1843 (in his work on
quaternions) discovered:

Sums of four squares

In any field F is valid

(x2
1 + x2

2 + x2
3 + x2

4 )(y 2
1 + y 2

2 + y 2
3 + y 2

4 ) =

(x1y1 − x2y2 − x3y3 − x4y4)2 +

(x1y2 + x2y1 + x3y4 − x4y3)2 +

(x1y3 + x3y1 − x2y4 + x4y2)2 +

(x1y4 + x4y1 + x2y3 − x3y2)2.

Product of two sums of four squares is again a sum of four
squares.
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Further research

Graves in 1843 and Cayley in 1845 discovered an ”eight
squares identity, which proves that the product of two
sums of eight squares is again a sum of eight squares.

For a long time it was unknown if there is a similar
”sixteen squares identity”?

The answer is no and yes...
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Eight squares

Sums of eight squares

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8 ) ·
(y 2

1 + y 2
2 + y 2

3 + y 2
4 + y 2

5 + y 2
6 + y 2

7 + y 2
8 ) =

(x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8)2 +

(x1y2 + x2y1 + x3y4 − x4y3 + x5y6 − x6y5 − x7y8 + x8y7)2 +

(x1y3 − x2y4 + x3y1 + x4y2 + x5y7 + x6y8 − x7y5 − x8y6)2 +

(x1y4 + x2y3 − x3y2 + x4y1 + x5y8 − x6y7 + x7y6 − x8y5)2 +

(x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y2 + x7y3 + x8y4)2 +

(x1y6 + x2y5 − x3y8 + x4y7 − x5y2 + x6y1 − x7y4 + x8y3)2 +

(x1y7 + x2y8 + x3y5 − x4y6 − x5y3 + x6y4 + x7y1 − x8y2)2 +

(x1y8 − x2y7 + x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1)2.
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General question

The general question we ask is:

Sums of n squares

For which n there is an identity:

(x2
1 + x2

2 + . . . x2
n )(y 2

1 + y 2
2 + . . . y 2

n ) = z2
1 + z2

2 + . . . z2
n ,

where all zk = zk(x1, x2, . . . , xn, y1, y2, . . . , yn)?

ie, for which n the product of two sums of n squares is a sum
of n squares?
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The first answer

The first answer is:

Theorem (Hurwitz, 1898)

If there is such identity valid in field of characteristic 0, where
each function zk is bilinear in vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn), then n = 1, 2, 4 or 8.

Note that identities we saw are bilinear in vectors x and y.
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One sixteen squares identity

In 1966 Zassenhaus and Eichhorn discovered a sixteen
squares identity.

The identity doesn’t violate Hurwitz’s theorem, since zk ’s
are not bilinear in vectors x and y.

Actually, zk ’s are rational expressions in xi ’s and yj ’s.
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Pfister

In late 1960’s, Albrecht Pfister proved several beautiful
theorems considering this question...
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Pfister’s theorems

Theorem 1

If F is a field, and n = 2m is a power of 2, then there is an
identity of form

(x2
1 + x2

2 + . . . x2
n )(y 2

1 + y 2
2 + . . . y 2

n ) = z2
1 + z2

2 + . . . z2
n ,

with zk ∈ F (x1, x2, . . . , xn, y1, y2, . . . , yn), valid in F .

And more:

Theorem 2

If n is not a power of two, then there exists some field F such
that there is no identity

(x2
1 + x2

2 + . . . x2
n )(y 2

1 + y 2
2 + . . . y 2

n ) = z2
1 + z2

2 + . . . z2
n ,

with zk ∈ F (x1, x2, . . . , xn, y1, y2, . . . , yn), valid in F .
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The proof of Theorem 1

To prove the first theorem, fix a field F , and write n = 2m.
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One lemma

First, we prove next lemma.

Lemma 1

Let a1, a2, . . . , an ∈ F and put a = a2
1 + a2

2 + . . . + a2
n. There is

an n × n matrix A with first row (a1, a2, . . . , an) such that
AAT = ATA = aE .

A =


a1 a2 · · · an
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗
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Proof of Lemma 1

We prove lemma by induction on m.

The case m = 0 is trivial.

For the case m = 1 note matrix:

A =

(
a1 a2

−a2 a1

)
.

It is easy to check that AAT = ATA = (a2
1 + a2

2)E .



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Lemma 1

We prove lemma by induction on m.

The case m = 0 is trivial.

For the case m = 1 note matrix:

A =

(
a1 a2

−a2 a1

)
.

It is easy to check that AAT = ATA = (a2
1 + a2

2)E .



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Lemma 1

We prove lemma by induction on m.

The case m = 0 is trivial.

For the case m = 1 note matrix:

A =

(
a1 a2

−a2 a1

)
.

It is easy to check that AAT = ATA = (a2
1 + a2

2)E .



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Lemma 1

We prove lemma by induction on m.

The case m = 0 is trivial.

For the case m = 1 note matrix:

A =

(
a1 a2

−a2 a1

)
.

It is easy to check that AAT = ATA = (a2
1 + a2

2)E .



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Lemma 1

We prove lemma by induction on m.

The case m = 0 is trivial.

For the case m = 1 note matrix:

A =

(
a1 a2

−a2 a1

)
.

It is easy to check that AAT = ATA = (a2
1 + a2

2)E .



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Lemma 1

Suppose that the result is true for 2m−1 × 2m−1 matrices.
We prove it for 2m × 2m matrices.

First, let a = a2
1 + a2

2 + . . . + a2
n = 0.

If all ak = 0, then we can take A = 0.

So assume that a1 6= 0.

Take row R = (a1, a2, . . . , a2m) and A = 1
a1

RTR.

Its first raw is R, as required, and

AAT = 1
a2

1
RTRRTR = 0 (since

RRT = a2
1 + . . . + a2

2m = a = 0), and

ATA = 1
a2

1
RTRRTR = 0.
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Let now a 6= 0.

Put b = a2
1 + . . . + a2

2m−1 and c = a2
2m−1+1 + . . . + a2

2m ,
a = b + c .

We can assume that b 6= 0.

Let B and C be 2m−1 × 2m−1 matrices with first rows
(a1, . . . , a2m−1) and (a2m−1+1, . . . , a2m) such that
BBT = BTB = bE and CCT = CTC = cE .
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Let’s try to find matrix A in form A =

(
B C
X Y

)
.

AAT =

(
B C
X Y

)(
BT XT

CT Y T

)
=

(
BBT + CCT BXT + CY T

XBT + YCT XXT + YY T

)
=

(
aE BXT + CY T

XBT + YCT XXT + YY T

)
.

We want that BXT + CY T = O and XXT + YY T = aE .

Inspired by case m = 1, let’s try to take Y = B.
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Note that B is invertible iff b 6= 0, since BBT = bE
(therefore B−1 = 1

bBT ).

Hence, B is invertible.

Therefore, take Y = B.

And from BXT + CY T = O, we find
X = −BCT (B−1)T = − 1

bBCTB.

Finally, XXT + YY T =

= (− 1
bBCTB)(− 1

bBCTB)T + BBT

= 1
b2 BCTBBTCBT + bE

= 1
bBCTCBT + bE

= c
bBBT + bE

= cE + bE = aE , and we are finished.
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Corollary 1

In any field F , the set of sums of n squares is closed under
multiplication when n = 2m. Further, the set of all nonzero
sums of n squares is a group under multiplication.
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Proof.

Let u = u2
1 + . . . + u2

n and v = v 2
1 + . . . + v 2

n .

Take U and V to be matrices with first rows (u1, . . . , un)
and (v1, . . . , vn), such that UUT = UTU = uE and
VV T = V TV = vE .

Take W = UV T and let first row of W to be (w1, . . . ,wn).

Then, WW T = UV TVUT = uvE , and taking (1, 1) entry
of this matrix we get

w 2
1 + . . . + w 2

n = uv , ie. the product of two sums of n
squares is a sum of n squares.

If u 6= 0, then 1
u = u

u2 =
(
u1
u

)2
+ . . . +

(
un
u

)2
.
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Theorem 1

If F is a field, and n = 2m is a power of 2, then there is an
identity of form

(x2
1 + x2

2 + . . . x2
n )(y 2

1 + y 2
2 + . . . y 2

n ) = z2
1 + z2

2 + . . . z2
n ,

with zk ∈ F (x1, x2, . . . , xn, y1, y2, . . . , yn), valid in F .
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Proof.

Apply Corollary 1 on field F (x1, . . . , xn, y1, . . . , yn).

The sum of squares of xi ’s times sum of squares of yj ’s is
again a sum of squares of n rational expressions in xi ’s and
yj ’s.

Thus, that identity is valid in field F .
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again a sum of squares of n rational expressions in xi ’s and
yj ’s.

Thus, that identity is valid in field F .
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Die Stufe

Definition

The smallest positive integer s such that −1 is sum of s
squares in a field F

−1 = a2
1 + a2

2 + . . . + a2
s , ak ∈ F

is called the Stufe of field F . We denote it s(F ). If such S
doesn’t exist then we put s(F ) =∞ and call F formally real.
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Pfister’s theorems

Theorem 3

If s(F ) <∞ then it is a power of 2.

Theorem 4

For every power of 2, n, there is a field F with Stufe s(F ) = n.
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Proof of Theorem 3

Let n = 2m ≤ s = s(F ) < sm+1.

Write 0 = a2
1 + a2

2 + . . . a2
n + a2

n+1 + . . . + a2
s + 1.

Take u = a2
1 + a2

2 + . . . a2
n and

v = a2
n+1 + . . . + a2

s + 1 + 0 + . . . + 0.

u, v 6= 0, otherwise s(F ) < s.

u + v = 0, hence u = −v , and therefore −1 = v/u.

By Corollary 1, −1 is a sum of n squares.

Hence, s(F ) = n = 2m.
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Some fact

Lemma

Let R be the field of real numbers. Then x2
1 + x2

2 + . . . + x2
n is

not a sum of n − 1 squares in field R(x1, x2, . . . , xn).
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Proof of Theorem 4

Theorem 4

For every power of 2, n, there is a field F with Stufe s(F ) = n.
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Proof of Theorem 4

Let n = 2m, and let F = R(x1, x2, . . . , xn+1, y) where
y 2 + x2

1 + . . . x2
n+1 = 0.

We claim that s(F ) = n = 2m.

s(F ) ≤ n + 1, since −1 = ( x1
y )2 + . . . + ( xn+1

y )2, and
therefore s(F ) ≤ n (since it has to be power of 2).
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Proof of Theorem 4

Assume that s = s(F ) < n.

Write 0 = t2
1 + . . . + t2

n , not all tk ’s are zero,

and tk = ak + bky , ak , bk ∈ R(x1, . . . , xn+1).

Now we have
0 =

∑
(ak + bky)2 =

∑
a2
k + 2y

∑
akbk + y 2

∑
b2
k .

And from there 0 =
∑

a2
k + y 2

∑
b2
k and 0 =

∑
akbk .
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Proof of Theorem 4

Not all ak ’s are zero, otherwise
∑

b2
k = 0, hence all bk ’s

are zero (since R(x1, . . . xn+1) is formally real).

Not all bk ’s are zero, because of the same reason.

Hence
x2

1 + . . . + x2
n+1 = −y 2 =

∑
ak/

∑
bk = c2

1 + . . . + c2
n .

This contradiction shows us that s(F ) = n = 2m.



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Theorem 4

Not all ak ’s are zero, otherwise
∑

b2
k = 0, hence all bk ’s

are zero (since R(x1, . . . xn+1) is formally real).

Not all bk ’s are zero, because of the same reason.

Hence
x2

1 + . . . + x2
n+1 = −y 2 =

∑
ak/

∑
bk = c2

1 + . . . + c2
n .

This contradiction shows us that s(F ) = n = 2m.



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Theorem 4

Not all ak ’s are zero, otherwise
∑

b2
k = 0, hence all bk ’s

are zero (since R(x1, . . . xn+1) is formally real).

Not all bk ’s are zero, because of the same reason.

Hence
x2

1 + . . . + x2
n+1 = −y 2 =

∑
ak/

∑
bk = c2

1 + . . . + c2
n .

This contradiction shows us that s(F ) = n = 2m.



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Theorem 4

Not all ak ’s are zero, otherwise
∑

b2
k = 0, hence all bk ’s

are zero (since R(x1, . . . xn+1) is formally real).

Not all bk ’s are zero, because of the same reason.

Hence
x2

1 + . . . + x2
n+1 = −y 2 =

∑
ak/

∑
bk = c2

1 + . . . + c2
n .

This contradiction shows us that s(F ) = n = 2m.



Pfister’s
theorem

Slavko
Moconja

Introduction

Pfister’s
theorem

Die Stufe

Proofs of
Theorems 4
and 2

Proof of Theorem 2

Theorem 2

If n is not a power of two, then there exists some field F such
that there is no identity
with zk ∈ F (x1, x2, . . . , xn, y1, y2, . . . , yn), valid in F .
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Proof of Theorem 2

Let 2m−1 < n < 2m = s, and let F be a field having Stufe
2m.

Then a2
1 + . . . + a2

n + a2
n+1 + . . . + a2

s + 1 = 0.

Let u = a2
1 + . . . + a2

n and v = a2
n+1 + . . . + a2

s + 1.

u, v are non-zero sums of n squares.

If there is identity

(x2
1 + x2

2 + . . . x2
n )(y 2

1 + y 2
2 + . . . y 2

n ) = z2
1 + z2

2 + . . . z2
n ,

valid in F , we would have −1 = v/u = b2
1 + . . . + b2

n.

Therefore, s(F ) ≤ n < s, which is contradiction.
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Thanks for your attention...
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