ON NON-NEGATIVE INTEGER QUADRATIC FORMS

GALYNA KRIUKOVA

The use of quadratic forms as a tool for characterizing classes of finite dimensional algebras and Lie algebras is well known and widely accepted.

We prove that each \mathbb{Z}-equivalence class of integer quadratic forms contains a disjoint union of multiplied unit Dynkin diagrams and some form related to radical, and each Gabrilov-equivalence class of integer quadratic forms contains a disjoint union of multiplied Dynkin diagrams and some form related to radical. For an integer quadratic form a non-negativity criterion is given.

A square matrix with integer coefficients A is called a quasi-Cartan matrix if it is symmetrizable (there exists a diagonal matrix D with positive diagonal entries such that DA is symmetric) and $A_{ii} = 2$ for all i. A quasi-Cartan matrix is called Cartan matrix if it is positive definite and $A_{ij} \leq 0$ for all $i \neq j$. To any integer form we associate a Lie algebra in generators and relations in terms of the positive quasi-Cartan matrix. Quasi-Cartan matrix A_q of quadratic form q is Cartan matrix iff form q is positive definite and classic.

Each Cartan matrix determines a unique semisimple complex Lie algebra via the Chevalley-Serre, sometimes called simply the Serre relations. We develop the classical Serre relations for quasi-Cartan matrix. Serre proved that if q is positive definite and classic integer form then $g(q)$ is a semisimple (and finite dimensional) Lie algebra.

Two forms q and q' are called G-equivalent if one comes from another after a sequence of Gabrilov transformations, sign-inversions or a permutation of the variables. It is shown, that two connected, positive integer forms q and q' are \mathbb{Z}-equivalent and define identical sets of roots if and only if they are G-equivalent. We show that two connected, positive integer forms q and q' are G-equivalent and define identical sets of roots if and only if they are G-equivalent. Finally we show that if q and q' are G-equivalent, then $g(q)$ and $g(q')$ are isomorphic as graded Lie algebras. It is shown that corresponding isomorphism type of algebras is determined by the Gabrilov-equivalence class of integer quadratic form.

The Faculty of Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrska str. 60, Kyiv, Ukraine