A category \mathcal{K} is alg-universal if any category of algebras has a full embedding into \mathcal{K}. This is equivalent to the existence of a full embedding $\Phi : \mathcal{G} @ \rightarrow \rightarrow \mathcal{K}$ of the category \mathcal{G} of undirected graphs and their compatible mappings into \mathcal{K}. If \mathcal{K} is a concrete category and the \mathcal{K}-object ΦG has finite underlying set for every finite graph G, we say that \mathcal{K} is finite-to-finite alg-universal. There are weaker forms of universality. For instance, a concrete category \mathcal{K} need not be universal, but augmenting each \mathcal{K}-object by $k \geq 1$ constants and requiring that each of these constants be preserved gives rise to a proper subcategory of \mathcal{K} called the k-expansion and denoted as $k\mathcal{K}$ that may well be alg-universal. A stronger version of weak universality is based on the concept of an ideal J of a category \mathcal{K}. A class J of \mathcal{K}-morphisms is an ideal of \mathcal{K} if $f \circ g \in J$ whenever $f \in J$ or $g \in J$. And \mathcal{K} is J-relatively alg-universal if there is a faithful functor $\Phi : \mathcal{G} @ \rightarrow \rightarrow \mathcal{K}$ such that $\Phi m \notin J$ for every \mathcal{G}-morphism m and every \mathcal{K}-morphism $k : \Phi G @ \rightarrow \rightarrow \Phi G'$ outside of J has the form $k = \Phi m$ for some $m \in \mathcal{G}(G,G')$. The variety \mathcal{D} of distributive $(0,1)$-lattices and the category \mathcal{P} of all Priestley spaces dual to \mathcal{D} are far from alg-universal, while their respective expansions $2\mathcal{D}$ and $2\mathcal{P}$ are. The main result used here is that

(R): the expansions $1\mathcal{D}$ and $1\mathcal{P}$ are J-relatively alg-universal for the ideal J formed by all morphisms whose image is finite.

When combined with earlier results, (R) implies this

Theorem: For every non-regular variety \mathcal{V} of distributive double p-algebras there are integers $m \leq 5$ and $n \leq 6$ such that its m-expansion $m\mathcal{V}$ is alg-universal and its n-expansion $n\mathcal{V}$ is finite-to-finite alg-universal. If \mathcal{V} is a finitely generated regular variety of distributive double p-algebras then for no cardinal α the α-expansion $\alpha\mathcal{V}$ is alg-universal.

A more complete categorical classification of such varieties will be discussed in the talk.