It is proved in [P. Růžička, J. Tůma and F. Wehrung, *Distributive congruence lattices of congruence-permutable algebras*, Journal of Algebra 311 (2007), 96–116] that every distributive algebraic lattice with the set of compact elements of cardinality at most \aleph_1 is isomorphic to the lattice of normal subgroups of some group (note that the lattice of normal subgroups of a group G is the congruence lattice of G considered as a semigroup). We are interested in congruence lattices of semigroups which are far in a sense from groups. For an integer n, a semigroup is called a nil-semigroup of index n if it has a zero and satisfies the identity $x^n = 0$. Our talk is devoted to representing lattices by congruence lattices of such semigroups.

Ural State University, Ekaterinburg, Russia