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The relational clone membership problem

Starting point: the Galois connection between operations and relations

Definition

Let f be an n-ary operation and r a k-ary relation on a finite set D.

Say that f preserves r iff for all A = [aij ] ∈ Dn×k , if each row of A
[a11 . . . a1k ], . . . , [an1 . . . ank ] is in r , thenf (

 a11
...

an1

), . . . , f (

 a1k
...

ank

)

 ∈ r .

Other jargon:

r is invariant under f .

f is a polymorphism of r .
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Fix D (a finite set).

OpD = {all finitary operations on D}.
RelD = {all finitary relations on D}.

For F ⊆ OpD and R ⊆ RelD

Inv(F) = {r ∈ RelD : r is invariant under every f ∈ F}
Pol(R) = {f ∈ OpD : f is a polymorphism of every r ∈ R}.

P(OpD) P(RelD)

Inv

Pol

Pol ◦ Inv

(resp. Inv ◦Pol)

is a closure operator on OpD

(resp. RelD).

This lecture focuses on the relational side (RelD).
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Characterizing Inv ◦Pol.

InvPol Theorem (Geiger ‘68; Bodnarčuk et al ‘69)

(D finite.) For any R ⊆ RelD ,

Inv(Pol(R)) = Clorel(R), the relational clone generated by R

= { relations on D definable by pp R-formulas }

( = 〈R〉pp ).

Definition (Primitive Positive Formula)

A pp R-formula is a first-order formula ϕ(x) of the form ∃y(α1 ∧ · · · ∧αm)
where each αi is either an application of a relation in R to some variables
in x ∪ y, or an equality between two variables in x ∪ y.

The relational clone membership problem is the decision problem

which, given D and R ∪ {s} ⊆ RelD , asks whether s
?
∈ Clorel(R).
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InvPol theorem ⇒ ∃ witnesses to both sides of s
?
∈ Clorel(R):

If s ∈ Clorel(R), then it’s witnessed by a pp R-formula (defining s).

If s 6∈ Clorel(R), then it’s witnessed by an operation (preserving R

but not s).

Questions:

How large must witnesses be (in the worst case)?

(Cohen, Jeavons ∼ 1995.)

How hard is the relational clone membership problem?

(Dalmau, 2000.)
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Start with first question (on size of witnesses).

Proof of InvPol theorem ⇒ upper bounds

Input: R ∪ {s} ⊆ RelD .
Let d = |D|, n = |s|.

If s ∈ Clorel(R), then this is witnessed by a pp R-formula having dn

variables.

If s 6∈ Clorel(R), then this is witnessed by a polymorphism of R of
arity n.

First Question (refined):

Do pp formulas witnessing s ∈ Clorel(R) ever require
log∼ dn variables?

Do polymorphisms witnessing s 6∈ Clorel(R) ever require arity ∼ n?
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Answer: YES

Theorem 1 (W., 2010)

For infinitely many n there exist D and R ∪ R′ ∪ {s} ⊆ RelD such that:

|s| = n;

s ∈ Clorel(R), yet every witnessing pp formula has ≥ 2n/3 variables;

s 6∈ Clorel(R
′), yet every witnessing polymorphism has arity ≥ n/3.

Moreover,

|D| = 22

|R| = |R′| = n;

Each relation in R ∪ R′ ∪ {s} has arity O(log n).
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Second question: how hard is it to decide g
?
∈ Clorel(R)?

Upper bound to size of polymorphism witnesses to g 6∈ Clorel(R) gives

The relational clone membership problem is in co-NEXPTIME .

Second Question (refined)

Is there a better algorithm than naive search for a negative witness?

(Dalmau, 2000.)

Is the relational clone membership problem co-NEXPTIME-complete?

(AIM workshop, 2008.)

Theorem 2 (W., announced at NSAC 2009)

∃d > 0 such that the relational clone membership problem restricted to
d-element domains is co-NEXPTIME-complete.
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Comments on the proofs

Both proofs exploit an encoding of a tiling problem into the
relational clone membership problem.

Roughly speaking, a tiling problem involves:

An unlimited supply of tiles, each having a tile type ∈ {t1, . . . , tk}.
A positive integer N, which determines an N × N grid.

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)
E.g.

types = {1, 2, . . . , 9}

constraints:

i j or ⇒ i < ji

j

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

5

6

7

8

9

1 3

One then attempts to cover the grid with tiles, subject to some
constraints on horizontally and vertically adjacent tile types.

Option: can require an initial condition (on the first row).
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More precisely:

Definition

Fix N ≥ 2.

1 A domino system is a finite relational structure D = (∆;H,V ) with
H,V binary. (∆ = “tile types,” H = “horizontal,” V = “vertical.”)

2 N = {0, 1, . . . ,N − 1}.
3 BN denotes the structure (N × N; ≺1,≺2) where

≺1 = { ((i , j), (i+1, j)) : i , j ∈ N, i 6= N − 1}
≺2 = { ((i , j), (i , j+1)) : i , j ∈ N, j 6= N − 1}.

4 A tiling of N × N by D is a homomorphism τ : BN → D.

5 Given w = (w0,w1, . . . ,wm−1) ∈ ∆m with m ≤ N, say that a tiling τ
of N × N satisfies initial condition w if τ(i , 0) = wi ∀i < m.
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Fix a domino system D = (∆;H,V ).

ExpTile(D), the Exponential Tiling-by-D Problem, is:

Input:
w ∈ ∆m for some m ≥ 2.

Question:
Does ∃ a tiling of 2m × 2m by D satisfying initial condition w?

Fact: ∃ a “universal” domino system Du such that ExpTile(Du) is
NEXPTIME-complete.
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Key Construction

For every domino system D = (∆;H,V ) there exists a finite set D and a
log-space construction

w ∈ ∆m 7→ R ∪ {s} ⊆ RelD

such that s ∈ Clorel(R) iff there does not exist a tiling of 2m × 2m by D

satisfying initial condition w.

Hence ExpTile(D) is interpretable into the complement of the
relational clone membership problem restricted to the domain D.

(With the universal Du, gives Theorem 2.)

Moreover:

|s| = 3m, and s depends only on m (not on w);

The sizes of witnesses to s ∈ [ 6∈] Clorel(R) are connected to certain
properties of tilings/obstructions to tilings.

(With an appropriate D, gives Theorem 1.)
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Problems

What about the operational side?

Clone membership is known to be hard (EXPTIME-complete,
Bergman et al, 1999).

Open: Can one prove lower bounds (to sizes of witnesses) matching
the “obvious” upper bounds (given by the Pol Inv theorem)?

Not much seems to be known.

Variations (on the relational side), e.g.:

Open: Do there exist fixed D and R such that:

Witnesses are large for s
?
∈ Clorel(R)?

The relational clone membership problem restricted to D,R is still
co-NEXPTIME -complete?

(The latter would nicely complement a result of Kozik 2008 on the
operational side.)
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